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Background

1961: Vaught defines prime, saturated, homogeneous models
(Vaughtian models).

1965: Morley proves categoricity theorem (beginning of
modern model theory).

1970s,1980s: Computable model theory.
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Background

Definition

A model A is called d-computable if its atomic diagram Da(A) is
computable in the degree d.

Definition

A model A is called d-decidable if its elementary diagram De(A) is
computable in the degree d.

Do decidable Vaughtian models always exist for a given complete
decidable theory?
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Background

Negative Results:

Theorem (Millar, Goncharov–Nurtazin)

There is a complete atomic decidable (CAD) theory T with no
computable (and hence no decidable) prime model.

Theorem (Millar)

There is a complete decidable theory T with all types computable,
but no decidable saturated model.

Theorem (Millar, Goncharov, Peretyat’kin)

There is a homogeneous model with a uniformly computable list of
types, but with no decidable copy.
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Background

Positive Results:

Definition

A countable model A has a 0-basis, X = {pj}j∈ω, if X is a
uniformly computable listing of the types realized in A.

Theorem (Harrington, Goncharov–Nurtazin)

If A is prime and has a 0-basis, then A has a decidable
presentation.

Theorem (Millar, Morley)

If A is saturated and has a 0-basis, then A has a decidable
presentation.
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Recent Results

Definition

A Turing degree d is low if d′ = 0′.

Theorem (Csima)

For any CAD theory T , there is a prime model of T decidable in
some low degree.
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Recent Results

Definition

A Turing degree d is prime bounding if for any CAD theory T , d
decides a prime model of T .

Theorem (Csima, Hirschfeldt, Knight, Soare)

A Turing degree d ∈ ∆0
2 is prime bounding if and only if it is

nonlow2; i.e. 0′′ <T d′′.
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The Nine Predicates

CHKS introduced nine predicates of a degree d, all of which are
equivalent if d ≤ 0′.

(P0) Prime bounding. For any CAD theory T , there is a prime
model of T decidable in d.

(P1) Isolated path predicate. For any computable tree T ⊆ 2<ω

with no terminal nodes and isolated paths dense, there is a
function g(σ, t) ≤T d such that for every fixed σ ∈ T ,
g(σ, t) = gσ ∈ 2ω is an isolated path in T extending σ.

(P2) Escape predicate. For any given function f ≤T 0′, there is a
function g ≤T d such that for infinitely many x ∈ ω we have

f (x) ≤ g(x).
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The Nine Predicates

(P3) Equivalence structure predicate. For any infinite ∆0
2 set

S ⊆ ω \ {0}, there is a d-computable equivalence structure
with one class of size n for each n ∈ S , and no other classes.

(P4) Nonlow2. 0′′ <T d′′.
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New Results

Theorem (Conidis, Csima, Hirschfeldt, Knight, Soare)

The nine predicates of [CHKS] fall into three equivalence classes
under implication. One of size 5, one of size 3, and one of size 1.
Furthermore, the class of size 5 implies the class of size three, and
no other implications exist amongst the predicates.

Corollary (Conidis, Csima, Hirschfeldt, Knight, Soare)

[(P0)⇔ (P1)⇔ (P2)]⇒ [(P3)]

[(P4)]
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(P0) implies (P2)

Theorem (Conidis)

The prime bounding predicate implies the escape predicate.

Proof has several steps.

(P0)⇔ (P1)⇔ (Π0
1 − P1)⇔ (∆0

2 − P1)⇔ (U∆0
2 − P1)⇔ (P2).

Main idea: Given f ≤T 0′, construct a computable tree T ⊆ 2<ω

with no terminal nodes and isolated paths dense, such that the
isolated paths of T code infinitely many values 〈x , f (x)〉, x ∈ ω.
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(P3) does not imply (P0)

Theorem (Conidis)

The equivalence structure predicate does not imply the prime
bounding predicate.

Main idea of proof: Construct a tree T ⊂ 2<ω such that every
path through T does not satisfy the prime bounding predicate.
Using 0′′, find a path through T that satisfies the equivalence
structure predicate.
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(P4) does not imply (P3)

Theorem (Conidis)

The nonlow2 predicate does not imply the equivalence structure
predicate.

Corollary (Conidis, Csima, Hirschfeldt, Knight, Soare)

The nonlow2 predicate does not imply the prime bounding
predicate.

Main idea of proof: Construct a perfect tree T ⊂ 2<ω such that
every path through T does not satisfy the equivalence structure
predicate. Tree version of the proof that 0 does not satisfy the
equivalence structure predicate.
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0 does not satisfy (P3)

Definition

A Turing degree d satisfies the monotone predicate if for every
infinite S ∈ ∆0

2 there is a function f (x , y) ≤T d such that:

f (x , 0) = x , for every x ∈ ω.

f (x , y) is nondecreasing in y .

For every x ∈ ω, limy f (x , y) ∈ S .

The monotone predicate is equivalent to the equivalence structure
predicate (P3) [CHKS].
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0 does not satisfy (P3)

Let ϕ0, ϕ1, ϕ2, . . . be an effective listing of the p.c. functions.

Let c(n) be a computable, sufficiently fast growing function.

Want to construct an infinite set S ∈ ∆0
2 such that for every

e ∈ ω, if (∀x)ϕe(x , 0) = x and ϕe(x , y) is nondecreasing in y ,
then there is some xe ∈ ω such that limy ϕe(xe , y) /∈ S or
limy ϕe(xe , y) =∞.

Build S ⊂ ω in stages.

Stage s: For every 0 ≤ t ≤ s, ask 0′ whether

(∃y)[ϕt(c(t), y) > c(s + 1)].

Then, find a number c ∈ [c(s), c(s + 1)) that is not a
candidate for limy ϕt(c(t), y), and put c into S .
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Related Results of Hirschfeldt, Shore, and Slaman

Hirschfedlt, Shore, and Slaman examined some of the
predicates in the context of reverse mathematics.

Called (P1) Atomic Model Theorem.

Showed that in the context of reverse mathematics (P1) and
(P2) are not equivalent.

Over RCA0 + BΣ2, (P1) is Π1
1-conservative, but (P2) implies

IΣ2.
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Related Results of Hirschfeldt, Shore, and Slaman

Theorem (Conidis)

In every ω-model of RCA0, the nine predicates of [CHKS] fall into
three equivalence classes under implication. One of size 5, one of
size 3, and one of size 1. Moreover, the class of size 5 implies the
class of size 3, and no other implications exist amongst the
predicates.

Chris J. Conidis Classifying Model-Theoretic Properties



References

1 Conidis, C.J. Classifying model-theoretic properties. Journal
of Symbolic Logic, Vol. 73(3) 885–905 (2008).

2 Csima, B.F., Hirshfeldt, D.R., Knight J.F., and Soare, R.I.
Bounding prime models. Journal of Symbolic Logic, Vol.
69(4) 1117–1142 (2004).

3 Hirschfeldt, D.R., Shore, R.A., and Slaman, T.A. The atomic
model theorem and type omitting. Transactions of the
American Mathematical Society, Vol. 361(11) 5805–5837
(2009).

Chris J. Conidis Classifying Model-Theoretic Properties


