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Decision making in any brain is imperfect and costly in terms of time and energy.
Operating under such constraints, an organism could be in a position to improve
performance if an opportunity arose to exploit informative patterns in the environment
being searched. Such an improvement of performance could entail both faster and more
accurate (i.e., reward-maximizing) decisions. The present study investigated the extent
to which human participants could learn to take advantage of immediate patterns in
the spatial arrangement of serially presented foods such that a region of space would
consistently be associated with greater subjective value. Eye movements leading up to
choices demonstrated rapidly induced biases in the selective allocation of visual fixation
and attention that were accompanied by both faster and more accurate choices of
desired goods as implicit learning occurred. However, for the control condition with its
spatially balanced reward environment, these subjects exhibited preexisting lateralized
biases for eye and hand movements (i.e., leftward and rightward, respectively) that
could act in opposition not only to each other but also to the orienting biases elicited
by the experimental manipulation, producing an asymmetry between the left and right
hemifields with respect to performance. Potentially owing at least in part to learned
cultural conventions (e.g., reading from left to right), the findings herein particularly
revealed an intrinsic leftward bias underlying initial saccades in the midst of more
immediate feedback-directed processes for which spatial biases can be learned flexibly
to optimize oculomotor and manual control in value-based decision making. The present
study thus replicates general findings of learned attentional biases in a novel context with
inherently rewarding stimuli and goes on to further elucidate the interactions between
endogenous and exogenous biases.

Keywords: decision making, reward learning, value, attention, visual orienting, oculomotor control, spatial
processing, eye-tracking

INTRODUCTION

Regardless of whether the task is foraging in the wild or shopping in a modern store, there is
often consistency in the spatial layout of one’s surroundings that could potentially be of use to
the individual making decisions. Decision making is an active process that also entails searching
for options and assessing what is actually available in order to compare the alternatives and select
the best course of action. As this searching can demand precious time and effort, an organism’s
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optimal strategy in a stable environment would be to adjust the
priors (i.e., in the Bayesian sense) initializing the information-
seeking process in accordance with the patterned information
content of previous observations. The work herein explored the
possibility of such a strategy in visually guided (but manually
executed) value-based decision making (Figure 1A), a typical
setting in which the direction of one’s gaze functions as a proxy for
the focus of selective attention. For visually minded animals such
as humans, oculomotor control is especially representative of a
directed sampling process that is driven by gains in information
as well as gains in value—that is, minimization of uncertainty and
maximization of reward, respectively (Hayhoe and Ballard, 2005;
Tatler et al., 2011; Gottlieb, 2012; Gottlieb et al., 2014).

In a similar vein but within the domain of perceptual decision
making, prior studies in psychophysics have reported learned
biases of visuospatial attention in response to consistencies in
the presentation of simple target stimuli that have been rewarded
(e.g., Della Libera and Chelazzi, 2006, 2009; Liston and Stone,
2008; Hickey et al., 2010b, 2011; Krebs et al., 2010; Kristjánsson
et al., 2010; Anderson et al., 2011a,b; Theeuwes and Belopolsky,
2012; Chelazzi et al., 2014; for review see Awh et al., 2012;
Chelazzi et al., 2013; Anderson, 2016; Bourgeois et al., 2016).
Furthermore, this line of research has begun to shed light on
neurophysiological manifestations of such biases as yet further
evidence (e.g., Kawagoe et al., 1998; Ikeda and Hikosaka, 2003;
Hikosaka et al., 2006; Peck et al., 2009; Hickey et al., 2010a;
Krebs et al., 2011; Yasuda et al., 2012; Kim and Hikosaka, 2013).
With priming observed across various perceptual-discrimination
tasks, task-relevant stimuli newly imbued with value elicit faster
and more correct behavior. On the other hand, irrelevant
stimuli that were previously associated with reward can still
capture attention in extinction so as to instead interfere with
performance in volatile environments when learned information
is no longer applicable (Rutherford et al., 2010; Le Pelley et al.,
2015; MacLean et al., 2016; Bucker and Theeuwes, 2017). This
contrast illustrates how heterogeneous factors—whether internal
or external and whether past or present—can be intertwined in
proximal subdecisions about the deployment of attention (e.g.,
deciding where to look next), such that the traditional dichotomy
of bottom–up and top–down (i.e., salience-driven and goal-
directed, respectively) processes in attention can be blurred (Awh
et al., 2012; Krauzlis et al., 2014). Yet, the scope of research on
interactions between associative learning and attentional biases
has heretofore been limited to perceptual decisions grounded in
objective sensory features of stimuli rather than their subjective
likeability.

The present study introduces a paradigm involving value-
based decisions about complex stimuli (i.e., foods) that were
made while eye movements were monitored in a structured
setting more reminiscent of foraging or a modern analog such
as shopping. Ecological relevance aside, the task stands apart
in that one would only implicitly learn where to seek out the
most valuable stimuli without having to learn which stimuli are
valuable to begin with because a given food’s value is determined
internally and subjectively. Of further interest is how inducing a
spatial bias of attention would play out when robust biases are
already present endogenously, as has been documented for tasks

of this variety (Krajbich et al., 2010; Krajbich and Rangel, 2011;
Reutskaja et al., 2011). Presumably due to some combination
of not only innate biases (Vallortigara, 2006; Rugani et al.,
2010; Frasnelli et al., 2012) but also deeply ingrained cultural
conventions (e.g., reading from left to right) (Chokron and
Imbert, 1993; Chokron and De Agostini, 1995; Chokron et al.,
1998) that involve learning over much longer temporal scales,
human subjects from our Westernized American population
exhibit a striking predisposition to first examine the left side of
a symmetric display. Thus, a key aspect of this experiment was
that the manipulation attempted to bias the observer in either
direction with repeated exposure to relatively more valuable
goods at a single location (Figure 1B). As such, this design
allowed for dissociation of the endogenous and exogenous forces
that coalesce into orienting and choice behavior. Among the
findings was a noteworthy asymmetry between learning to look
to the left for high value and learning to look to the right for
high value that also differentially affected the manually executed
decisions.

MATERIALS AND METHODS

Participants
Thirty-two (male:female = 16:16) of 35 volunteers between
18 and 35 years old from Caltech and the local community
completed the study with proper acquisition of eye-tracking
data. Criteria for participation included enjoying and regularly
eating common American snack foods such as those used for the
experiment. Participants provided informed written consent for
a protocol approved by the California Institute of Technology
Institutional Review Board. Participants were paid $20 for
completing the study in addition to receiving chosen foods.

Experimental Procedures
The subject first completed an ancillary rating task. Images of 100
generally appetitive snack foods were presented against a black
background one at a time. For each trial, the subject was given
unlimited time to rate the desirability of eating a given food at
the end of the experiment according to a five-point Likert scale
ranging from “strongly dislike” (1) to “strongly like” (5). The
response was delivered by pressing the key corresponding to the
selected number on a keyboard. These chromatic images had a
resolution of 576 × 432 pixels and each subtended 25◦ × 19◦
of visual angle. The scale was displayed for reference above the
food as black Arabic numerals on gray button icons below white
text descriptors—altogether subtending 25◦ × 4◦. The selected
rating was highlighted on the scale with a white rectangle for
500 ms of feedback following the response. Trials were separated
by an intertrial interval of 500 ms, during which only a white
fixation cross was displayed centrally. The order of presentation
was randomized for each subject. Stimuli were presented on a
15-inch LCD monitor with a resolution of 1024 × 768 pixels at
a distance of 38 cm as part of an interface programmed using
MATLAB and the Psychophysics Toolbox (Brainard, 1997).

A schematic of the two-alternative forced-choice (2AFC)
task is shown in Figure 1A. The same images of foods were
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FIGURE 1 | Paradigm. (A) Following mandatory fixation at the center of the display, the subject made a two-alternative forced choice (2AFC) between foods
presented to the left and right while eye movements were monitored. (B) The stimulus with greater value was usually presented on the left side of the display for the
leftward-bias condition (red) and usually presented on the right side of the display for the rightward-bias condition (green). Per a 2 × 2 between-subjects factorial
design, the biased block of trials featuring this manipulation appeared either before or after an unbiased block with spatially balanced values. The pooled control
condition (blue) was derived from the unbiased blocks that occurred first for half of the subjects. Unbiased blocks that occurred second in the sequence were set
aside as the left-extinction (magenta) and right-extinction (cyan) conditions.

instead presented in pairs while the subject’s eye movements
were recorded. Positions of both eyes were acquired at 50 Hz
and converted to Cartesian coordinates for the screen in real
time using a Tobii x50 desktop-mounted eye-tracking system.
Trials were only initiated once the eye tracker’s algorithm verified
during the intertrial interval that the subject’s direction of gaze
had been stabilized for at least 500 ms on a white fixation
cross subtending 0.8◦ × 0.8◦ at the center of the display. Upon
removal of the fixation cross, the two stimuli were centered at
eccentricities 15◦ to the left and right of the fixation point such
that only one could be foveated at any given instant. The subject
was given unlimited time to make a binary choice indicating
which of the foods would be preferable to eat at the end of the
experiment. The response was delivered by pressing one of two
keys with either the left or the right index finger. The images
were scaled down to 250 × 200 pixels and delineated by white
rectangles each subtending 11◦ × 9◦.

The pairings and their order were randomized for each subject
with two constraints—the first being that absolute differences in

subjective value were uniformly distributed across the set {1, 2, 3}
according to each individual’s ratings; these were to correspond to
high, medium, and low difficulty levels, respectively. The lowest
difficulty level of 4 was excluded to limit redundancy. A second
constraint related to the key experimental manipulation in this
2AFC task, which was divided into “biased” and “unbiased”
blocks of 200 trials each. During the unbiased block, the stimulus
with greater value was presented to either visual hemifield with
equal probability. While the subject was not instructed about the
possibility of such a manipulation, the biased block was instead
characterized by the skewed appearance of greater value in either
the left or the right hemifield for 90% of trials. According to a
2× 2 between-subjects factorial design (Figure 1B), each subject
was randomly assigned to one of four initial groups distinguished
by the location where the bias was induced (i.e., leftward bias or
rightward bias) and the counterbalanced ordering of the blocks
(i.e., biased block before or after unbiased block).

The subject was required to refrain from eating or drinking
anything except for water for at least 4 h prior to the
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experiment. The procedure was incentive-compatible (Hurwicz,
1972) inasmuch as the hungry subject was informed that one of
the choices made was to be selected randomly and implemented
at the end of the session. Upon completion, the subject was
provided with this chosen food and required to remain within
the laboratory for 15 min or until all of the item had been
consumed.

Data Analysis
Prior to the main analysis, data were first concatenated into
three between-subject conditions (Figure 1B)—namely, leftward
bias, rightward bias, and control. Biased blocks were combined
across the two ordinal positions, whereas unbiased blocks were
only recognized as belonging to the control condition if they
occurred first and thus could establish an uncontaminated
baseline. Unbiased blocks occurring second in the sequence
were instead assigned to either the left-extinction condition
or the right-extinction condition accordingly. Point estimates
were generally limited to the latter 100 trials of each 200-
trial block to assess effects after learning was shown to have
occurred.

Eye-position data were analyzed with a standard region-
of-interest (ROI) approach. Specifically, rectangular ROIs were
first defined over the left and right stimulus locations,
including symmetric extensions of 1◦ along each dimension
to accommodate noisy data acquisition and microsaccades.
Coordinates for the subject’s gaze were averaged across parallel
streams of data for the two eyes whenever feasible. The onset of
visual fixation was marked by the moment at which the subject’s
direction of gaze first landed within either ROI. Fixation was
coded as terminated once the gaze fell outside of that ROI if
the gaze subsequently landed on the contralateral ROI. Fixation
outside of either ROI both preceded and followed by fixation
within a single ROI was coded as a single saccade to that
ROI under the assumption that the intervening period merely
reflected inevitable sources of data loss such as blinking.

For each condition, two aspects of eye movements were
assessed and compared with respect to either spatial location
or hedonic value. The former metric corresponded to the
distribution of the first saccades at trial onset, whereas the latter
corresponded to the differential allocation of dwell time across
entire trials. Accompanying the mean across the latter half of a
block in the presented results, centered moving averages were
computed trialwise with a symmetric window of 21 trials to depict
the time course of learning. The frequency of initial saccades
to one side was compared with the chance level of 50% within
each of the main learning conditions using one-tailed (or two-
tailed in the case of the control condition) one-sample t-tests,
and these frequencies were compared between conditions using
one-tailed independent-samples t-tests. However, it should be
noted that the assumption of wholly independent samples was
overly stringent when comparing bias and control conditions
with overlapping sets of subjects. In a similar vein, 95%
confidence intervals as always provided are two-tailed in the
interest of being conservative. Omitting the redundant control
condition, similar tests were conducted for the frequency of initial
saccades to whichever side contained the stimulus with greater

value; however, a two-tailed test was used to compare the bias
conditions. Analogous tests were conducted for the proportion
of time within a trial that gaze was directed at either a fixed side
or the side featuring greater value. It was only this very last set
of tests that remained one-tailed for the extinction conditions,
whereas two-tailed tests were employed otherwise in line with the
more exploratory nature of these subsequent analyses.

Accuracy, which reflects the frequency of congruent choices
of the option with greater value, was compared with the chance
level of 50% within each condition and within each of three
classifications of difficulty using one-tailed one-sample t-tests.
Additionally of interest for the learning conditions were tests
against the baseline performance level of 90% that could be
achieved by heuristically choosing the more frequent response
rather than properly performing the value-based task. Differences
in accuracy between conditions were tested for using one-tailed
independent-samples t-tests for comparisons between bias and
control conditions along with a two-tailed test for comparing
bias conditions. Each subject’s median reaction time (RT) was
calculated separately for left- and right-option choices. RTs for
each side were compared between pooled conditions using one-
tailed independent-samples t-tests. As a complementary analysis,
differences in RT between left and right choices were tested for
within each condition using one-tailed (or two-tailed in the case
of the control condition) one-sample t-tests, and these differences
were additionally compared between conditions using one-tailed
independent-samples t-tests.

RESULTS

Learning: Eye Movements
As concerns eye movements, of primary interest were the options
attended to first within each trial and the amount of time spent
examining either option. Crucially, effects of habitual spatial
biases would be intertwined with effects of hedonic value, which
was encapsulated by ratings of how likeable each food would be.
Analyses focused on the latter half of each block—after a point at
which essential learning about the state of the environment was
shown to have taken effect.

Replicating previous reports of inherent leftward biases of
visuospatial attention (Krajbich et al., 2010; Krajbich and Rangel,
2011; Reutskaja et al., 2011), the frequency of the first saccade
within a trial being directed to the stimulus presented in
the left visual hemifield (Figure 2A) was significantly greater
than the chance level in the control condition (M = 21.3%,
CI = [5.6, 37.1], t14 = 2.91, p = 0.012). Whereas the control
condition lacked any spatial pattern for subjective value, the
bias conditions typically featured high-valued stimuli on one
side of the display without the subject being explicitly instructed
as to this arrangement. For the leftward-bias condition, initial
saccades to the left were more frequent than expected by chance
(M = 37.9%, CI = [31.0, 44.8], t16 = 11.64, p < 10−8)
and additionally more frequent as compared with the control
condition (M= 16.6%, CI= [0.9, 32.3], t30= 2.15, p= 0.020). For
the rightward-bias condition, however, the frequency of initial
saccades to the right-side stimulus was not significantly greater
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FIGURE 2 | Learning: initial saccade. (A) Shown for each condition in the leftmost panel is the mean frequency of initial saccades to the stimulus presented to the
left visual hemifield. The default leftward bias observed in the control condition (p < 0.05) was enhanced in the leftward-bias condition (p < 0.05) and neutralized in
the rightward-bias condition (p < 0.05). Moving averages across trials are provided for reference as a depiction of the time courses of these effects during learning.
Saturation of effects of learning was evident by halfway into the block of trials. (B) The frequency of initial saccades to the stimulus with greater value. As an
exploitation of the experimental manipulation, first looking left in the leftward-bias condition corresponded to usually first looking at the stimulus with greater hedonic
value (p < 0.05). Bar plots represent the latter half of a block. Error bars indicate standard errors of the means across subjects. Asterisks indicate statistical
significance (p < 0.05).

than the chance level (M = 4.6%, CI = [−14.1, 23.4], t14 = 0.53,
p = 0.303) despite being significantly greater than the frequency
observed in the control condition (M = 26.0%, CI = [−2.6,
49.3], t28 = 2.28, p = 0.015). Juxtaposition of the leftward-bias
and rightward-bias conditions thus revealed the first aspect of an
asymmetry whereby a leftward bias at baseline was enhanced or
neutralized, respectively. Even after learning had saturated within
this timeframe, this default effect could not be overridden to a
degree that would culminate in a reversed net-rightward bias.

As the signature manipulation of the experiment was that
the option with superior value appeared in the same visual
hemifield for nine out of every 10 trials, analogous analyses
were instead conducted with regard to whichever side possessed
greater value. The frequency of initial saccades to the stimulus
with greater value (Figure 2B) was greater than the chance
level for the leftward-bias condition (M = 30.4%, CI = [24.5,
36.3], t16 = 10.94, p < 10−8)—an effect similarly exceeding
that observed in the rightward-bias condition (M = 27.0%,
CI= [12.5, 41.5], t30 = 3.81, p < 10−3). The frequency of optimal
initial saccades was not significantly greater than the chance level
(M = 3.4%, CI = [−11.3, 18.2], t14 = 0.50, p = 0.313) for the
rightward-bias condition. Evident in the time course of learning,

however, is that this apparent lack of an effect merely reflected
the inability of a learned rightward bias to surpass the suddenly
maladaptive intrinsic leftward bias despite fully neutralizing it.
Altogether, the biases induced for initial saccades were consistent
with selectively gathering information from loci with the greatest
expected value as would be ideal.

Expanding the scope of the analysis to the entire duration
of a trial, the proportion of time spent fixating at the left
location (Figure 3A) was not significantly different from the
chance level for the control condition (M = 1.0%, CI = [−2.4,
4.3], t14 = 0.62, p = 0.545), indicating that the aforementioned
intrinsic leftward bias primarily affected only the beginning
of an episode. For the leftward-bias condition, however, one’s
gaze continued to be directed at the left-side stimulus for
a significantly disproportionate amount of time (M = 6.6%,
CI = [2.5, 10.6], t16 = 3.40, p = 0.002). The rightward-bias
condition was instead characterized by significantly more time
dwelling on the right side (M = 5.6%, CI = [1.4, 9.7], t14 = 2.89,
p = 0.006). This overall pattern of effects resembled that found
for the initial saccade in a manner suggesting that the same
attentional biases permeate much of the temporal extent of
decision making.
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FIGURE 3 | Learning: cumulative dwell time. (A) Shown for each condition is the mean proportion of time spent looking at the stimulus presented to the left side of
the display throughout a trial. More time was spent fixating on the left-side stimulus for the leftward-bias condition (p < 0.05); likewise, more time was spent fixating
on the right-side stimulus for the rightward-bias condition (p < 0.05). (B) The proportion of dwell time spent on the stimulus with greater value. Further asymmetry
between conditions was revealed in that only the leftward-bias condition yielded longer dwell time at the location with greater value relative to control (p < 0.05).
Asterisks indicate statistical significance (p < 0.05).

Again turning to the intersection of location and value, the
proportion of time allocated to fixation on the stimulus with
greater value (Figure 3B) was greater than the chance level even
in the control condition (M = 3.9%, CI = [2.4, 5.5], t14 = 5.50,
p < 10−4). This was to be expected insofar as the spotlight
of attention gravitates toward expected value so as to guide
upcoming action selection (Shimojo et al., 2003; Simion and
Shimojo, 2006, 2007; Krajbich et al., 2010, 2012; Krajbich and
Rangel, 2011; Manohar and Husain, 2013; Towal et al., 2013). Yet,
the disproportionate amount of dwell time on the more desirable
alternative for the leftward-bias condition (M = 7.4%, CI = [3.8,
10.9], t16 = 4.37, p < 10−3) further exceeded the control
condition’s baseline (M = 3.4%, CI = [−0.5, 7.3], t30 = 1.78,
p = 0.042). In contrast, the disproportionate amount of dwell
time on high value for the rightward-bias condition (M = 6.0%,
CI = [2.3, 9.7], t14 = 3.50, p = 0.002) was not significantly
greater than the control level (M = 2.1%, CI = [−1.7, 5.9],
t28 = 1.11, p = 0.138). Yet, this proportion was not actually
significantly greater for the leftward bias than for the rightward
bias (M = 1.4%, CI = [−3.6, 6.3], t30 = 0.56, p = 0.577).
As a segue from the discovery that subjects were successful at
optimizing oculomotor control as per the implicit statistics of
the environment—albeit more robustly in the case of a leftward
bias—the subsequent point of inquiry was to concern whether
or not subjects were actually successful at optimizing their

ultimate decisions with the benefit of more precisely deployed
attention.

Learning: Choices
Having established adaptive learning in eye movements, the
accuracy of decisions and the speed with which they are
made—namely, the RT—were expected to both improve to
the extent that attending to preferable options would facilitate
choosing them. That is, the influence of attentional modulation
within a sequential-sampling process implies that selectively
attending to an option biases decision making processes in
favor of that option by means of a boost in the rate of
accumulation of a decision signal. Such effects would impart
the most direct evidence that the spatial statistics of the
rewarding environment are not only being learned but also
being exploited in harmony with what is prescribed for an
agent with limited cognitive resources by normative decision
theory.

With regard to the accuracy of choices, the experimental
manipulation allowed for 90% accuracy with recourse to the
simpler heuristic strategy of invariably choosing the most
frequent response (e.g., the left response in the leftward-bias
condition). Nevertheless, accuracy across all trials at all three
levels of difficulty (Figure 4A) exceeded this baseline level of
90% in both the leftward-bias condition (M = 3.4%, CI = [0.8,
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FIGURE 4 | Learning: accuracy and reaction time (RT). (A) The overall accuracy of choices is depicted in relation to the baseline performance level of 90% set by the
heuristic strategy of always choosing the more frequent response. Both the leftward-bias (p < 0.05) and rightward-bias (p < 0.07) conditions achieved even greater
accuracy across all trials, albeit marginally so in the latter case. (B) Accuracy is shown separately for choices at each of the three levels of difficulty. At high difficulty
with the most room for improvement, decision making was found to improve significantly relative to control for the leftward-bias condition (p < 0.05), which was also
the condition yielding more robust effects on orienting. (C) RT is shown separately for left- and right-option choices, which were at least marginally faster in the
leftward-bias (p < 0.05) and rightward-bias (p < 0.06) conditions, respectively, relative to the control condition. (D) Differences in RT between the two responses.
Choices of the right option were marginally faster than choices of the left option in the control condition (p < 0.06). As expected, this baseline rightward bias was
strengthened in the rightward-bias condition (p < 0.05) and reversed completely in the leftward-bias condition (p < 0.05). Crosses indicate marginal statistical
significance (0.05 < p < 0.10). Asterisks indicate statistical significance (p < 0.05).

6.0], t16 = 2.81, p = 0.006) and the rightward-bias condition
(M = 2.3%, CI = [−0.7, 5.4], t14 = 1.65, p = 0.061),
albeit marginally so in the latter case. These improvements in
performance are evidence that, rather than relying upon speed-
oriented heuristics, subjects continued to properly perform the
value-based decision making task as they normally would but
with the added benefit of learned biases. Furthermore, overall
accuracy was greater for the leftward-bias condition than for
the control condition (M = 3.2%, CI = [−0.5, 7.0], t30 = 1.75,
p = 0.045). In line with the previously reported asymmetries
in effects on eye movements, this increase in accuracy relative
to control was not significant for the rightward-bias condition
(M = 2.1%, CI = [−1.9, 6.2], t28 = 1.08, p = 0.145), but
the difference between the leftward-bias and rightward-bias
conditions was also non-significant (M = 1.1%, CI= [−2.7, 4.9],
t30 = 0.58, p= 0.566).

Choice accuracy was subsequently analyzed within bins
assigned according to the difficulty of choices (Figure 4B).
The most difficult trials, which correspond to the smallest
differences in subjective value between stimuli, are of primary
interest because these feature the most potential for improvement
in performance as a consequence of learning. Accuracy was
greater than the chance level even at high difficulty across all

three conditions (p < 0.05), such that the critical tests probed
differences between conditions. For trials of low or moderate
difficulty, accuracy was saturated at near-ceiling levels, which
precluded any significant differences between bias and control
conditions among the four comparisons—namely, leftward bias
at low difficulty (M = 1.4%, CI = [−1.6, 4.3], t30 = 0.93,
p = 0.180), rightward bias at low difficulty (M = 1.2%,
CI = [−2.0, 4.4], t27 = 0.79, p = 0.219), leftward bias at medium
difficulty (M = 1.7%, CI = [−2.5, 5.8], t30 = 0.82, p = 0.210),
and rightward bias at medium difficulty (M = 1.5%, CI = [−3.3,
6.2], t28 = 0.63, p = 0.265). However, the accuracy of noisier
high-difficulty choices was greater in the leftward-bias condition
than in the control condition (M = 7.4%, CI = [1.4, 13.4],
t30 = 2.51, p = 0.009). A non-significant effect was observed
for the rightward-bias condition (M = 3.7%, CI = [−3.1, 10.6],
t28 = 1.11, p= 0.138), but the difference in accuracy between the
leftward-bias and rightward-bias conditions at high difficulty did
not reach statistical significance (M = 3.7%, CI = [−3.0, 10.4],
t30 = 1.12, p= 0.272).

First considering only choices of the left-side option, RT
(Figure 4C) was indeed faster for the leftward-bias condition as
compared to the control condition (M = 150 ms, CI = [−28,
329], t30 = 1.72, p = 0.048). On the other hand, right-choice
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RT was marginally slower for the leftward-bias condition than
for the control condition (M = 150 ms, CI = [−43, 344],
t30 = 1.59, p = 0.062). Nevertheless, overall speed improved
insofar as left-option choices were much more frequent by design.
Conversely, in the rightward-bias condition, right-option choices
were marginally faster as compared to the control condition
(M = 135 ms, CI = [−36, 305], t28 = 1.62, p = 0.058).
Yet, left-choice RT was not significantly slower in the case of
the rightward-bias condition relative to the control condition
(M = 34 ms, CI= [−120, 189], t28 = 0.46, p= 0.326).

Next, differences in RT between left- and right-option choices
were tested for within each condition (Figure 4D). Among these
predominantly right-handed subjects, responses were delivered
marginally more quickly with the right button in the control
condition (M = 42 ms, CI = [−2, 85], t14 = 2.06, p = 0.059).
This effect suggests an intrinsic rightward bias that influences
hand movements in concert with the intrinsic leftward spatial
bias driving eye movements and the zoom lens of attention.
This baseline effect was reversed such that instead left-option
choices were faster for the leftward-bias condition (M = 259 ms,
CI = [168, 351], t16 = 6.00, p < 10−5). Likewise, right-
option choices were more rapid for the rightward-bias condition
(M = 211 ms, CI = [166, 255], t14 = 10.16, p < 10−7) and to a
degree that exceeded the baseline effect for the control condition
(M = 169 ms, CI= [110, 228], t28 = 5.84, p < 10−5).

Taken together, the results thus far indicate that subjects
within the spatially structured environments of the leftward-bias
and rightward-bias conditions learned to optimize value-based
decision making processes with respect to both precision and
speed—but especially when the reward environment conformed
to preexisting leftward biases.

Extinction: Eye Movements
Having demonstrated with the main analysis that learning did
in fact occur as expected, the next set of analyses set out to
determine the extent of any residual effects of either experimental
manipulation in a subsequent extinction block with spatially
balanced values. In other words, the only distinguishing feature
between an extinction condition and the control condition lies in
hysteresis due to the internal state of the subject. These extinction
conditions were for the most part analyzed in the same fashion as
before, beginning with the first saccade of a trial.

Focusing first on the left-extinction condition, initial saccades
to the left-hemifield stimulus (Figure 5) were still more frequent
than expected by chance (M = 26.3%, CI= [2.3, 50.4], t8 = 2.52,
p = 0.036), but this effect was not significantly greater than the
baseline effect observed in the control condition (M = 5.0%,
CI = [−20.8, 30.8], t22 = 0.40, p = 0.691). Although the
respective leftward bias of the right-extinction condition was
not significantly above chance (M = 12.2%, CI = [−14.4, 38.7],
t7 = 1.08, p = 0.314), it was not significantly lesser than the
control level (M = 9.2%, CI = [−17.8, 36.1], t21 = 0.71,
p = 0.487), either. The pattern thus could align with an
interpretation of at least to some extent returning to the baseline
set by intrinsic biases in extinction.

In contrast to the leftward bias in overall dwell time
exhibited during learning, the left-extinction condition was

characterized by apparent overcompensation such that a
marginally disproportionate amount of time was actually spent
fixating on the right side of the display (M = 2.4%, CI = [−0.3,
5.1], t8 = 2.03, p = 0.077) (Figure 6A). Again, there was some
lateralized asymmetry. Rather than being reversed, the learned
rightward bias was neutralized in the right-extinction condition
to produce a null leftward effect on dwell time (M = 0.7%,
CI= [−2.7, 4.2], t7 = 0.51, p= 0.629).

Although the proportion of time allocated to fixating on
the stimulus with greater value (Figure 6B) was still well in
excess of chance for the left-extinction condition (M = 5.5%,
CI = [4.2, 6.8], t8 = 9.69, p < 10−5), this imbalance was
not significantly different from that observed in the control
condition (M = 1.5%, CI = [−0.6, 3.7], t22 = 1.49, p = 0.151).
This value-based bias in dwell time was likewise significant
for the right-extinction condition (M = 7.5%, CI = [5.6, 9.5],
t7 = 8.94, p < 10−4) and in this case even more robust
than the biases exhibited in both the control (M = 3.6%,
CI = [1.2, 6.0], t21 = 3.11, p = 0.005) and left-extinction
(M = 2.1%, CI = [0.0, 4.2], t15 = 2.09, p = 0.054) conditions,
albeit marginally so in the latter case. This improvement
could reflect greater arousal as is fitting for a novel and
uncertain environment coupled with the lack of a strong
spatial bias as is fitting for a spatially balanced reward
environment.

Extinction: Choices
Turning back to the accuracy of choices, this score was again
significantly greater than the chance level for any combination of
condition and difficulty (p < 0.05). Overall accuracy (Figure 7A)
for the left-extinction condition was no longer significantly
greater than the control level (M = 2.2%, CI = [−2.6, 7.1],
t22 = 0.96, p= 0.346). Likewise, any increase in accuracy relative
to control in the left-extinction condition was non-significant
specifically for trials of low (M = 1.9%, CI = [−2.0, 5.8],
t22 = 1.02, p = 0.317), medium (M = 3.0%, CI = [−1.3, 7.3],
t22 = 1.45, p = 0.161), and high (M = 3.8%, CI = [−5.5,
13.1], t22 = 0.85, p = 0.406) difficulty (Figure 7B). Conversely,
overall accuracy for the right-extinction condition was not
significantly lesser than that observed in the control condition
(M= 2.7%, CI= [−2.6, 8.0], t21 = 1.05, p= 0.304). Furthermore,
overall accuracy for the left-extinction condition did not fully
surpass that for the right-extinction condition (M = 4.9%,
CI = [−1.6, 11.4], t15 = 1.62, p = 0.126). Any decrease in
accuracy in the right-extinction was non-significant for low
(M = 1.1%, CI = [−4.2, 6.4], t20 = 0.44, p = 0.666), medium
(M = 1.5%, CI = [−4.7, 7.6], t21 = 0.49, p = 0.626), and
high (M = 1.6%, CI = [−6.7, 9.8], t21 = 0.39, p = 0.698)
difficulty.

In keeping with the learned bias, the left-extinction condition
was still characterized by marginally faster RT for left-option
choices relative to control (M = 167 ms, CI = [−14, 347],
t22 = 1.91, p = 0.069) (Figure 7C). However, there was no
corresponding effect for faster right-option choices in the right-
extinction condition (M = 89 ms, CI = [−140, 319], t21 = 0.81,
p = 0.426). A corresponding asymmetric pattern applied to
differences in RT between the two options (Figure 7D). As part
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FIGURE 5 | Extinction: initial saccade. A default leftward bias for the initial saccade as observed in the control condition (p < 0.05) was also found for the
left-extinction condition (p < 0.05) but not the right-extinction condition (p > 0.05). Note that the plots that would correspond to those in Figure 2B are omitted here
because of the absence of a spatial pattern for value in the extinction blocks, such that the subject was unable to predictively saccade to the stimulus with greater
value by design (p > 0.05). Asterisks indicate statistical significance (p < 0.05).

FIGURE 6 | Extinction: cumulative dwell time. (A) Whereas the learned rightward bias in dwell time was neutralized for the right-extinction condition (p > 0.05), the
respective leftward bias was even reversed by apparent overcompensation in the left-extinction condition such that there was actually a marginal rightward bias in
dwell time (p < 0.08). (B) Only the right-extinction condition was characterized by longer dwell time at the location with greater value relative to control (p < 0.05).
Crosses indicate marginal statistical significance (0.05 < p < 0.10). Asterisks indicate statistical significance (p < 0.05).

of a significant deviation from the marginal rightward bias at
baseline in the left-extinction condition (M = 95 ms, CI = [24,
165], t22 = 2.78, p = 0.011), choices of the left option remained
marginally faster than choices of the right option (M = 53 ms,
CI = [−12, 118], t8 = 1.88, p = 0.097). The right-extinction
condition, on the other hand, did not produce a significant

rightward bias in RT (M = 27 ms, CI = [−37, 91], t7 = 1.01,
p= 0.345).

Altogether, this latter set of findings concerning the extinction
conditions suggests that oculomotor and manual biases
as induced here can be unlearned in extinction relatively
quickly.
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FIGURE 7 | Extinction: accuracy and RT. (A,B) There were no significant differences with respect to accuracy for either of the extinction conditions (p > 0.05).
(C) The RT was still marginally faster for left-option choices in the left-extinction condition relative to control (p < 0.07), but there was no longer a corresponding
effect for right-option choices in the right-extinction condition (p > 0.05). (D) Contrary to the marginal rightward bias at baseline (p < 0.05), choices of the left option
remained marginally faster than choices of the right option for the left-extinction condition (p < 0.10), whereas there was no corresponding rightward bias for the
rightward-extinction condition (p > 0.05). Crosses indicate marginal statistical significance (0.05 < p < 0.10). Asterisks indicate statistical significance (p < 0.05).

DISCUSSION

All findings considered, this research has demonstrated the
human brain’s capacity to learn where to look for maximal utility
and thus make decisions more efficiently in a setting where
spatial location and hedonic value are correlated despite no overt
signs of such a correlation. Building upon related paradigms
in psychophysics involving explicit, arbitrary designations of
value to simple, abstract stimuli or locations (Awh et al., 2012;
Chelazzi et al., 2013; Anderson, 2016; Bourgeois et al., 2016), this
novel eye-tracking approach incorporated implicit learning of
spatial attentional biases into value-based decision making with
familiar, tangible stimuli (i.e., foods) that could be evaluated a
priori independently of context or positions in space. To mitigate
the susceptibility of noisy decision making processes to errors,
subjects took into account the additional spatial information
when available in accord with an optimal strategy. Rather
than merely shifting the balance of the speed-accuracy tradeoff
(Johnson, 1939) in favor of quickness via reliance upon heuristics
(e.g., rapidly delivering the more frequent response without
making an effort to evaluate and compare the alternative), the
downstream effects of induced attentional biases successfully
honed both speed and accuracy even in the absence of any time
pressure other than that which is self-imposed.

A notable asymmetry distinguished the learning of a leftward
attentional bias from the less robust learning of a rightward

bias, reflecting conflict between the induced bias and an intrinsic
leftward bias. The presence of a leftward bias replicated findings
from similar studies in which Westernized American subjects
(i.e., left-to-right readers) presented with visually symmetric
alternatives have exhibited a proclivity for first scanning the left
side of a display as well as its upper portion (Krajbich et al., 2010;
Krajbich and Rangel, 2011; Reutskaja et al., 2011). The leftward
aspect may reflect the more general, low-level phenomenon of
left hemispatial overrepresentation implicated in tasks as basic as
line bisection (Jewell and McCourt, 2000). Notwithstanding the
innate right-hemispheric dominance of visuospatial attention in
the human brain (de Schotten et al., 2011) and the abundance
of innate leftward or left-to-right spatial biases in related forms
of laterality throughout the animal kingdom (Vallortigara, 2006;
Rugani et al., 2010; Frasnelli et al., 2012), however, the direction
by which one scans the visual field is critical for these effects,
such that right-to-left (e.g., Hebrew) readers instead naturally
exhibit a contrary rightward bias as per divergent cultural norms
(Chokron and Imbert, 1993; Chokron and De Agostini, 1995;
Chokron et al., 1998). Further study of the current paradigm and
others like it with human subjects molded by cultures that diverge
with respect to these spatial biases will be necessary to fully
explicate the relationships between immediate task-related biases
learned over shorter temporal scales and sociocultural biases
learned over longer temporal scales. That such asymmetry applies
even for preferential decision making scenarios in which stimuli

Frontiers in Psychology | www.frontiersin.org 10 November 2017 | Volume 8 | Article 2000

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-02000 November 15, 2017 Time: 11:48 # 11

Colas and Lu Learning Where to Find Value

can be abstracted away from space, actions, and actual sensory
properties altogether is remarkable for its implications vis-à-
vis designing any sort of visual interface intended for human
viewers (e.g., the layout of item labeling per Rebollar et al.,
2015)—but especially for situations where the alternatives under
consideration themselves map directly onto space.

Computational modeling that encompasses the dynamics of
people’s preferential choices as well as the eye movements leading
up to them has raised the importance of visual fixation and
attention as part of an account of value-based decision making
(Krajbich et al., 2010, 2012; Krajbich and Rangel, 2011; Towal
et al., 2013). Although not applied directly here, such modeling
forms the theoretical framework for the present study. This
class of models emphasizes how attention-based mechanisms in
general will selectively enhance the neural representation (i.e.,
signal-to-noise ratio) of an option (Yantis and Serences, 2003;
Reynolds and Chelazzi, 2004; Maunsell and Treue, 2006; Cohen
and Maunsell, 2009; Lim et al., 2011; McGinty et al., 2016;
Leong et al., 2017) and, in doing so, ultimately bias decision
signals being computed continuously by sequential-sampling
processes. Although attention tends to at first be drawn to
perceptually salient (Itti and Koch, 2001) or novel (Yang et al.,
2009) stimuli (Desimone and Duncan, 1995), so too are gaze and
its underlying attentional processes driven by the motivational
salience (Schultz, 2015) or incentive salience (Robinson and
Berridge, 1993) of options with greater value—and particularly
so in the final moments prior to making a decision when
acquisition of necessary information approaches its saturation
point (Shimojo et al., 2003; Simion and Shimojo, 2006, 2007;
Krajbich et al., 2010, 2012; Krajbich and Rangel, 2011; Manohar
and Husain, 2013; Towal et al., 2013). Reflecting preferential
looking (Fantz, 1961) and the mere-exposure effect (Zajonc,
1968) in parallel with information seeking, this cascade effect of
gaze emerges as a positive-feedback loop is formed to the extent
that attending to an option also makes it more likely to be chosen.
Moreover, exogenous manipulation of eye movements and visual
attention causally biases preferences in favor of specific options—
whether via requirements for longer periods of exposure and
visual fixation (Shimojo et al., 2003; Armel et al., 2008; Lim
et al., 2011; Bird et al., 2012; Ito et al., 2014) or less directly
via artificially increased perceptual salience (Milosavljevic et al.,
2012).

The paradigm illustrated here essentially lies at the interface
of associative learning and attention, two spheres of neural
phenomena that hitherto have not been sufficiently linked
in the literature of neuroscience and psychology—much less
economics. As the findings herein have attested, attentional
signals can be modulated by implicit learning even in naturalistic
value-based decision making. Likewise, there is a firm theoretical
basis for the notion that attention plays a critical role in
selectively encoding the most relevant information into memory
in the first place, raising yet further questions as to what
extent different factors (e.g., reward or uncertainty) determine
such relevance (Mackintosh, 1975; Underwood, 1976; Pearce
and Hall, 1980; Dayan et al., 2000; Jiménez, 2003; Pearce
and Mackintosh, 2010; Gottlieb, 2012; Le Pelley et al., 2016;
Leong et al., 2017). Whereas effects on orienting as described

here are entirely tractable within some variant of the basic
reinforcement-learning framework (Rescorla and Wagner, 1972;
Sutton and Barto, 1998)—and especially amenable to a temporal-
difference algorithm (Sutton, 1988) given the continuous nature
of events—the precise nature of the prediction-error signals or
other feedback involved remains largely enigmatic. This set of
issues adds a new dimension to the problem with computational
modeling encompassing attention and eye movements in relation
to not only decision making but also learning processes.

Setting aside goal-directed (i.e., model-based) learning
(Tolman, 1948), the two-process theory of habitual (i.e., model-
free) learning (Miller and Konorski, 1928; Rescorla and Solomon,
1967; Dayan and Balleine, 2002; O’Doherty et al., 2017) posits
that instrumental (or operant) conditioning (Thorndike, 1898) is
distinct from Pavlovian (or classical) conditioning (Pavlov, 1927),
such that instrumental stimulus-response associations differ
fundamentally from Pavlovian stimulus-stimulus associations.
Within Pavlovian conditioning there is an additional division
between preparatory and consummatory behaviors: the former
are non-specific (e.g., autonomic arousal, pupil dilation), whereas
the latter are responses specific to the stimulus type (e.g.,
orienting, approaching, salivating, chewing) (Konorski, 1967).
In this context, an oculomotor orienting response is innate
and reflexive while simultaneously possessing utility as a goal-
directed action. As such, a biased response could feasibly be
reinforced through either consummatory Pavlovian processes or
instrumental processes. Further research will be necessary to
determine the extent to which these effects of implicit learning on
attention generalize beyond oculomotor control (e.g., to covert
shifts of attention in the absence any motoric orienting), as this
would be indicative of a broader and more flexible phenomenon
of instrumental conditioning as opposed to a Pavlovian system
embedded within oculomotor circuits. Along the same lines,
another endeavor for future research will be to explore possible
extraction of non-spatial features in learning how to optimally
deploy attention—for example, relating asymmetry in value to
contextual stimuli or time points within a sequence rather than
spatial locations.
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