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Summary Bayesian cognitive science is a research programme that relies on modelling resources from Bayesian statistics for studying and understanding mind, brain and behaviour. Conceiving of mental capacities as computing solutions to inductive problems, Bayesian cognitive scientists develop probabilistic models of mental capacities and evaluate their adequacy based on behavioural and neural data generated by humans (or other cognitive agents) performing a pertinent task. The overarching goal is to identify the mathematical principles, algorithmic procedures and causal mechanisms, which enable cognitive agents to take uncertainty into account and weigh it appropriately in producing adaptive behaviour.
The appeal of Bayesian cognitive science derives from its transparency, normativity and unifying power. Resources from Bayesian statistics allow cognitive scientists to characterise transparently, in terms of random variables and probabilistic dependencies between them, the inductive problems that many mental capacities are presumed to solve. Given this characterisation, researchers can define an upper bound on one’s performance on that problem and use it as a benchmark for interpreting experimental results, formulating hypotheses about why and when deviations from optimal performance should be expected, and seeking explanations of mental capacities within one encompassing theoretical framework.
Although critics question the testability, explanatory power and plausibility of Bayesian models of mental capacities, Bayesian cognitive science has proved itself to be an incredibly fruitful research programme. Fuelled by empirical and theoretical results from psychology, neuroscience, philosophy, computer science, artificial intelligence and evolution, Bayesian cognitive science has advanced our understanding of why cognitive systems should keep track of uncertainty and use it to facilitate adaptive behaviour, clarified how the brain might encode information about the uncertainty of its stimuli and perform computations with probability distributions, and crystallized the insight that cognitive agents’ management of uncertainty might be grounded in predictive processes aimed at avoiding surprising exchanges with the environment.

§1. Why Bayesian Cognitive Science
Bayesian cognitive science belongs to a research tradition that tries to understand how cognitive agents make sense of the world in analogy with scientists’ statistical methods for data analysis, inference and decision making (Gigerenzer & Murray 1987; Hatfield 2002).
Bayesian statistical methods rely on Bayes’ theorem to compute and update probabilities in the light of new data. Bayes’ theorem is a mathematical statement that follows from the axioms of probability theory and the definition of conditional probability. Given two propositions H and D, Bayes’ theorem expresses the relationship between a conditional probability and its inverse in this way: P(H|D) = P(D|H) × P(H) / P(D), provided P(D) ≠ 0. Bayes’ theorem expressed in odds form is known as Bayes’ rule. Often confused with Bayes’ theorem, the Bayesian rule of conditionalization is a prescriptive norm that dictates how to reallocate probabilities given new data (or evidence), such that somebody’s new degree of belief that H is true after observing that D is the case should be the posterior probability of H given D, viz. P(H)new= P(H|D). Because Bayesian conditionalization can be viewed as an algorithmic procedure for updating beliefs, and also as a normative standard for what those beliefs should be, it is sometimes easy—as we will see below—to confuse normative and empirical interpretations of results in Bayesian cognitive science. But what does it mean to view the workings of the mind in analogy with Bayesian statistical methods?
It means to view the mind as storing knowledge about the causal structure of the world in the form of statistical, probabilistic models. Representing the uncertainty inherent to all its inputs probabilistically, the mind would execute the Bayesian rule of conditionalization to continuously update those statistical models in the light of new inputs (aka “sensory data” or “sensory evidence”). Deploying statistical models of the world to produce and manage behaviour in the face of uncertainty, the mind would perform a great many cognitive functions (Colombo & Hartmann 2017), such as estimating perceptual properties of objects in the surroundings like their size, colour, temperature and smell (Simoncelli 2009), controlling action (McNamee & Wolpert 2019), making causal inferences (Gopnik et al. 2004; Körding et al. 2007), reasoning about new problems and learning how to solve them (Oaksford & Chater 2007; Perfors et al. 2011).
§1.1 Uncertainty and the Bayesian brain hypothesis
To survive and thrive, biological cognitive agents must effectively deal with uncertainty. Sources of uncertainty for biological cognitive agents include constant change in their environment, noise, which consists in random disturbances corrupting the quality of the information in the sensory data processed by the neural system (Faisal et al. 2008), and the underdetermination of perceptual states by sensory data, which means that for any stream of sensory data there are multiple causes that fit the data equally well but would generate different perceptual states—say, the two causal hypotheses “This object is convex” vs. “This object is concave” might fit the same pattern of retinal stimulations equally well at a certain time, but the perceptions of shape associated with those hypotheses are obviously different (Knill & Richards 1996).
If biological cognitive agents must grapple with uncertainty and Bayesian statistics is one—albeit not the only one (Colombo et al. 2021)—worked-out language for representing uncertainty and making inferences under uncertainty (Tenenbaum et al. 2011; Ghahramani 2015), it is appealing for cognitive scientists to use the tools and conceptual resources of Bayesian statistics to model and try to understand how biological cognitive agents deal with uncertainty.
The Bayesian brain hypothesis is the key empirical hypothesis in Bayesian cognitive science. It says that “the brain represents information probabilistically, by coding and computing with probability density functions or approximations to probability density functions” (Knill & Pouget 2004, 713). If this hypothesis is true, neurons do not compute single values (i.e., point estimates) of biologically relevant variables, but would instead compute multiple values of such variables along with their degree of uncertainty—for example, they would compute different values for the current ambient temperature along with their probabilities rather than one single best guess.
§1.2 Rationality, computational analysis and optimality
Bayesian cognitive science is appealing also because of its normativity. This normativity has three dimensions. First, Bayesian statistics offers a framework for modelling norms of epistemic rationality for ideal agents, where ideally rational agents’ degrees of belief (i.e., their “credences”) that certain propositions are true ought to be probabilistically coherent at any point in time and be updated given the evidence by following the rule of Bayesian conditionalization (Staffel 2022).
Justifications for the idea that conditionalization and probabilistic coherence are norms of ideal rationality can be pragmatic, epistemic or evolutionary. If your degrees of belief were not probabilistically coherent—say, you believe with 0.6 probability that a coin will land heads and believe also with 0.6 probability that the same coin will land tails—or were not updated in line with Bayesian conditionalization, then you can be “Dutch booked,” which means there is a set of bets you would consider fair, but that guarantee your monetary loss (Hájek 2008). Moreover, by complying with Bayesian conditionalization and probabilistic coherence, you can reasonably be expected to have higher degrees of belief in truths and lower degrees of belief in falsehoods (Pettigrew 2019). Finally, theoretic and empirical results indicate that it is often evolutionarily advantageous to update one’s beliefs by conditionalization (Dall et al. 2005; Okasha 2013).
A second dimension of the normativity of a Bayesian approach is associated with the notion of rational analysis at the computational level (Marr & Poggio 1977; Anderson 1991). Such analyses aim to identify the relationship between a mental capacity, the problem this capacity is presumed to solve, its inputs and outputs, and the environment (Danks 2008). If a rational analysis specifies what problem is being solved by an agent’s mental capacity, what input-output function the capacity computes and why computing that function is appropriate in a certain environment, this analysis provides researchers with a hypothesis about the goal of the capacity. This hypothesis could be informed and evaluated based on ethological evidence about the adaptive value for the agent of pursuing that goal in various environments. In turn, hypotheses at the computational level constrain the search for both the algorithmic procedures and representational structures underlying a mental capacity and the causal mechanisms implementing those procedures and structures in actual cognitive agents (Griffiths, Vul & Sanborn 2012; Zednik & Jäkel 2016).
Bayesian norms of rationality and computational-level analyses are often confused with a third normative notion, namely: Bayesian optimality (Rahnev & Denison 2018). A mental capacity is Bayes-optimal just in case it makes inferences that minimize the posterior expected value of some loss function, where a loss function specifies the cost of making a wrong inference. Optimality is thus not a fixed property of a Bayesian system, but one that is relative to a loss function and a model of a certain task the system tries to solve (Simoncelli 2009). While humans and other agents have been found to come close to Bayes-optimal performance in several motor and perceptual tasks (Kersten, Mamassian & Yuille 2004; Trommershäuser, Körding & Landy 2011; Rescorla 2016), this finding has improved understanding of when and why sub-optimal performance is to be expected, and how sub-optimal Bayesian inferences might depend on variability in the environment, computational demands of approximations to Bayesian inferences and the varying reliability of agents’ sensors (Beck et al. 2012; Acerbi et al. 2014).
§1.3 Unification
A Bayesian approach enjoys a great degree of unifying power, in the sense that Bayesian statistics provides cognitive scientists with an encompassing mathematical language for developing many different models that cast many different mental capacities as each computing solutions to inductive problems.
Bayesian cognitive science contrasts with a “bag-of-tricks” approach to cognitive science, where different mental phenomena require a particular kind of model and explanation in a case-by-case fashion (Ramachandran 1985). While a “bag-of-tricks” approach suggests, for example, that empirical data about how motion perception works require different kinds of models and explanations in different environmental conditions and for different types of motion, a Bayesian approach allows researchers to use the same kind of model of motion perception for explaining that humans and other cognitive agents have an a priori preference for slower velocities and that visual perception integrates streams of sensory data (i.e., sensory inputs) with this slow-speed prior according to their relative reliability (i.e., degree of uncertainty). Using a Bayesian model with a single free parameter, Weiss et al. (2002) could fit a wide range of empirical data about motion perception in different situations, make predictions about visual illusions and offer a unified account in terms of slow-speed prior and sensory inputs with varying reliability, which would explain, for example, why automobile drivers tend to speed up in the fog.
This is not to say that there are no significant differences between different Bayesian models of different mental capacities. But despite these differences, all Bayesian models represent their targets in terms of random variables and probabilistic dependencies between them, which change as new data are observed in accordance with Bayesian conditioning (or some suitable approximation). Although this common mathematical structure might be taken to provide us with “the foundation for universal laws of cognition—principles that we expect to hold true for intelligent organisms of any kind, anywhere in the universe” (Griffiths et al. 2012, 418), it is contentious that adequate explanations of cognitive phenomena should appeal to any “universal law” and that Bayesian unification reveals one kind of causal mechanism underlying many different mental capacities (Danks 2014; Colombo & Hartmann 2017; Kaplan & Hewitson 2021).

§2. Testing Bayesian models in cognitive science
Empirical tests of Bayesian models of mental capacities generally involve a comparison between experimental participants’ behaviour and/or neural activity in a task and the simulated behaviour of different models of that task and/or variation in the values of specific variables in the models. When a Bayesian model simulates individual participants’ behaviour accurately, showing similar patterns of errors, or when variation in the variables of the model meaningfully correlates with variation in neural activity, this constitutes relevant evidence for evaluating the empirical adequacy of the model compared to alternative models of the same task. Although this is standard scientific practice, some researchers criticize Bayesian cognitive science for telling us untestable “just-so stories” (Jones & Love 2011; Bowers & Davis 2012) and relying on models that are so flexible to accommodate any data (Glymour 2007; Marcus & Davis 2013).
§2.1 Bayesian just-so stories?
The criticism that Bayesian models provide us with untestable “just-so stories” about how the mind works assumes that all Bayesian models of the mind are aimed at offering rational analyses at the computational level. Making this assumption, critics claim that Bayesian modelling is unconstrained by relevant empirical knowledge about psychological processes, neural mechanisms, evolution and the structure of the environment. They conclude that Bayesian modelling delivers only speculative stories, devoid of empirical content, about the supposedly rational workings of the mind (Jones & Love 2011; Bowers & Davis 2012).
The problem with this criticism is that not all Bayesian models are aimed at providing rational analyses and not all Bayesian models are formulated as just rational analyses at the computational level (Hahn 2014). Many Bayesian models are presented as empirical hypotheses about the workings of specific mental capacities and are not meant to underwrite any claim about their rationality or optimal functioning. Such models posit algorithmic procedures and representations, which cognitive systems might use to solve problems they face. The idealizations and empirical assumptions of these models are informed by modellers’ goals as well as by available data from psychology, neuroscience or evolution (Griffiths et al. 2012; Tauber et al. 2017). So, actual Bayesian modelling is often constrained by pertinent empirical and theoretical considerations and does not boil down to untestable storytelling disguised in mathematics, which one can use to explain any behaviour as optimal or rational. The “just-so-story” criticism fails to do justice to actual aims and modelling practices in Bayesian cognitive science (Chater et al. 2011).
§2.2 Overly flexible and underdetermined?
The criticism that Bayesian models are difficult to test can be motivated by the observation that Bayesian modelling allows for probabilistic representations with diverse shape and structure, and algorithms with different degrees of complexity, domain-specificity and energetic costs (Griffiths et al. 2010). Given this flexibility, critics notice that Bayesian cognitive scientists do not have an overarching theory, which may guide them to develop non-arbitrary models of mental capacities, and then conclude that, with a suitable choice of prior probabilities, likelihoods and loss function, a Bayesian modeller can fit virtually any dataset, turning the Bayesian approach to cognition into a vacuous exercise in post-hoc modelling of observed data (Glymour 2007; Marcus & Davis 2013).
One problem with this criticism is that the choice of prior probabilities, likelihoods and loss functions in a Bayesian model of a given capacity is often dependant on the task being modelled, where experimental participants are assumed to rely on a certain amount of information or data—for example, visual and tactile information about the size of an object—to produce one among a set of possible responses—for example, a button press about whether the perceived size of an object is greater than a given measure (for one prominent example, see Ernst  & Banks 2002). Like in any other experiment, Bayesian cognitive scientists have often control over the data available to their experimental participants, the degree of uncertainty of such data—for example, the degree of blur of the visual information about the size of an object—the set of possible responses, and the consequences of a certain response in the task—for example, whether participants receive some reward/punishment for their responses. So, the choice of priors, likelihoods and loss function in a Bayesian model of a given capacity is often justified by the researchers’ goals and the experimental task used to pursue such goals.
Another problem with the “overly-flexible” criticism is that Bayesian cognitive scientists are sometimes interested in estimating the prior probabilities humans (or other cognitive systems) might be using in a given task—for example, to find out whether the visual system in humans has actually a “slow-speed” prior—and priors estimated in one task often generalize to other tasks (see Sotiropoulos & Seriès 2015 for examples). This means that the choice of priors in Bayesian models of mental capacities is often based on previous findings in a non-arbitrary way.
Another criticism motivated by the flexibility of Bayesian modelling is that non-Bayesian models can often be constructed for the same task that share some or all of the empirical implications of a given Bayesian model (Bowers & Davis 2012). No matter how impressive a Bayesian model is in fitting a dataset, this success should not favour the Bayesian model over any alternative model that could also successfully fit the same dataset.
The problem with this criticism is that it is unclear Bayesian modelling suffers from distinctive and widespread problems of underdetermination. That is, it is unclear that, for many mental capacities, there are equally well-confirmed, genuinely alternative, non-Bayesian models. Even if, say, a lookup table model, which maps inputs to outputs to approximate some function in a task, could be construed to approximate Bayesian performance in a task, that does not necessarily mean that the lookup table model shares all the empirical implications of any Bayesian model in that task or across different tasks (Maloney & Mamassian 2009).
While some Bayesian models are insufficiently specified for experimental evaluation (Eberhardt & Danks 2011), this issue highlights that good modelling practice, in Bayesian cognitive science like in any other modelling approach to mind, should involve sound methodologies for experimental design, model fitting, model comparison, sensitivity and robustness analysis, and so on. Bayesian cognitive science does not suffer from widespread, distinctive problems of confirmation.

§3. What we can learn about minds and brains with Bayes
If Bayesian models of mental capacities are testable and do enjoy some degree of empirical success, what do we learn from them? Does successful Bayesian modelling of mental capacities support the Bayesian brain hypothesis? Does it show that the brain is Bayesian? To address these questions, we should clarify the computational limits of the algorithmic processes posited by Bayesian models and the sort of evidence relevant to evaluate the Bayesian brain hypothesis.
§3.1 Intractable Bayes
Bayesian modelling of mental capacities is typically successful in highly controlled, simple, psychophysical tasks, where participants generally adjust their behaviour systematically, as a function of trial-to-trial manipulations of the reliability of sensory cues (Trommershäuser et al. 2011). Not all results in such tasks are in line with the predictions of Bayesian models (Rahnev & Denison 2018), but the main challenge to the Bayesian approach is a large body of experimental findings about judgement and decision making, suggesting that the mind—particularly when it comes to “high-level” cognitive capacities—hardly ever works in a Bayesian fashion (Gilovich et al. 2002; Mandelbaum 2019; Williams 2019).
While researchers disagree about the correct interpretation of these apparent deviations from Bayesian rationality (Gigerenzer 1991; Kahneman & Tversky 1996; Samuels, Stich & Bishop 2002; Elqayam & Evans 2011), these findings, at least, highlight that the algorithmic procedures posited by Bayesian models are often too demanding in terms of time and energy requirements to be implemented by resource-bounded minds like ours (Binmore 2007; Brighton & Gigerenzer 2008; Kwisthout & Van Rooij 2013). The worry is that Bayesian procedures do not tractably scale up to the sort of complex problems cognitive agents encounter in their environment. If Bayesian procedures cannot tractably find solutions for real-world problems, then, even acknowledging the successes of Bayesian modelling in psychophysical tasks in constrained laboratory conditions, we cannot conclude these successes warrant the conclusion that the mind is Bayesian.
One reply to this tractability challenge is that the mind might perform computations that approximate exact Bayesian inference. Models positing such approximations are sometimes empirically successful and would also be computationally tractable (Icard 2008; Gershman, Horvitz, & Tenenbaum 2015; Lieder & Griffiths 2020). Two problems with this reply, however, are that it is unclear in what sense such approximations work in a Bayesian way (Griffiths et al. 2012), and, more substantially, that approximate “Bayesian” algorithms are often also computationally too demanding and may not scale up to tractably address complex real-world problems (Kwisthout, Wareham, & van Rooij 2011). It would be too quick to conclude that the mind is Bayesian from experimentally successful, approximate “Bayesian” algorithms.
A different reply to the tractability challenge emphasises that biological cognitive agents are environmentally embedded. In accounting for how their mental capacities work, more explanatory weight should be placed on the environment compared to algorithmic procedures and probabilistic representations for (approximate) Bayesian inferences. If the wiring of the visual system reflects, or is attuned to, the statistics of the environment, then cognitive agents’ perceptual systems do not need to represent those statistics or make inferences by implementing algorithms that manipulate probabilistic representations (Orlandi 2014; Bruineberg & Rietveld 2014), which would undercut the tractability challenge, since being attuned to the structure of our eco-niches enable successful interaction with the environment without any computational cost.
While identifying the statistical properties of the environment can surely advance understanding of  the design features of evolved perceptual systems as well as constrain particular Bayesian models of perception (Girshick, Landy & Simoncelli 2011), one problem with this reply is that it can in fact be mal-adaptive for cognitive agents if their perceptual systems reflect environmental regularities (or are “ecologically tuned”), since they would risk overfitting such regularities, making successful interaction with the environment less likely (Feldman 2013; Brighton & Gigerenzer 2008).
§3.2 Where’s Bayes in the brain?
As we saw, much of the empirical evidence in Bayesian cognitive science comes from behavioural and psychophysical experimental tasks. While this type of evidence falls short of warranting the conclusion that the brain is Bayesian (Danks 2008; Colombo & Seriès 2012), it has stimulated the development of artificial neural network models for implementing Bayesian inference (Deneve 2008), as well as the search for electrophysiological evidence relevant to evaluate the Bayesian brain hypothesis (Doya et al. 2006; Pouget et al. 2013; Ma & Jazayeri 2014).
Recall that this is the key empirical hypothesis behind Bayesian cognitive science. This hypothesis does not say that perceptual experiences can feel uncertain or that people can assign some degree of uncertainty that their judgements based on perceptual evidence are true (Denison 2017). The hypothesis does not say that neural activity is stochastic or noisy either (Griffiths et al. 2012). And the hypothesis does not say that the brain, as a whole, is a Bayesian mechanism. Rather, the commitment of the Bayesian brain hypothesis is that neurons take account of the uncertainty of their inputs, and thus their activity does not compute only one “best estimate” (i.e., point values) of biologically relevant variables. Instead, neurons perform computations that are sensitive to the degree of uncertainty of their inputs, giving more weight to more reliable (less uncertain) inputs.
The core insight of the Bayesian brain hypothesis is then that the nervous system is fundamentally adapted to manage environmental variability, underdetermination of perceptual states by sensory input (or ambiguity in the sensory input) and internal noise; and this management requires some means of representing uncertainty neurally and using representations of uncertainty in the neural computations underlying mental capacities.
[bookmark: _Hlk94093637]There are several accounts that formalize this core insight in an empirically evaluable way. One proposal is the probabilistic population code account, which says that different functions of neural activity encode the parameters defining the posterior probability distributions of task-relevant variables (Ma et al. 2006). A different proposal is the neural sampling code account, which says that neural activity encodes samples from the posterior distributions of unobserved variables in generative models of the sensory inputs (Fiser et al. 2010).
These two proposals are consistent with data concerning neural activity (Fetsch et al. 2012; Berkes et al. 2011), but there is substantial debate regarding which is the best candidate for how the nervous system takes account of the uncertainty of different variables, whether there must be a single neural code for uncertainty that can generalize to all mental capacities and whether we are warranted to believe that any empirically successful Bayesian model is true even though we do not know how the brain assigns probabilities to variables  and performs probabilistic inferences (Rescorla 2020). Clever experimental paradigms, more sophisticated tools for recording and manipulating neural activity and a better understanding of the nature and scope of the achievements of Bayesian cognitive science will help us address these issues.

§4. Conclusions
Bayesian cognitive science is an incredibly fruitful and rich research programme. If anything, it has crystallized the insight that cognitive systems’ management of uncertainty might be grounded in predictive processes aimed at avoiding surprising exchanges with the environment (Clark 2013; Hohwy 2013; Friston 2019). This entry has concentrated on its motivations, purposes, explanatory power, testability and plausibility, but there are several other philosophically interesting questions raised by Bayesian cognitive science, issues about the rationality of perception (Siegel 2016), the cognitive penetrability of perception (Lupyan 2015), representationalism (Gładziejewski 2016), the modularity of the mind (Drayson 2017), nativism (Perfors 2012; Colombo 2018), conscious experience (Clark et al. 2019; Nave 2021), and more.
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