
Epistemic closure filters for natural language inference

Michael Cohen
micohen@stanford.edu

Stanford CS224U, Spring 2021, project report

Abstract

Epistemic closure refers to the assumption that
humans are able to recognize what entails or
contradicts what they believe and know, or
more accurately, that humans’ epistemic states
are closed under logical inferences. Epistemic
closure is part of a larger theory of mind abil-
ity, which is arguably crucial for downstream
NLU tasks, such as inference, QA and con-
versation. In this project, we introduce a new
automatically constructed natural language in-
ference dataset that tests inferences related to
epistemic closure. We test and further fine
tune the model RoBERTa-large-mnli on the
new dataset, with limited positive results.

1 Introduction

In this project, we introduce and study a new nat-
ural language inference (NLI) dataset about epis-
temic closure inferences. The NLU task of natural
language inference (NLI) is the task of predicting,
given two sentences, a premise X and a hypothesis
Y , whether X entails Y , contradicts Y or is neutral
with respect to Y , under common sense use (Storks
et al., 2020).

In epistemology, epistemic closure refers to the
property of certain epistemic states (and epistemic
verbs) to be closed under the inference relations
of entailment and contradiction (Luper, 2020). In
simpler words, epistemic closure captures the as-
sumption that the content of our epistemic states
(the propositions we believe or know) is subject to
the same inference relations that govern proposi-
tions in general. For instance, if we assume that
premise X entails the hypothesis Y , and that Ann
believes X , then according to the closure of belief
under entailment (epistemic closure for belief), it
follows that Ann believes Y . Likewise, if X con-
tradicts Y , the claim that Ann believes X , would
contradict the claim that Ann believes Y , given

epistemic closure.1

The human tendency to attribute epistemic clo-
sure is part of a larger theory of mind ability.
Theory of mind, also known as folk psychology
within philosophy (Ravenscroft, 2019) or intuitive
psychology in artificial intelligence (Storks et al.,
2020), is a term that describes the human ability
to reason about other humans’ mental states, thus
recognizing them as rational agents, having beliefs,
knowledge, intentions and emotions of their own.
Theory of mind reasoning is considered an impor-
tant developmental test within cognitive science
and philosophy of mind, used for evaluating the
cognitive capacities of young children and non-
human animals (Ravenscroft, 2019). According to
this line of research, the ability of a thinking sys-
tem to accurately track the thoughts of a different
system is an important mark of intelligence.

Within the broader area of theory of mind, epis-
temic closure inferences test the specific ability to
recognize others as rational agents who are aware
of the intuitive logical relations between their own
thoughts. Epistemic closure might seem like a rel-
atively insignificant linguistic and cognitive phe-
nomenon, but we believe that it plays a significant
part in everyday communication. The following
examples highlight the implicit epistemic closure
reasoning that occurs in everyday conversations.
Consider the following fictitious conversation:

A: Why isn’t James here?
B: James thinks that the event was can-
celled.
A: Didn’t he get the update about mov-
ing the event’s date?
B: He thinks that the event is tomorrow.

Here, B’s last utterance is inconsistent with B’s
1In philosophy, epistemic closure is often specifically re-

served for closure under logical entailment. Here we use it
liberally to apply both for entailments and contradictions.



earlier utterance. To recognize this oddity, compe-
tent speakers must reason as follows: first, recog-
nize that the claim that The event was cancelled
contradicts the claim that The event is tomorrow.
Second, note that B is ascribing contradictory be-
liefs to James. This is a violation of epistemic
closure. Now consider this conversation:

A: Where is James?
B: James assumes that today’s meeting
was moved to next Friday.
A: But why isn’t he in the meeting to-
day?

Epistemic closure reasoning explains the oddity
of A’s last utterance. The claim Today’s meeting
was moved to next Friday entails that The meet-
ing is not today. By epistemic closure, if James
assumes that today’s meeting was moved to next
Friday, then James assumes that the meeting is not
today. This makes A’s last question redundant.

In everyday conversation, participants keep a
mental model of the thoughts of other participants
of the conversation (see, e.g. (Stalnaker, 1978;
Lewis, 1979)). Such mental models make it easy
for humans to implicitly recognize conversational
entailments and contradictions related to the par-
ticipants’ mental states. It is far from obvious that
current NLP models have the capacity to recognize
similar entailments and contradictions.

In this project, with the task of NLI in mind,
we focus on premise hypothesis pairs that involve
epistemic closure reasoning, such as:

premise: James thinks that the event was
cancelled.
hypothesis: He thinks that the event is
tomorrow.
label: contradiction

We do so by automatically generating exam-
ples such as the above one from the existing SNLI
dataset, via a process we call epistemic closure
filters. As we demonstrate later, some epistemic
closure inferences are quite subtle, even if humans
are quick to recognize them.

Our central hypothesis is that the state of the
art model RoBERTa-large, finetuned on the MNLI
dataset, struggles with simple epistemic closure
inferences. We further hypothesize that RoBERTa-
large can quickly learn epistemic closure infer-
ences. We test the latter hypothesis using the
method of inoculation (Liu et al., 2019a), in which

we expose the model only to a small amount of
data from the challenge dataset.

2 Related work

common sense entailments in NLI. Logicians
distinguish between deductive (i.e. logical) and
non-deductive inferences (Beall et al., 2019). De-
ductive inferences are those in which it is impos-
sible for the premise to be true and the conclu-
sion to be false. In non-deductive inferences, the
premise does not necessitate the conclusion, rather
just make it more likely.

Epistemic closure inferences, like other theory
of mind inferences, are not logical inferences. It is
possible that X logically entails Y , and for Ann to
believe X , but not to believe Y , maybe because she
does not recognize that X entails Y . Sometimes
agents fail to see the logical connection between
a set of sentences, and there is no contradiction in
entertaining such a failure. Likewise, it is possible
for X to logically contradict Y and for John to
believe both X and Y . Sometimes agents hold
contradictory beliefs.

It is a matter of debate whether NLI datasets
should only include logical entailments and contra-
dictions (Zaenen et al., 2005; Manning, 2006). Nev-
ertheless, recent large NLI datasets, such as SNLI
(Bowman et al., 2015) and MNLI (Williams et al.,
2018b), combine both types of inferences, with an
aim to capture a notion of ’common sense’ entail-
ment. As a result, recent work aims to explore to
what degree NLI models that were trained on such
datasets can explicitly recognize non-deductive in-
ferences, such as pragmatic (Jeretic et al., 2020)
and abductive (Bhagavatula et al., 2020) inferences.
This project continues this line of work by focusing
on a different type of non-deductive inference.

Epistemic closure in formal semantics. Stan-
dard semantic models for attitude verbs like to
know and to believe, which are based on Hin-
tikka’s (Hintikka, 1962) and montague’s (Janssen
and Zimmermann, 2021) semantic frameworks, as-
sume the property of epistemic closure (Pearson,
2020). Thus, the standard view on epistemic verbs
in formal semantics vindicates the epistemic clo-
sure assumption made in this project.

However, it is not always made clear whether
epistemic closure is a desirable feature of the for-
mal systems of just a formal artifact. This con-
fusion is illustrated in the problem of logical om-
niscience (Égré, 2020). The problem is that an



unrestricted form of epistemic closure predicts that
agents know (or believe, or assume, or think) every
logical consequence of what they know (or believe,
etc.). Since actual agents are not perfect logicians,
epistemic closure (and the standard semantic mod-
els that assume it) has been criticized as unrealistic.
If the actual logician Gottlob Frege (1848-1925)
did not recognize that his axioms of formal arith-
metic famously contradict each other (Irvine and
Deutsch, 2021), why make it part of the meaning
of to believe that every agent can recognize any log-
ical entailment and contradiction of their beliefs?

While we don’t have a solution to the problem of
logical omniscience, we don’t believe that it poses
any serious obstacle in this project. In construct-
ing our dataset, we modify existing examples of
premise hypothesis pairs from the SNLI dataset
(see data section); such pairs are not meant to offer
logically challenging examples of entailments or
contradictions (like the consistency of formal arith-
metic), rather, simple, common sense examples of
entailments and contradictions. Therefore, by as-
suming epistemic closure on such examples, we
are not assuming logical omniscience.

Epistemic closure in symbolic AI. Within sym-
bolic AI, epistemic logic is a logical system that
allows for explicit reasoning about different forms
of epistemic closure (Hintikka, 1962; Fagin et al.,
1995). Given a sentence of the logic p, the epis-
temic logic expression Ka(p) reads Agent a knows
p. Different precise forms of epistemic closure can
be then expressed in the formal language, for in-
stance K(p) ∧K(p → q) → K(q) – if the agent
knows that p and that p entails q, then the agent
knows q. Most of the existing literature on epis-
temic closure involves some usage of epistemic
logic (Luper, 2020; Rendsvig and Symons, 2021).

One epistemic closure principle that guides us in
this project can be expressed in epistemic logic as
follows:
If X → Y then Ka(X)→ Ka(Y )
It states that if X entails Y , then if a knows X , then
a knows Y . Further epistemic closure principles
that involve contradiction will be explained in the
data section.

Theory of mind in NLP. In the intersection of
cognitive science and NLP, (Nematzadeh et al.,
2018) and (Le et al., 2019) explore the ability of
language models to perform the false belief task
(Ravenscroft, 2019), a classic theory of mind task,

through question answering (QA).We note that the
false belief task and epistemic closure are related
but distinct theory of mind phenomena.

Theory of mind reasoning is also related to the
NLP task of speaker commitment or event factual-
ity. In that task, an NLP model has to predict to
what extent a speaker is committed to the comple-
ment of a sentence (Jiang and de Marneffe, 2019;
Ross and Pavlick, 2019) cf. (de Marneffe et al.,
2012). For example, the model has to predict that
the speaker of the sentence Michael knows that
there is milk in the fridge is committed to the claim
that there is milk in the fridge. Speaker commit-
ment is related to theory of mind inferences since
it includes mental state verbs (like to know and to
believe.)

In a previous 224N project (Cohen, 2021), we
constructed an NLI dataset that includes theory of
mind reasoning that mixes both speaker commit-
ment reasoning and epistemic closure reasoning.
That project only included 4 explicit epistemic clo-
sure inference tasks, unlike the 12 that are tested
here. Furthermore, that project did not distinguish
between the neutral and contradictory labels (treat-
ing both of them as non-entailment), although this
distinction plays an important role in epistemic clo-
sure reasoning (see the data section). In addition,
the previous project did not try to inoculate existing
models for epistemic closure performance.

Challenge NLI datasets. In recent years, many
special NLI dataset have been constructed, with the
aim of challenging existing NLI models trained on
SNLI and MNLI on types of entailments that can
be considered out-of-domain, or with minor ma-
nipulations to the existing datasets. Manipulations
include testing NLI models only on hypotheses (Po-
liak et al., 2018), making small lexical changes on a
single word in the example (Glockner et al., 2018),
and inducing spelling errors (Naik et al., 2018).
NLI tasks on specific out-of-domain datasets in-
clude datasets for defeasible reasoning (Rudinger
et al., 2020), sentences with multiple quantifiers
(Geiger et al., 2018), entailment with conjunctions
(Saha et al., 2020), the transitivity of the entail-
ment relation (Yanaka et al., 2021), entailments
involving event veridicality (Jiang and de Marn-
effe, 2019), and inferences involving presupposi-
tions and implicatures (Jeretic et al., 2020). From
these challenge datasets one can study the heuris-
tics that NLI models employ in their prediction (e.g.
predicting entailment if there is a sub-string over-



lap between the premise and the hypothesis) (Naik
et al., 2018; McCoy et al., 2019). This project
continues this line of work: it offers a challenging
out-of-domain type of inference (epistemic closure)
in a way that only requires a minimal modification
to existing examples (as explained in the data sec-
tion). Furthermore, our experimental results reveal
heuristics that models employ when encountering
new types of examples.

3 Data

We generate data automatically, resulting in an en-
tirely new dataset. Here we detail the generation of
the data.

General procedure. To generate data, the fol-
lowing general procedure is used: a random
(X,Y, label) example is taken from the SNLI test
set. It is then passed through one of four filters,
that modify the strings X and Y . Then a new label
is generated for the modified example, depending
on the label of the original example and the filter.
Since there are four different filters and three pos-
sible labels for each example, we get (4× 3 =) 12
types of examples, each of which we call a template.
We generate 300 examples for each template.

Preprocessing and modifying X and Y . Al-
though the exact modification for a given premise
X or hypothesis Y depends on the filter, the gen-
eral procedure is as follows:
1. Test that X is a full sentence and not a fragment,
by checking that it is S-rooted in its syntax tree.
Discard X if it is not S-rooted.
2. Lowercase the first letter of X .
3. Append the sub-string (schema) name verb that
to the left of X .

The same process applies to Y . In step 3., the
name placeholder is replaced by randomly choos-
ing from an even gendered list of 20 names from
the US census, or with the pronouns He or She. The
verb placeholder is taken from the following list of
strings: believes,thinks, assumes, suspects, knows,
sees, learns, understands, recognizes, remembers.

Each one of these verbs is assumed to respect
epistemic closure, and further acts semantically
as a propositional attitude (Nelson, 2019). Syn-
tactically, appending a declarative sentence X to
a propositional attitude results in a grammatical
declarative sentence. Note, therefore, that step 1.
of the preprocessing guarantees that step 3. results
in a semantically and syntactically valid sentence.

For a concrete example, let X be the SNLI ex-
ample:
A land rover is being driven across a river.
Since this X is S-rooted, the above process may
result in modifying X to:
Eva sees that a land rover is being driven across a
river.

Labeling the modified examples. The labels for
each new template are not generated manually by
human annotators, rather automatically via a set of
epistemic closure rules. Table 1 summarizes the
modified labels (in the cells) given to each filter (in
rows) and original label (in columns) pair. Here we
elaborate on the reasoning behind these rules.

There are three ingredients that determine the la-
bel for a given epistemic closure filter: the original
label of the X,Y pair, which agents are mentioned
in the modified pair X,Y pair, and, if more than
one agent is mentioned, whether the verb used in
the modification is factive or not.

Starting with the most simple case, consider a
situation where we have the same agent both in
the premise and in the hypothesis. In that case,
epistemic closure dictates that the new label for
the modified X,Y is the same as the original label:
if X entails Y , then the agent believes X entails
that the agent believes Y ; if X contradicts Y , then
the agent believes X contradicts that the agent be-
lieves Y ; if X and Y are neutral, then the claim
that the agent believes X is neutral with respect to
the claim the agent believes Y . In other words, we
assume the agent recognizes the relation between
X and Y the same as we do. Note that this holds
both if we refer to the agent by name both in the
premise and hypothesis (Eva thinks X, Eva thinks Y,
the single agent filter), or if we refer to them using
a pronoun anaphora in the hypothesis (Eva thinks X,
She thinks Y, the anaphora filter). Although identi-
cal in meaning, the anaphora case requires the extra
step of resolving co-reference during inference.

One aspect of epistemic closure is recognizing
that given a particular agent, mental states are
closed under entailment and contradiction; a sec-
ond aspect is recognizing that this does not hold
if we consider different agents with potentially in-
dependent mental lives. Recognizing the Indepen-
dence of the mental states of different agents is a
core theory of mind ability (Ravenscroft, 2019).

Even if X entails Y , and Eva knows X , it does
not imply that John knows Y . After all, Eva’s
mental state is independent from that of John’s.



Therefore, when we consider different agents, we
will need to modify the original relation between
X and Y . If X entails Y , or is neutral w.r.t Y , then
one agent’s beliefs or knowledge about X is inde-
pendent (and thus neutral) w.r.t to another agent’s
beliefs or knowledge about Y . This reasoning jus-
tifies the choice of labels in the columns Neutral
and Entailment for the two last rows in table 1.

The case of two agents, where X,Y are contra-
dictory, is more complicated, and requires drawing
a distinction between our epistemic verbs. Epis-
temic verbs are divided into factive and non-factive
ones. In common sense use, factive verbs are as-
sumed to represent reality truthfully, or accurately
(Karttunen, 1971). Among the list of verbs we use,
the verbs knows, sees, learns, understands, recog-
nizes, remembers are factive verbs. In common
usage, if Ann knows that it is raining, then it is in
fact raining. Non-factive verbs are those verbs that
are not assumed to accurately represent reality. The
rest of the verbs we use, believes, thinks, assumes,
and suspects, are non-factive. If Ann believes that
it is raining, she might be wrong, and it might not
be raining.

It is impossible for two agents to know contra-
dictory claims. If Ann knows that it is raining here
right now, then Bob cannot know that its not raining
here right now, since the verb to know is assumed to
represent reality accurately, and in reality its impos-
sible for it to rain and not to rain at the same time.
In general, if X contradicts Y , then for any factive
verb V , the claim that Ann V’s that X contradicts
the claim that Bob V’s that Y . This situation is
captured in the multi agent factive filter.

On the other hand, it is possible, and quite com-
mon, for two agents two hold contradictory beliefs
(or other non-factive attitudes). If X and Y are
contradictory, there is no contradiction in assuming
that Bob believes X while Ann believes Y , and the
modified two sentences are judged neutral. See the
multi agent non-factive filter row in table 1.

Note that it is only in the multi agent, contra-
diction case, that the difference between factive
and non factive verbs plays a role. Therefore, the
single agent and anaphora filter do not include this
distinction.

3.1 Summary of the four filters

With the above information in mind, we can briefly
describe the function of each filter. Each filter takes
as an input an S-rooted (X,Y ) example pair from

Filter Neut. Ent. Cont.

control N E C
single agent filter N E C
Anaphora filter N E C
multi agent factive N N C
multi agent non-factive N N N

Table 1: Summary of the interaction between filters
(rows) and the original label that is fed to them (cols).
Underlined cells indicate that the filter has caused a la-
bel change. The Blue cells are templates which were
used in the inoculation process.

the SNLI test set. The filters differ in their output
and label.

Single agent filter.
Output: (name1 verb X, name1 verb Y.)
Here name1 is taken from our list of names, and
verb is taken from our list of (factive and non fac-
tive) verbs. Label: the same as that of X,Y . Ex-
ample output: premise: Bob thinks that X. hy-
pothesis: Bob thinks that Y.

Anaphora filter.
Output: (name1 verb X, anaphora verb Y).
Here name1 is taken from our list of names, and
anaphora is the pronoun he or she (depending on
name1), and verb is taken from our list of (factive
and non factive) verbs. Label: same as that of
X,Y . Example output: premise: Eva sees that
X. hypothesis: She sees that Y.

Multi agent factive filter.
Output: (name1 factive verb X, name2 factive verb
Y).
Here name1 and name2 are different names taken
from our list of names, and factive verb is taken
from our list of factive verbs. label: the same as
that of X,Y if the original label was neutral or con-
tradiction, and neutral otherwise. Example out-
put: premise: Eva sees that X. hypothesis: John
sees that Y.

Multi agent non-factive filter.
Output: (name1 non-factive verb X, name2 non-
factive verb Y.)
Here name1 and name2 are different names taken
from our list of names, and non-factive verb is
taken from our list of non-factive verbs.
label: always neutral. Example output: premise:
Eva assumes that X. hypothesis: John assumes that
Y.



4 Model and evaluations metrics

To evaluate our epistemic closure templates, we use
the model RoBERTa-large finetuned on the MNLI
dataset, available via Huggingface.2 The MNLI
dataset contains 433K crowd-sourced and labeled
examples of premise hypothesis pairs, from mul-
tiple genres, including examples from written and
spoken sources (Williams et al., 2018a). RoBERTa-
large finetuned on the MNLI dataset achieves a
score of 0.908 on the MNLI test set (Liu et al.,
2019b).

We report the accuracy score with respect to each
individual template, without averaging the results.

5 Experiments

We perform two main experiments: testing the
model RoBERTa-large-mnli (as is from Hugging-
face) on our dataset, and testing the model after
further fine-tuning it via inoculation.

5.1 RoBERTa-large-MNLI without
inoculation

Results The accuracy results of the original
RoBERTa-large-MNLI are reported in table 2, and
can act as a baseline. Note that the first row of the
table is a control filter, which tests the model’s ac-
curacy on 300 unchanged examples for each label,
taken from SNLI.

Analysis First note that the model performs well
on the control test, with the lowest score of 0.86 for
the neutral examples. Comparing table 1 and table
2 reveals the following pattern: in every template
in which the filter has not modified the label, and in
which the original label is entailment or contradic-
tion, accuracy score is high and close to the control.
In the templates that do change the label of the
original examples (underlined cells in table 1), the
model’s accuracy drops below 0.1. This suggest
that RoBERTa-large-MNLI employs the following
heuristic when encountering epistemic closure fil-
ters: the model ignores the modification to X,Y
generated by the various filters, and predicts a label
according to X,Y . This explains why the model
receives high accuracy on every template that does
not modify the original label, and extremely low
accuracy on the tables that do.

Therefore, the model does not seem to perform
any epistemic closure reasoning. We hypothesize

2See https://huggingface.co/transformers/ for the package
and https://huggingface.co/roberta-large-MNLI for the model.

that this is because the MNLI dataset does not in-
clude examples of epistemic closure inferences.

Filter Neut. Ent. Cont.

control 0.86 0.923 0.903
single agent filter 0.806 0.946 0.94
Anaphora filter 0.783 0.933 0.93
multi agent factive 0.663 0.043 0.936
multi agent non-factive 0.6 0.033 0.05

Table 2: Accuracy results on RoBERTa-large-MNLI

Filter Neut. Ent. Cont.

control 0.953 0.84 0.106
single agent filter 0.973 0.763 0.043
Anaphora filter 1.0 0.42 0.023
multi agent factive 0.996 0.87 0.016
multi agent non-factive 1.0 0.983 0.996

Table 3: RoBERTa-large-MNLI after 10 examples

Filter Neut. Ent. Cont.

control 0.87 0.84 0.83
single agent filter 0.836 0.793 0.57
Anaphora filter 0.843 0.68 0.616
multi agent factive 0.78 0.3 0.953
multi agent non-factive 0.996 0.906 1.0

Table 4: RoBERTa-large-MNLI after 50 examples

5.2 RoBERTa-MNLI with inoculation
Since the original model seems to ignore epistemic
closure inferences, we turn to see if this type of
inference can be taught. We believe, however, that
feeding to the model a large number of examples
from all templates, using all the verbs from our
verbs list, will be not very illuminating. As table
1 shows, the model just needs to memorize the
modification of three templates (underlined in table
1) to reach overall high accuracy results.

Instead, we pick the method of inoculation (Liu
et al., 2019a) in order to further finetune the model.
In this method, we gradually finetune the model
on more and more examples, starting with a very
small number of examples. Furthermore, in the
inoculation process, we only train the model on a
limited subset of templates, with a limited subset
of epistemic verbs. Inoculation will allow us to



Template Neut. Ent. Cont.

control 0.0 0.0 1.0
single agent filter 0.333 0.0 0.583
Anaphora filter 0.363 0.0 0.59
multi agent factive 0.0 0.0 1.0
multi agent non-factive 0.996 0.993 0.993

Table 5: RoBERTa-large-MNLI after 250 examples

Figure 1: Inoculation results (10, 50, 250, examples)
for in-domain template (blue cells in table 1).

answer the following questions:
1) Can the model quickly learn the structure of seen
(in-domain) templates?
2) Can the model generalize from seen templates
to held out (out-of domain) templates?
3) Can the model generalize from the behaviour of
seen verbs to held out verbs?

In the inoculation process, we only train the
model on the following templates (the in-domain
templates, colored blue in table 1)
- Multi agent non-factive contradiction
- Multi agent non-factive entailment
- Multi agent factive contradiction
The first two templates were chosen since the orig-
inal model has low accuracy on these templates.
The third template was chosen since it requires re-
alizing that contradictions can occur in multi agent
cases (this is the only template in which a multi
agent filter results in a non-neutral label). The train-
ing examples included a different list of names, a
non-factive verb list of: believes, thinks (holding
out: assumes, suspects) and with a factive list of:
knows, sees (holding out: learns, understands, rec-
ognizes, remembers). We inoculated the model
on training sets of sizes 10, 50, and 250 examples.
For each inoculation training set, we fine-tune the

Figure 2: Inoculation results (10, 50, 250, examples)
for out of domain examples (non-blue templates in ta-
ble 1).

model using the Trainer method of the Huggingface
transformers package.3 We analyze each individual
inoculation step:

Analysis of the 10 examples inoculation (table
3) Even only after 10 examples, the model shows
significant improvement in two of the three in-
domain templates (see figure 2). The model im-
proved on all the underlined examples of Table 1.
It seems that the model avoids predicting contra-
dictions (note the contradiction column in table 3),
and is biased towards neutral (note the Neutral col-
umn), to the degree that both the control templates
and the out-of-domain examples accuracy drops
significantly.

Analysis of the 50 examples inoculation (table
4). After 50 examples, the model still avoids pre-
dicting contradictions (note the contradiction col-
umn of table 4), and is more biased towards neutral
compared to the original model (Neutral col), but to
a much lesser degree than the 10 examples model.
As figure 1 shows, this model performs well on all
three in-domain templates that appear in the inocu-
lation dataset, while keeping the control tests above
0.8 acc. (control row, table 4). Further, although
the results for out-of-domain templates range from

3See https://huggingface.co/transformers/training.html#trainer
for that method. We finetune for 2 epochs, evaluating each
epoch on the accuracy of the evaluation set, and using the
AdamW optimizer and its default hyper-parameters.

See https://huggingface.co/transformers/training.html##trainer


0.3 to 1.0, this variance is the lowest among all
other tests (see figure 2).

Analysis of the 250 examples inoculation (ta-
ble 5). This model seems to associate factive verbs
with contradictions, and non factive verbs with neu-
tral. This pattern is consistent with the labels of
the templates that were used in the inoculation pro-
cess (note that in table 1, the one blue template
with the modified label of contradiction contains
factive verbs, while the other blue templates are
non-factive verbs with a modified label of neutral).
Of course, predicting a label just according to the
factivity property of the verbs in the examples will
results in bad accuracy in out-of-domain templates,
where factivity does not play a role (like in the
single agent filters that were not in the inocula-
tion data). The bias for neutral and contradiction
resulted in many 0.0 accuracy results (see ent. col-
umn).

This bias is further apparent in the drop of the
single agent anaphora and single agent filter results,
when looking at examples that include factive verbs.
Here is an actual model prediction from the tem-
plate of single agent neutral:

premise: Joseph learns that four men are
posing behind a cash register.
Hypothesis: He learns that the men all
know each other.
Model prediction: contradiction≈ 0.99

The clauses of the premise and the hypothesis
have gold label neutral (there is no reason to as-
sume that the men know each other). Therefore,
the modified examples should be neutral. We sus-
pect that the model predicts contradiction because
the filter modified the example with the factive verb
to learn. Here is another actual example, now from
the single agent entailment template:

Premise: Sophia believes that a man
puts his hands up while telling an amus-
ing story to his friend with a beard.
Hypothesis: Sophia believes that people
share a conversation.
model prediction: neutral ≈ 0.999

The gold label of this example is entailment: the
content of Sophia’s belief does imply that people
are having a conversation. It seems, however, that
the model predicts neutral because of the use of
the non-factive verb to believe. This model heuris-
tic explains the poor performance on the out-of
domain templates (figure 2).

The model behaviour on control is completely
destroyed, predicting contradictions constantly, al-
though the control examples do not include any
modifying filters. We have no explanation for this
behaviour (see the appendix for a plot of the inocu-
lated model results on the control tests).

5.3 Inoculation: General Analysis

We can now answer the three questions that moti-
vated our inoculation process:
1) Yes, the model is able to quickly learn the struc-
ture of examples it sees in the inoculation process.
As figure 1 shows, even after 50 examples the
model reaches high accuracy scores on in-domain
templates.
2) No, the model did not generalize from seen tem-
plates to unseen templates well. As figure 2 shows,
at no step of the inoculation process does the model
shows coherent overall improvement on all held-
out templates. Moreover, the control test fails sig-
nificantly after 250 examples (figure 3, appendix).
3) No, the model does not correctly generalize from
seen verbs to unseen ones. As the analysis of the
model after 250 examples showed, the model has
settled on an incorrect correlation between the fac-
tivity of verbs and the label of the example

In retrospect, the inoculation design we chose
was particularly challenging: holding out both tem-
plates and verbs, plus using very small data size.
We hypothesise that increasing the number of tem-
plates in the inoculation process will result in better
results. Picking a subset of templates for inocula-
tion that does not allow the model to just memorize
the label information in table 1, but still shows that
the model has performed accurate generalizations,
remains challenging.

6 Conclusions

Epistemic closure inferences constitute a very spe-
cial type of inference, but, as we have argued, it
plays an important role in coherent communica-
tion. Epistemic closure is also part of larger the-
ory of mind ability, which is arguably crucial for
many NLU tasks, such as inference, QA and con-
versation. In this project, we have demonstrated
how to transform standard NLI data into epistemic
closure inference data, and showed that the model
RoBERTa-large-mnli struggles with such examples,
including after limited attempt of inoculation.
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A Appendix: Control results for
inoculation

Figure 3: Inoculation results (10, 50, 250, examples)
for SNLI control (unchanged) explaes.


