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Connections Between the Thermodynamics of Classical
Electrodynamic Systems and Quantum Mechanical
Systems for Quasielectrostatic Operations
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The thermodynamic behavior is analyzed of a single classical charged particle in
thermal equilibrium with classical electromagnetic thermal radiation, while electro-
statically bound by a fixed charge distribution of opposite sign. A quasistatic
displacement of this system in an applied electrostatic potential is investigated.
Treating the system nonrelativistically, the change in internal energy, the work
done, and the change in caloric entropy are all shown to be expressible in terms
of averages involving the distribution of the position coordinates alone. A con-
venient representation for the probability distribution is shown to be the ensemble
average of the absolute square value of an expansion over the eigenstates of a
Schrodinger-like equation, since the heat flow is shown to vanish for each
hypothetical *'state.” Subject to key assumptions highlighted here, the demand that
the entropy be a function of state results in statistical averages in agreement with
the form in quantum statistical mechanics. Examining the very low and very high
temperature situations yields Planck’s and Boltzmann’s constants. The blackbody
radiation spectrum is then deduced. From the viewpoint of the theory explored
here, the method in quantum statistical mechanics of statistically counting the
“states” at thermal equilibrium by using the energy eigenvalue structure, is simply
a convenient counting scheme, rather than actually representing averages involving
Pphysically discrete energy states.

1. INTRODUCTION

The theory of stochastic electrodynamics (SED), or classical electrodynamics
with the assumption not imposed that classical electromagnetic thermal
radiation must vanish at 7=0, has had a number of successes at explaining
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supposedly purely quantum mechanical behavior. This purely classical
physical theory attempts to consistently address the equilibrium between
charges and radiation. References 1-5 review this work.? The basis of SED
is conceptually fairly simple: classical electromagnetic fields and classical
charged particles obey Maxwell’s equations and the relativistic generaliza-
tion of Newton’s second law of motion (e.g., the Lorentz-Dirac equation
for point charges). Upon considering Earnshaw’s theorem,”® the only
possible means for classical electromagnetic radiation and classical charged
particles to be in equilibrium with each other is when fluctuating fields and
motion are present. Thus, “stable” atomic systems, if describable from
within classical electrodynamics, must consist of rapid fluctuating motion
of electrons and nuclei, while radiating and picking up energy from the
fluctuating radiation that must also be present to result in statistical equi-
librium. The enormous mass difference between the electrons and nuclei
would result in the approximate fluctuation amplitude of the nuclei being
substantially less than the electrons, so that the electrons follow essentially
orbiting-jiggling motion about the nuclei.

Despite some success, so far SED has largely only predicted the
correct quantum behavior for linear systems, where the equations of
motion can be solved in detail. For nonlinear systems, perturbation
methods employed to date have not yielded correct agreement with physical
observation.® !9 ® However, questions still exist on the correct mathemati-
cal methods to be employed when solving the difficult, nonlinear stochastic
partial differential equations of motion for realistic electrodynamic systems
in nature. (%1 4

The present article builds on earlier work on the basic thermodynamic
behavior we should expect for electrodynamic systems.* %1217 In this
earlier work, the only systems analyzed in full detail were linear ones:
specifically, the nonrelativistic charged harmonic oscillator>® 1214 and
blackbody radiation enclosed by conducting walls.!'® Reference 5 discussed
qualitatively how this analysis may carry over to more general nonlinear
systems, while Refs. 15-17 analyzed certain thermodynamic aspects for
general electrodynamic systems interacting with thermal radiation. Here,
some of these issues for general nonlinear systems are explored more quan-
titatively.

% Reference 2 provides a very extensive review and list of references on SED. Reference 6 is a
book review on this text. Reference 4 is a semi-popular review on aspects of SED.

*In particular, see the articles listed in Ref 9. Additional references are cited in Ref. 10.

# A few misprints need to be corrected in Ref 10: (i) in the dimensionless equations of (25)
and (30), & should not be present, as was given correctly earlier in Eq. (22); (ii) in Eq. (25)
a factor of 1/2 is needed in the fourth line down; and (iii) z should be replaced by z" in the
fifth line down in Eq. (25).
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However, unlike the earlier work on linear systems, here we are still
limited in mathematical techniques for fully addressing nonlinear systems.
Nevertheless, some progress can be made by analyzing the key physical
points for linear systems, and then examining how these points must carry
over to nonlinear systems, if SED is to apply to systems found in nature.
The physical assumptions introduced will be cleared stated, so that future
research efforts can probe and test them more deeply.

Consequently, in Sec. 2 a very simple system will be analyzed that can
be calculated in detail using the present methods of SED. Certain key
approximations satisfied by this system will be identified and argued to
hold for more complicated systems. Section 3 then examines single particle
systems in nonlinear electrostatic binding potentials. One particularly
important example included in this category is the hydrogen atom. Sec-
tion 4 turns to examine the hypothetical case where the particle’s position is
described by a probability distribution that would arise from an eigenstate
of a Schrédinger-like equation. Although the unphysical nature of excited
states representing statistical equilibrium states is noted, insight is gained
into the significance of these states by showing that no heat is radiated
during quasistatic displacement operations if such a state can be approxi-
mately satisfied for a finite period of time. This proof is carried out by con-
sidering the change in internal energy and the work done due to quasistatic
displacements of the atomic system within an applied electrostatic potential.

Section 5 turns to the more physically realistic case of thermal equi-
librium. The probability distribution for the position of the charged particle
is expressed in terms of the absolute square value of an expansion over the
complete set of eigenfunctions of an equation of the form of Schrdédinger’s
time independent wave equation. A key assumption is introduced regarding
the expectation value, or ensemble average, of the coefficients of the eigen-
functions. The change in entropy is then found using the formulae in Sec. 3
for the change in internal energy and the work done during quasistatic
displacements. Demanding that the entropy must be a function of state
then results in the same functional form for statistical averages that is
prescribed in quantum statistical mechanics.

Section 6 next examines the very low and very high temperature
regimes and deduces Planck’s and Boltzmann’s constants by comparing the
present results with what is found in nature. Section 7 contains concluding
remarks.

Despite the apparent equivalence between the results obtained here
and the predictions of quantum statistical mechanics, an entirely different
physical basis exists in the two approaches. The analysis here involves a
classical charged particle with a continuous range of energies that is in
thermal equilibrium with classical electromagnetic thermal radiation. The
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viewpoint explored here is that the fundamental microscopic laws of classical
electrodynamics mentioned at the beginning of this section may be perfectly
satisfactory for describing the regime of atomic physics, and may represent a
more fundamental physical understanding and description of nature than
does quantum mechanics.’ In contrast, the ideas of traditional classical
statistical mechanics appear to be flawed and need to be revised when dealing
with classical charged particles in thermal equilibrium with classical electro-
magnetic radiation. The three laws of thermodynamics are fine. To illustrate
these points, Refs. 8 and 12-14 showed how the laws of thermodynamics
(first, second, and third laws) can consistently hold for simple classical elec-
trodynamic systems, while still having classical fluctuating motion and fields
present at 7'= 0 and while noz imposing the assumptions of traditional classi-
cal statistical mechanics. References 15-18 contain related discussions.

Much remains to be done before we can accept SED as a fully realistic
physical theory of nature, since the equations of motion have not been
solved in detail for realistic nonlinear systems, the existence of equilibrium
between radiation and charged particles has not been proven, plus a host
of other problems exist. In spite of this, the aim of the present article is to
shed detailed insight into the likely thermodynamics of classical charged
systems if this equilibrium should indeed exist. If so, then the agreement
shown here between (1) ensemble averages of classical systems and
(2) quantum mechanical statistical averages involving weighted sums over
energy eigenvalues, could be understood as the latter being simply a con-
venient summation scheme, rather than a sum over populations of systems
in discrete energy levels. More specifically, the counting of “states” in quan-
tum statistical mechanics could then be understood as a masked means of
accounting statistically, via the means shown here, for what is really hap-
pening physically. The concluding comments in Sec. 7 emphasizes this
point by recalling very similar statements made by E. Schrddinger in his
lectures on statistical mechanics.!?

2. SED TEST CASE: ELECTROSTATIC DISPLACEMENT OF
LINEAR OSCILLATOR

Let us again consider the displacement operations in Ref. 8, but let us
pick an even simpler system to analyze. The purpose here is to make as

% Attention here is restricted to only the atomic domain of physics. However, possibly the
other regimes of physics may also be treatable using the main principles of SED, as briefly
discussed in Sec. I in Ref. 5. A key point of SED that should be important here is that
equilibrium between classical particles and al/ classical ficlds must be taken into account at
thermal equilibrium.



Connections Between the Thermodynamics 1823

y

Fig. 1. Sketch of fluctuating electric dipole model interacting with a fixed +e charge.
The —e uniform spherical charge gives rise to a simple harmonic-oscillator potential
acting on the +e charge, which here is assumed to be constrained to motion only along
the x axis. Far from the —e spherical charge and the +e fluctuating charge, their com-
bined electromagnetic field is that of a fluctuating electric dipole.

close a connection as possible with the single-particle Schrodinger equa-
tion. Hence, only one oscillating charge is considered here. The terms that
are typically dropped in SED resonant calculations will be carefully noted.
We will again consider the simplified model of an atom, described in Ref. 8,
consisting of a fluctuating electric dipole that obeys a linearized form of the
Lorentz-Dirac equation of motion that would arise from a spinless,
charged point particle oscillating in a simple harmonic-oscillator (SHO)
potential. Figure 1 illustrates one simple means of picturing this electric
dipole system, where far from its center the system exhibits the electro-
magnetic fields of a fluctuating electric dipole. Here, a +e charge, with
mass m, oscillates inside a —e uniform spherical charge distribution of
radius a. Let us assume that oscillations are constrained to occur only
along the x axis.® The dipole oscillator will be slowly displaced along the
z axis with respect to the fixed (ie., nonoscillating) charge +e in Fig. 1.
The distance R will be assumed to be much larger than a, while a will be
assumed to be much larger than the average amplitude of oscillation.

¢ This constraint can most certainly be relaxed; as can readily be verified, the same physical
results shown here will occur if oscillations in three dimensions are allowed. To emphasize
the physics, however, for this section we will concentrate on the one-dimensional oscillator.
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Following the reasoning in Ref. 8, Sec. III, the equations of motion
will be:

d3
m;‘f:—ma)(z)x+eEf’x+mrd—t;C+€Ein,x(Oa t) (1)

where (1) E; is the electric field of the fixed +e charge, (2) the x compo-
nent of E; is E¢ . =ex/(x*+ R*)** ~ex/R?, (3) w)=e*/(ma®), (4) Eu(x, 1)
is the incident electric field of the thermal radiation, and (5) I" = 2¢%*/3mc>.

Assuming the steady-state solution to be given by the Fourier trans-
form solution, then

x(¢) = \/% f :o do> e %) )
o (e/m) Ey (0, 0)
x(w)_(—w2+wf—i1"w3) (3)
e2
wl=wi———; (4)

Upon slowly displacing the fixed -+e charge, heat, (2}, in the form
of electromagnetic thermal energy, will flow into some large volume ¥~
enclosing the dipole oscillator and fixed charge, according to

25 =AUy — W) (5)

Here {4%,,> represents the expectation value of the change in internal
energy %y, within 77, while {(#") represents the expectation value of the
work done on the system during the displacement. (See Ref. 5 for a detailed
description of these terms, including 2, where 2 is expressed in terms of
Poynting’s vector for radiation flow.) Here, general changes in quantities
will be denoted by 4, while § will be used to represent infinitesimal
changes.
Calculating { A%, > first,

1
%int'_—m*ycz‘f"g; L/ d3x(Ef°t+ Bfot) (6)

where m* is the bare mass of the oscillating charge, and E,, and B, repre-
sent the total electromagnetic fields due to the dipole oscillator, the fixed
charge, and the thermal radiation fields. Following the mass renormaliza-
tion described in Refs. 5 and 8, assuming that changes in the internal
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energy are largely due to the nonrelativistic velocity regime of the energy
distribution, and dropping the Schott energy term, the mc? term, and the
surface term in Eq. (20) of Ref. 8, we obtain that the terms that will make
a nonnegligible contribution to { 4%, are

mx?  mwlx?

2 T2

! —
Ui =

b | ax [<E§m-a+B§M>+2<Ef-Ei,,>+2<Eosc-Ef) }
87 Jyr +2(Eos - Ein+ Boge - Bip) + (Eiy - Eiy + By - By,)

(7

The first term is the nonrelativistic kinetic energy after renormalization,
while the second equals the electrostatic potential energy due to the cross-
term electromagnetic energy between the +e-oscillating and —e-spherical
charges. The first term in the volume integral equals the electromagnetic
energy of the acceleration fields of the +e oscillating charge, where “osc-a”
denotes the acceleration fields. Reference 8 can be used to evaluate this
term, as well as the two previous energy terms. As for the next term involv-
ing E;-E,, its expectation value will be zero since {Ex)-Ep(x, 1)) =
E¢(x)-{Eiy(x,2)> =0. We need to evaluate the next term involving
E.. - E¢, where E,, is the total electric field of the dipole oscillator. As for
the “osc-in” term, again we can use Ref. 8 to obtain its average. Finally, for
the “in-in” term, its average will not change unless we change the tem-
perature of the radiation.!?

Thus, all of the above terms, including the kinetic and potential
energies, can be deduced from the analysis in Ref. 8, except for

e? e? e?

A S 8
R R+~ p* ()

2 3

§7; J;/ d xEosc-Ef= —
We will make use of Egs. (49) and (50) in Ref 8, where now Clw)=
~ 0?4+ o?—iw’l, N=1 [the last term in Eq. (37) is absent here], the
indices / and j take on only the value 1, and M, g trivially equals one
for A=B=1 and i=j=1. By applying the resonant approximation,’
we obtain for the expectation value of, respectively, (1) the sum of Eq. (8)

7 This approximation has been described many times elsewhere. See, for example, pp. 569 and
570 in Ref. 20 or pp. 1653 and 1654 in Ref. 21.
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plus the second term in Eq. (7), and (2) the first term in Eq. (7), the
following;

2 .
2lwz--2 2y w2 |~ deo b2 (@)
3 (C‘)o ng) {(x*) =nw? fo dwhm(w)wlm<

1 ) _mhi(w,)
2

@)~ (9)

® 212
§<x2>=n~[0 dwhizn(a))a)lm< 1 >~” hile(wr)

Cw)) "~ (10)

The “potential energy” term in Eq. (9) arises entirely from the “elec-
trostatic-Coulombic” energy of interaction between the three charges in
Fig. 1.

As for the remaining electromagnetic energy terms in Eq. (7), from
Eqgs. (51) and (53) in Ref. 8, with N=1and i=j=1,

1
Usiin =g~ | @X((Eluyt Bos) + - By + B Bi) ]

(11)

0 il 2
znf dw kL (w) Im <2l 2 )
0

C(w)

Making the usual resonance approximation, changes in this energy term is
taken to be negligible compared to changes in the other terms.

Thus, our important contributions to the internal energy arise entirely
from the resonant approximation of the electrostatic energy of interaction
between the three charges and the kinetic energy [i.e., Egs. (9) and (10),
respectively]. Changes in the remaining terms are small in comparison and
will be neglected in subsequent analysis. For strong connections to exist
between SED and QED, these remaining terms must represent the pertur-
bation terms in QED due to vacuum fluctuations. (Similar conclusions
were deduced for the much more complicated system in Ref. 14, which
analyzed a system with many dipole oscillators and no externally applied
fields, in contrast to the analysis here of a single oscillating charge under
the influence of the applied field of the +e charge.)

Turning now to the work done in slowly displacing the dipole oscillator
(or, equivalently, the +e fixed charge), as in Sec. V of Ref. 8, we need to
evaluate the expectation value of the Lorentz force that needs to be opposed
to displace the system. As was true with the energy terms, where we found
that radiation terms could be neglected, here one can show that in the
resonance approximation the average Lorentz force due to the thermal
radiation fields is negligible in comparison with the average electrostatic
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force. We assume that R is sufficiently small that the unretarded van der
Waals condition of w,R/c << 1 applies. One obtains

e e’R 3e?
(Frog, 1)) = < —P+(m> N o R (x*)

3e? ow, n*h2(w
Since the externally applied force required to quasistatically displace the
dipole oscillator must be equal to the negative of the above, then WS =
—Frer, »» OR for a small displacement 3R,

From Egs. (5), (9), (10), and (12) we obtain that the heat flow into a
large volume ¥~ surrounding this system will be given by

(2> =d[n*h*}w,)] - 6R O, w*hiy(w,)

dR w,
dw, [ OhZ(w,) K2 (w,) 0
_ 2 r in /) in T 272
= Rn aR[ 0, o, }*”aT(”h(“")) (13)

due to an infinitesimal displacement 6R, and as accompanied by an infinitesi-
mal change in temperature 67. From this equation, changes in caloric
entropy can be calculated via 65, = {( 2)/T. Moreover, we see that our now
familiar result from the analysis of other systems® >3 also holds here.
More specifically, during a reversible isothermal (67 = 0) displacement oper-
ation, only one spectrum will satisfy the condition that no heat flows: namely,

o) _Iw)

dw w (14)

for w=a,. This result should hold for different values of @ and R, and
therefore for different values of w, and w, in Eq. (4). Consequently, at
T=0, h% = kw, which yields the spectral form for classical electromagnetic
zero-point (ZP) radiation of pzp(w) = w’hZp /c® = kw?/c®. The best numeri-
cal value of x to agree with experiment can then be found by experimen-
tally measuring, for example, the average force in Eq. (12).

3. GENERALIZATION: ELECTROSTATIC DISPLACEMENT OF
SED NONLINEAR SYSTEM

We will now generalize the above results to address the quasistatic
displacement of electrodynamic systems that obey a nonlinear equation of
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motion. Due to the present undeveloped set of mathematical techniques
needed to address this problem in detail, in contrast to the linear problem
just discussed, we will proceed by making some assumptions, guided by
our previous analysis. In keeping with the previous section, a key assump-
tion will be that the contribution of the incident radiation electromagnetic
fields to the changes entailed by { 4%,,> and {#") enters as small pertur-
bation terms that should correspond to the vacuum fluctuation terms in
QED. Thus, here we will deal only with the electrostatic energy of inter-
action and the electrostatic force.

Let the system of interest consist of a single point charge —e at posi-
tion R+ z(z) that moves under the influence of an electrostatic binding
potential energy —egy(z(1)) due to a positive fixed charge distribution
po(x) with net charge + Ze. Let R denote the approximate center of p,.
When this charge distribution consists of a point charge with Z=1, then
our system is equivalent to the usual classical model for the hydrogen
atom. For other charge distributions, such as a spherical uniform charge
distribution, or a spherical distribution dependent on radius, then linear
and nonlinear oscillator potentials can be formed, respectively, at least
within the charge distribution. Qutside the charge distribution, the poten-
tial is equivalent to an ionized atom with atomic number Z.

Let ¢,(x) be an externally applied electrostatic potential to our system.
In the quasistatic operation described here, we will displace our atomic
system within ¢, by slowly displacing the binding charge distribution Pos
while keeping the shape of p, fixed; ie., R — R + AR. Alternatively, the
following problem could be phrased in terms of keeping the position of the
atom fixed, while slowly changing ¢.(x). In terms of investigating this
problem in detail, the electrostatic binding potential ¢, is what makes the
analysis quite difficult due to the nonlinearity that it introduces to the
equation of motion for the —e charge. As for ¢,, typically this potential
varies much more slowly in space for real atomic systems and can usually
be treated by linearizing it over the region of the atom.

As for the kinetic energy of the —e point charge, let us assume that
the change in this energy arises largely from the change in the non-
relativistic regime of the particle’s distribution of velocities, as occurred
in the case analyzed in Sec. 2.® Consequently, the average internal energy

8 Here, P(x |x=x(1)) d°x represents the probability of the random variable z(¢), at time ¢,
falling within the infinitesimal volume d>x at the point x. We only consider the situation of
a stationary distribution in time here; i€, we do not consider P(x, t{x=1z(r}}. From the
standpoint of an ensemble, then z(z) would be indexed with the parameter 8, and the ran-
domness associated with z(¢) would be due to the variations of z(t) as @ is varied. Alter-
natively, assuming ergodicity, then 8 could be fixed and the same probability distribution
would arise as ¢ is varied. For simplicity, P(x | x = z(¢)) will often be written as P(x) here.
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that we will be interested in here is [compare with Eqs. (6) and (7]

> = (Wit [ 8% Pl GREX) i) (1)

where

A =" VR ) (16)

is the average of the internal energy of the —e charge due to its non-
relativistic kinetic energy and the electrostatic potential energy

MR, x) = —edy(x) — e, (R +x) (17)

and {¥pm, ) = Upm, i is the expectation value of the last term in Eq. (7)
due to the energy of the incident radiation in a large volume ¥ enclosing
the classical atom. For the case of thermal equilibrium, changes in UM, in
will only arise when the temperature changes. Consequently, in the present
article Ugyy 3, will play only a minor role since no physical work will be
done to change its value, in contrast to the situation in Ref. 13 involving
the displacement of conducting plates. Reference 12 analyzed Ugy, ;, in
detail for the thermal situation of interest here involving a large volume 7.
As for final comments on the above, the second term in Eq. (15) is not
stochastic in nature and can be pulled outside of the ensemble average. To
evaluate (% _, i), we will make use of a generalization to the classical
virial theorem, to which we now turn.

The Lorentz-Dirac equation can be expressed by dp/dr=F, where
p=myz and F is the sum of forces, including the effective one due to radia-
tion reaction [see Eq. (4) in Ref. 10]. Since we are assuming that we are
dealing with a stochastic process that is stationary in time when p,, is held
fixed, then {d/dt(z-p)> =0 yields

(z-p)=—<z-F) (18)

The above result is exact. Now comes our approximations. We will
assume that changes in either the left of right side of Eq. (18), due to either
changes in temperature or quasistatic displacements, is largely due to the
nonrelativistic contribution in the above. Hence, let us approximate
changes is (Z.p)> by changes in m{|z|?)>. Also, let us assume that the
radiation reaction and the rapidly varying incident radiation force both
contribute negligibly to changes in {(z-F). Without actually solving the
nonlinear stochastic differential equation of motion, we cannot rigorously
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justify these approximations. Consequently, these approximations remain
assumptions for the present analysis. Perhaps the best justifications that
can be offered here are (1) these approximations are correct for the linear
harmonic oscillator just analyzed, and (2) a similar result holds in non-
relativistic quantum mechanics.® Indeed, as another partial justification,
if the nonrelativistic radiation reaction of mI’(d>z/dt®) is used, then one
can show that {z-mI'(d’z/dt*)> =0 under equilibrium conditions for any
system. Retaining the full relativistic radiation reaction force does not
appear, in general, to yield zero for this average; however, in keeping with
our nonrelativistic approximation for the average kinetic energy, we can
expect that this extra contribution is negligible in comparison with the
following term. We obtain:

Amz)*) 2 A{z-(~e V|, —eVd.lr,,)D (19)
so that
KUy >~ A <3Z—"/+ V(R, z)> (20)

Thus, at this lowest level of approximation, to evaluate changes in this
internal energy we only need to deal with the probability density distribu-
tion P(x |x =1z(1)),® rather than also needing to consider the distribution
for z. This result is fortunate, since one difficult aspect about calculating
A{ U4 > 1s in dealing with the joint probability distribution for z and z. In
quantum mechanics this problem does not arise, partly because in wave
mechanics the nonrelativistic momentum mz is replaced by an operator
(#/i) V that acts on ¥(x, t). We accomplished a somewhat similar result
here by only examining the average of |z|*> and by the use of the virial
theorem for classical systems.

Turning to the work (#") = — (¥F,,> - 6R that is done when displac-
ing the atomic system by a small amount R, we will again compute
{Fio> by assuming that the main contribution is due to the average of the
electrostatic force in our problem:

(H > = [ (—eVdalriz) +JV d3x’ pu(X’) V¢a{R+x’} .OR (21)

?More precisely, from Eq. (24) follows the quantum mechanical virial theorem that
2Quy| Top 1> = Cuy 2-VV juy), where Ty = —#*V?/2m, for an energy eigenstate u;(z) of
Schrédinger’s equation, as discussed in Ref. 22, p.= 180. For a thermal equilibrium situation,
which is primarily our focus here, the quantum mechanical prescription is to average the
above with the factor e ~EA4T/3, e ~E/T.
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Work due to the second term above, which involves only the work on the
nonfluctuating +e binding charge due to ¢,, equals the corresponding
change in the electrostatic potential energy represented by the second term
in Eq. (15).

Consequently, Egs. (5), (15), (20), and (21) yield

(2> ~8{3z-V,V+V>—(IR- VgV (22)

for a small displacement JR. For the moment only isothermal conditions
are considered, so that 67=0 and, therefore, dUgy 1, =0. Thus, at this
lowest level of approximation, to evaluate this heat flow, we again only
need to concern ourselves with P(x).

The above result agrees with our earlier result in Sec. 2 for the specific
case of an electric dipole SHO. To see this, one simply needs to substitute
in V=_1mw2x?+e?,/R*+x*~ imw?x*+€*/R into Eq. (22), then use
Egs. (4) and (9) to yield Eq. (13) for the isothermal condition of 67 =0.

4. HYPOTHETICAL CASE: PROBABILITY DISTRIBUTION DUE
TO SCHRODINGER EIGENFUNCTION

Let us now examine a particular “what if” situation (the much more
realistic situation of thermodynamic equilibrium will be discussed in
Sec. 5): namely, what if P(x) = |u;(x)|% where u, is the ith eigenstate, with
eigenvalue E;, of the equation

—V*u+ Vu=Eu (23)

The results we will obtain hold for arbitrary nonzero values of «7. Without
a doubt, however, the main interest here will be when &7 = #%/2m, so as to
correspond to a time-independent eigenstate of Schrodinger’s equation, and
thereby agree with situations observed in experimentation.

Proponents of SED may at first object to this ad hoc introduction of
quantum phenomena into classical physics. For example, except for the
ground state, none of the eigenstates of Schrodinger’s equation can be
viewed as being stationary in time within SED. Instead, at 7=0, all
“excited states” must decay to the ground state, due to, loosely speaking,
spontaneous emission induced by the classical electromagnetic ZP field.
As a partial consequence of this observation, plus for other reasons,
Schrodinger’s eigenstates should not be viewed as physical states within the
framework of SED.(*2

Of course, within QED, this viewpoint also more or less holds,
although the language is somewhat different. Eigenstates of Schrodinger’s



1832 Cole

equation are actually only approximately physically realizable for finite
lengths of time, since the radiative corrections that are typically treated as
perturbations in quantum mechanics, change the physical status of these
states. In contrast, in SED these radiative effects are automatically
included. Consequently, separating the effects to observe whether the same
physical predictions are being described by the two theories is, at least to
date, quite difficult.

Consequently, for now we only examine what happens if P(x)=
|u;(x)|%. The point here will be to deduce the physical consequences if this
condition is approximately met for some period of time, during which the
electrostatic field ¢, is slowly varied, thereby slowly changing E; in
Eq. (23). Certainly, at the very least, this examination should be of great
interest for the ground state. In addition, this analysis also sheds some
insight into the physical meaning of a system approximating a quantum
mechanical excited state for a finite period of time.

For any second-differentiable function f(x), and for any value of </,
one can show that the following identity holds:

x(V, V) f= 2V +[x-V, (—AV*+V)]_ f (24)

where [ 4, B] _ = AB— BA for operators 4 and B. The above result is used
in deriving the quantum virial theorem, where « is assigned the value
#2/(2m).5 2

From Egs. (20), (23), and (24),

CU_pine) =jd3x uf(x) {—&1\72+ Hx -V, [ -V + V(R x)1]
+ V(R, x)} u;(x)

= j d3x u*(x)[ — V2 + V(R, x)] u;(x) = E, (25)

Here, V2 was assumed to be Hermitian when operating on u;, which is
equivalent to assuming that u; vanishes sufficiently fast at infinity that
surface terms can be ignored when integrating by parts. Thus, assuming the
classical virial theorem to hold, and assuming P(x)=|u,(x)|?, then the
above average internal energy is just the eigenvalue of Eq. (23).

Noting that 6R-VpV=6V=0H,,, where H,, is the operator
— V2 + V(R, x), then Eq. (22) yields

(2 piay it = 0B, — [ 4 uF (X)(OH ) (%) = 0 (26)
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due to the Hellman-Feynman theorem.®® This result expresses a rela-
tionship between JE, and the perturbation 6H,, of the electrostatic poten-
tial energy that is quite familiar to physicists from first order perturbation
theory in quantum theory. However, our interest in Eq. (26) goes much
deeper. We obtain the very interesting result that if the classical probability
density P(x |x =z(?)) is equal to the square of the magnitude of an eigen-
function of Eq. (23), then no heat will flow out of some large volume
surrounding the bound particle system upon making a small displacement
dR within the electrostatic potential ¢,.1°

The above result is related to the following results in conventional
nonrelativistic quantum mechanics. If, for example, an electron is in an
eigenstate u, of Eq. (23), where o =#%/(2m), then it does not radiate.
Upon making a quasistatic change in an applied electrostatic potential, the
electron will essentially remain in the same eigenstate of Eq. (23), where V
is slowly changed. This result holds in quantum mechanics both for small
and large changes in ¥ (see, for example, Ref. 26).

Of course, as mentioned earlier, in QED no quantum state, except the
ground state, can actually exist forever (at 7'=0) without changing to
another state. Likewise, some excited states chosen from quantum mechanics
may, at best, be only approximately physically realizable for finite periods
of time in SED. In particular, the excited states of a harmonic oscillator are
not physical states in SED, as was described quite clearly in Ref. 24.

Nevertheless, the above result is significant in the following way: Not
Just any probability function P(x) will yield, {2 =0, for a classical single-
particle, bound charged system, upon a quasistatic change in applied elec-
tric field. Rather, P(x) must change its functional form in a precisely defined
way. Under our nonrelativistic, dipole approximations, we see that one
possibility for this defined manner is when P(x) = |u;(x)|?> and u, satisfies
the Schrédinger-like equation of Eq. (23).

In addition, one could construct a large class of hypothetical prob-
ability distributions that also yield no heat flow by writing P(x)=
3, C, Ju;(x)|%, where C, are constant coefficients. The linearity of Eq. (22)
in terms of P(x) will yield a zero heat flow for any such function, which
may at first make one doubt about the significance of the above results.
Nevertheless, two critically important restrictions apply here. The first, and
by far the weakest one, is that this representation of P(x) will not allow
just any probability density function to yield zero heat flow, as P(x) must

19 More specifically, no heat will flow, as demonstrated to the lowest order of approximation
shown here; however, this should be a general result at T=0 to all orders of approxima-
tion. This result of no radiation heat flow can be cast in terms of electromagnetic radiation
as expressed by Poynting’s vector. See the analysis leading up to Eq. (30) in Ref 5.
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change in the precisely defined way mentioned above during the quasistatic
displacement. Specifically, upon making a noninfinitesimal displacement
AR, then P(x)=Y, C,;|u,(x)|% with C, fixed, must change according to
how the eigenfunctions #;(x) change in Eq. (23) due to R - R+ AR and,
therefore, V(R, x) - V(R+ AR, x) in Eqgs. (17) and (23). Thus, although
one could think of a fairly arbitrary initial function Py(x), except for
P{x) >0 Vx, and [ d*x P(x)=1, and perhaps find a set of C; coefficients
that enable one to express Py(x) as ¥; C, |u;(x)|?, the initial function Py(x)
may have only a slight resemblance to the final function Py(x) after the
displacement in a strong, spatially varying electrostatic field.

The second restriction, and by far the strongest one, is that our results
apply to near equilibrium situations. Selecting any arbitrary P(x)=
Y, C; lu,(x)|? will of course not satisfy this restriction in general. In par-
ticular, only under stationary stochastic conditions can the classical virial
theorem be deduced, is its starting point was that (d/dt){z-p) =0. This
condition must hold prior to the quasistatic displacement, as well as
afterwards, since this result is used to deduce the internal energy at these
times, or, rather, the difference in the internal energy between these times.
Moreover, the quasistatic approximation, which assumes near equilibrium
conditions hold, was used in calculating the work done during the displace-
ment. (See Sec. V in Ref. 8 and Sec. IX in Ref. 12.)

If we look for essentially exact situations where these conditions hold,
such as where ((d/dt)(z-p)) =0 for all of time before and after the
quasistatic (not necessarily infinitesimal) displacement, then there is only
one situation we should consider: thermal equilibrium conditions, which is
the topic we turn to next. Otherwise, our result of no heat flow is only
approximately valid during the finite time that the system is in a metastable
state, such as might be approximately represented by some quantum
mechanical excited states with long decay times.

By the conclusion of this article, it will be seen that even the restric-
tion to thermal equilibrium conditions is not sufficiently tight when con-
sidering the question of what physical states actually yield no heat flow
during quasistatic displacements. As anticipated in Sec. 2 and in earlier
work,® > byt as deduced more generally here, there is only ore thermal
equilibrium situation where no heat will flow: the temperature 7'=0 equi-
librium state. We will later discuss the significance of Eq. (23) for describ-
ing this state, and on choosing the appropriate value of «/.

5. THERMODYNAMIC EQUILIBRIUM

We now consider a means for describing thermodynamic equilibrium
conditions. Some of the reasoning will appear quite familiar, as it somewhat



Connections Between the Thermodynamics 1835

parallels the reasoning in quantum mechanics. However, key differences
will also be noted, as we will demand that classical physics is obeyed.

Let P,(x) be the probability density associated with the single, bound
charged particle discussed in the previous section, when the particle is in
thermal equilibrium at temperature 7 with thermal radiation. To ensure
that P,(x) is positive definite, let P,(x) equal the ensemble average of
| ¥ roy(x, 1)|% where ¥161(x, #) is a complex function such that | ¥[4(x, 1))?
specifies at time ¢ the probability density of finding the particle at position
x for a subensemble, indicated by [ 6], of the entire ensemble of particles.
Hence,

Pr(x)=<{|¥61(x, 1% (27)

where the average is over all subensembles. Thermal equilibrium implies
this average is independent of ¢.

We next expand ¥e(x, t) in terms of the complete set of eigenfunc-
tions of Eq. (23):

Yio(x, t) = Z crey, (2) u,(x) (28)

where u,(x) will be assumed to be normalized such that { d°x |u,(x)|*>=1,
over the confining space of interest.!!

The above steps should be perfectly general, while the next one is
where key, critical assumptions are made, namely, that

<c;'_k8],i(t) C[e];j(t» = 5iin(E0s E\,E,,.;T) (29)

Two main assumptions are contained in this relationship. First, the J,, fac-
tor indicates we are assuming that the coefficients ¢4y, ,(¢) are uncorrelated
for i# j. A similar assumption is usually made in SED involving the coef-
ficients of the Fourier expansion of the thermal relation fields. However, in
that case there are strong reasons for requiring this condition, since,

11 Only a sum over discrete eigenvalues is indicated in Eq. (28), as would be appropriate if the
particle was localized to a finite region of space by the binding potential. Strictly speaking,
this restriction is not really appropriate for thermal equilibrium conditions, since some
atoms will certainly be ionized at any nonzero temperature. This consideration brings in the
question of whether the atom is contained in a box or not. If so, then the binding potential
is no longer due to only py(x) of the classical atomic system, but must also take into
account the walls of the retaining box. At the most fundamental level this consideration
complicates the problem enormously, since now the problem involves all the atoms in the
walls, which in turn have electrons with fluctuating trajectories about nuclei. At the more
phenomenological level, we can treat V(R, x) in Eq. (17) as though it increases sharply to
infinity for points near the walls of the container.
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roughly speaking, a time average of two Fourier terms will yield zero if the
terms are not the same. In the present case, there are less obvious reasons
for making such an assumption. The physical correctness of the o, factor
in Eq. (29) undoubtedly depends on how the subensembles are chosen
when writing Eq. (28). Moreover, the chosen value of &7 in Eq. (23), to be
discussed in Sec. 6, will have a bearing on the choice of subensembles, and
undoubtedly also on the physical accuracy of the above assumption.

Second, the factor 4,(E,, E,, E,,..; T) indicates the coefficient of the
ith eigenfunction is assumed to statistically depend upon all the energy
eigenvalues of Eq. (23), as well as the temperature. We note that related
and similar assumptions are made in the development of quantum statisti-
cal mechanics [ie., see Sec. 84 and Eqgs. (78.4) and (83.23) in Ref 27].
However, despite the analogy with quantum statistical mechanics, the
above relation of Eq. (29) is intended to include motions of particles
following classical trajectories in space. A deeper probing of Eq. (29) would
be quite desirable in future research. At this point one can only say that at
the very least there is nothing obviously nonclassical about the above step.

Let us now examine some consequences of imposing the condition of
Eq. (28), by paralleling the analysis of Refs. 12 and 13, which was carried
out for much more specific systems. Our aim here will be to calculate the
internal energy, the caloric entropy, and the work done, and then demand
that the entropy be a function of state. First, from Egs. (20), (27)-(29),
(24), and (25),

<%—e,int> =ZAiEi+ C (30)

where C is a constant and the sum is over all eigenvalues of Eq. (23). We
note that without the imposition of the d, factor in Eq. (29), the internal
energy of Eq. (30) would contain an additional term of

(x-V)
2

Ue = <CE‘€],j(t) C[e],i(t)>(Ei‘Ej) f d’x “;‘ (x) u;(x) (31)

which does not in general equal zero.
Using the above to find the caloric entropy,

a<%mt>
or

6Sca,—~<(5T +5R-VR<%im>—<“llf>>

)+ SR (VU ) + <eV¢a>>]

1 KU_,i) , OUsm,im
7[”( or ot
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= <2 a7 Bt 57 >+T5R-§ij(VRA,.)Ei

1
+—7—,5R.ZA,.<VRE,.+fd3x lui(x)lzeV¢a|(x+R)> (32)

From Egs. (17) and (26), the term in parenthesis in the last summation
above, equals zero. Consequently,

1

The indicated change in A4, is due to the total change involving (1) T'—
T+6T and (2) R— R+ R, the latter of which affects each eigenvalue E,
of Eq. (23) via the amount JE, in Eq. (26). The change in Ugpy, i, is due to
the heat that flows into the volume ¥~ upon changing the temperature of
the thermal radiation by 67.

Similarly, one can show that the work done on the —e charge when
the binding charge is quasistatically displaced by JR, equals

(W_> =0 U_0,ine) +0Upm in— TéScalzzAiéEi (34)

where { #_,) equals the first term in Eq. (21).
Demanding that S, be a function of state of 7 and R, and therefore
equating expressions for 82S,,/0T OR, in Eq. (32), yields

24, 0E, 04, \_
Z<T—076_I{:+0R3Ei>_0 (35)

i

where R,, with s=1, 2, 3, indicates the three Cartesian coordinates of R.
Making the substitution of ¢,= E,/T, and following similar steps to Ref. 12,
Sec. IV.B, results in

o4, 05 04,
T;[T aTLaRfj 2,

Og; Og;
e, E . = 36
T,e|j< K 5Rs+8' aR)] 0 (36)

where |, indicates that ¢, for all k, are held fixed, and |, ), indicates that
T and &, for all k # j, are held fixed. Hence, one way to satisfy Eq. (36),
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regardless of the value of R, and therefore of ¢, and Vge;, and regardless
of the value of T, is when

o _o4, -
agj T,z|j O, T, eli

04,

—678—0 (38)

If the main assumption of Eq. (29) is accepted, then the above results
are quite general. We saw how the Schrddinger wave representation yields
that the last term in Eq. (32) equals zero, which was related to no heat
flowing in a hypothetical pure Schrédinger wave state. We also saw how
Egs. (30), (33), and (34) bear a strong resemblance to the corresponding
predictions of quantum statistical mechanics. This resemblance arose
despite the fact that we are not counting physical states with discrete energy
levels. Nevertheless, the internal energy, caloric entropy, and work done
can be expressed in sums over energy eigenvalues of the complete set of
Schrodinger wave functions that were used to express the probability den-
sity of finding the particle. The resemblance between the classical and
quantum predictions is fairly close; this connection will now be made even
tighter.

Regarding Eq. (29), a natural expectation is that the correlation func-
tion of the coefficients of the ith labelled Schrodinger energy eigenfunction
should depend most strongly on the ith energy eigenvalue, and only
weakly, if at all, on the other eigenvalues. However, some dependence of 4,
on E, for j#i is required, since from Egs. (27)-(29),

1= j A% P7(x) =Y A(Eq, Ey, Eyy.; T) (39)

The simplest functional form of 4, to ensure the above normalization, yet
yield a strong dependence on E,, as well as satisfy Eq. (38), is:

a(e;)

A(E, By, Es,.; T) = 40
o B B D = o v atey + o Tt )
To satisfy Eq. (37), requires that

Oa(e;) 1 =6a(sj) t (a1

O¢; ale;)  Og; aley)
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Hence, both sides must equal a constant, which will be introduced as
—1/k’ here. Thus,

ae;) _exp( —e/k')
a(e;) exp(—e,/k')

(42)

and

exp(—(£,/k'T))
Ziexp(—(E;/k'T))

A(Eq, Ey, Ey,..; T) = (43)

6. TEMPERATURE EXTREMES AND IDENTIFICATION OF
CONSTANTS « AND ¥’

Let us now turn to look at the very low and very high temperature
predictions of our analysis. These extreme conditions will enable us to fix
the two parameters in our formulae, namely, 7 in Eq. (23) and &' in
Eq. (43). First we note that £’ in Eqs. (42) and {43) must be positive if the
contribution to the average energy in Eq. (30) is to decrease at higher
energy eigenvalues and if the lower rather than higher energy eigenvalues
are to be the main contributors at low temperature.

The probability density of finding a particle at position x is

E;\1
=Y u.(x)]? il N Pl 4
Prx) =T o) exp ()2 (44)
where
- E;
z=§eXp(—k,T) 45)
Thus, our analysis predicts that
Proo(x) = |ug(x)|? (46)

In terms of consistency, the above result is quite fortunate, since the T=0
equilibrium state must yield that no heat should flow during quasistatic
displacement operations. We already showed in Sec. 4 that if P(x)=
|u,(x)|? for any i, then this condition held. (However, we also discussed the
strong doubt that a bound classical charged particle could undergo a tra-
jectory that would yield a statistical equilibrium condition with a Ju,(x)|2
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probability density for any value of i. One only needs to think of the i #0
excited state of a charged particle in a harmonic oscillator potential, with
the nodes of P(x) =0, to realize the unlikelihood of this situation. The i = 0
eigenfunction of Eq. (23) does not have this problem, at least not for the
commonly discussed py(x) situations.) The i =0 case then yields a satisfac-
tory T'=0 equilibrium state, at least according to this criteria.

The result of Eq. (46) is also satisfactory from another standpoint. In
recollection of the variational theorem in quantum mechanics, from
Egs. (30) and (39), and assuming E, < E, for i #0,

(U_ie> 2 ), A Eg=E, (47)

Since the i=0 eigenvalue, E,, equals (#%_, ;,,> at T=0 [Eqs. (30) and
(43) with C=01], then this internal energy at T=0 is the lowest possible
average energy for the —e charge at any temperature 7, as one might
naturally expect. More precisely, E, is the lowest energy eigenvalue for the
particular value of the parameter & chosen in Eq. (23), which leads to the
next point.

Exploring the 7'~ 0 situation further, enables us to ignore k' and focus
just on /. Several options are available for deducing the best value of .o
to yield as close agreement as possible with physical observation. For
example, experimental measurements at T~ 0 of

(Froe> = —e [ d lug(x)|? Vg, (x + R) (48)

in Eq. (21) would enable one to deduce .. Alternatively, to yield agree-
ment between (1) the SED analysis in Sec. 2 on a charged particle in a
SHO potential, (2) the above analysis in Secs. 3, 4, and 5 for a charged
particle in an electrostatic binding potential, and (3) the usual connection
between quantum mechanics and SED for a SHO,®® yields that

hZ
o= (49)

is the proper connection. In light of Eq.=(49), the measurement of
Eq. (48) then yields an experimental means of measuring %, given ¢ and .
A similar procedure was discussed in Ref. 13, Sec. V.B, of deducing # by
measuring the Casimir force between conducting plates. Essentially what
one is doing here is deducing the scaling factor of the radiation spectrum
at T=0 that agrees with experimental observation.
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Now we turn to deduce k. The high temperature regime is useful here.
For a one-dimensional SHO as in Sec. 2, then from Egs. (23) and (49),
with ¢,=0 and V= —ed, = imw? x> and from Eqs. (30) and (43) with
C=0 in Eq. (30), one obtains that

1 hwyg ,
{U_e ime =3 hay coth <2k’T> ,mg<=<k,Tk T (50)

Hence, k' = ky, where &y is Boltzmann’s constant. Comparisons with other
systems can also be made. The high temperature regime enables the easy
identification of k.

Finally, the use of (1) Egs. (9) and (10), with R — oo, (2) the first part
of Eq. (50), and (3) Eq. (16) in Ref. 12, yields that the classical blackbody
radiation spectrum is given by

w? hoo? how
(o, Ty ==h (0, T)=
Pulw, T) o hi(w,T) e coth <2kn T> (51)

which agrees with the generalized Wien’s displacement law of Eq. (27) in
Ref, 12.12

7. CONCLUDING REMARKS

The main accomplishments here have been the deduction of (1) the
statistical averages for the change in internal energy, the work done, and
the change in caloric entropy for quasistatic displacements within an elec-
trostatic potential of a single charged particle classical atomic system,
(2) the probability density distribution of position for this system at ther-
mal equilibrium [Eq. (44)], and (3) the blackbody radiation spectrum for
classical electromagnetic radiation. From these quantities other thermo-
dynamic functions can also be readily calculated, such as changes in the
Helmbholtz free energy, the Gibbs free energy, and enthalpy. Averages at
thermal equilibrium of any quantities involving only position, such as
{|x|*>, can also be found.

The key points used to obtain the above results for this particular
system are: (1) the recognition, from the linear example in Sec. 2, that the
nonrelativistic kinetic energy and the electrostatic potential energy are the

2 Other researchers in SED, as well as much earlier researchers, have made extensive
investigations into the classical blackbody radiation spectrum. Much of this work, in par-
ticular by Boyer, Marshall, and others, is summarized in Ref. 2. In particular, see Chap. 5.
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main terms to retain when calculating changes in the internal energy, and
the electrostatic Lorentz force is the main term to retain when calculating
the work done; (2) the imposition of the classical virial theorem and estab-
lishing that the change in average internal energy, the work done, and the
change in caloric entropy can all be expressed in terms of the probability
distribution for the position of the charged particle; (3) noting that the heat
flow equals zero for the particle in a hypothetical quantum mechanical
state, thereby simplifying the expression for the change in the classical
caloric entropy [Eq. (32)]; (4) demanding that the caloric entropy be a
function of state, and (5) requiring that no heat will flow during quasistatic
displacements at T=0. The last two points were also found to be impor-
tant in Refs. 8, 12, and 13, where the zero-point radiation spectrum and the
generalized Wien displacement law were deduced upon analyzing the ther-
modynamics of two very different linear electrodynamic systems,

The results reported here are critically dependant on the main assump-
tion of Eq. (29), and to a lesser extent on Eq. (40). Although the assump-
tions seem to be reasonable ones, their importance needs to be emphasized
so that future work by researchers may help to more deeply probe the
validity, or invalidity, of these assumptions.

If the thermal equilibrium between classical charges and electro-
magnetic radiation can be proven to hold, which to date has not been the
case,® D3 then the classical statistical averages deduced here of continuous
energy levels, shows how the quantum mechanical eigenvalue scheme
enables the average to appear as averages over discrete energy levels. A par-
ticularly illuminating monograph on quantum statistical mechanics that
strongly expresses a very similar view on the eigenvalue scheme of energies
is Ref. 19 by Schriodinger. Below are some of Schrodinger’s relevant com-
ments’>;

“The view that a physical process consists of continual jump-like
transfers of energy parcels between microsystems cannot, when given
serious thought, pass for anything but a sometimes convenient metaphor.
To ascribe to every system always one of its sharp energy values is an
indefensible attitude. ... The thermodynamical functions depend on the
quantum mechanical level-schemes, not on the gratuitous allegation that
these levels are the only allowed states.”

“... the permutation numbers and the statistical entropy deduced from
them follow directly from the scheme of eigenvalues of the energy; the
customary but unjustifiable procedure of studying the possible distributions
of an assembly over the allowed levels (or the like) is not needed.”

12 The following quotes were taken, respectively, from (1) the brief material in the preface
entitled, “Note on Second Edition,” (2) p. 90, and (3) p. 93 in Ref. 19.
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“It is not necessary to make the much more incisive assumption which
is usually made, viz. that each individual radiation oscillator always carries
an integral number of quanta Av, or as is sometimes said, that there is
always an integral number of photons of that particular brand in the state
tndicated by that individual radiation oscillator. The concept of photons or
‘parcels of radiative energy’—beyond the fundamental notion of the struc-
ture of the spectrum of eigenvalues—becomes gratuitous, anyhow for the
purpose of statistical mechanics.”

The last two quotes are in the appendix entitled, “The Canonical
Distribution of Quantum Mechanical Amplitudes,” within Ref. 19. In this
appendix, Schrodinger argues that the conventional scheme of counting
energy states within quantum statistical mechanics can be viewed as a
short-cut means for finding the canonical distribution of the amplitude
squares of the eigenfunction coefficients in the Schrédinger wave function,
rather than the probability of finding the system at some discrete energy
level,

If the classical treatment of SED can be shown to be fully self-con-
sistent, then the present work provides a deeper understanding of
Schrodinger’s point of view. For example, in the appendix of Ref. 19,
Schrédinger starts with calculating, not the caloric entropy as discussed in
the work here, but rather the probabilistic entropy kg Inf £(E,)]. The often
called thermodynamic probability, €2, is the quantity nearly universally
emphasized in quantum statistical mechanics; at thermal equilibrium, Q
represents the multiplicity of the energy eigenvalue E,, or the number of
ways that energy can exist for a relatively small system when interacting
weakly with a large system (a heat bath). In contrast, in the present article,
changes in the caloric entropy are calculated for classical systems, based
on heat flow. These changes are seen here to be equivalent to changes in
the probabilistic entropy based on the eigenvalue energy scheme of
Schrédinger’s equation, thereby conceivably providing the deeper under-
standing mentioned above to Schrédinger’s argument.'

Boyer’s work in Ref. 28 first emphasized the critical need for dis-
tinguishing between these two types of entropy when consistently dealing
with classical electrodynamic systems in thermal equilibrium and when
developing a classical statistical mechanical description in agreement with

4 The following observation seems remarkable: using Schrodinger’s representation of eigen-
functions provided the connection to the quantum formalism deduced here, and it is
precisely Schrodinger’s book on statistical mechanics‘!® that expresses the closest viewpoint
to the one argued here on the physical nature of thermodynamic equilibrium for “quantum
mechanical systems.”
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nature.’® Some of the basic postulates in traditional classical statistical
mechanics appear to be flawed, not only due to the obvious disagreement
between the predictions of this theory and with what we observe in nature,
but also due to the internal inconsistency of the framework of traditional
classical statistical mechanics as applied to systems of charged particles.
For example, Refs. 8 and 28 gave a number of arguments for the require-
ment that fluctuating motion and fluctuating fields be present at T'=0 if
thermal equilibrium can indeed exist between classical charged particles
and classical electromagnetic radiation (e.g, the argument based on
Earnshaw’s theorem mentioned in Sec. 1). However, the framework of
traditional classical thermodynamics is inconsistent with this requirement,
as shown by the proof in Sec. 2.1 in Ref. 29 that the classical canonical dis-
tribution deduced in traditional classical statistical mechanics is incom-
patible with the existence of fluctuations at T'=0. The observation in
Ref. 28 that caloric and probabilistic entropy are not equivalent, where the
latter is calculated according to the traditional ideas of classical statistical
mechanics, thus represents a part of this basic flaw.

Here we should note that the probabilistic entropy calculated accord-
ing to the eigenvalue counting scheme of quantum statistical mechanics
does agree with the caloric entropy calculated here following the rules of
classical physics for finding changes in internal energy, work done, and
heat flow, where the main assumption imposed is that of Eq. (29).
Moreover, the prediction of Ref. 28 is fulfilled here in that the probabilistic
entropy that results from traditional classical statistical mechanics, with its
familiar canonical distribution,® 2 does not agree with the caloric entropy
found here according to classical physics.

Indeed, it is fascinating to carefully go through the various quantum
statistical arguments, such as in Chap. II, Chap. VI, and the appendix in
Ref. 19, Chap. 11 in Ref. 30, or in the treatise of Ref. 27, and compare their
subtly different quantum arguments to the significantly different classical
argument here that deals with continuous energy levels. To emphasize the
role of the energy eigenvalue level scheme in quantum statistical mechanics,

15 Boyer’s work in Ref. 28 provides some early, fascinating thermodynamic arguments on the
role of ZP radiation, as well as important insights to classical statistical mechanics. A few
important points do need clarification and deeper analysis, however, such as in parts of
Secs. IILC, G, and H, which discuss the Wien’s displacement law, the Stéfan-Boltzmann
law, and the relation to ZP radiation, These issues are treated in detail in Refs. 12 and 13
(in particular, see Secs. VIII and IX in Ref. 13). Also, Ref. 28 used the interesting idea of
defining temperature by lm,,, ., {3mv?> =2k T, which was particularly useful in the
derivation of ZPP radiation in Ref. 28. However, from an axiomatic point of view, probably
a more fundamental thermodynamic definition is via equating the ratio of Kelvin
temperatures to the ratio of heat flow at these two temperatures, as in Eq. (3) in Ref. 12.
This approach is more in line with dealing with caloric entropy, as in Ref. 12,
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we note that the following procedure is typically followed:®® (1) Use
quantum mechanics to find the & value of the quantum states. (2) Find the
partition function Z in terms of T and V. (3) Calculate the energy by dif-
ferentiating In(Z) with respect to 7. (4) Calculate the pressure by ...”.

In sharp contrast, rather than starting from a quantum mechanical
description and then proceeding to a statistical mechanics and a thermody-
namics description, here the thermal equilibrium behavior of classical elec-
trodynamic systems was taken as the more fundamental role. A Schrédinger-
like equation was introduced in Sec. 3 simply to express P,(x) in terms of
an average over the square magnitude of an expansion in the equation’s
eigenfunctions. In this sense, Schrédinger’s equation does not appear as
some sort of fundamental (nonrelativistic, spinless, single-particle) equation
of physics, but it is used more as simply a convenient representation than
anything else.

Several reasons exist why thermal equilibrium behavior takes the more
primary role here and Schrédinger’s equation a secondary role. First, if
SED is correct, then Schrédinger’s equation is not “fundamental” in
nature, even in the nonrelativistic, spinless, single-particle sense. Instead,
Maxwell’s equations and the classical equation of motion for a charged
particle are the microscopic fundamental laws. As for the more “fundamen-
tal laws” governing statistical behavior, thermal equilibrium behavior must
play the important role, since a near thermal equilibrium state of classical
charged particles and electromagnetic fields must result if SED is correct in
predicting the appearance of a quantum mechanical world around us. As
an example, Refs. 8, 13, and 14 illustrated the role of thermodynamic
arguments in SED by deducing the ZP spectrum at T=0.

The above comments do not, by any means, imply that connections to
Schrddinger’s equation will not play an important role in the development
of SED. After all, the behavior of nonequilibrium phenomena such as the
absorption and emission of light, with all of its fascinating consequences
such as line spectra and the photoelectric effect, is intimately connected
with the energy eigenvalue structure of quantum mechanics.

Instead, the point being made here is that equilibrium, or near equi-
librium conditions, must be of primary importance in SED and the eigen-
value structure secondary, rather than the opposite situation that occurs in
quantum statistical mechanics. More specifically, consider the case when
nonequilibrium conditions apply in quantum mechanics, such as when
(using the language of quantum mechanics) an electron is raised to an
excited atomic state due to energy from a directed light beam shining upon
it. Provided the energy exchange is not too great to cause ionization, and
depending on the particular “excited state,” the atom can still remain in a
relatively stable equilibrium state for a period of time that is many orders
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of magnitude larger than the classical period for one orbit. This near equi-
librium, or metastable state, should be the primary focus that enables at
least part of the energy eigenvalue structure to be deduced.

Finally, it seems important to note the following very striking property
of the Schrédinger-like equation of Eq. (23): specifically that it yields a
lowest energy eigenvalue E, with an eigenstate uy(x) such that the prob-
ability density of |uy(x)|* at T'=0 produces no heat flow during displace-
ment operations. Setting the parameter o7 in Eq. (23) so that |uy(x)|? the
Lorentz force, or changes in E, agree with experimental measurements at
T~ 0, can be viewed as essentially setting the scale (%) of the ZP radiation
spectrum that will agree with what we observe in nature. This connection
with the role of Schrddinger’s equation at 7=0, results from the non-
relativistic expression of 4(%_, > in Eq. (20), as obtained from the classical
virial theorem, and from the relation between Schrédinger’s equation and
the nonrelativistic quantum mechanical virial theorem via Eq. (24). Going
beyond this nonrelativistic approximation for 4 (¥, may enable
similar ties to be made to the relativistic treatments in quantum mechanics.

The results reported here are certainly intriguing since we see that
classical physics can be pushed considerably farther than previously sus-
pected before the ideas of SED were developed. However, one must keep in
mind that only the following system was considered here, subject to some
key assumptions, namely, the thermal equilibrium behavior of a classical,
spinless, nonrelativistic, single charged particle in interaction with classical
electromagnetic radiation and an applied electrostatic field. Hence, despite
the positive results here, without a doubt considerable work remains to be
done before (1) the full consistency of SED, (2) all the predictions of this
theory, and (3) the correspondence of these predictions to phenomena in
nature, is either established or shown to be fatally flawed.
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