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An inequality by J. O. Miller (1982) has become the standard tool to test the race model for redundant
signals reaction times (RTs), as an alternative to a neural summation mechanism. It stipulates that the RT
distribution function to redundant stimuli is never larger than the sum of the distribution functions for 2
single stimuli. When many different experimental conditions are to be compared, a numerical index of
violation is very desirable. Widespread practice is to take a certain area with contours defined by the
distribution functions for single and redundant stimuli. Here this area is shown to equal the difference
between 2 mean RT values. This result provides an intuitive interpretation of the index and makes it
amenable to simple statistical testing. An extension of this approach to 3 redundant signals is presented.
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In the redundant signals paradigm for simple reaction time (RT),
the observer must initiate a response as quickly as possible following
the detection of any stimulus onset. A typical finding is that of
redundancy gain: Responses are faster, on average, when two or more
signals are presented simultaneously than when a single signal ap-
pears. Since the pioneering study by Todd (1912), this redundant
signals effect (RSE) has been replicated many times for both manual
and saccadic RTs, and under different experimental settings, for
example, comparing uni- versus multimodal stimulation (Amlôt,
Walker, Driver, & Spence, 2003; Diederich, 1995; Diederich &
Colonius, 1987; Diederich, Colonius, Bockhorst, & Tabeling, 2003;
Gielen, Schmidt, & Van den Heuvel, 1983; Hughes, Nelson, &
Aronchick, 1998; Miller, 1982, 1986; Molholm, Ritter, Javitt, &
Foxe, 2004), single versus multiple stimuli within the same modality
(e.g., Schwarz & Ischebeck, 1994), or monocular versus binocular
stimulation (Blake, Martens, & DiGianfillipo, 1980; Westendorf &
Blake, 1988) and also for specific populations (e.g., Corballis, 1998;
Marzi et al., 1996, for hemianopics; Miller, 2004, for individuals who
have undergone split-brain surgery; Reuter-Lorenz, Nozawa, Gazza-
niga, & Hughes, 1995; Savazzi & Marzi, 2004).

Raab (1962) was the first to propose a race model for simple RT
such that (a) each individual stimulus elicits a detection process
performed in parallel to the others and (b) the winner’s time
determines the observable RT. This model suggests that RSE is
generated by statistical facilitation: If detection latencies are inter-
preted as (nonnegative) random variables, the time to detect the
first of several redundant signals is faster, on average, than the
detection time for any single signal. A generalization of Raab’s
model was recently developed in Miller and Ulrich (2003).

Testing the race model amounts to testing whether an observed
RT speed-up is too large to be attributed to statistical facilitation

(viz., probability summation). The race model inequality (RMI)
proposed in Miller (1982) has become the standard testing tool in
many RT studies.1 It stipulates that the RT distribution function for
redundant stimuli is never larger than the sum of the RT distribu-
tions for the single stimuli. A violation of this inequality is inter-
preted as an indicator of an underlying neural summation (or
coactivation) mechanism. When many different experimental con-
ditions are to be compared, a numerical index of the amount of
violation is very desirable. A widespread practice is to take a
certain area with contours defined by the distribution functions for
single and redundant stimuli. Here we show, for the first time, that
this area can be interpreted in terms of mean RT differences, thus
providing both a simple intuitive interpretation of the area and a
means for statistical testing.2 We also present a partial extension of
this result to the trimodal stimulation condition.

We need the following notation. Let RTX and RTY denote the
processing time for the detection of signal sX, and, respectively, sY,
when presented alone, and let RTXY denote the processing time
when both signals sX and sY are present. For simplicity, it is
assumed here that detection latencies are identical to the observ-
able RTs. Note that, because RTX, RTY, and RTXY are measured
under different experimental conditions, there is no natural prob-
ability space to define their joint distribution. However, the race
model assumptions can be stated explicitly using the “equal-in-
distribution” notion: Two random variables U and V are equal in
distribution (U � st V) when they have distribution functions of
identical form. The race model assumes that (a) there is a non-
negative random vector (X, Y) (defined by a distribution with
respect to some probability space) such that RTXY � st min(X, Y),
and (b) X � st RTX, Y �st RTY. The latter assumption is often
referred to as context invariance, stipulating that the signal detec-

1 According to the Web of Science (May, 2005), Miller’s (1982) article
has 198 citations, with 60 of them over the last 3 years.

2 Miller (1986) introduced the use of this geometric measure to assess
the degree of violation of the inequality and also pioneered a bootstrapping
test. For reasons unbeknown to us, the latter seems to have been ignored
completely in the subsequent literature.

Hans Colonius, Department of Psychology, Oldenburg University, Old-
enburg, Germany; Adele Diederich, School of Humanities and Social
Sciences, International University Bremen.

Correspondence concerning this article should be addressed to Hans
Colonius, Department of Psychology, University of Oldenburg, Oldenburg,
Germany. E-mail: hans.colonius@uni-oldenburg.de

Psychological Review Copyright 2006 by the American Psychological Association
2006, Vol. 113, No. 1, 148–154 0033-295X/06/$12.00 DOI: 10.1037/0033-295X.113.1.148

148



tion latency distributions for sX and sY are identical in single and
redundant signal trials (Ashby & Townsend, 1986; Luce, 1986).

With E standing for the expected value of random variables, it
follows, as a special case of Jensen’s inequality (e.g., Billingsley,
1979), that

E �min�X,Y�� � min�E�X�,E�Y�� (1)

for any distribution of (X, Y). Random variables X and Y are not
observable (only their minimum is, in the redundant signal condi-
tion), but from the equal-in-distribution assumptions a testable
analogue of Inequality 1 follows:

E�RTXY� � min�E�RTX�,E�RTY�� (2)

Testing the Race Model

The latter inequality has been used to test the race model on the
level of average RTs. For example, in an RT stimulation, Gielen et al.
(1983) obtained mean RTs for bimodal (visual–auditory and visual–
kinesthetic) and unimodal stimuli. In order to derive the race model’s
prediction of mean bimodal RT, they assumed stochastic indepen-
dence between the two detection times in the bimodal condition and
found average bimodal RTs to be smaller than predicted by the model,
leading them to a rejection of the race model.

Note, however, that the validity of the inequality in Equation 2
is not restricted to the case of stochastic independence. This is
important because dependent processing does affect the predic-
tions of the race model. Indeed, assuming negative dependence—
that is, relatively fast detection latencies for signal sX co-occur with
relatively slow detection latencies for signal sY and vice versa—it
is obvious that the smaller of the two random latencies RTX and
RTY tends to be small as compared with the smaller of two
independent latencies, as long as the individual latencies’ means
do not vary.3 The difficulty Gielen et al. (1983) faced was how to
derive predictions of a dependent race model without restricting
the model by specific distributional assumptions.

A more general test of the race model was developed by Miller
(1978, 1982) in showing that

P�RTXY � t� � P�RTX � t� � P�RTY � t� (3)

must hold for all t � 0. This RMI follows from

P�min�X,Y� � t� � P�X � t� � P�Y � t� (4)

a special case of Boole’s inequality (Billingsley, 1979). RMI and
some of its variations and generalizations have been the subject of
numerous theoretical and methodological studies (Ashby &
Townsend, 1986; Colonius, 1986, 1990, 1999; Colonius & Eller-
meier, 1997; Colonius & Townsend, 1997; Colonius & Vorberg,
1994; Diederich, 1992; Miller, 1986, 1991, 2004; Miller & Ulrich,
2003; Mordkoff & Yantis, 1991; Townsend & Nozawa, 1995,
1997; Townsend & Wenger, 2004; Ulrich & Giray, 1986; Ulrich &
Miller, 1997).

Violations of RMI have been observed in many multimodal
stimulation experiments but also under unimodal stimulation (e.g.,
Turatto, Mazza, Savazzi, & Marzi, 2004). A common way to
depict the amount of RMI violation is to subtract the single signal
distributions from the redundant signals distribution

P�RTXY � t� � P�RTX � t� � P�RTY � t� (5)

and to plot this as a function R*XY, say, of t (Miller, 1986):

R*XY�t� � P�RTXY � t� � P�RTX � t� � P�RTY � t�. (6)

By the inequality shown in Equation 3, positive values of R*XY

(t) indicate violations of RMI. For example, Figure 1 presents
functions R*XY (t) from two different stimulus conditions in a
visual–auditory saccadic RT study by Nozawa, Reuter-Lorenz, and
Hughes (1994).

Given that the left-hand side of the inequality shown in Equation 3
is always bounded by 1, the inequality can be rewritten as

P�RTXY � t� � min�P�RTX � t� � P�RTY � t�,1�, (7)

resulting in a slightly modified function

RXY�t� � P�RTXY � t� � min�P�RTX � t� � P�RTY � t�,1�. (8)

Violations of RMI will again result in positive values of RTXY(t),
whereas negative or zero values of RTXY(t) are compatible with the
race model.4

Assessing the Amount of RMI Violation

The amount of violation is typically interpreted as the strength
of neural summation or coactivation, that is, the amount of re-
sponse facilitation that is not reducible to probability summation
(viz., statistical facilitation). If many different experimental con-
ditions are to be compared with respect to their degree of RMI
violation, reducing the information contained in RTXY(t) or
RT*XY(t) to a single numerical index of neural summation is very
desirable. It has become common practice to interpret the area

3 Positive dependence has the opposite effect: In the extreme case of
perfect positive dependence, the smaller of the two random latencies will
have the same mean as the one with the smaller mean.

4 Because there is some arbitrariness, slightly different definitions of
RXY(t) occur in the literature. The version chosen here is best suited for our
purposes.

Figure 1. Areas above horizontal line represent the amount of violation
of race model inequality for saccadic reaction times in two different
stimulus conditions (after Nozawa et al., 1994). From “Parallel and serial
processes in the human oculomotor system: Bimodal integration and ex-
press saccades,” by G. Nozawa, P. A., Reuter-Lorenz, and H. C. Hughes,
1994, Biological Cybernetics, 72, 19–34. Copyright 1994 by Springer-
Verlag. Adapted with permission.
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under positive RTXY(t) or RT*XY(t) values V�, say, as a quantitative
measure of the amount of violation of RMI and, thereby, of neural
summation. For example, in a study on summation, Hughes et al.
(1998) plotted V� values as a function of four different spatial
positions of the auditory and three different positions of the visual
stimulus (see Figure 2).

This geometric measure of RMI violation is simple and attrac-
tive, but it may seem a bit arbitrary. The following proposition, on
the other hand, shows that a slight modification of this geometric
measure has a deeper interpretation relating it directly to the
aforementioned race model test on the level of average RTs.

Proposition 1: Let E(–)[min(RTX, RTY)] be the mean RT
predicted by a race model with maximal negative dependence
between the detection latencies RTX and RTY. Then the inte-
gral over function RTXY(t)

VXY � �
0

�

RXY�t�dt � E����min�RTX, RTY�� � E�RTXY� (9)

where E(RTXY) is the (observed) mean RT in the redundant signals
condition.

This proposition is based on the fact that the right-hand side of
the RMI in Equation 7,

min�P�RTX � t� � P�RTY � t�,1�, (10)

is a distribution function, namely, the distribution function of
min(RTX, RTY) with maximal negatively dependent RTX, RTY (for
a proof, see Appendix A). A negative or zero value of VXY

indicates that the amount of observed RT facilitation is completely
attainable by a race model, possibly with negative dependence

between RTX and RTY.5 The larger the positive values of VXY, the
larger the amount of facilitation not explainable by the race model
even if extreme negative dependence between the detection pro-
cessing times is assumed.

Moreover, assuming that observable RTs include a variable base
time, it can be shown that this implies a moderating effect on
negative dependence leading to a possible underestimation of VXY

(see Colonius, 1990, Proposition 5.1) .6 In order to gauge the size
of this underestimation, however, one would need to have an
estimate of the base time variability, which may be difficult to
obtain in practice.

Given that function RXY(t) may be positive or negative depend-
ing on the value of t, index VXY is equal to the area under RXY(t)
above the abscissa minus the area below the abscissa but above
RTXY(t). Numerical estimates of these areas can, in principle, be
obtained through numerical integration. An attractive alternative,
not requiring any area estimations, is using the method of anti-
thetic variates (e.g., Thompson, 2000) to generate a pair of max-
imally negative dependent random variables from the two single
signal distributions and to compute the mean of their minima
(Colonius, 1990; Miller, 1986). We illustrate the aforementioned
proposition and the numerical estimation of E(–)[min(RTX, RTY)]
by a hypothetical visual–auditory interaction experiment.

Example: Visual–Auditory Interaction in RT

Using an artificial data set with known underlying RT distribu-
tions allows us to study the effect of different degrees of neural
summation on the geometric index VVA. For computational sim-
plicity, we assume exponentially distributed visual and auditory
processing times with intensity parameters �V and �A, respectively,
for the unimodal stimulus conditions. Bimodal processing time is
also exponentially distributed,7 with parameter �VA. Obviously, for
�VA � �V � �A, we have an independent race model, but for �VA

	 �V � �A, violations of RMI occur, as illustrated by function
RVA(t)’s being positive for a large range of t values (see Figure 3).

Computation of area value VVA requires determination of the
winner’s mean in a race model with maximally negative depen-
dence, E(–)[min(RTV, RTA)], which—at the population level—is
done by simple integration (cf. Appendix A). Each curve in Figure
3 corresponds to a different value of �VA, and area VVA increases
monotonically with �VA, indicating an increasing amount of neural
coactivation.

Numerical estimates of E(–)[min(RTV, RTA)] from sample data
are computed by the method of antithetic variates. Basically, the
procedure is to take pairs of RT values from the single signal
distributions as follows: Take the fastest RT from the RTV sample
and the slowest RT from the RTA sample as the first pair, the
next-to-the-fastest from the RTV sample and the next-to-the-
slowest from the RTA sample, and so on. For each pair, determine

5 It should be noted, however, that nonviolation of RMI does not
automatically validate a race model explanation. In fact, Ulrich and Miller
(1997) developed a test that, in principle, may rule out race models even
when RMI is not violated.

6 We are grateful to two of the reviewers, Jim Townsend and Christopher
Honey, for pointing this out.

7 This model derives from the Marshall-Olkin bivariate exponential
distribution, an important model in reliability theory (cf. Galambos & Kotz,
1978).

Figure 2. Positive areas under R*(t) as a function of visual and auditory
stimulus position (after Hughes et al., 1998). From “Spatial characteristic
of visual–auditory summation in human saccades,” by H. C. Hughes, M. D.
Nelson, and D. M. Aronchick, 1998, Vision Research, 38, 3955–3963.
Copyright 1998 by Elsevier. Adapted with permission.
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the minimum and take the mean over these minima. Table 1
presents ordered samples of size n � 10 from the RTV distribution
(�V � .005) and from the RTA distribution (�A � .01).

The mean of the minima equals 59 as an estimate of
E(–)[min(RTV, RTA)] � 42. This estimate can, of course, be im-
proved by taking larger, more realistic sample sizes.

Statistical Testing of the Amount of RMI Violation

In order to go beyond a descriptive measure of RMI violation,
a statistical test for evaluating the null hypothesis of the inequality
shown in Equation 3’s being true is desirable. The index VXY, as a
simple difference of independent means, is amenable to statistical
testing of the null hypothesis of VXY � 0 by a conventional t test
(with nonhomogeneous variances) or a nonparametric (Mann–
Whitney) U test.8 Another possible approach, already taken in
Miller (1986), is to compute confidence intervals for the mean RT
predicted by the (maximal negatively dependent) race model via
bootstrapping from the observed single signal RT distributions (for
details, see Miller, 1986).

Note that local violations of RMI may occur, although the
corresponding VXY value, as a global measure, may not show a
significant violation. Thus, nonparametric tests at the level of the
distribution functions will, in general, be more sensitive to viola-
tions of the race model. In this vein, Maris and Maris (2003)
developed an interesting Kolmogorov–Smirnov-type test, but it is
restricted to experimental paradigms where the single signal re-
sponses are drawn from a mixture distribution of the single signal
distributions. No general solution in this direction is available yet.

Extension to Three Redundant Signals

The notion of a race easily extends to the case of more than two
processes unfolding in time. A prominent example is the paradigm
of multimodal stimulation with stimuli from the visual, auditory,
and somatosensory modality (as early as Todd, 1912). Assuming
(a) RTXYZ � st min(X, Y, Z); (b) RTXY � st min(X, Y), RTYZ � st

min(Y, Z), RTXZ � st min(X, Z); and (c) X � st RTX, Y � st RTY, and
Z � stRTZ, an extension of the inequality in Equation 2,

E�RTXYZ� � min�E�RTX�,E�RTY�,E�RTZ��, (11)

predicts statistical facilitation again. There is a dramatic differ-
ence, however, between the bivariate and the multivariate (greater
than 2) situation as far as the role of statistical dependence is
concerned. By an elementary observation, three random variables
cannot be pairwise negatively dependent to an arbitrarily high
degree. Thus, although the direct extension of RMI,

P�RTXYZ � t� � min�P�RTX � t�

� P�RTY � t� � P�RTZ � t�,1�, (12)

8 Independence can be assumed by constructing a joint probability space
from the three separate experimental conditions (single and redundant
stimuli). The sample estimate for E(–)[min(RTX, RTY)] is a function of the
order statistics of the two single stimulus conditions and is thus indepen-
dent of the estimate for E(RTXY) from the redundant stimuli condition.

Figure 3. RVA(t) functions of visual–auditory interaction example with �V � .005, �A � .01, and �VA � .018,
.022, .026, and .03, respectively. The corresponding VVA areas are indicated by the inscribed numbers.

Table 1
Ordered Samples of Size 10 From RTv and RTA Distributions
(Columns 1 and 2) and Their Minima (Column 3)

Ordered RTV Reverse-ordered RTA Minima

68 349 68
83 251 83
86 156 86

141 106 106
147 90 90
153 44 44
154 42 42
209 41 41
380 22 22
678 9 9

Note. Average of the minima (third column) is 59.
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obviously holds, its right-hand side does not, in general, constitute
a distribution function for min(RTX, RTY, RTZ) (cf. Joe, 1997), thus
preventing a direct generalization of Proposition 1.

Nevertheless, alternative distribution inequalities exist that lend
themselves to geometric interpretation. One example is (Diederich,
1992)9

P�RTXYZ � t� � P�RTXY � t� � P�RTYZ � t� � P�RTY � t�, (13)

which follows from

P�min�X,Y,Z� � t� � P�min�X,Y� � t�

� P�min�Y,Z� � t� � P�Y � t�. (14)

This inequality has recently been tested in a multimodal stim-
ulation experiment in Diederich and Colonius (2004). Figure 4
presents an example from a trimodal condition where the area
between the upper curve (observed trimodal RT) and the middle
one (right-hand side of the inequality in Equation 13) suggests a
violation of the inequality.

An analogue to Proposition 1 gives the following interpretation
of this area.

Proposition 2 (for proof see Appendix B): The integral over
function

RXYZ�t� � P�RTXYZ � t�

� �P�RTXY � t� � P�RTYZ � t� � P�RTY � t�� (15)

equals

VXYZ � �
0

�

RXYZ�t�dt � �E�RTXY�

� E�RTYZ� � E�RTY�� � E�RTXYZ�. (16)

Thus, a positive value of VXYZ indicates that mean RT with three
signals is faster than predicted from the race model. It is interesting
to note that Equation16 measures violation over and above that
possibly caused with two signals. Indeed, let us assume that there
are VXY 	 0 and VYZ 	 0 such that

E�RTXY� � E����min�RTX,RTY�� � VXY (17)

and

E�RTYZ� � E����min�RTY, RTZ�� � VYZ. (18)

Inserting these expression into Equation 16 suggests that the RMI
violations with two signals have already been discounted in the
computation of VXYZ:

VXYZ � 
E����min�RTX,RTY�� � VXY� � 
E����min�RTY,RTZ��

� VYZ� � E�RTY� � E�RTXYZ�. (19)

Conclusion

We have shown that a commonly used geometric measure of the
amount of violation of the race model relates performance to the
case of maximal negative dependence between the two processing
times and, specifically, that it equals a simple difference of mean
RTs amenable to statistical testing. A direct generalization of this
result to the processing of three or more signals was shown to be
impossible in principle, but alternative geometric measures assess-
ing race model violations, again expressible as mean RT differ-
ences, can be developed as demonstrated here for the trivariate
situation.

9 Two more inequalities of the same type follow from symmetry, with X,
or Z, taking over the role of Y. Replacing the right-hand side of the
inequality in Equation 13 by the minimum over all three possible upper
bounds leads to a possibly sharper inequality generalizing the subsequent
development. However, for ease of exposition, we abstain from presenting
the more general case.
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Appendix A

Proof of Proposition 1

Writing FXY(t) � P(RTXY � t), FX(t) � P(RTX � t), and FY(t) � P(RTY

� t),

RXY�t� � FXY�t� � min�FX�t� � FY�t�,1�

� 1 � min�FX�t� � FY�t�,1� � �1 � FXY�t��

� max�1 � FX�t� � FY�t�,0� � �1 � FXY�t��. (A1)

Integrating yields

�
0

�

RXY�t�dt � �
0

�

max�1 � FX�t� � FY�t�,0�dt

� �
0

�

�1 � FXY�t��dt � E����min�RTX,RTY�� � E�RTXY�, (A2)

where E(–)refers to the mean RT under maximally negative dependence
between RTX and RTY (cf. Colonius, 1990) and E(RTXY) is the observed
redundant signals mean RT.

The last step follows from the equality

�
0

�

�1 � FX�t��dt � E�X� (A3)

holding for any positive (continuous) random variable X with distribution
function FX.

Appendix B

Proof of Proposition 2

Writing FXYZ(t) � P(RTXYZ � t), and so on,

RXYZ�t� � P�RTXYZ � t� � �P�RTXY � t� � P�RTYZ � t� � P�RTY � t��

� �1 � FXY�t�� � �1 � FYZ�t�� � �1 � FY�t�� � �1 � FXYZ�t��. (B1)

Integrating yields

�
0

�

RXYZ�t�dt � �E�RTXY� � E�RTYZ� � E�RTY�� � E�RTXYZ�. (B2)
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