
Dynamic Decision Making when Risk

Perception depends on Past Experience∗

Michèle Cohen

CES, University Paris 1

Johanna Etner

GAINS, University of Maine and CES, University Paris 1

Meglena Jeleva

GAINS, University of Maine, and CES, University Paris 1

October 2, 2006

Abstract

The aim of the paper is to propose a preferences representation

model under risk where risk perception can be past experience depen-

dent. A first step consists in considering a one period decision problem

where individual preferences are no more defined only on decisions but

on pairs (decision, past experience). The obtained criterion is used in

the construction of a dynamic choice model under risk. The paper

ends with an illustrative example concerning insurance demand. It

appears that our model allows to explain modifications in the insur-

ance demand behavior over time observed on the insurance markets

for catastrophic risk and difficult to justify with standard models.
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Vergnaud and the participants of FUR XII for valuable comments and useful suggestions.
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1 Introduction

Decision theory under risk had for a long time focused mainly on the impact

of different risk and wealth perceptions on the agents’ optimal decisions. In

these classical studies, risk perceptions, as well as utility functions, depend

only on the considered decision characteristics (pairs probabilities-outcomes)

and thus can not be influenced by outside factors. However, some psycho-

logical studies (Slovic 2000) point out the fact that risk perception may be

strongly influenced by the context in which the individuals are when they

take their decisions. Context can take different forms: (i) it can correspond to

past experience concerning the same decision problem (relevant in insurance

decisions as noticed in Kunreuther (1996) and Brown, Hoyt (2000)) or other

events independent on the relevant decision problem as weather or general

economic situation (a relation between weather conditions and stock market

behaviour have been enlightened by Hirshleifer, Shumway 2003), (ii) it can

also correspond to anticipatory feelings about some future states (Caplin,

Leahy 2001), (iii) it can be related to the decision outcomes presentation

(leading then to the framing effect pointed out by Tversky and Kahneman

1986).

In this paper, we focus on the context created by past experience, corre-

sponding to a sequence of events occurring up to the moment of the decision.

This past experience can concern different events : (i) past realizations of the

decision-relevant events (as accidents when an insurance decision is consid-

ered) or (ii) realization of events, others than the decision relevant ones (such

as temperature or health status when a stock demand decision is considered).

The influence of past experience on decisions appears in particular on

insurance markets for catastrophic risk. It appears that in California, before

the earthquake in 1989, 34 % of individuals consider that insurance against

earthquake is useless. After the earthquake, they are only 5% and 11% of the

non insured individuals subscribed an insurance contract (Kunreuther 1996).

These results are confirmed by an empirical study from Brown and Hoyt

(2000) that reveals a strong positive correlation between the number of flood

insurance contracts subscribed in a year in a given State of the US and losses

due to flood in the same State the previous year. A relation between past
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experience and insurance demand appears also in experimental studies when

individuals are well informed about the probability of loss realization and

about the independence of losses in successive periods (McClelland, Schulze,

Coursey 1993, Ganderton et al. 2000, Papon 2004). Their results are less

clear-cut: if the existence of a strong correlation between past damages and

insurance demand is well established, its sign is less clear. Indeed, two oppo-

site effects can be identified corresponding to availability biais and gambler

fallacy in the sense of Tversky and Kahneman (1973). The availability biais

corresponds to an overestimation of the probability of an event that recently

occurred and implies an increase in insurance demand after a natural disas-

ter, this demand being low after a long period without a catastrophe. The

opposite occurs with the gambler’s fallacy effect: individuals underestimate

the probability of repetition of the event that they just observed and thus

buy less insurance after a loss.

When events are independent over time, behaviors that we have just de-

scribed cannot be explained in the standard expected utility model. Indeed,

in this model, past experienced losses lead only to a wealth decrease and not

to a probability assesment modification.

Relaxing the axiom of context independence of preferences under un-

certainty can allow the rationalization of some decisions considered as in-

consistent with respect to the existing criteria because reflecting unstable

preferences as for instance the modification of insurance demand against

catastrophic risk after the occurrence of a catastroph.

The aim of the paper is to propose a preferences representation model

under risk where risk perception can be past experience dependent. A first

step consists in considering a one period decision problem where individual

preferences are no more defined only on decisions but on pairs (decision, past

experience). The obtained criterion is used in the construction of a dynamic

choice model under risk.

The underlying model of decision making under risk that is used here is

the RDU (Rank dependent Utility), proposed by Kahneman-Tversky (1979),

Quiggin (1982) and Yaari (1987). This model has the advantage to allow a

non linear treatment of probabilities, in addition to a non linear treatment

of outcomes. When one period decisions are considered, we adapt the RDU
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axiomatic system of Chateauneuf (1999) to represent preferences on pairs

(decision, past experience).

To better capture the long term impact of past experience on decisions,

after the preferences representation on a point of time, we model intertem-

poral decisions. RDU model can generate intertemporal consistency. To rule

out this problem, we use the recursive model of Kreps and Porteus (1978). In

the latter model, risk aversion is characterized by a standard utility function

and the agents’ past experience is summarized by a sequence of monetary

payoffs, resulting from the past decisions and the lottery realizations. In the

present paper are introduced additional aspects: (i) risk perception is non

linear and depends on a probability transformation function; (ii) past expe-

rience does not reduce anymore to the only payoffs, but is characterized by a

sequence of events, corresponding more generally to individuals’ past experi-

ence. To achieve this preferences representation, we assume that preferences

at a point of time are represented by the ”past experience dependent” RDU

previously axiomatized and modify the dynamic consistency axiom of KP in

order to apply to states and not to payments.

The paper starts with the ”past experience dependent” preferences rep-

resentation at a point of time. We propose an axiomatic foundation for

”past experience dependent” rank dependent utility under risk. In the third

section, we consider a dynamic choice problem and prove a representation

theorem. Section four contains an illustrative example.

2 Behavior at a point of time

In this section, we consider a static problem. We propose an axiomatic

representation of preferences by a rank dependent expected utility which

takes into account the agent’s past experience.

2.1 Notations and definitions

Decision problem is characterized by a set of risky perspectives in which an

agent has to make his choice and by a set of states that characterize the

agent’s past experience.
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Let Z denote a set of outcomes. We assume that Z is a non empty

connected compact and metric space and L is the set of lotteries over Z.
S is a set of realized states, assumed nonempty, compact, connected sepa-

rable topological space. An element of S×L will be called a ”past experience
dependent lottery”.

% is a binary relation on S × L which denotes the preference relation
of a decision maker. We denote by Â the strict preference and by ∼ the

indifference.

Axiom 1 % is a weak order on S × L.

The preferences representation of % on S × L will be built in two steps.
We start with the preference relation on s × L and its representation by

a Rank Dependant Utility (RDU) model. Then, we give some additional

assumptions to achieve a RDU preferences representation on S × L.

2.2 Preferences on s×L and RDU
In this section we consider the restrictions of % to s× L that we denote by
%s . For a given state s, we face a standard decision problem under risk.

The RDU representation of the preference relation %s is obtained by the
following axioms, proposed in Chateauneuf [1999].

From Axiom 1, it follows directly that %s is a weak order on s×L.

Axiom 2 (Continuity) For a given s ∈ S, let Pn = (s, Ln) , P = (s, L) , Q =
(s, L0) ∈ s×L, with Pn weakly converging to P , then ∀n, Pn %s Q⇒ P %s Q
and ∀n, Pn -s Q⇒ P -s Q.

For a given s, it is possible to completely order the spaceZ. The definition
of the first order stochastic dominance (SD1) becomes L SD1 L0 if and only

if PL (z ∈ Z, (s, z) Âs (s, x)) ≥ PL0 (z ∈ Z, (s, z) Âs (s, x)) ∀x ∈ Z.
The next axiom guarantees that %s preserves first order stochastic dom-

inance.

Axiom 3 For any L,L0 ∈ L such that L SD1 L0, (s, L) %s (s, L0) .
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Axiom 4 (Comonotonic sure-thing principle) For any s ∈ S, let lot-
teries P = ((s, zi) pi) , Q = ((s, yi) pi) be such (s, zi0 ) ∼s (s, yi0), then P %s Q
implies P 0 %s Q0, for lotteries P 0, Q0 obtained from lotteries P and Q by

merely replacing the ith0 common pair (s, zi0 ), by a common pair (s, xi0 ) again

in ith0 rank both in P
0 and Q0.

Axiom 5 (Comonotonic mixture independance axiom) For any s ∈
S, and for any lotteries P = ((s, zi) pi) and Q = ((s, yi) qi)),
For any p ∈ [0, 1] , for any a, b, c, d ∈ Z

• P1 = (1− p)
¡
s, zmin

¢
+ p (s, a) ∼s Q1 = (1− p)

¡
s, ymin

¢
+ p (s, b)

and P2 = (1− p)
¡
s, zmin

¢
+ p (s, c) ∼s Q2 = (1− p)

¡
s, ymin

¢
+ p (s0, d)

imply ∀α ∈ [0, 1] ,αP1 + (1− α)P2 ∼s αQ1 + (1− α)Q2

• P1 = (1− p) (s, zmax) + p (s, a) ∼s Q1 = (1− p) (s, ymax) + p (s0, b)

and P2 = (1− p) (s, zmax) + p (s, c) ∼s Q2 = (1− p) (s, ymax) + p (s0, d)
imply ∀α ∈ [0, 1] ,αP1 + (1− α)P2 ∼s αQ1 + (1− α)Q2

Theorem 1 Let the preference relation %s on s×L satisfy axioms 1 - 5, then
there exist an increasing function ϕs : [0, 1]→ [0, 1], with ϕs (0) = 0, ϕs (1) =

1 and a utility function, vs : Z → R, which is increasing, continuous, and

unique up to an affine transformation such that:

∀L,L0 ∈ L, (s, L) %s (s, L0) iff Vs(L) ≥ Vs(L0) with

Vs(L) =
nX
i=1

Ã
ϕs(

nX
j=i

pj)− ϕs(
nX

j=i+1

pj)

!
× vs(zi)

Proof. Chateauneuf [1999]

We now consider the general preferences comparing lotteries in different

contexts (S × L). Let us notice that the preferences on S × L induce a

preference on S ×Z but in no case a preference on S alone.
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At this stage, the payoffs evaluation depends not only on z but also on s.

The objective of this paper is to emphasize the link between risk perception

and individual context. In order to isolate this feature, we assume that only

perceptions depend on s. This assumption needs more discussion, mainly

with respect to the state-dependant model of Karni (1985). The main fea-

ture of Karni’s model is that the evaluation of a given amount of money

may strongly depend on the state in which the individual is when receiving

this amount. Here, the states we consider are not of the same type: they

are already realized (past) states, and not future ones. It seems then more

realistic to assume that they are more likely to influence risk perception than

future monetary evaluations.

The following axiom guarantees that the payoffs evaluations do not de-

pend on past experience.

Axiom 6 For any s, s0 ∈ S and any z ∈ Z, (s, z) ∼ (s0, z) .

Let us notice that axioms 3 and 6 induce the existence of a preference

relation on Z independent on S. To simplify notations, we can then write
z ≥ z0 instead of (s, z) º (s, z0) for all s ∈ S.
The following preferences representation theorem can then be formulated.

Theorem 2 Under Axioms 1 - 6, the weak order % on S×L is representable
by a function V : S × L → R. For any s, s0 ∈ S and any L,L0 ∈ L ,

(s, L) % (s0, L0)⇔ V (s, L) ≥ V (s0, L0)

where V (s, L) =
nP
i=1

Ã
ϕs(

nP
j=i

pj)− ϕs(
nP

j=i+1

pj)

!
v(zi).

Proof. The generalization of the preferences representation of the restric-
tions %s on % is allowed by the unicity of the probability transformation

function ϕs(p) and the independence of the utility function on s.

We can see that a decision maker with ϕs(p) < p systematically underes-

timates the probabilities of the favorable events and then is called pessimist

under risk. Moreover, we obtain the following result.

Corollary 1 Let s, s0 ∈ S. ϕ(s, p) ≥ ϕ(s0, p) for any p ∈ [0, 1] if and only
V (s, L) ≥ V (s0, L) for any L ∈ L.
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Proof. Let L = (z1, p1; z2, p2; ...; zn, pn)with z1 ≤ ... ≤ znNote that this

axiom implies that for any z, z0 ∈ Z such that z ≥ z0, (s, z) %s (s, z0) .

(i)⇒: V (s, L)−V (s0, L) =
nP
i=2

Ã
ϕs(

nP
j=i

pj)− ϕs0(
nP
j=i

pj)

!
(v(zi)− v(zi−1)) ≥

0 if ϕ(s, p) ≥ ϕ(s0, p) for any p ∈ [0, 1];
(ii) ⇐: if there exists p0 such that ϕ(s, p0) < ϕ(s0, p0) then for L0 =

(z1, 1− p0; z2, p0), V (s, L0) < V (s0, L0).

This result implies that if there exists a realized state that induces pes-

simistic risk perception, then an individual will dislike any decision in this

context, with respect to a state where his risk perception is less pessimistic.

3 Dynamic choice

In this section, we consider a dynamic choice problem under risk where risk

perception and utility of the outcomes may depend on agents’ past experi-

ence. Preferences at a point of time are represented as in the previous section

of the paper, by a past experience dependent RDU. It is now well known (see

for instance Machina 1989) that preferences representations models that do

not verify the independence axiom can not verify at the same time dynamic

consistency, consequentialism and reduction of compound lotteries. To pre-

serve dynamic consistency, as in Epstein, Wang (1994) and Epstein, Schnei-

der (2003), a recursive model is adopted here. More precisely, we modify the

Kreps and Porteus (1978) model in order to introduce both risk perception

and past experience dependence.

3.1 Some notations and definitions

We consider a discrete and finite sequence of times t = 1, ..., T. Zt is the set

of possible payoffs at time t. To simplify, we assume that Zt = Z which is

a compact interval of R for any t from 1 to T . A payoff realized at time t

is denoted by zt. Decision maker past experience at time t is characterized

by a sequence of events, relevant for the considered decision and denoted by

st. More precisely, st = (e0, e1, ..., et) where eτ is the event that occurred at

time τ with eτ ∈ Eτ , the set of all possible events at time τ and e0 ∈ E0 the
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set of all possible past experiences. St is then the set of possible histories up

to time t verifying the recursive relation: S0 = E0 and St = St−1 × Et. We
denote byM (Et) the set of distributions on Et.
At period T , LT is the set of distributions on ZT endowed with the Pro-

horov metric. XT , the set of risky perspectives in which agent has to make his

choice, is assumed to be the set of closed non empty subsets of LT , endowed
with the Hausdorff metric.

By recurrence, we define, Lt, the set of probability distributions on
Ct=Zt×Xt+1 ×M (Et+1) with Xt+1 the set of closed non empty subsets

of Lt+1.
At each period, the nature chooses a probability distribution on Et+1.

The agent cannot influence this distribution. Given this distribution, the

agent has to choose a lottery in the set Lt. The assumption of compound
lotteries reduction is made between distributions on wealth and events for a

fixed period. However, this assumption is relaxed between two consecutive

periods.

For each period t, %t denotes a binary relation on st ×Lt for a given st.
We denote Ât the strict preference and ∼t the indifference.

Axiom 7 (1bis) %t is a complete order on st ×Lt.

We assume that %t verifies axioms 2 - 5 on st ×Lt.
Under these previous axioms, we can represent preferences at a point of

time in the similar way to theorem 1:

Lemma 1 For any st in St, axioms 1bis, 2-5 are necessary and sufficient
for there to exist, for each t, a bounded continuous function vt : st × Zt ×
Xt+1 × Et+1 −→ R and a continuous function ϕt : st × [0, 1] −→ [0, 1] such

that for Lt, L0t ∈ Lt, (st, Lt) %t (st, L0t) if and only if Vt (st, Lt) ≥ Vt (st, L0t)
with

Vt (st, Lt) =
nP
i=1

Ã
ϕt(st,

nP
j=i

pj)− ϕt(st,
nP

j=i+1

pj)

!
× vt(st, zt, xt+1, et+1) ≡

RDvt (st, Lt) .

The proof comes immediately from the previous section. Let us notice

that utility function vt depend on past experience st whereas in a static
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Figure 1:

problem, v did not depend on state s. This comes from the fact that in

a dynamic choice, future perspective depend on past experience. We will

precise this point in the next section.

3.2 Temporal consistency and the representation the-
orem

We adapt the KP temporal consistency axiom to our context in the following

manner.

Axiom 8 (Temporal consistency) We consider the degenerate distributions,
∆et in M (Et) and for a given distribution δet+1 in ∆et+1, the degenerate

distributions on Zt×Xt+1×δet+1 . Then, for all t, st ∈ St, et+1 ∈ Et+1, zt ∈ Zt,
xt+1, x0t+1 ∈ Xt+1,
(st, zt, xt+1, et+1) %t

¡
st, zt, x

0
t+1, et+1

¢
iff (st+1, xt+1) %t+1

¡
st+1, x

0
t+1

¢
with st+1 = (st, et+1) at period t+ 1.

Let us consider the two following lotteries:

The temporal consistency axiom sets that if the degenerate lottery (zt, xt, et)

is preferred to the degenerate lottery (z0t, x
0
t, et) for a decision maker with past
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experience st, then if at time t, et is realized, the decision maker will choose

xt between xt and x0t. In the same way, if at time t+ 1, he chooses xt, then

he cannot at time t, strictly prefer (z0t, x
0
t, et) to (zt, xt, et).

Lemma 2 Axioms 1bis, 2-5 and 8 are necessary and sufficient for there to
exist functions vt as in previous lemma and, for fixed {vt}, unique functions
ut : {(st, zt, γ) ∈ St × Zt ×R : γ = RDvt+1 (st+1, Lt+1)}→ R

which are strictly increasing in their third argument and which satisfy

vt(st, zt, xt+1, et+1) = ut (st, zt, Lt+1maxRDvt+1 (st+1, Lt+1)) for all st ∈
St, et+1 ∈ Et+1, zt ∈ Zt, xt+1 ∈ Xt+1.

Proof. Axioms 1bis-5 and 8 are hold, lemma 3 fix Vt (st, Lt) . Then,

Vt+1 ((st, et+1) , Lt+1) = Vt+1
¡
(st, et+1) , L

0
t+1

¢
=⇒ Vt (st, Lt+1) = Vt

¡
st, L

0
t+1

¢
for a given et+1 (axiom TC). Consequently, ut is strictly increasing in its

third argument.

(ii) If Vt and ut are given with ut is strictly increasing in its third ar-

gument, Vt verifies lemma 3. Then axioms 1bis-6 hold. ut is increasing in

its third argument then Vt (st, L) ≥ Vt (st, L0)⇐⇒ ut (st, zt, Vt+1 (st+1, L)) ≥
ut (st, zt, Vt+1 (st+1, L

0))

⇐⇒ Vt+1 ((st, et+1) , L) ≥ Vt+1 ((st, et+1) , L0). Then axiom 8 holds.

As we can see, in the dynamic problem, utility functions vt depend on past

experience st. Indeed, at time T , utility function does not depend on past

experience. But, at time T − 1, the certainty equivalent of lottery, given by
uT−1, depends on past experience sT−1. Consequently, vT−1 directly depends

on past experience. Recursively, at each period, certainty equivalent depends

on past experience and then utility function too.

Theorem 3 Axioms 1bis, 2-5 and 8 are necessary and sufficient for there
to exist a continuous function v : ST × ZT → R and, for t = 0, ..., T − 1,
continuous functions ut : St × Zt ×R→ R, strictly increasing in their third

argument, so that, vT (sT , zT ) = v (zT ) and, recursively

vt(st, zt, xt+1, et+1) = Lt+1maxut (st, zt, RDvt+1 (st+1, Lt+1)),
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then, for all st ∈ St, Lt, L0t ∈ Lt, (st, Lt) %t (st, L0t) iff RDvt (st, Lt) ≥
RDvt (st, L

0
t)

with RDvt (st, Lt) =
nP
i=1

Ã
ϕt(st,

nP
j=i

pj)− ϕt(st,
nP

j=i+1

pj)

!
× vt(st, lt).

Proof. We adapt the demonstration of the theorem in Kreps and Porteus.

Notice that the representation needs v, the functions ut and the functions

ϕt to implicitly define functions vt. As in Kreps and Porteus, it introduces

the concept of timing of resolution of uncertainty. This representation can

explain some dynamic behaviors not explain by the standard Expected Utility

model. We propose in the next section an illustration.

4 An insurance demand illustration

In this section, we study the implications of the previous model for multi-

period demand decisions on the insurance market. It appears that intro-

ducing a relation between realized damages and risk perception gives an

explanation for the observed insurance demand against catastrophic risk.

We study the optimal insurance demand strategy of an individual for 3

periods of time (years). The individual faces a risk of loss of amount L at

each period. There exist a perfectly competitive insurance market propos-

ing insurance contracts at a fair premium corresponding to the estimated

expected loss. Insurance contracts are subscribed for one period. Conse-

quently, the individual has to choose an amount of coverage at each period.

We assume that for one period the estimated probability of incurring a loss

is p and that losses in successive periods are independent: P(loss at period

t/ loss in period t− 1) = p.
We can represent the decision tree as following:

At each period, the insurance contract Ct is characterized by a pair (in-

demnity It, premiumΠt). Only proportional coverage is considered: It = αtL

with αt ∈ [0, 1]. The premium for a coverage rate αt is Πt = αtpL. At period

t = 0, the agent receives a certain wealth, z0, and he is in the state s0. Past

experience is resumed by the sequences of events {damage, no damage}. We
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Figure 2:

13



denote by et the event ”damage at period t” and by e0t the event ”no damage

at period t”. At each period, individual has to choose αt.

At a point of time, the probability transformation function is assumed to

be the following:

ϕt (p, st) = p

tP
τ=0

eτ

with e0 = 1
2
, et = 1

2
and e0t = 0 for t = 1, 2.

In this case, the individual is optimistic at period 0 and modifies his risk

perception with respect to damages, occurring or not: the occurrence of a

damage modifies his risk perception and he becomes less optimistic, if no

damages occurs, his risk perception does not change.

To better isolate the risk perception arguments, we assume that prefer-

ences at the final period are represented by a linear utility function under

certainty.

Moreover, for simplicity, we suppose that the individual is neutral toward

the time of resolution of uncertainty (in the sense of Kreps and Porteus), so

that ut (st, zt, RDvt+1 (st+1, Lt+1)) = RDvt+1 (st+1, Lt+1) .

The dynamic choice problem solves in several steps. Note that, due to

the linear utility assumption, only corner solutions will prevail.

(i) For each terminal node, we have to compute v (s3, z3) = z3,

with z3 the wealth at the final period.

(ii) For each final decision node, we have to evaluate the individ-

ual utility and maximize it.

For example, at node L3, for a coverage rate α3, the utility writes:

V3 (s3, L3) = RDv (s3, L3) = v
¡
s3, z3

¢
+£

v (s3, z3)− v
¡
s3, z3

¢¤
× ϕ3 (1− p, s3)

with z3 = z2 − Π3 − L+ I3 = z2 − L+ α3L (1− p), z3 = z2 − Π3 =

z2 − α3Lp, and ϕ3 (1− p, s3) = (1− p)e0+e1+e2 = (1− p)
3
2 .
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Then,

V3 (s3, L3) = z2 − L+ α3L (1− p) + L [1− α3]× (1− p)
3
2

= α3L (1− p)
h
1− (1− p)

1
2

i
+ z2 − L+ L (1− p)

3
2

As utility is an increasing function of the coverage rate, the optimal

coverage is the full coverage and the value of utility becomes

V3 (s3, L
∗
3) = z2 − pL (1)

In the same way, we obtain that V3 (s03, L
0∗
3 ) = z2 − pL for any α03 ∈

[0, 1], V3 (s003, L
00∗
3 ) = z2 − pL for any α003 ∈ [0, 1] and V3 (s0003 , L000∗3 ) = z2 −

L
³
1− (1− p)1/2

´
for α000∗3 = 0.

(iii) At period 2, we have four nodes which values are:

u2 (s2, z2, RDv3) = z2 − pL with z2 = z1 −Π2 − L+ I2,
u2 (s2, z2, RDv3) = z2 − pL with z2 = z1 −Π2,

u2 (s2, z
0
2, RDv3) = z

0
2 − pL with z02 = z1 −Π02 − L+ I 02 and

u2 (s2, z
0
2, RDv3) = z

0
2 − L

³
1− (1− p)1/2

´
with z02 = z1 −Π02.

(iv) We repeat step (ii). Then, at node L2, for a coverage rate α2, the

utility writes:

V2 (s2, L2) = RDv2 (s2, L2) = v2
¡
s2, z2

¢
+
£
v2 (s2, z2)− v2

¡
s2, z2

¢¤
× ϕ2 (1− p, s2)

with v2
¡
s2, z2

¢
= u2 (s2, z2, RDv3) = z2 − pL = z1 − L (1 + p) +

α2L (1− p) , v2 (s2, z2) = u2 (s2, z2, RDv3) = z2 − pL = z1 − pL− α2pL and

ϕ2 (1− p, s2) = (1− p)e0+e1 = 1− p.
Then,

V2 (s2, L2) = z1 − 2Lp

for any α2 ∈ [0, 1] .
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At node L02, we have to pay attention to the value of v2 (s
0
2, z

0
2) =

u2 (s
0
2, z

0
2, RDv3) and v2 (s

0
2, z

0
2) = u2 (s

0
2, z

0
2, RDv3) since, in the RDU frame-

work, we have to rank utility.

In our example, v2 (s02, z
0
2) < v2 (s

0
2, z

0
2) . Thus, we obtain that

V2 (s
0
2, L

0
2) = RDv2 (s

0
2, L

0
2) = v2

³
s02, z

0
2

´
+
h
v2 (s

0
2, z

0
2)− v2

³
s02, z

0
2

´i
× ϕ2 (1− p, s02)

with v2
³
s02, z

0
2

´
= z02−pL = z1−L (1 + p)+α02L (1− p) , v2 (s02, z02) =

z02−L
³
1− (1− p)1/2

´
= z1−L

³
1− (1− p)1/2

´
−α02pL and ϕ2 (1− p, s02) =

(1− p)e0+e01 = (1− p)1/2 .
Then,

V2 (s
0
2, L

0
2) = z1 + Lp

h
(1− p)1/2 − 2

i
+ α02L (1− p)

1/2
h
(1− p)1/2 − 1

i
As utility is a decreasing function of the coverage rate, the optimal

coverage is null and the value of utility becomes

V2 (s
0
2, L

0∗
2 ) = z1 + Lp

h
(1− p)1/2 − 2

i
(2)

(v) At period 1, we have two nodes which values are:

u1 (s1, z1, RDv2) = z1 − 2pL with z1 = z0 −Π1 − L+ I1 and
u1 (s1, z1, RDv2) = z1 + Lp

h
(1− p)1/2 − 2

i
with z1 = z0 −Π1.

Then, at node L1, for a coverage rate α1, the utility writes:

V1 (s1, L1) = RDv1 (s1, L1) = v1
¡
s1, z1

¢
+
£
v1 (s1, z1)− v1

¡
s1, z1

¢¤
× ϕ1 (1− p, s1)

with v1
¡
s1, z1

¢
= z1−2pL = z0−Π1−L+I1−2pL = α1L (1− p)+z0−

L (1 + 2p) , v1 (s1, z1) = z1+Lp
h
(1− p)1/2 − 2

i
= z0−α1pL+Lp

h
(1− p)1/2 − 2

i
and ϕ1 (1− p, s1) = (1− p)e0 = (1− p)1/2 .

Then,

V1 (s1, L1) = α1L (1− p)1/2
h
(1− p)1/2 − 1

i
+ z0 − L (1 + 2p) + L

h
p (1− p)1/2 + 1

i
(1− p)1/2

As utility is a decreasing function of the coverage rate, the optimal

coverage is zero and the value of utility becomes

V1 (s1, L
∗
1) = z0 − L (1 + 2p) + L

h
p (1− p)1/2 + 1

i
(1− p)1/2 (3)

To summarize, the results are the following:
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• α1 = 0;

• α2 = 0 if no loss at period 1;

α2 ∈ [0, 1] if loss at period 1;

• α3 = 0 if no loss at periods 1 and 2;

α3 = 1 if loss at periods 1 and 2;

α3 ∈ [0, 1] else.

In this illustration, the individual chooses not to buy insurance contract

in the first period. In the second period, he choose not to be covered only

if he had not damage. Finally, in the third period, if he had never had an

accident, he chooses not buying insurance contract, if he had two consecutive

accidents, he decides to buy a full coverage and in the intermediate cases, he

is indifferent.

This example underlines the fact that what is important for the decision

maker is not only the event occurring in the period directly preceding the

moment of the decision, but the all sequence of events, that is all the past

experience.

Let us now compare the predictions of our model with those of some

standard modelizations.

• the particular case when ϕt (p, st) = p : this corresponds to the standard
version of a recursive expected utility model.

The results are then the following: αi ∈ [0, 1] for any i = 1, 2, 3. The
individual is indifferent between different amounts of coverage and this,

at any period and for any experienced damage.

• we consider here an alternative non consequentialist way to model dy-
namic choices: the resolute choice model proposed byMcClennen, 1990.

In this model, all the strategies are evaluated at the root node and com-

pared according to the root node preferences. We consider 2 cases: the

case when one-shot preferences are EU and the case when one-shot

preferences are RDU. The results are then the following:
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(i) for EU preferences, αi ∈ [0, 1] for any i = 1, 2, 3. The individual

is indifferent between different amounts of coverage and this, at any

period and for any experienced damage.

(ii) for RDU preferences, αi = 0 or 1 for any i.

- for ϕ (p) < p, complete coverage at any period and for any experi-

enced loss is preferred to a strategy consisting in buying insurance only

after experiencing a loss;

- for ϕ (p) > p, no coverage at any period and for any experienced

loss is preferred to a strategy consisting in buying insurance only after

experiencing a loss.

5 Concluding remarks

The insurance demand example shows that our model allows to explain the

modifications in the insurance demand behaviour over time observed for

catastrophic risk and given in the introduction. It well appears that past

experience have a cumulative effect on decisions: an individual can maintain

constant its insurance demand after one occurrence of the loss and modify it

only after two, or more consecutive loss events. In this example, we assumed

that at any period observing a loss renders the individual more pessimistic.

This explains a behaviour in accordance with the availability bias. The gam-

bler’s fallacy attitude is explained if the individual becomes more and more

optimistic after experiencing losses.

The comparison with other modelizations shows that neither the recursive

model alone, nor the RDU model alone can justify all the observed pattern

of behaviour.

The insurance example corresponds to the particular case when past ex-

perience (context) is composed by the decision-relevant events. Considering

different events, that do not directly influence the outcomes (as weather con-

dition in investment decisions) will make even easier to underline the new

insights of the present model because of the complete absence of these events

in the preferences representations of the standard models.

18



References

[1] Browne M., Hoyt R. (2000), ”The demand for flood insurance: empirical

evidence”, Journal of risk and uncertainty, 20, 291-306.

[2] Caplin A., Leahy J. (2001), ”Psychological expected utility theory and

anticipatory feeling”, The Quarterly Journal of Economics, 55-79.

[3] Chateauneuf A. (1999), ”Comonotonicity axioms and rank-dependent

expected utility theory for arbitrary consequences”, Journal of Mathe-

matical Economics,21-45.

[4] Epstein L., Schneider M. (2003), ”Recursive Multiple Priors”, Journal

of Economic Theory 113, 1-31.

[5] Epstein L., Wang T. (1994), ”Intertemporal asset pricing under Knight-

ian uncertainty”, Econometrica, 62, 283-322.

[6] Ganderton P., Brookshire D. et alii (2000), ”Buying insurance for

disaster-type risk: experimental evidence”, Journal of Risk and Un-

certainty, 20, 3, 271-289.

[7] Hirshleifer D., Shumway T., (2003), ”Good Day Sunshine: Stock Re-

turns and the Weather”, Journal of Finance, 1009-1032.

[8] Kahneman P., Tversky A., (1979), “Prospect Theory : an Analysis of

Decision under Risk”, Econometrica, 47, 263-291.

[9] Karni E. (1985) ”Decision Making under Uncertainty: The case of state-

dependant preferences”, Cambridge, Harvard University Press.

[10] Kreps D., Porteus E. (1978), ”Temporal resolution of uncertainty and

Dynamic choice theory”, Econometrica, 46, 1, 185-200.

[11] Kunreuther H. (1996), ”Mitigation disaster losses through insurance”,

Journal of risk and uncertainty, 12, 171-187.

[12] Machina M. (1989), ”Dynamic Consistency and Non-Expected Utility

Models of Choice under Uncertainty”, Journal of Economic Litterature

27, 1622-1668.

19



[13] McClelland G., Schulze W., Coursey D., (1993), ”Insurance for low-

probability hazards: a bimodal response to unlikely events”, Journal of

risk and uncertainty, 7, 95-116.

[14] McClennen E. (1990), Rationality and Dynamic Choice, Cambridge Uni-

versity Press, Cambridge.

[15] Papon T. (2004), ”L’influence de la durée d’engagement et du vécu dans

les décisions d’assurance: deux études expérimentales”, Cahiers de la

MSE n◦40.

[16] Quiggin J., (1991), “Comparative Statics for Rank-Dependent Expected

Utility Theory”, Journal of Risk and Uncertainty, 4, 329-338.

[17] Slovic P., (2000), ”The Perception of Risk”, Earthscan Publications Ltd.,

London and Sterling.

[18] Tversky, A. and Kahneman, D. (1973), ”Availability: a heuristic for

judging frequency and probability”, Cognitive Psychology, 5, 207-232.

[19] Tversky, A. and Kahneman, D. (1986), ”Rational Choice and the Fram-

ing of Decisions”, Journal of Business 59, 251—278.

[20] Yaari M., (1987), “The Dual Theory of Choice under Risk”, Economet-

rica, 55, 95-105.

20


