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THEORETICAL NOTE

A Note on the Stop-Signal Paradigm, or
How to Observe the Unobservable

Hans Colonius
Department of Psychological Sciences

Purdue University

A new theoretical analysis of the stop-signal paradigm is proposed. With the concepts of crude and
net hazard functions, the nonobservable control-latency distribution can be estimated from observ-
able reaction times. This result allows a test of Logan & Cowan's (1984) model without any simplify-

ing assumptions.

In studies using response time as the major dependent vari-

able, the stop-signal procedure has been used by several investi-

gators in an attempt to reveal the time course of hypothesized

underlying sensory or cognitive processes or both (e.g., Lappin

&Eriksen, 1966; Oilman, 1973). In this paradigm, subjects are

given a primary reaction time task to perform, and a stop signal

that tells subjects to withhold their responses is sometimes pre-

sented shortly after the primary stimulus. Logan and Cowan

(1984) presented a theory of inhibition of thought and action

that focuses on this paradigm. The purpose of this note is to

present a new theoretical analysis of the stop-signal paradigm

that allows a more stringent test of Logan and Cowan's model

and, in fact, of all theories based on this paradigm.

Logan and Cowan-'s (1984) model accounts for response inhi-

bition in terms of a "horse race" between two sets of processes,

one that generates a response for the primary task and one that

reacts to the stop signal:

If the primary-task process finishes before the stop-signal process,
the response is executed; if the stop-signal process finishes before
the primary-task process, the response is inhibited. To model this
situation, the finishing times of the primary-task and the stopping
process are assumed to be independent random variables, (pp.
298-299)

Note that the primary-task processing time is observable both

in the normal condition (i.e., the no stop-signal condition) and

in the stop-signal condition given it "wins the race"; because of

the nature of this paradigm, however, the stop-signal processing

time can never be observed. A major goal of a formal analysis

of this paradigm, then, is to derive an estimate of this unobserv-

able control latency. Logan and Cowan achieved this by assum-

This note is based on a talk presented at the Hoosier Mental Life
Conference, Indiana University, Bloomington, May 1989. The work was
partially supported by a grant from Stiftung Volkswagenwerk.

I thank James Townsend and Richard Schweickert for their helpful
comments on an earlier version of this note.

Correspondence concerning this article should be addressed to Hans
Colonius, Department of Psychological Sciences, Purdue University,
West Lafayette, Indiana 47907.

ing the stop-signal processing time to be constant. Assuming, in

addition, that the control-latency distribution peaks around its

mean, they offered an argument that this constancy assumption

yields a reasonable approximation to what would follow from

a true horse-race mechanism. In a later article, Logan and Bur-

kell (1986) introduced specific parametric assumptions for the

control-latency distribution.

Rather than arguing about the soundness of this approxima-

tion, in what follows I demonstrate that under the assumptions

of Logan and Cowan's (1984) race model, the entire distribu-

tion of control latencies can be estimated in a straightforward

manner from directly observable reaction times (observing the

unobservable, so to speak). Moreover, this analysis permits an

overall test of the assumptions of the race model that is more

direct than in previous analyses.

The Horse-Race Model

To state explicitly the assumptions that go into the race

model, some terminology is needed. Let Tp and T, denote ran-

dom variables representing the primary-task processing time

and the stop-signal processing time, respectively. With t<j denot-

ing the stop-signal delay, that is, the time between the onset of

the primary-task stimulus and the stop signal, the observable

entities Pt[Tp > t\ no stop signal] and Pt[Tp > 11 Tf < T, + ta\

are defined for all nonnegative real numbers (. The first entity

is a survival distribution, representing, for each instant of time

t, the probability that the primary-task processing takes longer

than t ms in the experimental condition without a stop-signal

presentation. The second entity is a conditional survival distri-

bution, representing the probability that the primary-task pro-

cessing takes longer than I ms given it wins the race against the

processing of a stop signal presented tj ms later than the pri-

mary-task stimulus. Obviously, both distributions can be esti-

mated from empirically observed relative-frequency distribu-

tions in the normal and the stop-signal conditions. The proba-

bility of observing a response in the stop-signal condition,

Pr[Tp <TS + td\, is abbreviated q(td). Moreover, there are two

unobservable entities, (a) the control-latency survival distribu-

tion, Pr[rs > r|(rf] (here and later, Pr[ \td] refers to a condi-
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tional probability, with conditioning on the event {stop-signal

presented ta ms after primary stimulus}), and (b) the bivariate

survival distribution for Tp and 7"4 given by Pr[Tp > tp) n

(Ts> OU,].
The following specific assumptions are central to Logan and

Cowan's (1984) model:

[Al] Context independence. The primary-task processing time
distribution is the same whether or not a stop signal is presented;
or, more formally, Pr[7"p > r|no stop signal] = Pr[Tp > t\td\ for all
t,tj.

[A2] Stochastic independence. Primary-task processing time and
stop-signal processing time are stochastically independent; for-
mally, Pr[(T,> /,) n (J> r.)Itd\ = Pr[Tp> ip\la]PrlT,> t,\ta] for
all/, and/,.

[A3] Stop-signal delay invariance. The distribution of the stop-
signal processing time is the same for all values of the stop-signal
delay; formally, Pr[7", > I \ td] = Pr[ T, > /1 t'd\ for all ta, t'j, and t.

Because each of the above assumptions contains a statement

about unobservable entities, none of them is testable if consid-

ered separately. However, as our subsequent analysis will dem-

onstrate, Assumptions [Al] and [A2] taken together lead to a

distribution- and parameter-free estimate of the control latency,

thereby allowing a test of Assumption [A3].

Observing the Unobservable

The next step of this analysis involves denning two types of

hazard functions, a concept that has proved to be a useful tool in

reaction time analysis (see, e.g., Bloxom, 1984; Colonius, 1988;

Luce, 1986;Ratcliff, 1988; Thomas, 1971; Townsend & Ashby,

1983). The net hazard function for Tf is defined by

gf(t) = Urn (1/4) Pr[« T, < I + 5 \ T, > /].'

Intuitively, gf(t) is the instantaneous tendency of Tf taking on

the value / given that the primary-task processing has not been

terminated by time / or been given a stop signal. On the other

hand, the crude hazard function for Tp is defined by

h,(f, Id) -- lim
s-*o+

The interpretation of hf(t; td) is analogous to that ofgc(t), ex-

cept that now conditioning occurs with respect to the event that

both primary-task processing and stop-signal processing have

not been terminated by time t. The definition makes obvious
that the net hazard rate, gf(t), can be estimated from the density

ff(f) and the survival distribution Pr[7"p > /], both of which are

observable (or, more precisely, statistically estimable). On the

other hand, the crude hazard rate, hc(t; tj), is not estimable be-

cause it involves the unobservable bivariate survival distribu-

tion for Tf and TV. The main result is a consequence of the fol-

lowing lemma about these hazard functions. (For proofs, see
the appendix.)

Lemma. If Assumptions [A 1] and [A2] hold, then the net and the
crude hazard rate for Tf are identical; that is, gf(t) = hp(l; td) for
all / and any td.

Theorem. If Assumptions [Al] and [A2] hold, then Pr[7*, + <j >
'I 'J - /*('; td)q(l<t)lff(t) for all t and td, where fp denotes the den-
sity for Tp,f*(t; td) denotes the conditional density for 7", given the

event {Ts + td > Tp) and a stop signal presented with a delay of tj
ms, and q(td) stands for the probability of observing a response
with a stop signal of td ms delay.

For the interpretation of this result, two comments are in or-
der. First, the unobservable survival distribution of the stop-

signal processing time, Pr[T", > t\ld\, is expressible entirely in

terms of observable (or, more precisely, statistically estimable)

entities. Second, the theorem provides a test of Assumption

[A3]. In fact, according to this assumption, varying the stop-

signal delay tj should only result in shifting the survival distri-

bution Pr[7", > t\td] horizontally (in the direction of the time

axis). A violation of this shift invariance property, however,

could be due to a failure of any of Assumptions [A 1 ], [A2],

and [A3].
This last observation points to a more general principle in

testing race models (see also Ashby & Townsend, 1986; Vbrberg,

Colonius, & Schmidt, in press). Assume an experimental situa-

tion in which each of the processes competing in the joint con-

dition can also be observed in a separate condition under which

no race takes place. The context-independence assumption

would hold that the distribution functions in the separate condi-

tions are identical to the corresponding marginal distributions

in the joint condition. However, because in the joint condition

only the processing time of the winner of the race is observable,

the marginals are not observable. Thus, stochastic indepen-

dence is not testable without the assumption of context inde-

pendence and vice versa.2 Interestingly, in the joint condition,

even if in addition to the processing time of the winning process

the winner's identity is observable as well, stochastic indepen-

dence is not testable (this is known as the nonidentifiability re-

sult in competing risk theory; see, for example, David &

Moeschburger, 1978; for an application in probabilistic choice
theory, see Marley & Colonius, in press).

Discussion and Conclusion

Before some practical aspects of using the above result are

discussed, its significance for theories about the psychological

processes involved in the stop-signal paradigm should be as-

sessed. First, given that Assumptions [Al] and [A2] hold, the

theorem provides a means for estimating the unobservable con-

trol-latency distribution without any further simplifying as-

sumptions about the underlying race mechanism, such as the

control latency's being constant (Logan & Cowan, 1984). Sec-

ond, the model's prediction that varying the stop-signal delay
should result only in shifting the corresponding control-latency

distributions accordingly can be tested directly by inspecting

the estimates of the control-latency distribution. If this test fails,

however, my analysis does not give a clue as to which of these

assumptions has to be dropped. Consequently, all arguments

concerning the plausibility of each of these assumptions (see,

1 In accordance with most of the reaction time literature, existence
of a density for all processing-time random variables is assumed here.
Note that S ->• 0+ stands for S -» 0 and I > 0. See the appendix for the
equivalence of this definition of the hazard function with the usual one
in terms of density and survival distribution.

2 See also the discussion of Miller's (1982) race model in Luce (1986,
p. 128).
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for example, the discussion in Logan & Cowan, 1984) remain

potentially relevant.

Another point is worth mentioning. It is sometimes suggested

(e.g., Logan & Cowan, 1984) that the primary-task processing

time (T p ) should be broken into two additive subprocesses: an

early process that can be inhibited by the stop signal and a sub-

sequent ballistic process that cannot be inhibited once it has

started. If the ballistic component is assumed to be a constant,

tm (motor time) for example, the analysis would still hold with

t — tm replacing t. If the ballistic component is assumed to be

randomly varying, then matters become much more difficult.

In certain empirical situations in which some information

about the distribution functions of the components is available

(e.g., an exponential ballistic component), decomposition tech-

niques proposed by Luce (1986, chap. 3; see also Ashby &

Townsend, 1980) may be applicable to estimating the density

and the conditional density of the early process, which would

then replace^, and/J, respectively, in the theorem. However,

note that the need to introduce a ballistic component has been

challenged recently in an interesting study by de Jong, Coles,

Logan, and Gratton (1990) with electromyogram and continu-

ous response measures as well as reaction time.

Next, estimating the control-latency distribution, Prfr, >

t |f,/], according to the theorem involves computation of the ra-

tio of two densities,/£(() and^,((). Two comments are in order

here. First, replacing these densities by their corresponding em-

pirical relative-frequency functions probably results in an un-

stable estimate for the control latency, particularly at regions of

the time axis where the density in the denominator,./^), is near

0. Fortunately, there are several smooth, nonparametric densi-

ty-estimation methods available (see, for example, Silverman,

1986) that should be applied to the raw data. Although this ap-

plication will in general yield more stable estimates of the con-

trol-latency distributions, the feasibility of this estimation may

still depend on the particular data set under investigation. Fi-

nally, a practical graphical test to check whether variation of

the stop-signal delay (td) results in generating a shift family of

control-latency distributions is provided by quantile-quantile

plots. This technique, including weighted least squares estima-

tors, has been explained fully by Nair (1984).
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Appendix

Proofs

Proof of the Lemma

Consider the crude hazard function

' ' d s-o+ ' '

In terms of partially unconditioned probability, this is

lim (l/S)Pr[(;< Tp£t + S)r\(Ts + td> t)\td]

: • (Al)
tj>i)\t<]

By stochastic independence between Tp and T,, Pr[ T, + td > t \ld] can be
factored out in the numerator and in the denominator and thus cancels.
Then, invoking context independence (Assumption [A 1J in main text)

gives h,(v, td) = gp(t) for all I, completing the proof.

Proof of the Theorem

The net hazard function can be rewritten for Tp as follows:

g,(/) = lim (1/5) Pr[l < T, < I + & I Tp > t]

= {lim (1/8) Pifr < Tp £ t + «l}/Pr[r, > t] (A2)

=/,(0/Pr[ Tp>l],

whereof;) denotes the density for T,. For the crude hazard function

hp(r, la), Equation A1 may be rewritten as

lim (1/5) Pr[(; Tp)\td]

Introducing the conditional density /*(/; lj) in the numerator, the previ-
ous expression becomes

*„('; t<) =/*(/; td)Q(td)/PT((Tp >t)Ci (T, + td) > t\td\. (A3)

By stochastic independence between Tp and T, (Assumption [A2] in

main text), the denominator factors into Pr[Tp > t\ ta\ and Pr[7", + td >

' I fd\ • % 'he lemma, Equations A2 and A3 can be set equal:

t] =/*(/; td)q(td)l[fr\Tp> r|^]Pr[r, + td> t\ta\

By context independence, the survival distributions for Tp are identical
and thus cancel out. Solving the previous equation for Pr[ T, + ld >t \ td]
yields the theorem.
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