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Why build a virtual brain? Large-scale neural simulations as jump 
start for cognitive computing

Matteo Colombo

tilburg center for logic, Ethics and philosophy of Science, tilburg university, tilburg, the netherlands

“If just reproducing the brain is the aim,

then there are better (presumably fun) ways to do that.

If we just want to simulate a real brain with all details,

maybe we should just reproduce.” Anonymous

1. Introduction

Since the late 1980s, several research groups have been carrying out large-scale brain simulations. 
Carrying out large-scale brain simulations requires expertise from several different fields – including 
AI, machine learning, computational cognitive neuroscience, neurobiology and engineering – it also 
involves an impressive amount of financial resources. In the face of these efforts, it remains controversial 
what the pay-offs are of carrying out large-scale brain simulations. In particular, it is matter of heated 
debate whether any significant contribution to our understanding of cognitive behaviour could be 
made by simulating a large-scale model of the brain.

This study explores these issues, asking: currently, what do scientists learn from designing, building 
and running large-scale neural simulations? One plausible answer is that scientists learn at least what 
it takes to simulate these large-scale systems. By facing up to serious modelling and implementation 
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2  M. COlOMBO

challenges, at least for some such simulations, scientists acquire new knowledge about the computa-
tional performance of their simulating systems.

Some neural simulations imitate some features of a real neural system not in order to serve as 
surrogates that are investigated to gain new knowledge about biological brains. Rather, these neural 
simulations imitate some features of a real neural system in order to gain useful knowledge about the 
simulating system itself (Colombo, 2015a).

Plausible as it sounds, the significance of this practice should not be downplayed, for at least two 
reasons. First, most work on the epistemology of computer simulation overlooks or downplays the 
computational and material aspects of computer simulation. But learning about the computational 
and material performance of a machine is in fact far from trivial (Sections 2 and 3). Second, the kinds 
of neural simulations examined in this study involve an interesting set of practices that are believed 
to usher in a new era of neuromorphic, cognitive computing systems (Section 4). Neuromorphic cog-
nitive computing systems aim at solving complex, data-rich problems filled with uncertainties and 
ambiguity, by mimicking the function, power, volume and real-time performance of biological brains 
(Modha et al., 2011).

Many researchers believe that the major challenge in using large-scale neural simulations for devel-
oping neuromorphic cognitive computing devices lies in improving the biological realism of the sim-
ulations. Despite this widespread thought, the main challenge is not biological realism; rather, it lies 
in figuring out general neurocomputational principles that could enable artificial brains to display the 
robust flexibility characteristic of biological cognition (Section 5).

2. Large-scale neural simulations: aims and prospects

For many large-scale neural simulations, a simulating system implements some algorithm that finds 
solutions to mathematical equations that are believed to describe the dynamics and patterns of connec-
tivity of a large number (e.g. over a million) of neurons and synapses (for reviews of different large-scale 
neural simulations, see Brette et al., 2007; de Garis, Shuo, Goertzel, & Ruiting, 2010; Eliasmith & Trujillo, 
2014; Goertzel, Ruiting, Itamar, de Garis, & Chen, 2010; Sandberg & Bostrom, 2008).

A large-scale neural simulation is a type of computer simulation. Computer simulation can be char-
acterised broadly as “a comprehensive method for studying systems,” which “includes choosing a model; 
finding a way of implementing that model in a form that can be run on a computer; calculating the 
output of the algorithm; and visualizing and studying the resultant data” (Winsberg, 2013). Accordingly, 
some real-world system should be picked as the representational target of the computer simulation; 
some mathematical equations should be chosen, which are believed to model (some aspect of ) the 
behaviour of the target system; and an appropriate simulating system, consisted of both hardware and 
software components, should be used to implement and run the mathematical model.

In line with much of the philosophical literature, where models and simulations are understood as 
serving as representations of some system about which one wants or hopes to gain knowledge (e.g. 
Grüne-Yanoff & Weirich, 2010, pp. 21–26; Hartmann, 1996, p. 83; Humphreys, 2004, p. 110), Winsberg 
(2013) claims that the entire process constituting computer simulation is “used to make inferences 
about the target system that one tries to model.”

The claim also coheres with the stated goal of many large-scale neural simulations. For example, 
James M. Bower, who contributed to establishing GENESIS, one of the earliest neural simulators, in the 
early 1990s (Wilson, Bhalla, Uhley, & Bower, 1989), claims that understanding how biological brains 
compute will depend on “computer simulations that are very closely linked to the detailed anatomical 
and physiological structure” of the brain (Bower, 1998, p. 197).

More recently, the Human Brain Project, led by Henry Markram, set out to “simulate brains of mammals 
with a high level of biological accuracy and, ultimately, to study the steps involved in the emergence 
of biological intelligence” (Markram, 2006, p. 153).1 The objective of carrying out large-scale neural 
simulations would be to understand why and how many different ion channels, receptors, neurons 
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JOURNAl OF ExPERIMENTAl & THEORETICAl ARTIFICIAl INTEllIGENCE  3

and synaptic pathways in the brain contribute to different brain functions and to emergent, intelligent 
behaviour (p. 158).

Similarly, Kwabena Boahen and collaborators have built Neurogrid, a system for simulating the behav-
iour of over a million neurons and their synaptic connections, with the ultimate objective of explaining 
“how intelligent behavior arises from bioelectrical processes at spatial and temporal scales six orders 
of magnitude smaller (from nanometers to millimeters and from microseconds to seconds)” (Benjamin 
et al., 2014, p. 699).

Despite significant differences, the goal shared by these and other large-scale neural simulation 
projects is to facilitate understanding of how brains’ multi-scale, complex organisation contributes to 
generate intelligent behaviour. This goal may be reached. Yet, it is far from uncontroversial that, currently, 
a large-scale neural simulation is an especially fruitful or effective approach to addressing questions 
about how neurons and synapses’ dynamics generate different brain functions, cognitive phenomena 
and intelligent behaviour (cf., Mainen & Pouget, 2014).

Commenting on this approach, Carandini (2012) argues that, currently, “putting all of the subcellular 
details (most of which we don’t even know) into a simulation of a vast circuit is not likely to shed light 
on the underlying computations” (p. 509). If the underlying neural computations are not understood, 
there is little hope to learn how neural circuits generate different brain functions and integrated cog-
nitive phenomena. A mechanistic understanding of how neural circuits generate intelligent behaviour 
requires the formulation and systematic testing of hypotheses about what is computed and by means 
of which algorithms. It cannot merely proceed from piecing together various, biophysical building 
blocks of neural circuitry.

In a similar vein, Sporns (2012) points out that the success of projects such as Markram’s Human 
Brain Project “depends on knowledge about the organization of neurons and molecules into complex 
networks whose function underpins system dynamics” (p. 168). If the hope is to understand how intel-
ligent behaviour is generated, then aggregating cells into circuits and circuits into systems in a neural 
simulation should be guided by knowledge of the computational architecture supporting brain func-
tion. Such knowledge is currently sparse and not easily incorporable into large-scale neural simulations, 
particularly into simulations that take a “bottom-up” approach, which is not driven by computational 
hypotheses about the function of different brain circuits.

Because of these issues, few large-scale neural simulations allow us to begin to bridge the gap 
between biophysical phenomena happening at the neural level and cognitive phenomena displayed 
by intelligent agents. Although, as we shall see in Section 5 below, a promising path has been opened 
up by Chris Eliasmith and colleagues’ (2012) 2.5 million neuron simulation, most current large-scale 
neural simulations can at best fit existing biophysical data and display emergent properties that are 
not reducible to properties of individual brain components (e.g. Izhikevich & Edelman, 2008).

So, currently, carrying out large-scale neural simulations may be fruitful to explaining some bio-
physical phenomena displayed by networks of neurons. However, it is more problematic to claim that, 
currently, a large-scale neural simulation yields any novel insight into how the neurobiological systems 
represented in the simulation produce cognitive phenomena and contribute to intelligent behaviour.

3. Computational performance: from brains to computers

More plausible is that, currently, from at least some large-scale neural simulations, scientists gain novel 
knowledge about the computational performance of the simulating system itself, rather than about 
the neural system that the simulation represents.

Simulating systems are computing systems comprising both software and hardware components. 
They include a computational architecture and a set of algorithms appropriately formulated as com-
puter programs that can be executed on a concrete computing machine made of specific materials and 
chips. The computational performance of the simulating system depends on a complex combination 
of properties of its architecture, of the algorithms it uses, the programs it executes and of the materials 
and technological devices of which it is made.
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4  M. COlOMBO

Three common dimensions on which computational performance can be assessed are as follows: 
the time it takes for the computing system to carry out a given task, the maximum number of tasks 
that can be completed by the system in a given time interval and the electrical power it takes for the 
system to carry out a task.

The total time required for a computing system to complete a task is called execution time. One 
way to measure the execution time of a program is in terms of clock period, which is the time length 
(in nanoseconds) of a cycle of the clock built into the system that determines when events take place 
in the hardware. The clock rate (in hertz) is the inverse of the clock period. Increasing computational 
performance for a given program requires decreasing its execution time, which may be tackled as an 
engineering problem – viz. as the problem of reducing the clock period (i.e. increasing the clock rate) 
– or as a computational problem – viz. as the problem of designing a more efficient computational 
architecture or more efficient algorithms and programs.

The number of tasks that can be completed per unit time by a computing system is called throughput. 
If we focus on the communication channels of a computing system, then the maximum throughput 
of a channel is often called bandwidth (measured in bits of data/second). The amount of time it takes 
for a communication channel to become unoccupied so that it can allow for data transfer is called 
latency. The available bandwidth of a communication channel is a limited resource and should be used 
sparingly. The greater the bandwidth capacity, or the lower the latency of the communication chan-
nels, the more likely it is that the system displays better computational performance. The throughput, 
bandwidth and latency of a computing system are a complex function of the physical medium being 
used for communications, the system’s wiring architecture and the type of code used for programming.

Power consumption is a major constraint on computational performance. The microprocessors of 
computing systems dissipate heat. Heat must be removed from a computing system; else, its hardware 
components will overheat. Conserving power and avoiding overheating, while improving computa-
tional performance, have led computer scientists and engineers to explore novel architectures, hardware 
technologies, software solutions and programming languages for highly efficient computing systems.

There are two reasons why carrying out a computer simulation of a large number of neurons and syn-
apses can yield non-trivial knowledge of the computational performance of the simulating system. The 
first reason is that brains can be understood as computational systems, which can be used to set a real 
biological benchmark for artificial computing systems’ performance. The second reason has to do with 
scale: the scalability (or scaling efficiency) of a computing system indicates how efficient an application 
is when using increasing numbers of parallel processing units or amount of computational resources.

If the brain is a computing system, then it displays high performance in the face of low power 
consumption and small size. On average, the human brain weighs around 1.3–1.5 kg is constituted by 
about 100 billion neurons and around 100 trillion synapses, and its volume is about 1400 ml. For carrying 
out its computations, it consumes energy at a rate of about 20 W. Brains’ computational architecture 
and style of computing are very different from those of modern artificial computing systems. Modern 
artificial computing systems possess von Neumann architecture and have stored programs, which are 
typically implemented in digital, serial, synchronous, centralised and fast microcircuits. By contrast, 
biological brains possess a non-von Neumann, multiscale, network architecture; they have distributed 
computational units, which carry out mixed-mode analogue–digital, parallel, asynchronous, slow, noisy, 
computations (Montague, 2007, Chapter 2; Piccinini & Bahar, 2013; von Neumann, 1958).

If the brain is a computing machine, then there is a set of properties possessed by both biological 
brains and artificial computing systems such that specific instantiations of these properties determine 
the computational performance that the computing machine – biological or otherwise – can reach. 
Available information about computational features of biological brains can provide one basis for bench-
marking the performance of artificial computational systems along some dimension of interest such as 
power consumption or scalability. Comparing the computational performance of the simulating system 
in a large-scale neural simulation to that of its neurobiological target along some dimension of interest 
allows scientists to learn about why and how certain features of the simulating system (e.g. its network 
architecture, its physical materials) impact its performance relative to that dimension.
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JOURNAl OF ExPERIMENTAl & THEORETICAl ARTIFICIAl INTEllIGENCE  5

What about scalability? Although it is problematic to precisely define “scalability,” the term is used 
in computer science to denote the capacity of a multiprocessor parallel computing system to accom-
modate a growing number of processing units or to carry out a growing volume of work gracefully 
(Hill, 1990). Scalability is a desirable feature of a computing system because it allows for hardware or 
software components to be added in the system without outgrowing it.

Two more specific notions, helpful to assess the performance of a large-scale simulation, are those of 
strong scaling and weak scaling, which denote ,respectively, the capacity of a system to reduce execution 
time for solving a fixed-size problem by adding processors, and the capacity to keep execution time 
constant by adding processors so as to accommodate additional workload. Assessing strong scaling is 
particularly relevant to learning about why some program takes a long time to run (something that is 
CPU-bound). Assessing weak scaling is particularly relevant to learning why some program takes a lot 
of memory to run (something that is memory-bound).

The scaling properties of a system provide scientists with useful criteria to assess the cognitive 
performance of a computational architecture. However, it is hard to predict whether the architecture 
underlying a large-scale neural simulation will scale. Predictions about scaling depend on background 
knowledge about the system of interest. “Scaling can seldom be fully characterized as ‘more of the 
same,’ because we may not know which ‘same’ is most relevant until we actually scale” (Eliasmith, 2013, 
307). Thus, knowledge about the dimension along which scaling is carried out is crucial to determining 
whether the system will break down or will exhibit novel phenomena.2

While lack of scalability in a large-scale neural simulation may depend on a wrong choice in the 
relevant dimension to scale, it can indicate that the architecture of the simulating system cannot effec-
tively solve problems of a certain size that biological brains can solve quickly. It can indicate that adding 
more simulated neurons and synapses to the simulating system is not an efficient strategy to execute 
a certain program more quickly, as the communication costs would increase as a function of the num-
ber of processors added to the system. It can also indicate that the power consumption required by a 
system that grows larger is too costly.

By taxing an artificial computing system by simulating millions of neurons and synapses, scientists 
can learn about trade-offs between memory, computation and communication in a certain computa-
tional architecture. Although acquiring this sort of knowledge is seldom the explicit goal of carrying 
out a large-scale neural simulation, it is useful knowledge that is in fact employed to design of neuro-
morphic, cognitive computing systems.

4. Brains, simulating systems and neuromorphic devices

learning about the computational performance of a computing system can be important for devel-
oping neuromorphic technologies for cognitive computing. Neuromorphic technologies are devices for 
information processing and data analysis that aim to approximate the computational architecture 
and style of computing of biological brains in complementary metal-oxide semiconductor (CMOS) 
very large-scale integration systems. Such technologies include vision systems, auditory processors, 
multi-sensor integrators, autonomous robots and tools for handling and analysing large amount of 
data (Boahen, 2005; Choudhary et al., 2012; Indiveri & Horiuchi, 2011).

Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) is an ongoing research 
program funded by the US Defense Advanced Research Projects Agency (DARPA). “The vision for the 
SyNAPSE program is to develop electronic neuromorphic machine technology that scales to biological 
levels” (DARPA BAA08-28). This research program aims to develop electronic technology with similar 
computational performance to the mammalian brain in terms of size, speed and energy consumption.

Under the SyNAPSE program, Preissl and colleagues (2012) carried out a computer simulation of 
a very large neural circuit with the ultimate goal of exploring how closely one can “approximate the 
function, power, volume and real-time performance of the brain within the limits of modern technol-
ogy” (p. 10). The representational target system of their simulation was a network comprising 65 billion 
neurons and 16 trillion synapses, which imitated the largest known wiring diagram in the macaque 
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6  M. COlOMBO

monkey’s brain. This biological target was modelled as a network of neurosynaptic cores containing 
digital integrate-leak-and-fire neurons.

The simulating system involved a 16-rack Blue Gene/Q supercomputer of 16,384 to 262,144 CPUs 
and 256 TB of main memory, and Compass, a multi-threaded, massively parallel software, which enabled 
the simulation of billions of neurosynaptic cores operating in a parallel, distributed and semi-synchro-
nous fashion.

The modelling choices of Preissl and colleagues were congenial to the pursuit of an engineering 
goal. The neurons, synapses and axons in their simulation were modelled as event-driven (asynchro-
nous), digital, integrate-leak-and-fire circuits. The leaky integrate-and-fire model is one of the simplest 
models of spiking neurons. Given its lack of biophysical detail, the range of phenomena that this model 
can address is limited. Nonetheless, the model is analytically solvable and relatively easy to implement 
in a computer simulation. For many integrate-and-fire neurons models, the model fits nicely with an 
event-driven simulation, whereby all operations in the simulation are driven by neural spike events, 
which is generally well suited to decrease computational time and minimise memory load. The inter-
core pattern of connections embodied in Compass imitated the macaque’s neural wiring. That is, the 
relationship between the model-network and its neurobiological target was not isomorphic; it was a 
similarity relation, which can be sufficient to allow scientists to learn from computer simulations, espe-
cially when, like in this case, some relevant aspects and degrees of similarity are specified based on the 
research question at hand, on available background knowledge and on the larger scientific context (cf., 
Teller, 2001; Weisberg, 2013, Chapter. 8).

Implementing the macaque’s wiring diagram “challenges the communication and computational 
capabilities of Compass in a manner consistent with supporting brain-like networks” (p. 11). The perfor-
mance of the simulating system could then be compared with that of the real neurobiological system 
represented in the computer simulation. A quantitative characterisation of the deviations between the 
real neural system and the simulating system allowed scientists to identify which features of architectural 
and communication-design contributed to computational efficiency.

Preissl and colleagues’ computer simulation could be used as a test bed for learning about the perfor-
mance of hardware and software components of a simulating system put under serious computational 
stress. Simulating a neural network at that scale poses major challenges for computation, memory and 
communication, even with current supercomputers. If we consider N neurons, whose average firing 
rate is H, and whose average number of synapses is S, and we take account of all spike transmissions, 
then a real-time simulation of 1 s of biological time should process N × H × S spike transmissions. This 
minimal number of operations set a benchmark to assess the computational performance of a neural 
simulation (Brette et al., 2007, pp. 350–351).

Preissl et al.’s (2012) simulation yielded two main results. First, as the average spiking rate of neurons 
was 8.1 Hz, the simulation was 388× slower than real time. Second, simulating the pattern of structural 
connectivity of the macaque’s brain, the simulating system displayed near-perfect weak and strong 
scaling. While acquiring this type of information does not obviously yield novel insight about phenom-
ena produced by biological brains, it is relevant to the development of more efficient neuromorphic, 
artificial computing systems. As Preissl and colleagues put it:

Compass is a harbinger of an emerging use of today’s modern supercomputers for midwifing the next generation of 
application-specific processors that are increasingly proliferating to satisfy a world that is hungering for increased 
performance and lower power while facing the projected end of CMOS scaling and increasing obstacles in pushing 
clock rates ever higher. (p. 11)

In using the brain as a template for machine intelligence, work such as Preissl and colleagues’ work 
demonstrates that some large-scale neural simulations provide useful information for developing neu-
romorphic systems for cognitive computing, and not for understanding how biological brains work and 
produce intelligent behaviour.
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JOURNAl OF ExPERIMENTAl & THEORETICAl ARTIFICIAl INTEllIGENCE  7

5. Challenges for a new era of cognitive computing

Neuromorphic, cognitive computing systems aim at solving complex, data-rich problems, characterised 
by uncertainty and ambiguity by mimicking the function, power, volume and real-time performance 
of biological brains. Cognitive computing systems have three characteristic capacities: the capacity to 
learn from experience, the capacity to deal effectively with uncertainty and the capacity to extract useful 
information from sensory data and stored knowledge. These capacities rely on algorithms for unsuper-
vised and reinforcement learning, for data mining, pattern recognition and natural language processing, 
which aim at mimicking the way biological brains work, and whose computational performance can be 
assessed courtesy of large-scale neural simulations (Kelly & Hamm, 2013; Modha et al., 2011).

When large-scale neural simulations aim at mimicking neural algorithms that sustain cognitive 
capacities and that may also be implemented in neuromorphic systems, several researchers believe 
that the main challenge lies in improving the realism of the simulations. They believe that neural sim-
ulations should build in as much biological detail as possible. Markram, for example, harshly criticised 
Modha and collaborators’ work because of the lack of biological realism of their model neurons, which 
are “missing 99.999% of the brain” (Adee, 2010; see also de Garis et al., 2010, p. 3.2). The argument 
underlying this criticism is simple: If you use biological brains as templates for designing and building 
cognitive computing devices, then you should take account of as much biological detail as possible.

This argument is also misguided, however. For it assumes a generic ideal of biological realism that 
cannot inform large-scale neural simulations and related work in cognitive computing. The degree 
of realism (or descriptive accuracy) of a neural simulation is a function of the features included in the 
simulation that matter to the phenomena exhibited by the system. What matters and what does not is 
jointly determined by the causal structure of the real-world system under investigation, the modellers’ 
varying epistemic interests and purposes in relation to that system and the modellers’ audience (see 
also Colombo, 2015b).

Preissl et al. (2012) carried out their neural simulation in order to understand specific scaling proper-
ties of a particular simulator. Their neural simulation imitated some feature of the brain not in order to 
serve as a surrogate investigated in its stead. Rather, some features of the brain were imitated because 
the brain offers a biological benchmark against which a simulating system’s design and performance 
can be assessed. Information about how certain properties determine the computational performance 
of biological brains can then be used not only to try and instantiate those properties in the design 
of artificial systems, but also to characterise the discrepancy between the brain’s and the simulating 
system’s performance. This characterisation provides insight about what types of constraints and what 
computational properties an artificial computing system need to instantiate for carrying out some task 
of interest more efficiently.

In particular, Preissl et al.’s (2012) neural simulation imitated some features of the biological brain in 
order to draw inferences about how closely the function, power, volume and real-time performance of 
the brain can be approximated within the limits of current technology. Compass incorporated “several 
innovations in communication, computation, and memory” based on available knowledge of some 
aspects of the function, power and volume of organic brains (p. 10). The neural scale and pattern of 
connectivity embodied in Compass challenged its communication, memory and computational capa-
bilities. Given these challenges, the simulating system performance could be compared to that of a 
biological brain along dimensions such as neural spiking rates, latency and bandwidth. Running on the 
IBM Blue Gene/Q supercomputer, Compass was found to be 388× slower than real-time performance 
of the brain; importantly, Compass was found to have near-perfect weak and strong scaling when a 
model was run of the neural dynamics of a large circuit of the macaque’s brain.

By themselves, these results do not yield novel information about some set of computational prop-
erties instantiated by biological brains. Instead, these results offered the basis for developing a novel, 
efficient, computational architecture that can support a host of neuromorphic applications (Kelly & 
Hamm, 2013). The biological details incorporated in Preissl et al’s (2012) simulation did not serve to 
formulate an explicit hypothesis about how the brain generates intelligent behaviour. Choice about 
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8  M. COlOMBO

which biological features to include in the simulation (e.g. a macaque’s wiring diagram) and which 
biological features to abstract away or distort (e.g. much biophysical features of real neurons) was 
functional to identifying and characterising certain computational properties of the simulator itself.

It is misguided to believe that the major challenge in using large-scale neural simulations for devel-
oping neuromorphic cognitive computing devices lies in improving the biological realism of the simula-
tions. large-scale neural simulations, and related work in cognitive computing, should not be evaluated 
in terms of a generic ideal of biological realism. The scientific or engineering purposes of a large-scale 
neural simulation should always inform judgements about its biological realism.

More serious is the challenge of identifying general neurocomputational principles that could ena-
ble the orchestrated functioning of learning, reasoning under uncertainty, and concept formation, 
characteristic of biological cognition, in a single, integrated, artificial system.

Currently, no unified theory of brain functioning and cognition is available that could guide AI efforts 
towards genuine cognitive computing. Many successful models and theories in current cognitive neu-
rosciences are piecemeal, task-specific and sometimes mutually inconsistent. This makes it challenging 
to design artificial systems that can display flexible behaviour by relying on common computational 
resources that can be redeployed in order to tackle novel tasks. As a consequence, essentially all current 
neuromorphic technology can display only a narrow range of cognitive capacities.

Despite the apparent disunified status of current cognitive neuroscience, one theoretical develop-
ment of the past twenty year has been the realisation that distinct neural processes, cognitive functions, 
algorithms and machine learning techniques can be understood in terms of prediction and prediction 
error correction. The idea is that brains are homeostatic prediction-testing mechanisms, the central 
activity of which is to minimise the errors of their predictions about the sensory inputs they receive from 
their local environment. The mechanistic activity of minimising prediction error would be constituted 
by various monitoring- and manipulation-operations on hierarchical, probabilistic, dynamic models 
of the causal structure of the world within a bidirectional cascade of cortical processing. Such kind of 
activity would give rise to perception, action, attention and a host of other cognitive capacities (see 
e.g. Clark, 2013; Friston, 2010; Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

Unfortunately, this predictive processing theory of brains and cognition lacks implementational 
detail and unambiguous architectural commitments. Furthermore, this theory posits that brains rep-
resent probability distributions and carry out Bayesian inference on probabilistic models, which, for 
many real-life problem domains, would just be computationally intractable. Partly because of these 
outstanding issues, no attempt has been made thus far to build complex, unified, large-scale neural 
simulations or neuromorphic technologies grounded in predictive processing.

A related but distinct idea is that of semantic pointers. Chris Eliasmith and colleagues (2012) relied 
on this idea to build Spaun, a large-scale neural simulation that showed how a unified set of neuro-
computational mechanisms can display aspects of the robust and rapid flexibility of biological systems. 
Spaun could display a variety of cognitive skills, including low-level perceptual and motor abilities, 
reward-based learning, high-level reasoning under uncertainty and concept formation.

“Semantic pointers are neurally realized representations of a vector space generated through a 
compression method” (Eliasmith et al., 2012, Supplementary Sections S.1). A semantic pointer is neu-
rally realised because it consists of various spiking patterns in a population of biological or artificial 
neurons; if neural activity is represented with vectors, then semantic pointers correspond to vectorial 
representations. Semantic pointers are constructed by compressing sensory, motor, emotional, concep-
tual or symbolic representations, which are also patterns of neural firing captured by highly dimensional 
vectors. Analogously to JPEG picture files, semantic pointers provide “lighter” representations, whose 
dimensionality is lower than its constituents. Analogously to “pointers” in computer science, semantic 
pointers are the address of large data structures and can function as proxies for these data structures. 
Unlike pointers in computer science, semantic pointers systematically refer to the compressed data 
structures from which they were generated. Hence, they possess a “semantic.”

In Eliasmith and colleagues’ (2012) simulation, semantic pointers supported complex syntactic oper-
ations, regulated the flow of information and facilitated the orchestrated functioning of perception, 
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learning, concept formation and reasoning under uncertainty. Implemented along with biologically 
plausible learning algorithms, like TD-learning (Sutton & Barto 1998; see also Colombo, 2014), seman-
tic pointers allowed Spaun to get much of its cognitive powers from being able to deal with both the 
statistical properties and symbolic regularities underlying different psychological tasks.

In the light of this work and of current theoretical advances in the cognitive sciences, large-scale 
neural simulations that are grounded in predictions, prediction error correction and semantic pointers are 
most likely to yield results that will reliably guide us in the quest for cognitive computing.

6. Conclusion

It is not obvious what sort of new information scientists can currently gain from designing, building 
and running a large-scale neural simulation. This study has argued that for some large-scale neural 
simulation, what they learn concerns the computational performance of the simulating system itself. 
learning about the computational performance of a computing machine is far from trivial and can 
afford knowledge useful for designing novel neuromorphic, cognitive computing technologies.

Once this role is recognised of some large-scale neural simulations, it should be clear that the main 
challenge a new era of cognitive is facing is not the lack of biological realism – as many believe. Instead, 
the challenge lies in figuring out how the computational components of an artificial brain should be 
arranged to produce the robust flexibility of biological cognition. Prediction, prediction correction and 
semantic pointers are three ingredients that will help researchers to face up to this exciting challenge. 

Notes
1.  On the website of the project, we read: “Reconstructing the brain piece by piece and building a virtual brain in a 

supercomputer – these are some of the goals of the Blue Brain Project. The virtual brain will be an exceptional tool 
giving neuroscientists a new understanding of the brain and a better understanding of neurological diseases.”  
http://bluebrain.epfl.ch/cms/lang/en/pid/56882.

2.  Eliasmith (2013, pp. 306–307) illustrates this difficulty with the case of Tusko. In 1962, a male Asiatic elephant, 
named Tusko, was injected with lSD in order to study the phenomenon of “musth,” a remarkable change in violent 
behaviour displayed by adult male elephants. Researchers tried to induce musth by administering Tusko .1 mg 
of lSD per each kg of its body weight, for a total of 297 mg of lSD. The decision to scale the dosage to Tusko by 
body weight was based on known effects of lSD on cats and monkeys. Body weight turned out to be the wrong 
dimension for scaling. In fact, within five minutes, Tusko collapsed to the ground and one hour and forty minutes 
later he died (West, Pierce, & Thomas, 1962).
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