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Abstract
The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: ∗x = x � x, where � is
the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square
operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The
first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the
Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if
the cardinality of the starting chain is of the form n+1 where n belongs to a class of prime numbers that we fully characterize.
Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally
ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to
account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be
captured by a rather intuitive set of equations.

1 Introduction

The framework of the so-called mathematical fuzzy logic (MFL) encompasses a number of deductive
systems conceived for reasoning with vague (in the sense of gradual) information with a notion of
comparative truth, and so formulas are usually interpreted in linearly ordered scales of truth values,
which intend to represent gradual aspects of vagueness (or fuzziness). For a comprehensive and
up-to-date account of MFL, see the three volumes handbook [8]. Two interesting families of logics
belonging to the family of MFL systems are given by the Łukasiewicz hierarchy of n-valued logics
Łn together with the infinite-valued version Ł, on the one hand, and the Gödel n-valued logics Gn,
together with the infinite version G, on the other.
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2 On the expressive power of Łukasiewicz square operator

The semantics of MFL systems follows, in general, the paradigm of (full) truth-preservation,
according to which a formula is a consequence of a set of premises if every algebraic valuation that
interprets the premises as absolutely true (value 1) also interprets the conclusion as absolutely true
(value 1). It was observed (see [19]) that the degree-preservation paradigm (see [4, 21]), according
to which a formula follows from a set of premises if, for every evaluation, the truth degree of the
conclusion is not lower than those of the premises, is more coherent with the many-valued approach
to fuzzy logic. Indeed, within the degree-preserving consequence relations all the truth-values play
an equally important role. As an intermediate alternative, it is possible to consider matrix logics in
which the designated truth-values are given by (products of) order filters; see for instance [13] and
[14] for the case of (products of) Łukasiewicz logics or Gödel’s logics (possibly expanded with an
involution), respectively.

Concerning Łukasiewicz logics, it is well known that Ł is algebraizable in the sense of Blok and
Pigozzi [2], having the variety MV of all MV-algebras [6] as its equivalent quasivariety semantics,
which is generated by the real interval [0, 1] equipped with suitable MV-operators. This MV-algebra
will be denoted by [0, 1]MV . Algebraizability is preserved by finitary extensions; hence, each finite-
valued Łukasiewicz logic Łn+1 is also Blok–Pigozzi algebraizable by means of the subvariety
MVn+1 of MV-algebras generated by the standard (n + 1)-valued Łukasiewicz chain Łn+1 with
domain {0, 1/n, . . . , (n − 1)/n, 1}. By means of a general result concerning equivalences between
logics, based on translations presented in [3], the logic Li

n characterized by the logical matrix
〈Łn+1, Fi/n〉 (where Fi/n is the order filter generated by i/n) is also algebraizable by means of the
variety MVn+1; see [13].1

Hilbert calculi characterizing the logics Łn+1 are well known (see, for instance, [8]). By a general
result on equivalence between logics introduced in [3], a sound and complete axiomatization can be
obtained for each logic Li

n by translating the axioms and rules of a Hilbert calculus for Łn+1 = Ln
n.

However, the original signature of Łn+1 does not result to be very natural for axiomatizing Li
n: in

these logics, the Łukasiewicz implication can be hardly considered as a proper implication since it
does not satisfy modus ponens whenever i < n.

Because of this, in [13], we proposed an axiomatization of L1
3 and L2

3 in terms of another signature
Σ0 = (∨, ∼, �), where ∨ denotes the supremum, ∼ represents the Łukasiewicz negation and �

represents the square ∗ (w.r.t. the strong Łukasiewicz conjunction �) in Ł3+1, namely ∗x := x � x.
It turns out that in this signature it is possible to define the ‘classical’ negation −i/3 of the filter Fi/3
(for i = 1, 2): −i/3x = 0 if x ≥ i/3 and −i/3x = 1 otherwise. In turn, this induces a ‘classical’
(deductive) implication x →i/3 y := −i/3x ∨ y, obtaining in this way a suitable and very natural
language for axiomatizing the logics Li

3, for i = 1, 2.
Despite the success in axiomatizing L1

3 and L2
3 in the signature Σ0 = (∨, ∼, �), it was observed in

[13] that the issue of obtaining a ‘natural’ axiomatization defined over such signature for every Li
n

with n > 3 is a problem which ‘appears to be much more complicated, and certainly it lies outside
the scope of this paper’ [13, p. 150]. A crucial feature for the case n = 3 mentioned in [13] is that
Łukasiewicz implication can be recovered from such signature. This feature does not hold for any n,
not even for any prime number, as it is the case, e.g. of n = 17, as we shall see in Section 3 of this
paper. From this observation, a second question was posed in [13, p. 153]: the algebraic study of
the fragment of Łn+1 defined in the signature Σ0 = (∨, ∼, �). These two questions stated in [13],
namely the formal study—from the algebraic point of view—of the implication-less reduct of the

1We warn the reader that the notation used in the present paper and that of [13] are not exactly the same. Indeed, while
in [13] the MV-chain with n + 1 elements is called MVn-chain, here, as we already used above, that chain will be called
MVn+1-chain. The same variation applies when we will speak about varieties generated by chains with n + 1 elements.
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On the expressive power of Łukasiewicz square operator 3

(n + 1)-valued Łukasiewicz chain Łn+1 expanded with the square operator ∗ (which will be denoted
here by Ł∗

n+1), as well as the associated matrix logics Λ∗
n+1,i = 〈Ł∗

n+1, Fi/n〉 for every filter Fi/n of

designated values, constitute the starting point of the present paper.2 By convenience, the signature
Σ0 will be expanded, in this paper, to Σ = (∨, ∼, �, ⊥, �). In this manner, the present study, already
initiated in two preliminary extended abstracts [11] and [12], will encompass both questions and
more.

Note that the square operator ∗ in the logics Łn+1, or in Ł, can be interpreted as a truth-stresser
operator, in the sense of the class of truth-hedge operators [29, 30] axiomatically introduced by Hájek
[27] in the context of Hájek’s basic fuzzy logic BL to formalize the notion of ‘very true’. In fact, ∗
is a model of Hájek’s truth-stresser operators for both Łukasiewicz and Gödel fuzzy logics, as well
as of the operators considered in a more general logical in the setting of MFL studied in [17].

With respect to expressiveness, it is firstly proved in Section 3 that, for n �= 4, Ł∗
n+1 can define

Łukasiewicz implication (in other words, Ł∗
n+1 is term-equivalent to Łn+1) iff it is stricly simple, i.e.

it has no non-trivial proper subalgebras. Surprisingly, and in contrast to the case of finite Łukasiewicz
chains, it will be shown that this does not hold true for all n prime. Indeed, for any prime number
n ≥ 3, Ł∗

n+1 is term-equivalent to Łn+1 if and only if n satisfies a certain arithmetic property (see
Theorem 3.20). For instance, Ł∗

n+1 cannot define Łukasiewicz implication whenever n > 5 is a
Fermat prime number (i.e. n is a prime of the form n = 22m + 1 for some m > 1) such as n = 17,
n = 257 or n = 65537.3 On the other hand, any Ł∗

n+1 (n being prime or not) can always define the
order implication (x ⇒c y = 1 if x ≤ y and x ⇒c y = 0 otherwise) and Gödel implication ⇒G. This
is an important fact from the point of view of the algebraic study of these structures, as we shall see.

Concerning axiomatizations, it is proved in Section 4 that all the matrix logics Λ∗
n+1,i =

〈Ł∗
n+1, Fi/n〉 are Blok–Pigozzi algebraizable with the same quasivariety over the signature Σ =

(∨, ∼, �, ⊥, �). Then, a uniform axiomatization for all of these logics is obtained. The definition
of these Hilbert calculi, together with the results on (un)characterizability of Łn+1 in terms of Σ ,
constitute a complete solution of (an extended version of) the first problem posed in [13]. Concerning
the algebraic study of these structures—the second question posed in [13]—it is also proved in
Section 4 that the variety generated by Ł∗

n+1 is constituted by (n + 1)-valued Gödel algebras with
involution expanded by an unary operator which, by simplicity, will be also denoted by �, satisfying
certain equations. This means that this class of algebras can be axiomatized by means of equations,
thus being a variety.

Since not every subalgebra of Ł∗
n+1 is isomorphic to Ł∗

m+1 for some m ≤ n, the question of
studying the behaviour of the square operator in subalgebras of Ł∗

n+1 is also tackled in the first
part of Section 5. Let [0, 1]∗MV be the algebra defined over the real unit interval by the Łukasiewicz
operations ∨, ¬, ∗. Since every Ł∗

n+1 is a (finite) subalgebra of [0, 1]∗MV , such study is performed by
analysing the finite subalgebras of this algebra.

As observed above, every Ł∗
n+1 can define the Gödel implication ⇒G; however, this operator (as

well as the Monteiro–Baaz Δ operator) is not definable in [0, 1]∗MV . This suggests the definition of
a more comprehensive class of algebras, obtained by adding a unary ∗-like operator, denoted by �,
to Gödel chains with an involutive negation, as it is done in the second part of Section 5. Finally, the
Gödel algebras with involutive negation and a � operation such that their implication-free reducts
coincide with subalgebras of Ł∗

n+1 are axiomatically characterized.

2To be precise, in [13], both questions were posed only with respect to n prime. This was motivated by the fact that Li
n,

for n prime and i/n ≤ 1/2, constitute an interesting family of paraconsistent logics.
3As of 2021, these are the only known Fermat primes greater than 5.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exab064/6407879 by guest on 27 O

ctober 2021



4 On the expressive power of Łukasiewicz square operator

The structure of the paper is completed with some needed preliminaries gathered in the next
section and with Section 6 containing some conclusions and open problems. Finally, in the appendix,
we will present an alternative proof for the algebraizability of the logics we will study in
Subsection 4.2 that uses abstract algebraic logic (AAL) methods and that has been suggested by
one of the anonymous referees.

2 Preliminaries

Along this paper, we will be mainly concerned with the classes of finite chains belonging to the
varieties MV of MV-algebras [6] and G of Gödel algebras [1, 8]. One of the most relevant classes of
algebras that contains both MV and Gödel-algebras is the variety BL of Hájek’s BL-algebras [25].
Let us start recalling that a BL-algebra is a bounded, integral and commutative residuated lattice
A = (A, ∧, ∨, �, ⇒, 0, 1) that further satisfies the following equations:

- (x ⇒ y) ∨ (y ⇒ x) = 1 (prelinearity)
- x ∧ y = x � (x ⇒ y) (divisibility)

In every BL-algebra A, one can define further operations. In particular, for all a ∈ A, the residual
negation (or simply the negation) of a is denoted by ¬a and stands for a ⇒ 0; also, for all a, b ∈ A,
a ⇔ b is an abbreviation for (a ⇒ b) ∧ (b ⇒ a).

Further, a partial order relation ≤ can be defined: for all a, b ∈ A

a ≤ b iff a ⇒ b = 1 holds.

The partial order ≤ coincides with the lattice order of A. The BL-algebra A is said to be a BL-chain
if ≤ is linear.

DEFINITION 2.1
A BL-algebra A is said to be

- an MV-algebra if the equation ¬¬x = x holds in A;
- a Gödel-algebra (or simply a G-algebra) if x � y = x ∧ y holds in A.

A BL-algebra, MV-algebra or G-algebra, is said to be finite if its universe is a finite set.

It is worth pointing out that finite MV and Gödel chains are the ‘building blocks’ of finite BL-
chains. Indeed, [7, Corollary 3.7] shows that finite BL-chains can only be ordinal sums of MV-chains
and G-chains. One of the basic properties that distinguishes finite MV-chains from finite G-chains
lies in the fact that, while MV-operations allow to describe the arithmetic sum between real numbers,
in Gödel chains is only possible to describe the order of their elements.

In the rest of this paper, in order to ease the reading, we will distinguish MV-operations from Gödel
operations adopting subscripts: the implication operator of MV-algebras (also called Łukasiewicz
implication) will be denoted by ⇒Ł, while Gödel implication will be written ⇒G. The negation
operators are defined as usual: MV-negation (or Łukasiewicz negation) ¬Łx = x ⇒Ł 0 and Gödel
negation ¬Gx = x ⇒G 0.

The main differences between MV-algebras and Gödel algebras can be easily grasped by recalling
how their operations behave in the standard algebras of the relative varieties. Recall in fact that both
the variety MV and G can be generated by structures based on the real unit interval [0, 1]. Those
algebras, called respectively the standard MV-algebra (written [0, 1]MV ) and the standard Gödel
algebra (denoted by [0, 1]G), interpret operations as follows: for all x, y ∈ [0, 1],
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On the expressive power of Łukasiewicz square operator 5

• x � y = max{0, x + y − 1}; x ∧ y = min{x, y};
• x ⇒Ł y = min{1, 1 − x + y}; x ⇒G y = 1 if x ≤ y and x ⇒G y = y otherwise;
• ¬Łx = 1 − x; ¬Gx = 1 if x = 0 and ¬Gx = 0 otherwise.

In addition to the ones recalled above, in every MV-algebra, one can define further arithmetic
operations like the bounded sum x ⊕ y = ¬Łx ⇒Ł y whose semantics in [0, 1]MV is x ⊕ y =
min{1, x + y} and the square operator ∗x = x � x that will play a main role in this paper and whose
behaviour in [0, 1]MV is ∗x = max{0, 2x − 1}.

Finite MV-chains are easily characterized. Indeed, for each natural number n, the set Łn+1 =
{0, 1/n, 2/n, . . . , (n − 1)/n, 1} is the domain of the (n + 1)-valued MV-chain. Such algebra will be
henceforth denoted by Łn+1. The Gödel chain with n + 1 elements will be denoted by Gn+1.

Every finite MV-chain Łn+1 (resp. every finite Gödel chain Gn+1) generates a proper subvariety
of MV (resp. of G). Equations describing these subvarieties, within MV and G, can be found, e.g.
in [24] for the case of MV, in [23] for the Gödel case, and in [15] for subvarieties generated by finite
BL-chains in general.

Notice that, by definition, Łukasiewicz negation is involutive, and thanks to this, all operations of
any MV-algebra can be defined starting only from the signature {⇒Ł, 0}. In fact, we will use that
reduced signature when we will deal with MV-algebras in the remaining of the present paper.

Gödel negation ¬G does not satisfy the involution equation ¬¬x = x. For this reason, an
expansion of Gödel algebras by an involution has been studied in [16] (see also [18]). The
corresponding algebraic structures are defined as follows.

DEFINITION 2.2
A Gödel algebra with involution (IG-algebra for short) is a pair (A, ∼) where A is a Gödel algebra
and ∼ : A → A is a unary operator satisfying the following equations:

1. ∼∼x = x;
2. ¬Gx ≤ ∼x;
3. Δ(x ⇒G y) = Δ(∼y ⇒G ∼x);
4. Δx ∨ ¬GΔx = 1;
5. Δ(x ∨ y) ≤ Δx ∨ Δy;
6. Δ(x ⇒G y) ≤ Δx ⇒G Δy,

where Δx = ¬G∼x.

The class of IG-algebras form a variety that will be denoted by IG. As it is proved in [16,
Theorem 7], IG is generated by the IG-algebra ([0, 1]G, ∼) where [0, 1]G is the standard G-algebra
and ∼x = 1 − x. The variety generated by the IG-chain with n + 1 elements will be henceforth
denoted by IGn+1.

It is worth noticing that the operator Δ appearing in Definition 2.2, and that is definable in IG-
algebras by combining the two negations ¬G and ∼, is the Baaz–Monteiro operator [1]. In every
totally ordered algebra, Δ behaves as follows: Δ(x) = 1 if x = 1 and Δ(x) = 0 otherwise. Such an
operator is indeed also definable in every finite MV-chain Łn+1 by the term Δ(x) = xn = x� . . .�x
(n-times). Indeed, for every 0 ≤ k < n, (k/n)n = 0 while 1n = 1. However, Δ is not definable in
infinite MV-chains, whence in particular, it is not definable in [0, 1]MV .
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6 On the expressive power of Łukasiewicz square operator

3 Analysing the square operator: first steps

In this section, we start the study on the expressive power of Łukasiewicz square operator ∗ by means
of (n + 1)-valued algebraic structures denoted by Ł∗

n+1. After defining a fundamental algorithmic
tool which allows to compute the subalgebras of Ł∗

n+1, we will analyze the relationship between
primality of n and term-equivalence between Ł∗

n+1 and Łn+1.
The next definition introduces the algebraic structures that will play a key role in this paper.

Let Łn+1 = (Łn+1, ⇒Ł, ¬Ł, 0, 1) be the MV-chain with n + 1 elements on the domain Łn+1 =
{0, 1/n, . . . , (n − 1)/n, 1} of Łn+1, where the strong conjunction � is definable as usual, i.e. x � y =
¬Ł(x ⇒Ł ¬Ły).

DEFINITION 3.1
The algebra Ł∗

n+1 = (Łn+1, ∨, ¬Ł, ∗, 0, 1) is the structure obtained by adding the unary square
operator ∗ : x �→ x � x and the join ∨ to the {⇒Ł}-free reduct of Łn+1.

Therefore, for every n, Ł∗
n+1 is the linearly ordered algebra on the domain {0, 1/n, . . . , (n−1)/n, 1}

endowed with the operations x ∨ y = max{x, y}, ¬Łx = 1 − x and

∗ x = max{0, 2x − 1},
besides the constants 0 and 1. In every Ł∗

n+1-chain, we can define the operation + that is the dual
operation of ∗ w.r.t. the negation ¬:

+ x = ¬Ł∗¬Łx = min{1, 2x}.
Furthermore, for every natural number k ≥ 1, we will denote by ∗k the k-times iteration of ∗, i.e.
∗kx = ∗x if k = 1 and ∗kx = ∗k−1(∗x) for k > 1. This gives ∗kx = max{0, 2kx−(2k −1)}. Similarly,
we define +kx = +x if k = 1 and +kx = +k−1(+x); otherwise, yielding +kx = min{1, 2kx}.

Recall that an element x ∈ Łn+1 is called positive if x > ¬Łx, i.e. x > 1/2; otherwise, it is called
negative.

3.1 On the subalgebras of Ł∗
n+1

For every subset X of Łn+1, we will denote by 〈X 〉∗ the subalgebra of Ł∗
n+1 generated by X . In case

X = {x}, we will write 〈x〉∗ instead of 〈{x}〉∗.
In the rest of this section, we will only deal with Łukasiewicz operations. Thus, in order to ease

the reading, we will omit the subscript Ł from operations without danger of confusion.
Let us present now an algorithmic tool that will be central in the rest of this paper.

DEFINITION 3.2
(The procedure P).
Let us consider a procedure, which we will henceforth denote by P, defined as follows: given n and
an element a ∈ Łn+1 \ {0, 1}, P(n, a) iteratively computes a sequence [a1, . . . , am, . . .] of elements
of Łn+1 such that a1 = a and for all i ≥ 1,

ai+1 =
{ ∗ai if ai > 1/2,

¬ai otherwise.

We say that P(n, a) stops at k (or P(n, a) stops at ak) if k is the first i such that ai+1 = aj for
some j < i. Since Łn+1 is finite then, for every a ∈ Łn+1 \ {0, 1}, there exists k ≥ 1 such
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On the expressive power of Łukasiewicz square operator 7

that P(n, a) stops at k. If P(n, a) stops at k, the sequence generated by P(n, a) is denoted also by
P(n, a) = [a1, . . . , ak], while the image and the negated image of P(n, a) are I(n, a) = {a1, . . . , ak}
and NI(n, a) = {¬a1, . . . , ¬ak}, respectively. The range of P(n, a) is R(n, a) = I(n, a) ∪ NI(n, a).

In order to exemplify the procedure P defined above, let us present two concrete numerical
examples that will also turn out to be useful for what follows.

EXAMPLE 3.3
(1) Let us fix n = 9 so that Ł9+1 = Ł10 is the MV-chain of 10 elements on the domain
{0, 1/9, . . . , 8/9, 1}. Take a = 8/9, its coatom. Then, P(9, 8/9) produces a sequence [a1, a2, a3, a4]
in the following way.

- a1 = a = 8/9.
- Since a1 = 8/9 > 1/2, a2 = ∗a1 = 2a1 − 1 = 7/9. Again 7/9 > 1/2 and thus a3 =

∗(7/9) = 5/9 > 1/2. Therefore, a4 = ∗(5/9) = 1/9.
- Now, a4 = 1/9 < 1/2, and hence a5 = ¬a4 = 8/9. Since a5 = a1, then P stops and outputs

the string P(9, 8/9) = [8/9, 7/9, 5/9, 1/9].

Therefore, the image of P(9, 8/9) is I(9, 8/9) = {8/9, 7/9, 5/9, 1/9} and its negated image is
NI(9, 8/9) = {1/9, 2/9, 4/9, 8/9}, while its range is R(9, 8/9) = I(9, 8/9) ∪ NI(9, 8/9) =
{8/9, 7/9, 5/9, 4/9, 2/9, 1/9}.
(2) Now, let us fix n = 17 and hence the MV-chain Ł18 and let a = 1/17, its atom. Then, P(17, 1/17)

starts by a1 = a < 1/2 and hence a2 = ¬a1 = 16/17 and, proceeding as above, it meets the elements
a3 = ∗(16/17) = 15/17, a4 = ∗(15/17) = 13/17, a5 = ∗(13/17) = 9/17, a6 = ∗(9/17) = 1/17
and it stops since a6 = a1.

Hence, the image of P(17, 1/17) is I(17, 1/17) = {1/17, 16/17, 15/17, 13/17, 9/17}, the
negated image of P(17, 1/17) is NI(17, 1/17) = {16/17, 1/17, 2/17, 4/17, 8/17} and its range is
R(17, 1/17) = {1/17, 2/17, 4/17, 8/17, 9/17, 13/17, 15/17, 16/17}.

Observe that, for every a ∈ Ł∗
n+1 \ {0, 1}, the set of positive elements of R(n, a) coincides with the

set of positive elements of I(n, a), i.e. the set NI(n, a) does not introduce new positive elements, i.e.
all positive elements of R(n, a) belong to the sequence P(n, a) obtained by the procedure P starting
at a.

As a first application of the procedure P, it will be shown that it allows us to compute the
subalgebras of Ł∗

n+1 of the form 〈a〉∗.

PROPOSITION 3.4
Let a ∈ Ł∗

n+1 \ {0, 1}. Then, the domain of the subalgebra 〈a〉∗ of Ł∗
n+1 is R(n, a) ∪ {0, 1}.

PROOF. By definition of the procedure P and the above observation, it is easy to prove that R(n, a)∪
{0, 1} is closed under ∗ and ¬ and so it is the domain of a subalgebra containing a, i.e. 〈a〉∗ ⊆
R(n, a) ∪ {0, 1}. Moreover, every element of R(n, a) is obtained from a using only the operations ∗
and ¬; hence, R(n, a) ∪ {0, 1} ⊆ 〈a〉∗. Therefore, R(n, a) ∪ {0, 1} = 〈a〉∗. �

Notice that if a and b are positive elements, and b is reached by the procedure P(n, a), i.e. b ∈
I(n, a), then the sequence generated by P(n, b) is in fact a subsequence of the one generated by
P(n, a), and hence, 〈b〉∗ ⊆ 〈a〉∗. On the other hand, it is clear that for each a ∈ Ł∗

n+1 \ {0, 1},
〈a〉∗ = 〈¬a〉∗. Therefore, from now on, we will consider only subalgebras generated by positive
elements since they cover all the one-generated subalgebras.
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8 On the expressive power of Łukasiewicz square operator

Notation: In what follows, for every Ł∗
n+1-algebra, we will denote by c its coatom (n − 1)/n.

LEMMA 3.5
For every Ł∗

n+1-algebra, if 〈c〉∗ = Ł∗
n+1, then every positive element a of Ł∗

n+1 \ {1} is reached by
the procedure P starting at c, i.e. a ∈ I(n, c).

PROOF. It follows from the fact that the set of positive elements of R(n, c) (which, by hypothesis and
by Proposition 3.4 is the set of positive elements of Ł∗

n+1 \ {1}) is included in I(n, c). �
In the rest of this paper, we will make often use of the notion of strictly simple algebra whose

definition is recalled below adapting to our case the general definition that can be found in [22].

DEFINITION 3.6
An algebra Ł∗

n+1 is said to be strictly simple if its unique proper subalgebra is the two-element chain
{0, 1}.4

Then we can prove the following.

LEMMA 3.7
For every Ł∗

n+1-algebra, if 〈c〉∗ = Ł∗
n+1 and P(n, c) = [a1, . . . , ak] with ak = 1/n, then Ł∗

n+1 is
strictly simple.

PROOF. Let 〈c〉∗ = Ł∗
n+1, and let b be a positive element of Ł∗

n+1. By Lemma 3.5, b ∈ P(n, c) and
so the initial segment of P(n, b) is a subsequence of P(n, c). In particular, the last element 1/n of
P(n, c) belongs to I(n, b) and so c ∈ R(n, b). In other words, 〈b〉∗ = 〈c〉∗ = Ł∗

n+1 and the latter does
not contain proper subalgebras and hence it is strictly simple. �

Finally, we have the following characterization for strictly simple Ł∗
n+1-algebras.

THEOREM 3.8
For all n > 1 and n �= 4, Ł∗

n+1 is strictly simple iff 〈c〉∗ = Ł∗
n+1.

PROOF. The left-to-right direction is obvious.
Let us hence assume that 〈c〉∗ = Ł∗

n+1. We distinguish the following cases.

- n is even: the case n = 2 clearly fulfils the claim. Then notice that for any even number n > 2,
〈1/2〉∗ is a proper subalgebra of Ł∗

n+1; hence, Ł∗
n+1 is not strictly simple. Thus, the case n = 4

does not fulfil the claim since 〈3/4〉∗ = Ł∗
5. Now suppose n > 4. In order to get the claim, we

have hence to prove that 〈c〉∗ �= Ł∗
n+1. Since n is even, it is easy to see that every application

of either ∗ or ¬ to a rational number with even denominator will output a rational with the
same denominator and even numerator. In other words, 〈c〉∗ \ {c, ¬c} only contains rationals
with even numerators; hence, 〈c〉∗ is a proper subalgebra of Ł∗

n+1.
- n > 1 and odd: let a = ((n + 1)/2)/n be the least positive element of Ł∗

n+1, and let P(n, c) =
[a1, . . . , ak]. By Lemma 3.5, a = at for some at ∈ I(n, c). A direct computation shows
that at+1 = ∗a = 1/n; hence, it must be at+1 = ak . Thus, by Lemma 3.7, Ł∗

n+1 is strictly
simple. �

4The definition of strictly simple algebra usually requires an algebra A to have no non-trivial proper subalgebras; in other
words, A is strictly simple if the trivial, one element algebra is its unique subalgebra. However, in our context, we always
assume 0 �= 1, so that algebras have at least two elements, and thus the trivial algebra is the (boolean) two-element algebra
{0, 1}.
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On the expressive power of Łukasiewicz square operator 9

Let us end this subsection with a comparison between Łn+1 and Ł∗
n+1-algebras concerning

subalgebras and strictly simple algebras. In particular, recall that a finite MV-chain Łn+1 is strictly
simple iff n is prime [24].

PROPOSITION 3.9
The following holds for every n, m ≥ 2:

• if Łn+1 is subalgebra of Łm+1, then Ł∗
n+1 is subalgebra of Ł∗

m+1;
• if Ł∗

n+1 is strictly simple, then n is prime.

PROOF. The first item is a consequence of the fact that the operation ∗ of Ł∗
n+1 is definable in Łn+1.

The second item is a consequence of the first item plus the already recalled fact from [24] stating
that Łn+1 is strictly simple if and only if n is prime. �

Notice that for every Łn+1, the subalgebras are algebras of type Łm+1 with m being a divisor of
n and Łn+1 is strictly simple if n is a prime number. Both statements are not true for Ł∗

n+1. There
exists subalgebras of Ł∗

n+1 that are not of type Ł∗
m+1, and there exists prime numbers n such that

Ł∗
n+1 is not strictly simple as the following examples show.

EXAMPLE 3.10
This is a follow-up of Example 3.3.

(1) Let n = 9. Then, 〈8/9〉∗ = {0, 1/9, 2/9, 4/9, 5/9, 7/9, 8/9, 1}. This subalgebra is a chain
of 8 elements which is not isomorphic to Ł∗

7+1. Indeed, in Ł∗
7+1, we have ∗(5/7) = 3/7 and the

correspondent (w.r.t. the order) element of 5/7 in 〈8/9〉∗ is 7/9. But in this algebra ∗(7/9) = 5/9,
that corresponds to 4/7, instead of 3/7, in Ł∗

7+1. This shows that, although both 〈8/9〉∗ and Ł∗
7+1 are

8-element algebras, they are not isomorphic.
(2) Let n = 17 (that is prime), and consider the subalgebra of Ł∗

18 generated by its coatom 16/17.
A direct computation shows that〈

16

17

〉∗
=

{
0,

1

17
,

2

17
,

4

17
,

8

17
,

9

17
,

13

17
,

15

17
,

16

17
, 1

}
,

which is in fact a proper non-trivial subalgebra of Ł∗
18, showing that the latter is not strictly simple.

A more detailed study on the subalgebras of Ł∗
n+1-algebras will be the object of Subsection 5.1.

3.2 Term-equivalence between Ł∗
n+1 and Łn+1

In this section, we will characterize those algebras Ł∗
n+1 that allow to define Łukasiewicz implication

⇒Ł and hence that are term-equivalent to the original finite MV-chain Łn+1.
Let us start proving that in every Ł∗

n+1, we can define terms characterizing the principal order
filter Fa = {b ∈ Łn+1 | b ≥ a} generated by a.

PROPOSITION 3.11
For each a ∈ Łn+1, the unary operation Δa defined as

Δa(x) =
{

1 if x ∈ Fa
0 otherwise

is definable in Ł∗
n+1. As a consequence, for every a ∈ Łn+1, the operation χa that corresponds to the

characteristic function of a (i.e. χa(x) = 1 if x = a and χa(x) = 0 otherwise) is definable as well.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exab064/6407879 by guest on 27 O

ctober 2021



10 On the expressive power of Łukasiewicz square operator

PROOF. The case a = 1 corresponds to the Monteiro–Baaz Δ operator and, as is well known, it
can be defined as Δ1(x) = ∗nx. For the case a = 0, define Δ0(x) = Δ1(x) ∨ ¬Δ1(x); this gives
Δ0(x) = 1 for every x.

In order to define Δa(x) for 0 < a < 1, consider the following notions.
Given a, b ∈ Łn+1 such that a > b we say that (a, b) is separated if either (1) a > 1/2 ≥ b,

or (2) b = 0 or (3) a = 1. Clearly, if (a, b) is not separated then either 1 > a > b > 1/2 or
1/2 ≥ a > b > 0.

From now on, we will consider terms t(x) on a variable x formed by combining applications of ∗
and +. Such terms are monotonic, i.e. if a ≥ b, then t(a) ≥ t(b). Observe that, for any 0 < a < 1,
there exists m and k such that +ma = 1 and ∗ka = 0.

FACT 1 If (a, b) is separated, then there exists a term t(x) as above such that t(a) = 1 and t(b) = 0.
Indeed, if (1) holds, then ∗a > ∗b = 0. Let t(x) = +k ∗ x such that k = min{m | +m ∗ a = 1}. If
(2) holds, let t(x) = +kx such that k = min{m | +ma = 1}. If (3) holds, let t(x) = ∗kx such that
k = min{m | ∗mb = 0}. In any case, t is as required, by observing that ∗1 = 1 and +0 = 0.

Now, given 0 < a < 1, let a− be its immediate predecessor in the chain, i.e. a− = a − 1/n. If
(a, a−) is separated, then, by Fact 1, Δa(x) = t(x) is as required, since t is monotonic. If (a, a−) is not
separated, a sequence of pairs (xi, yi) of elements in Łn+1 such that xi > yi will be defined by taking
x0 = a, y0 = a− and by considering, for every i ≥ 0, the following two cases. Case A: let (xi, yi) such
that 1 > xi > yi > 1/2. Let ki = max{m | ∗mxi > ∗myi}. Let xi+1 = ti+1(xi) and yi+1 = ti+1(yi),
where ti+1(x) is the term on a variable x given by ti+1(x) = ∗kix. Note that xi+1 > yi+1. If (xi+1, yi+1)

is separated the procedure stops. Otherwise, note that 1/2 ≥ xi+1 > yi+1 > 0. Go to Case B with
input (xi+1, yi+1). Case B: let (xi, yi) such that 1/2 ≥ xi > yi > 0. If xi = 1/2, let xi+1 = +xi
and yi+1 = +yi. Then, (xi+1, yi+1) is separated and the procedure stops. Otherwise, if 1/2 > xi, let
ki = max{m | +mxi > +myi}. Let xi+1 = ti+1(xi) and yi+1 = ti+1(yi), where ti+1(x) is the term
given by ti+1(x) = +kix. Note that xi+1 > yi+1. If (xi+1, yi+1) is separated, the procedure stops.
Otherwise, note that 1 > xi+1 > yi+1 > 1/2. Go to Case A with input (xi+1, yi+1).

By definition, if the procedure defined above stops, then the output (xi+1, yi+1) is separated. Note
that xi+1 = t̄(a) while yi+1 = t̄(a−) for some term t̄(x). In such a case, Δa(x) can be defined by
the term t(t̄(x)), where t(x) is a term as specified in Fact 1. Indeed, Δa(a) = t(xi+1) = 1 and
Δa(a−) = t(yi+1) = 0 and so Δa(x) is as required, and being a term constructed by combining
applications of ∗ and +, it is monotonic. Thus, it remains to prove that the procedure above always
stops. But this is easy to see from the following observation: if (a, b) is not separated then either
(#a, #b) is separated or #a − #b = 2(a − b), for # ∈ {+, ∗}. This means that either (xi+1, yi+1) is
separated or the distance xi+1 −yi+1 between xi+1 and yi+1 is strictly greater than the distance xi −yi
between xi and yi. Given that the distance between two elements a and b of Łn+1 is itself an element
of Łn+1 (which is a finite set) and it is defined as ¬(a ⇒ b) ∨ ¬(b ⇒ a), a separated (xi+1, yi+1)

must be found at some step i + 1.
From the previous constructions, we have shown that Δa(x) can always be constructed by means

of a term which combines applications of ∗ and +. Finally, as for the operations χa, define χ1 = Δ1;
χ0(x) = ¬Δ1/n(x), and if 0 < a < 1, then define χa(x) = Δa(x) ∧ ¬Δa+(x), where a+ = a + 1/n
is the immediate successor of a. �

Next, we show an example of the above procedure to find the unary operations Δa.

EXAMPLE 3.12
Let us consider the Ł∗

n+1-chain for n = 11, and let a = 8/11. We show how we can find the
operation Δ8/11 according to the procedure described in the proof of the previous proposition.
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On the expressive power of Łukasiewicz square operator 11

TABLE 1 Some definable operations in Ł∗
12

x 0 1
11

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
11

10
11 1

∗x 0 0 0 0 0 0 1
11

3
11

5
11

7
11

9
11 1

+x 0 2
11

4
11

6
11

8
11

10
11 1 1 1 1 1 1

+∗x 0 0 0 0 0 0 2
11

6
11

10
11 1 1 1

∗2+∗x 0 0 0 0 0 0 0 0 7
11 1 1 1

+∗2+∗x 0 0 0 0 0 0 0 0 1 1 1 1
∗2x 0 0 0 0 0 0 0 0 0 3

11 1 1
+2∗2x 0 0 0 0 0 0 0 0 0 1 1 1

In this case, a and a− = 7/11 are both positive, so it fits with Case A above. Hence, the
procedure above produces the following sequence of pairs (by simplicity, the denominator 11

will be omitted): (8, 7)
∗�→ (5, 3)

+�→ (10, 6)
∗2�→ (7, 0). Since +(7/11) = 1, we obtain that

Δ8/11(x) = t(t3(t2(t1(x)))) = +∗2+∗x, by using the notation of the proof of Proposition 3.11.
Similarly, one can check that Δ9/11(x) = t(t1(x)), where t1(x) = ∗2x and t(x) = +2x, i.e.
Δ9/11(x) = +2∗2x. In this case, the pairs produced by the procedure described in the proof above

are (9, 8)
∗2�→ (3, 0). Therefore, χ8/11(x) = Δ8/11(x) ∧ ¬Δ9/11(x) = min(+∗2+∗x, 1 − +2∗2x).

Table 1 shows, besides the operations ∗ and +, the different steps to obtain Δ8/11 and Δ9/11. The
reader can easily obtain the other operators Δa from such table by applying the given procedure.

Actually, Proposition 3.11 can be straightforwardly generalized to any subalgebra of a Ł∗
n+1.

COROLLARY 3.13
Let A be a subalgebra of Ł∗

n+1. Then, we have the following:

(i) for any element a ∈ A, the operations Δa and χa are also definable in A;
(ii) A is simple.

PROOF. (i) Indeed, the same procedure defined in the proof of Proposition 3.11 to find the terms for
Δa and χa in Ł∗

n+1 works in A as well, as the operations ∗ and ¬ are obviously closed in A. The
argument given in that proof to show that the procedure always stops remains the same.

As for (ii), it comes as a corollary of the fact that in Ł∗
n+1 and in any of its subalgebras A, the

operator Δ1 is definable, and hence any congruence θ of these algebras has to be closed under Δ1.
This implies that θ is either the trivial congruence or the identity. �

It is now almost immediate to check that the crisp (or order) implication as well as the Gödel
implication are definable in every Ł∗

n+1.

PROPOSITION 3.14
The order implication and Gödel implication

x ⇒c y =
{

1 if x ≤ y
0 otherwise

x ⇒G y =
{

1 if x ≤ y
y otherwise

are both definable in Ł∗
n+1.
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12 On the expressive power of Łukasiewicz square operator

PROOF. Indeed, ⇒c can be defined as

x ⇒c y =
∨

0≤i≤n

(χi/n(x) ∧ Δi/n(y)). (1)

In turn, Gödel implication is given by x ⇒G y = (x ⇒c y) ∨ y. �
Now, we are ready to prove the main result of this section, i.e. a characterization of those algebras

Ł∗
n+1 that define Łukasiewicz implication ⇒Ł or, equivalently, of those algebras Ł∗

n+1 that are
term-equivalent to Łn+1. For the next result, recall how strictly simple algebras are introduced in
Definition 3.6.

THEOREM 3.15
For all n �= 4, the finite MV-chain Łn+1 is term equivalent to Ł∗

n+1 iff Ł∗
n+1 is strictly simple.

PROOF. Left-to-right: if Łn+1 is term-equivalent to Ł∗
n+1, then Łukasiewicz product � is definable in

Ł∗
n+1, and hence 〈(n−1)/n〉∗ = Ł∗

n+1. Indeed, we can obtain (n−i−1)/n = ((n−1)/n)�((n−i)/n)

for i = 1, . . . , n − 1, and 1 = ¬0. By Theorem 3.8, it follows that Ł∗
n+1 is strictly simple.

Right-to-left: since Ł∗
n+1 is strictly simple then, for each a, b ∈ Łn+1 where a /∈ {0, 1}, there is a

definable term ta,b(x) such that ta,b(a) = b. Otherwise, if for some a /∈ {0, 1} and b ∈ Łn+1, there
is no such term then A = 〈a〉∗ would be a proper subalgebra of Ł∗

n+1 (since b �∈ A) different from
{0, 1}, a contradiction. Now, for 0 ≤ j < i ≤ n consider terms ti,j(x, y) such that ti,j(i/n, j/n) =
(i/n) ⇒Ł (j/n). Such terms can be defined as follows: if n > i > j ≥ 0 then ti,j(x, y) = ti/n,aij(x),
where aij = 1 − i/n + j/n and tn,j(x, y) = y for 0 ≤ j < n. Since by Proposition 3.11, the operations
χa(x) are definable for each a ∈ Łn+1, then in Ł∗

n+1, we can define the Łukasiewicz implication ⇒Ł
as follows:

x ⇒Ł y = (x ⇒c y) ∨
⎛
⎝ ∨

n≥i>j≥0

χi/n(x) ∧ χj/n(y) ∧ ti,j(x, y)

⎞
⎠ ,

where x ⇒c y is defined as in Proposition 3.14. �

REMARK 3.16
The case n = 4 is a singular one: it is the only counterexample for Theorems 3.8 and 3.15. First, Ł∗

5 is
generated by its coatom: Ł∗

5 = 〈3/4〉∗. In addition, it is term-equivalent to Ł5. Indeed, Łukasiewicz
implication ⇒Ł can be defined in Ł∗

5 as in the proof of Theorem 3.15, with suitable adaptations. For
0 ≤ j < i ≤ 4, consider terms ti,j(x, y) such that ti,j(i/4, j/4) = (i/4) ⇒Ł (j/4). Such terms can be
defined as follows (observing that 1/2 = 2/4 in Ł∗

5): t4,j(x, y) = y for 0 ≤ j < 4; ti,0(x, y) = ¬x for
0 < i ≤ 4; t3,2(x, y) = x; t3,1(x, y) = ∗x; and t2,1(x, y) = ¬y. Then, x ⇒Ł y is given by the term

x ⇒Ł y = (x ⇒c y) ∨
⎛
⎝ ∨

4≥i>j≥0

χi/4(x) ∧ χj/4(y) ∧ ti,j(x, y)

⎞
⎠ .

However, Ł∗
5 is not strictly simple, since it has the non-trivial subalgebra with domain {0, 1/2, 1}.

3.3 Strictly simple Ł∗
n+1-chains and prime numbers

As we have shown in Proposition 3.9, n being prime is a necessary condition for Ł∗
n+1 to be strictly

simple which, in turn, is equivalent to the term-equivalence between Łn+1 and Ł∗
n+1 (if n �= 4) by
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On the expressive power of Łukasiewicz square operator 13

Theorem 3.15. However, the primality of n is not a sufficient condition for Ł∗
n+1 to be strictly simple.

In fact, as the following result shows, there are prime numbers n for which Ł∗
n+1 contains non-trivial

subalgebras. This fact was already observed in Example 3.10 (2).

LEMMA 3.17
If n > 5 is of the form n = 2m + 1, then Łn+1 and Ł∗

n+1 are not term-equivalent.

PROOF. Let n be of the form n = 2m + 1 for some m > 2. If c = (n − 1)/n, then ∗mc = 1/n. By
Proposition 3.4, the algebra 〈c〉∗ has domain I(n, c) ∪ NI(n, c)∪{0, 1} (recall Definition 3.2). Since
I(n, c) has m+1 elements, then NI(n, c)\I(n, c) has at most m−1 elements (since c = ¬(1/n) and
1/n = ¬c belong to NI(n, c)∩I(n, c)). Hence, the algebra 〈c〉∗ has at most 2+2(m−1)+2 = 2m+2
elements. Since 2m+2 < 2m +1 = n as m > 2, 〈c〉∗ is properly contained in Łn+1, and it is different
from {0, 1}. Therefore, 〈c〉∗ is a proper non-trivial subalgebra of Ł∗

n+1, and the result follows from
Theorem 3.15. �

It is well known that if n = 2m + 1 is prime, then m is of the form 2k ; in such case, n = 2(2k) + 1
is said to be a Fermat prime. As mentioned in the introduction, up to 2021 the only known Fermat
primes are 3, 5, 17, 257 and 65537, and it is an open problem to determine whether there are infinitely
many such prime numbers. Therefore, for any prime n > 5 of the form n = 2m + 1 (i.e. for any
Fermat prime > 5), Ł∗

n+1 contains non-trivial subalgebras, and hence it is not strictly simple.
Notice that, as we showed in Example 3.10 (2), the subalgebra of Ł∗

18 generated by its coatom is a
proper subalgebra of Ł∗

18 and indeed, 17 is the first Fermat prime number greater than 5.
We have seen that, in contrast to the case of the Łn+1-algebras, which are strictly simple iff n is

prime, there are prime numbers for which Ł∗
n+1 contains proper non-trivial subalgebras. It is however

possible to characterize those prime numbers which ensure the term-equivalence between Łn+1 and
Ł∗

n+1. Let us start by the following definition.

DEFINITION 3.18
Let Π be the set of odd primes n such that 2m is not congruent with ±1 mod n for all m such that
0 < m < (n − 1)/2.5

By Fermat’s little theorem, 2n−1 is congruent with 1 mod n, for every odd prime n. Since 2n−1 =
b2 for b = 2m and m = (n − 1)/2, it follows that b2 is congruent with 1 mod n. But then, using that
n is prime, we conclude that b = 2m is congruent with ±1 mod n, for m = (n − 1)/2. From this, n is
in Π iff n is an odd prime such that (n − 1)/2 is the least m > 0 such that 2m is congruent with ±1
mod n.

As a matter of example, the first prime numbers (below 200) in the set Π are 3, 5, 7, 11, 13, 19,
23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191,
197 and 199.

The following Theorem 3.20 is the main result of this subsection and it characterizes the class of
prime numbers for which the Łukasiewicz implication is definable in Ł∗

n+1 (besides n = 2). Before
proving it, we need to show the following lemma.

5These prime numbers are known in the literature as those odd primes with one coach. Properties satisfied by such
a set of prime numbers can be found in the following webpage of the Online Encyclopedia of Integer Sequences:
https://oeis.org/A216371. Further interesting properties on the class Π can be found in [27].
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14 On the expressive power of Łukasiewicz square operator

LEMMA 3.19
For each odd number n, the procedure P starting at c = (n − 1)/n stops after reaching 1/n, i.e. if
P(n, c) = [a1, a2, . . . , at], then at = 1/n.

PROOF. We already observed that P always stops since Ł∗
n+1 is finite. Thus, assume, by way of

contradiction, that P stops at at = k/n with k > 1.

FACT 2 Let q and n be positive integers such that q < n and n is odd. Then (1) if q > n/2, ∗(q/n)

has always an odd numerator; (2) if q is odd, then ¬(q/n) has even numerator.
�

By Fact 2, k cannot be even. Indeed, if k were even, then at would be obtained from at−1 by
negating it, i.e. at = ¬at−1, and then at+1 = ∗(at) should coincide with a previous element ai in the
list [a1, a2, . . . , at] such that ai < a1 = (n−1)/n. But then at+1 = ai should have an odd numerator,
and hence ai = ∗(ai−1), i.e. we would have at+1 = ∗(at) = ∗(ai−1), hence at = ai−1, and the
procedure should have stopped at at−1, contradiction. Therefore, k must be odd.

Since P stops at am = k/n, there exists an aj < a1 already met by the procedure such that
at+1 = aj. If at+1 = ∗(at), then we reason as above and get aj−1 = at, contradiction. So let us
assume at+1 = ¬(at) = n − (k/n) = (n − k)/n = aj. Notice that the numerator n − k of aj is even.
Thus, aj must have been obtained as ¬(aj−1) in a previous step, i.e. aj = ¬aj−1 = ¬at = aj, and
hence, it must be the case that aj−1 = at. In other words, the procedure should have stopped earlier
at at−1, contradiction. Therefore, necessarily k = 1, that is to say, at = 1/n.

THEOREM 3.20
Let n ≥ 3 be an odd number. Then Łn+1 and Ł∗

n+1 are term-equivalent iff n is a prime number
belonging to the set Π .

PROOF. Let c = (n−1)/n, and let P(n, c) = [a1, . . . , al] be the sequence generated by the procedure
P(n, c). This sequence can be regarded as the concatenation of a number r of subsequences

[a1
1, . . . , a1

l1 ], [a2
1, . . . , a2

l2 ], . . . , [ar
1, . . . , ar

lr ],

with a1
1 = a1 and ar

lr
= al, where for each subsequence 1 ≤ j ≤ r, only the last element aj

lj
is below

1/2, while the rest of elements are above 1/2.
By the very definition of ∗, it follows that the last elements aj

lj
of every subsequence are of the

form

aj
lj

=
⎧⎨
⎩

kjn−2mj

n , if j is odd

2mj −kjn
n , otherwise, i.e. if j is even

for some mj, kj > 0, where in particular mj is the number of strictly positive elements of Łn+1 which

are obtained by the procedure before getting aj
lj
.

By Lemma 3.19, since n is odd, P(n, c) stops at 1/n, i.e. al = ar
lr

= 1/n. Thus, writing m and k
instead of mr and kr:⎧⎨

⎩
kn − 2m = 1, if r is odd (i.e., 2m ≡ −1(mod n) if r is odd)

2m − kn = 1, otherwise (i.e., 2m ≡ 1(mod n) if r is even),
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On the expressive power of Łukasiewicz square operator 15

where m is now the number of strictly positive elements in the list P(n, c), i.e. that are reached by the
procedure before stopping. Therefore, 2m is congruent with ±1 mod n.

Suppose now that n ≥ 3 is an odd number such that Łn+1 is term equivalent to Ł∗
n+1. Then, Ł∗

n+1
is strictly simple and by Proposition 3.9, n is prime. This being so, the integer m defined above must
be exactly (n − 1)/2, the number of strictly positive elements of Łn+1 (different from 1). Otherwise,
〈c〉∗ would be a proper subalgebra of it, which is absurd. Moreover, for no m′ < m one has that 2m′

is
congruent with ±1 mod n because, in this case, the algorithm would stop producing, again, a proper
subalgebra of Ł∗

n+1. This shows that n ∈ Π , i.e. the left-to-right direction of our claim.
In order to show the other direction, assume that Łn+1 and Ł∗

n+1 are not term-equivalent. By
Theorem 3.15, this implies that Ł∗

n+1 is not strictly simple. Thus, by Theorem 3.8, 〈a1〉∗ is a proper
subalgebra of Ł∗

n+1 and hence the algorithm above stops at 1/n, after reaching m < (n−1)/2 strictly
positive elements of Łn+1. Thus, 2m is congruent with ±1 mod n (depending on whether r is even
or odd, where r is the number of subsequences in the sequence P(n, c) as described above), showing
that n �∈ Π . �

Observe that 3 and 5 are the only Fermat primes belonging to Π . Indeed, by Lemma 3.17, if n is
a Fermat prime such that n > 5, then Łn+1 and Ł∗

n+1 are not term-equivalent. By Theorem 3.20, n
does not belong to the set Π .

4 The matrix logics of the Ł∗
n+1-chains

Given the algebra Ł∗
n+1, it is possible to consider, for every 1 ≤ i ≤ n, the matrix logic Λ∗

n+1,i =
〈Ł∗

n+1, Fi/n〉, where Fi/n = {a ∈ Łn+1 | a ≥ i/n}. Observe that the logic Λ∗
n+1,i, regarded as a

consequence relation over a propositional language L with signature Σ = (∨, ∼, �, ⊥, �) of type
(2, 1, 1, 0, 0), is defined as follows: for every subset of formulas Γ ∪ {ϕ} ⊆ L,

Γ |�Λ∗
n+1,i

ϕ if for every Ł∗
n+1-evaluation e,

e(ψ) ≥ i/n for every ψ ∈ Γ implies e(ϕ) ≥ i/n,

where an Ł∗
n+1-evaluation is a homomorphism e : L → Ł∗

n+1 of algebras over Σ , namely e(ϕ∨ψ) =
max{e(ϕ), e(ψ)}, e(∼ϕ) = ¬Łe(ϕ), e(�ϕ) = ∗e(ϕ), e(⊥) = 0 and e(�) = 1.

In the following subsections, we will first show that the logics Λ∗
n+1,i are algebraizable, then we

will describe their equivalent algebraic semantics, and finally we will provide an axiomatization.

4.1 Algebraizability of the logics Λ∗
n+1,i

In this section, we show that all the logics Λ∗
n+1,i are algebraizable in the sense of Blok and Pigozzi

[2], and that, for every i, j, the quasivarieties associated with Λ∗
n+1,i and Λ∗

n+1,j are the same.
Observe that, as shown in Proposition 3.14, the Gödel implication ⇒G of the (n+1)-valued Gödel

logic is definable within the chain Ł∗
n+1 = (Łn+1, ∨, ¬Ł, ∗, 0, 1). Thus, the logic Λ∗

n+1 := Λ∗
n+1,n =

〈Ł∗
n+1, {1}〉 is a (Rasiowa) implicative logic [9], since it satisfies the following characteristic

properties (see, for instance, [20, Definition 2.3]):

(R1) |�Λ∗
n+1

ϕ ⇒G ϕ

(R2) ϕ ⇒G ψ , ψ ⇒G χ |�Λ∗
n+1

ϕ ⇒G χ

(R3) ϕ ⇒G ψ , ψ ⇒G ϕ |�Λ∗
n+1

#ϕ ⇒G #ψ for # ∈ {�, ∼}
ϕ1 ⇒G ψ1, ψ1 ⇒G ϕ1, ϕ2 ⇒G ψ2, ψ2 ⇒G ϕ2 |�Λ∗

n+1
(ϕ1 ∨ ϕ2) ⇒G (ψ1 ∨ ψ2)
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16 On the expressive power of Łukasiewicz square operator

(R4) ϕ, ϕ ⇒G ψ |�Λ∗
n+1

ψ

(R5) ϕ |�Λ∗
n+1

ψ ⇒G ϕ

And it is well known that implicative logics are algebraizable (see, e.g. [21, Proposition 3.15]). This
lead us to the following.

LEMMA 4.1
For every n, the logic Λ∗

n+1 is implicative and so it is also algebraizable.

Blok and Pigozzi [3] introduce the following notion of equivalent deductive systems. Two
propositional deductive systems S1 and S2 in the same language are equivalent if there are
translations τi : Si → Sj for i �= j such that Γ �Si ϕ iff τi(Γ ) �Sj τi(ϕ) and ϕ ��Si τj(τi(ϕ)). From
the very general results in [3], it follows that two equivalent logic systems are indistinguishable from
the algebraic point of view, namely if one of the systems is algebraizable, then the other will be also
algebraizable w.r.t. the same quasivariety. This can be applied to Λ∗

n+1,i.

LEMMA 4.2
For every n and every 1 ≤ i ≤ n − 1, the logics Λ∗

n+1 and Λ∗
n+1,i are equivalent.

PROOF. Indeed, it is enough to consider the translation mappings τ1 : Λ∗
n+1 → Λ∗

n+1,i, τ1(ϕ) =
Δ1(ϕ) and τi,2 : Λ∗

n+1,i → Λ∗
n+1, τi,2(ϕ) = Δi/n(ϕ). �

Therefore, as a direct consequence of Lemmas 4.1 and 4.2 and the above observations, the
algebraizability of Λ∗

n+1,i easily follows.

THEOREM 4.3
For every n and every 1 ≤ i ≤ n, the logic Λ∗

n+1,i is algebraizable.

Therefore, for each logic Λ∗
n+1,i, there is a quasivariety Λ(i, n+1) which is its equivalent algebraic

semantics. The question of describing Λ(i, n + 1) is dealt with in the next section, where it is shown
that it is in fact the variety generated by Ł∗

n+1.

REMARK 4.4
The last three results shown above deserve some comments.6

(1) Although, as stated in Lemma 4.1, the logic Λ∗
n+1 is implicative (where ⇒G is an implication

for it), the same is not true for the logics the logic Λ∗
n+1,i when i �= n (despite all of them are

algebraizable). More precisely, the translated implication ϕ ⇒i ψ := Δ1(ϕ ⇒G ψ) does not
satisfy condition (R5) in Λ∗

n+1,i, as it can be checked. Hence, ⇒i is not an implication in Λ∗
n+1,i

in the sense of Rasiowa considered above. Moreover, ⇒i does not satisfy the weaker condition
ϕ, ψ |�Λ∗

n+1,i
ϕ ⇒i ψ ; hence, the logic Λ∗

n+1,i is not even regularly algebraizable w.r.t. ϕ ⇔i ψ :=
{ϕ ⇒i ψ , ψ ⇒i ϕ} for i �= n (for the notion of regularly algebraizable logics, see, for instance, [20]
pp. 100–101 and 140–141).

(2) In addition to the above point (1), it is easy to see that Λ∗
n+1,i �= Λ∗

n+1,j whenever i �= j.
Indeed, assume, w.l.o.g., that i < j, and let p be a propositional variable. Then Δi/n p |�Λ∗

n+1,i
p

while Δi/n p �|�Λ∗
n+1,j

p. On the other hand, p |�Λ∗
n+1,j

Δj/n p but p �|�Λ∗
n+1,i

Δj/n p. This shows that

Λ∗
n+1,i �= Λ∗

n+1,j and that, moreover, they are incomparable.

6We thank one of the anonymous referees by pointing out these facts to us.
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On the expressive power of Łukasiewicz square operator 17

(3) As one would expect, there are several differences between the logics Λ∗
n+1,i and Λ∗

n+1,j for
i �= j, besides the ones observed in points (1) and (2). Let p and q be two different propositional
variables, and let ϕ be an arbitrary formula. Then, p, ∼p �|�Λ∗

n+1,i
q if i/n ≤ 1/2 while p, ∼p |�Λ∗

n+1,j

ϕ if j/n > 1/2. That is, in Λ∗
n+1,i the negation ∼ is paraconsistent if i/n ≤ 1/2, and explosive

otherwise.7 Moreover, |�Λ∗
n+1,i

p ∨∼p if i/n ≤ 1/2, but �|�Λ∗
n+1,j

p ∨∼p if j/n > 1/2. That is, Λ∗
n+1,i

satisfies the excluded-middle principle if i/n ≤ 1/2, while Λ∗
n+1,j is paracomplete if j/n > 1/2.

4.2 The equivalent algebraic semantics of Λ∗
n+1,i

Due to Lemma 4.2, all logics Λ∗
n+1,is are equivalent to Λ∗

n+1 and so they have the same equivalent
algebraic semantics, i.e. Λ(i, n + 1) = Λ(j, n + 1), for every 1 ≤ i, j ≤ n. Hence, we will simplify
the notation and refer to Λ(n + 1) for this common quasivariety. In order to characterize it, in the
following, we consider, without loss of generality, the case i = n, i.e. the algebras corresponding
to the matrix logic Λ∗

n+1 = 〈Ł∗
n+1, F1〉 defined by the filter F1 = {1}. From this point forward,

throughout the paper, we will write ¬ instead of ¬Ł to ease the reading (as it was already done in
Subsection 3.1).

We start by observing that from the chain Ł∗
n+1 = (Łn+1, ∨, ¬, ∗, 0, 1), we can obtain the algebra

IGn+1 = (Łn+1, ∧, ∨, ⇒G, ¬, 0, 1),

where ⇒G is Gödel implication, which is definable in Ł∗
n+1 as shown in Proposition 3.14. Hence,

IGn+1 is in fact the standard (n + 1)-valued Gödel algebra expanded with the involution ¬x = 1 − x
[16, 18]. Conversely, Ł∗

n+1 can be seen as the expansion of IGn+1 with the ∗ operation. Recalling
also from Proposition 3.11 the definition, for a given n and for every a ∈ Łn+1, of the terms Δa (as
suitable sequences of the ¬ and ∗ operations), the above motivates the following definition.

DEFINITION 4.4
An Λ�

n+1-algebra is a triple (A, ∼, �), where

• A = (A, ∧, ∨, ⇒, 0, 1) is a (n + 1)-valued Gödel algebra (a Gn+1-algebra for short);
• (A, ∼) is a (n + 1)-valued Gödel algebra with involution (a IGn+1-algebra for short); and
• � is a unary operation on A such that the following equations hold, where for every a ∈

{0, 1/n, . . . , (n − 1)/n, 1}, the operation Δa is defined as a sequence of ∼s and �s obtained
from its definition in Proposition 3.11 by replacing the occurrences of ¬ and ∗ by ∼ and �,
respectively:

(Eq1) Δ1(x) = Δ(x), Δ0(x) = 1;
(Eq2) ΔaΔbx = Δbx;
(Eq3) Δax ∨ ∼Δax = 1;
(Eq4) Δa+x ⇒ Δax = 1, if a < 1;
(Eq5) Δa(x ∨ y) = (Δax ∨ Δay);
(Eq6) Δ¬a∼x = ∼Δa+x, if a < 1;
(Eq7) Δ(x ⇒ y) ⇒ (�x ⇒ �y) = 1;
(Eq8) Δax ⇒ Δ∗a�x = 1;
(Eq9) Δ(∗a)+�x ⇒ Δa+x = 1,
where Δ(x) = ∼x ⇒ 0 is the Baaz–Monteiro operator and a+ = a + 1/n.

7This situation also occurs in the logic Li
n = 〈Łn+1, Fi/n〉, as observed in [13].
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18 On the expressive power of Łukasiewicz square operator

Observe that Λ�
n+1-algebras are defined over the signature Σ+ = (∧, ∨, ⇒, ∼, �, ⊥, �) (by

simplicity, we will use the same symbols for the connectives ∧, ∨, ⇒ and � and for the respective
operators in Λ�

n+1-algebras). Since the class of IGn+1-algebras is a variety (it is a subvariety of the
class of Gödel algebras with an involution), from the above definition it is clear that the quasivariety
Λ(n + 1) coincides, up to language, with the variety Λ�

n+1 of Λ�
n+1-algebras; hence, it is in fact a

variety.
Moreover, by defining x ⇔ y := (x ⇒ y) ∧ (y ⇒ x), the following congruence law holds for �:

if x ⇔ y = 1 then �x ⇔ �y = 1. (Cong)

If we look at a Λ�
n+1-algebra as an axiomatic expansion of its underlying (prelinear) IGn+1-algebra

with the additional � operation, (Cong) is in fact the necessary condition to be satisfied by � to
keep the prelinearity property in the expanded algebra; see, e.g. [10], in Vol. 1 of [8]. Therefore, the
variety Λ(n + 1) is semilinear and the following subdirect representation holds.

PROPOSITION 4.5
Every Λ�

n+1-algebra is a subdirect product of linearly ordered Λ�
n+1-algebras.

Since the operator Δ is definable in any Λ�
n+1-algebra, the same arguments of (ii) of Lemma 3.13

show that any linearly ordered Λ�
n+1-algebra is simple. Now, since any subdirectly irreducible Λ�

n+1-
algebra is linearly ordered, we have the following corollary.

COROLLARY 4.6
The variety of Λ�

n+1-algebras is semisimple.

Looking at the above axioms, we observe that (Eq7) requires � to be a non-decreasing operation,
while (Eq1) declares that the n-iteration of � results in the well-known Baaz–Monteiro’s Δ operator.
These two properties allows us to prove the following three further basic properties of the � operation.

LEMMA 4.7
The following identities hold in any Λ�

n+1-algebra:

(i) �x ⇒ x = 1,
(ii) �1 = 1,

(iii) �0 = 0.

PROOF.

(i) By the above representation theorem, it is enough to prove it for linearly ordered Λ�
n+1-

algebras. Let A be a Λ�
n+1-chain, and by way of contradiction, let x ∈ A such that x < �x. By

(Eq7) and (Eq1), we have the following chain of inequalities: x < �x ≤ ��x ≤ . . . ≤ (�)nx =
Δ1(x) = Δ(x). But if x < �x it means that x < 1 and hence Δx = 0. It then follows that
�x = 0, in contradiction with the hypothesis x < �x.

(ii) By (Eq8), 1 = Δ11 ⇒ Δ∗1�1 = Δ11 ⇒ Δ1�1, but by (Eq1), Δ = Δ1 and we know that
Δ1 = 1, thus Δ�1 = 1, and hence �1 = 1 as well.

(iii) It directly follows from (i) by taking x = 0. �
Recall from Proposition 3.11 that the operations χa’s are definable from the Δas as χa(x) =

Δa(x) ∧ ∼Δa+(x) for a < 1 and χ1(x) = Δ1(x). The next lemma shows some properties of these
operations.
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On the expressive power of Łukasiewicz square operator 19

LEMMA 4.8
The following equations hold in the variety of Λ�

n+1-algebras:

(i)
∨

a∈Łn+1
χax = 1;

(ii) χax ∧ χbx = 0, hence ∼(χax ∧ χbx) = 1, for a �= b;
(iii) χax = χ¬a∼x;
(iv) χax ⇒ χ∗a�x = 1.

Moreover, in any Λ�
n+1-chain, the following monotonicity condition holds:

(v) if x ≤ y and χa(x) = χb(y) = 1, then a ≤ b.

PROOF.

(i) By definition of the operators χa, it is easy to check that
∨

0≤a≤1 χax = Δ1x ∨ Δ(n−1)/nx ∨
. . . ∨ Δ1/nx ∨ ∼Δ1/nx, but Δ1/nx ∨ ∼Δ1/nx = 1, hence

∨
0≤a≤1 χax = 1 as well.

(ii) W.l.o.g., suppose a > b. By definition, χax∧χbx = (Δax∧∼Δa+x)∧ (Δbx∧∼Δb+x). Since
a > b then a ≥ b+ and so Δax ≤ Δb+x by (Eq4). Hence, χax ∧ χbx ≤ Δb+α ∧ ∼Δb+α = 0.

(iii) If a = 0 the result follows by (Eq6), namely χ0x = ∼Δ1/nx = Δ1∼x = χ1∼x. If a = 1
then χ1x = χ1∼∼x = χ0∼x. Now, suppose that 0 < a < 1. Then, χax = Δax ∧ ∼Δa+x,
and since x = ∼∼x, Δax = ∼Δ(¬a)+∼x. By (Eq6) again, ∼Δa+x = Δ¬a∼x. Therefore,
χax = ∼Δ(¬a)+∼x ∧ Δ¬a∼x = χ¬a∼x.

(iv) Note first that Δ(∗a)+�x ≤ Δa+x iff ∼Δa+x ≤ ∼Δ(∗a)+�x. Then, from (Eq8) and (Eq9), we
get Δax ∧ ∼Δa+x ≤ Δ∗a�x ∧ ∼Δ(∗a)+�x, i.e. χax ≤ χ∗a�x.

(v) In a given Λ�
n+1-chain A, the condition is equivalent to the following one: for all x, y ∈ A,

if χa(x) = χb(x ∨ y) = 1, then a ≤ b, and in turn, this is equivalent to the following: if
χa(x) = 1 and a > b, then χb(x ∨ y) = 0. Now, by definition if χa(x) = 1, we have Δax = 1
and, by Equation (Eq5), Δa(x ∨ y) = 1 as well. Then, since b+ ≤ a, by Equation (Eq4), we
have Δb+(x ∨ y) = 1, i.e. ∼Δb+(x ∨ y) = 0, and again by definition of χb, we finally have
χb(x ∨ y) = 0. �

By the considerations made at the beginning of this section, each Ł∗
n+1 can be regarded as an

algebra over the expanded signature Σ+ of Λ�
n+1-algebras introduced after Definition 4.4. This fact

will be used in the sequel and, depending on the context, Ł∗
n+1 will be considered indistinctly as a

Σ-algebra and as a Σ+-algebra. Thus, we have the following lemma.

LEMMA 4.9
Every Λ�

n+1-chain (A, ∼, �) is isomorphic to a subalgebra of Ł∗
n+1.

PROOF. Let A be a Λ�
n+1-chain. Since in particular the G-reduct of A is a Gn+1-chain, A is finite,

and let |A| = m + 1 ≤ n + 1 and A = {0 < a1 < . . . < am−1 < 1}. Note that, by the symmetry
induced by the involutive negation, we have ∼aj = am−j. We will show that A embeds into the
standard algebra Ł∗

n+1.
By (i) and (ii) of Lemma 4.8, for each aj ∈ A, there is a unique ij ∈ {0, 1, . . . , n} such that

χij/n(aj) = 1. Let us check that Ā = {0, i1/n, . . . , im−1/n, 1} is the domain of a subalgebra of
cardinality m + 1 of Ł∗

n+1. It is clear that Ā is closed under the Gödel operations ∧, ∨, ⇒; thus, we
only have to check that ¬(ij/n), ∗(ij/n) ∈ Ā, for each ij/n ∈ Ā:

(i) by (iii) of Lemma 4.8, if ∼aj = ak , then 1 = χij/n(aj) = χik/n(ak) = χ¬(ij/n)(ak), hence by
(i) and (ii) of Lemma 4.8, ¬(ij/n) = ik/n ∈ Ā;
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20 On the expressive power of Łukasiewicz square operator

(ii) by (iv) of Lemma 4.8, if �aj = ak , then 1 = χij/n(aj) = χik/n(ak) = χ∗(ij/n)(ak), hence by (i)
and (ii) of Lemma 4.8, ∗(ij/n) = ik/n ∈ Ā.

Note that, by the symmetry induced by the involutive negation, we have n − ij = im−j for every
j ∈ {1, . . . , m}. Then, we define a mapping h : A → Ł∗

n+1 by stipulating h(0) = 0, h(1) = 1 and
h(aj) = ij/n for all j = 1, . . . , m − 1. It is clear that h is one-to-one and is order preserving (by (v)
of Lemma 4.8), and hence a morphism w.r.t. Gödel operations. Moreover, h is a morphism w.r.t. to
the ∼ and � operations as well:

- h(∼aj) = h(am−j) = i(m−j)/n = 1 − ij/n = ¬h(aj);
- since ∗(ij/n) ∈ Ā, then let ik/n = ∗(ij/n) and hence �aj = ak . Then h(�aj) = h(ak) = ik/n =

∗(ij/n) = ∗h(aj).

Therefore, A is isomorphic to the subalgebra of Ł∗
n+1 over the domain Ā = {0, i1/n, . . . ,

im−1/n, 1}. �
As a consequence we have the following result.

THEOREM 4.10
The variety Λ�

n+1 of Λ�
n+1-algebras is generated by the algebra Ł∗

n+1 over Σ+.

The result above immediately shows that the variety of Λ�
n+1-algebras is the equivalent algebraic

semantics of the logic Λ�
n+1. Indeed, by definition, for every finite set of formulas Γ ∪ {ϕ} over

Σ , we have that Γ |�Λ�
n+1

ϕ iff for every Ł∗
n+1-evaluation e, e(ψ) = 1 for every ψ ∈ Γ implies

e(ϕ) = 1 iff, by Theorem 4.10, for every Λ�
n+1-algebra B and every Λ�

n+1-evaluation e, e(ψ) = 1 for
every ψ ∈ Γ implies e(ϕ) = 1. This observation, together with Lemma 4.2, leads to the following
result.

COROLLARY 4.11
The variety Λ�

n+1 of Λ�
n+1-algebras is the equivalent algebraic semantics of the logics Λ∗

n+1,i for
every 1 ≤ i ≤ n.

One of the anonymous referees communicated to us an alternative proof of this corollary using
techniques of AAL, presented in the appendix. The referee also suggested to look at further
interesting algebraic properties of the variety of Λ�

n+1-algebras that can be derived from the fact
that it is generated by Ł∗

n+1. For instance, let us consider the following ternary term:

t(x, y, z) = (Δ(x ⇔ y) ∧ z) ∨ (¬Δ(x ⇔ y) ∧ x).

It is very easy to check that in Ł∗
n+1, for every a, b, c ∈ Łn+1, it holds that

t(a, b, c) =
{

c, if a = b
a, if a �= b.

This means that t(x, y, z) is a discriminator term for Ł∗
n+1, and thus Ł∗

n+1 is simple (see [5], Lemma
9.2) and the variety of Λ�

n+1-algebras, i.e. generated by the algebra Ł∗
n+1, is a discriminator variety.

By [5, Theorem 9.4], this has another nice algebraic consequence.

COROLLARY 4.12
The variety of Λ�

n+1-algebras is a discriminator variety. Therefore, it is also an arithmetical variety,
i.e. it is both congruence-distributive and congruence-permutable.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exab064/6407879 by guest on 27 O

ctober 2021



On the expressive power of Łukasiewicz square operator 21

4.3 A uniform axiomatization of the logics Λ∗
n+1,i

Now, we present a uniform axiomatization for the logics Λ∗
n+1,i. Let us remark that the calculus

we are going to present in this section provides an alternative axiomatization to the one that can be
obtained by translating the algebraic equations defining the variety of Λ∗

n+1-algebras.
The Hilbert calculi will be defined over the signature Σ = (∨, ∼, �, ⊥, �) of the matrix logics

Λ∗
n+1,i, an expansion of the signature Σ0 mentioned in the Introduction. In this signature, the

following derived connectives will be useful:

- α ∧ β := ∼(∼α ∨ ∼β);
- Δa, for each a ∈ Łn+1, as defined in (the proof of) Proposition 3.11, replacing all the

occurrences of ¬ and ∗ by ∼ and �, respectively8

- χaα := Δaα ∧ ∼Δa+α, if 0 < a < 1, where a+ = a + (1/n);
- χ0α := ∼Δ1/nα; χ1α := Δ1α;
- α ⇒c β := ∨

0≤i≤n(χi/n(α) ∧ Δi/n(β));
- −i/nα := ∼Δi/nα;
- α →i/n β := −i/nα ∨ β = ∼Δi/nα ∨ β;
- α ↔i/n β := (α →i/n β) ∧ (β →i/n α).

In order to keep notation lighter, and without risk of confusion, the subscript i/n will be omitted
from the symbols →i/n and ↔i/n.

DEFINITION 4.13
The Hilbert calculus AX∗

n+1,i for the logic Λ∗
n+1,i, defined over the signature Σ , is given as follows.

Axiom schemas: those of CPL (propositional classical logic) restricted to the signature (∨, →)9 plus
the following ones, where a, b ∈ {0, 1/n, . . . , (n − 1)/n, 1}:

(Ax1) (α ↔ β) → (∼α ↔ ∼β);
(Ax2) ∼∼α ↔ α;
(Ax3) ∼(α ∨ β) → ∼α;
(Ax4) ∼α → (∼β → ∼(α ∨ β));
(Ax5) ΔaΔbα ↔ Δbα;
(Ax6) Δaα ∨ ∼Δaα;
(Ax7) Δa+α → Δaα;
(Ax8) Δa(α ∨ β) ↔ (Δaα ∨ Δaβ);

(Ax10) Δi/nα → α;
(Ax11) Δaα → Δ∗a�α;
(Ax12) Δ(∗a)+�α → Δa+α;
(Ax13) ⊥ → α;
(Ax14) α → �.

Inference rule:

(MP) α α→β
β

8Recall that, by definition, Δ1α = (�)nα and Δ0α = (�)nα ∨ ∼(�)nα.
9Namely, the schemas α → (α ∨ β), β → (α ∨ β), (α → γ ) → ((β → γ ) → ((α ∨ β) → γ )), α → (β → α),

(α → β) → ((β → γ ) → (α → γ )) and α ∨ (α → β).
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22 On the expressive power of Łukasiewicz square operator

It is easy to prove that the usual axioms involving ∧ of positive classical propositional logic CPL+,
over (∧, ∨, →), can be derived in the system AX∗

n+1,i by means of the axioms (Ax1)–(Ax4); thus,
the logic Λ∗

n+1,i in fact contains CPL+. Moreover, it is worth noting that the system AX∗
n+1,i satisfies

the deduction–detachment theorem w.r.t. the implication →, namely:

Γ ∪ {α} �AX∗
n+1,i

β iff Γ �AX∗
n+1,i

α → β,

for every set of formulas Γ ∪ {α, β}. Indeed, it is well known that any logic presented by means of a
Hilbert calculus containing a binary connective → such that the schemas

(A1): α → (β → α);
(A2): (α → (β → γ )) → ((α → β) → (α → γ ))

are derivable, and where (MP) (w.r.t. →) is the only inference rule, satisfies the deduction–
detachment theorem w.r.t. →. In addition, AX∗

n+1,i satisfies the following metaproperty (sometimes
called proof by cases):

Γ , α �AX∗
n+1,i

γ and Γ , β �AX∗
n+1,i

γ implies that Γ , α ∨ β �AX∗
n+1,i

γ .

This is a consequence of the deduction–detachment theorem and CPL. Besides, the conjunction ∧
(defined as above) satisfies in this logic the classical properties, namely α → (β → (α ∧ β)),
(α ∧ β) → α and (α ∧ β) → β. This can be easily proven by using axioms (Ax1)–(Ax4) and MP.

Also, observe that Axiom (Ax6), together with items (i) and (x) in Lemma 4.14 below, capture
the fact the Δa’s connectives are boolean in the sense that formulas built from expressions Δaϕ with
connectives ∨, ∼, → behave as in classical logic, and thus one can classically reason with them.
Formulas of this kind will be called boolean. We will provide a formal justification of this statement
a bit later.

Next lemma gathers some interesting theorems of AX∗
n+1,i that follow from the above axiomatics.

LEMMA 4.14
The following are theorems of AX∗

n+1,i, where a, b ∈ {0, 1/n, . . . , (n − 1)/n, 1}:
(i) Δaα → (∼Δaα → β);

(ii) Δa+α → (Δ¬a∼α → β), if a < 1;
(iii) Δa+α ∨ Δ¬a∼α, if a < 1;
(iv) Δaα ↔ Δa∼∼α;
(v) α → Δi/nα;

(vi) (α ∧ −i/nα) → β;
(vii) χa(α ∨ β) → (χaα ∨ χaβ);

(viii)
∨

a∈Łn+1
χaα;

(ix) (χaα ∧ χbα) → β, for a �= b;
(x) (Δaα → Δbβ) ↔ (∼Δbβ → ∼Δaα);

(xi) (χaα ∧ χbβ) → χmax(a,b)(α ∨ β);
(xii) χaα ↔ χ¬a∼α;

(xiii) χaα → χ∗a�α;
(xiv) χaα → χΔb(a)Δbα;
(xv) Δaα ↔ ∨

b≥a χbα;
(xvi) Δbα → Δaα, if b ≥ a.

PROOF. The proofs of all the cases are as follows.
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On the expressive power of Łukasiewicz square operator 23

(i) By definition of →, we have Δaα → (∼Δaα → β) = ∼Δi/nΔaα ∨ (∼∼Δi/nΔaα ∨ β),
and by applying (Ax5), (Ax1) and (Ax2) (as well as CPL), the latter is equivalent to (∼Δaα ∨
Δaα) ∨ β, which is clearly a theorem of AX∗

n+1,i by axiom (Ax6) and CPL.
(ii) It is an easy consequence of (Ax9), (Ax1) and item (i).

(iii) It directly follows from (Ax9) and (Ax6).
(iv) The case a = 0 is obviously true, by definition of Δ0. Suppose now that a > 0. From (Ax9),

Δ¬b∼α ↔ ∼Δb+α is a theorem, for every 0 ≤ b < 1. By taking b = a− = a − 1/n, we get
Δ¬(a−)∼α ↔ ∼Δaα, and so Δaα ↔ ∼Δ¬(a−)∼α, by (Ax1), (Ax2) and CPL. Noticing that
¬(a−) = (¬a)+, ∼Δ¬(a−)∼α is ∼Δ(¬a)+∼α. By applying (Ax9) again to this last formula,
and taking into account that ¬¬a = a, we finally have the following chain of equivalences:
Δaα ↔ ∼Δ(¬a)+∼α ↔ Δa∼∼α.

(v) It directly follows by definition of →: α → Δi/nα = ∼Δi/nα ∨ Δi/nα, the latter being a
theorem by (Ax6).

(vi) Notice that α ∧ −i/nα = α ∧ ∼Δi/nα and, due to (v), this implies Δi/nα ∧ ∼Δi/nα, which
implies any β by (i).

(vii) If a = 1 the result follows by (Ax8). If a = 0, then χa(α∨β) = ∼Δ1/n(α∨β), which implies
∼(Δ1/nα ∨Δ1/nβ), by (Ax8), (Ax1) and CPL. The latter implies ∼Δ1/nα, by (Ax3), and this
implies ∼Δ1/nα ∨ ∼Δ1/nβ, by CPL. Suppose now that 0 < a < 1. Then, χa(α ∨ β) =
Δa(α ∨ β) ∧ ∼Δa+(α ∨ β) is equivalent to (Δaα ∨ Δaβ) ∧ ∼(Δa+α ∨ Δa+β), by (Ax8) and
(Ax1). The latter is equivalent to (Δaα ∨ Δaβ) ∧ ∼Δa+α ∧ ∼Δa+β, by definition of ∧ and
(Ax1)–(Ax4). But this is equivalent to (Δaα∧∼Δa+α∧∼Δa+β)∨(Δaβ∧∼Δa+α∧∼Δa+β),
by CPL. By using CPL again, this formula implies (Δaα ∧ ∼Δa+α) ∨ (Δaβ ∧ ∼Δa+β), i.e.
χaα ∨ χaβ.

(viii) By item (i) and CPL, it is easy to see that
∨

0≤a≤1 χaγ is equivalent to Δ1γ ∨ Δ(n−1)/nγ ∨
. . . ∨ Δ1/nγ ∨ ∼Δ1/nγ , and the latter is a theorem of AX∗

n+1,i, by (Ax6) and the properties
of ∨ coming from CPL.

(ix) W.l.o.g., suppose a > b. By definition, χaα ∧ χbα = (Δaα ∧ ∼Δa+α) ∧ (Δbα ∧ ∼Δb+α).
Since a > b, then a ≥ b+ and so Δaα → Δb+α is a theorem, by (Ax7) and CPL. Hence,
by CPL once again, χaα ∧ χbα implies Δb+α ∧ ∼Δb+α, which implies β by (i). From this,
(χaα ∧ χbα) → β is a theorem, for any β.

(x) Let Γ = {Δaα → Δbβ, ∼Δbβ}. By (i), it is easy to see that Γ , Δaα � ∼Δaα. Clearly,
Γ , ∼Δaα � ∼Δaα and so, by proof by cases, Γ , Δa ∨ ∼Δaα � ∼Δaα. From this, Γ �
∼Δaα, by (Ax6). By the deduction–detachment theorem, (Δaα → Δbβ) → (∼Δbβ →
∼Δaα) is a theorem. The proof that (∼Δbβ → ∼Δaα) → (Δaα → Δbβ) is a theorem is
analogous, but now, by considering the set Γ ′ = {∼Δbβ → ∼Δaα, Δa}.

(xi) W.l.o.g., we can assume a ≤ b. Suppose also that 0 < a ≤ b < 1. Then, χaα ∧
χbβ = Δaα ∧ ∼Δa+α ∧ Δbβ ∧ ∼Δb+β. Since a ≤ b then a+ ≤ b+. By (Ax7) and
CPL, Δb+α → Δa+α is a theorem. By (x), ∼Δa+α → ∼Δb+α is a theorem. Using
this, (Ax8) and CPL, χaα ∧ χbβ implies Δb(α ∨ β) ∧ ∼Δb+α ∧ ∼Δb+β. This implies
Δb(α∨β)∧∼(Δb+α∨Δb+β), which implies Δb(α∨β)∧∼Δb+(α∨β) = χb(α∨β), by (Ax8),
(Ax1) and CPL. The cases involving a = 0 or b = 1 can be proved analogously and are left to
the reader.

(xii) If a = 0 the result follows by (Ax9), namely ∼Δ1/nα is equivalent to Δ1∼α. If a = 1
then χ1α = Δ1α, which is equivalent to Δ1∼∼α, by (iv). By the first part of the proof of
this item, this is equivalent to ∼Δ1/n∼α, i.e. χ0∼α. Now, suppose that 0 < a < 1. Then,
χaα = Δaα ∧ ∼Δa+α. Observe that, since a = ¬¬a, Δaα is equivalent to ∼Δ(¬a)+∼α, by
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24 On the expressive power of Łukasiewicz square operator

(Ax9) and item (iv). By (Ax9) again, ∼Δa+α is equivalent to Δ¬a∼α. Therefore, by CPL,
χaα is equivalent to ∼Δ(¬a)+∼α ∧ Δ¬a∼α, i.e. to χ¬a∼α.

(xiii) Note first that (Δ(∗a)+�α → Δa+α) ↔ (∼Δa+α → ∼Δ(∗a)+�α), by item (x). Then, from
(Ax11), (Ax12) and CPL, we get (Δaα → Δ∗a�α) ∧ (∼Δa+α → ∼Δ(∗a)+�α) is a theorem.
By using CPL once again, we get that the latter formula implies (Δaα∧∼Δa+α) → (Δ∗a�α∧
∼Δ(∗a)+�α). From this, χaα → χ∗a�α is a theorem, by definition.

(xiv) Immediate from (xii) and (xiii) and the definition of the Δa’s operations and connectives as
sequences of �s and ∼s.

(xv) By the proof of item (vii),
∨

b≥0 χbα is equivalent to Δ1α ∨ Δ(n−1)/nα ∨ . . . ∨ Δ1/nα ∨
∼Δ1/nα. Thus, if a = 0, then the result holds, since Δ0α and

∨
b≥0 χbα are both theorems.

Suppose now that a = k/n > 0. By reasoning as in item (viii), it is easy to prove that∨
b≥a χbα is equivalent to Δ1α ∨ Δ(n−1)/nα ∨ . . . ∨ Δk/nα. By (Ax7) and CPL it follows

that Δbα → Δk/nα is a theorem, for b ≥ a. From this,
∨

b≥a χbα is equivalent to Δk/nα, by
CPL.

(xvi) It directly follows by an iterative application of (Ax7). �
The following shows that the logic AX∗

n+1,i proves two basic properties of the unary connective �:
that �α is smaller than α and that � preserves the order given by ⇒c.

PROPOSITION 4.15
The following formulas are theorems of AX∗

n+1,i: (1) �α ⇒c α; (2) (α ⇒c β) → (�α ⇒c �β).

PROOF. (1) From Lemma 4.12(xiii), χa(α) �AX∗
n+1,i

χ∗a(�α). By CPL, it follows that χa(α) �AX∗
n+1,i∨

b≥∗a χb(α). But
∨

b≥∗a χb(α) �AX∗
n+1,i

Δ∗a(α), by Lemma 4.12(xv), hence χa(α) �AX∗
n+1,i

Δ∗a(α). By CPL, χa(α) �AX∗
n+1,i

χ∗a(�α) ∧ Δ∗a(α). By using CPL once again, χa(α) �AX∗
n+1,i∨

b χb(∗α)∧Δb(α), i.e. χa(α) �AX∗
n+1,i

�α ⇒c α. Using proof-by-cases,
∨

a χa(α) �AX∗
n+1,i

�α ⇒c

α. But then �AX∗
n+1,i

�α ⇒c α, by Lemma 4.12(viii). (2) By Lemma 4.12(xiii), (Ax11) and CPL,
χa(α)∧Δa(β) �AX∗

n+1,i
χ∗a(�α)∧Δ∗a(�β). By CPL, χa(α)∧Δa(β) �AX∗

n+1,i

∨
b χb(�α)∧Δb(�β),

i.e. χa(α) ∧ Δa(β) �AX∗
n+1,i

(�α ⇒c �β). Using proof-by-cases and the definition of ⇒c it follows
that (α ⇒c β) �AX∗

n+1,i
(�α ⇒c �β). The result follows by the deduction–detachment theorem

w.r.t. →. �
Next, we prove that boolean formulas behave as in classical propositional logic. First, we need a

preliminary lemma with some further derivations in AX∗
n+1,i.

LEMMA 4.16
(1) AX∗

n+1,i proves �α → α.
(2) If α is boolean, then AX∗

n+1,i proves χ0α ∨ χ1α.
(3) Further, if α is boolean, then AX∗

n+1,i proves α → �α.

PROOF. (1) By definition �α → α = ∼Δi/n�α ∨ α. We reason by cases:
Let a ≥ i/n. Then χaα � Δi/nα, and � Δi/nα ↔ α; therefore, χaα � ∼Δi/n�α ∨ α.
Let a < i/n. Then χaα � χ∗a � α, and χ∗a�α = Δ∗a�α ∧ ∼Δ(∗a)+ � α. But an easy computation

shows that if a < i/n, then (∗a)+ ≤ i/n, and hence, by (Ax7) and (x) of Lemma 4.14, we have that
∼Δ(∗a)+�α � ∼Δi/n�α. By CPL, we have therefore χaα � ∼Δi/n�α ∨ α.

Finally, by (viii) of Lemma 4.14, we get the desired result.
(2) By induction. If α = Δaβ (base case), observe that χaβ � χΔ(a)Δβ, but Δ(a) ∈ {0, 1}; hence,
χaβ � χ0Δβ ∨ χ1Δβ. The other cases are proved analogously, noticing that all connectives are
closed on the set of classical values {0, 1} ⊆ Łn+1.
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On the expressive power of Łukasiewicz square operator 25

(3) We have to prove that, if α is boolean, then AX∗
n+1,i proves ϕ = α → �α.

We prove it by induction.

• α = Δaβ (base case). Then we have to prove ϕ = Δaβ → �Δaβ. By (Ax5), Δaβ is equivalent
to Δ1Δaβ, i.e. � n. . . �Δaβ. But now, using repeatedly (1) above n − 1 times, it follows that
� n. . . �Δaβ implies �Δaβ.

• α = ∼β, with β boolean. Then ϕ = (∼Δi/n∼β) ∨ (�∼β).
• By (xii) and (xiii) of Lemma 4.14, χ0β � χ1∼β and then χ0β � χ1(�∼β) as well. By (xvi)

of Lemma 4.14 and by definition of χ1 it follows that χ1(�∼β) � Δi/n(�∼β). Hence, χ0β �
Δi/n(�∼β) and so χ0β � �∼β, by (Ax10). On the other hand, χ1β � χ0∼β by (xii) of Lemma
4.14. That is, χ1β � ∼Δ1/n∼β, by definition of χ0. But then χ1β � ∼Δi/n∼β, by (xvi) and
(x) of Lemma 4.14. From this, it follows that χ0β ∨ χ1β � (∼Δi/n∼β) ∨ (�∼β). But AX∗

n+1,i
proves χ0β ∨ χ1β, by (2); hence, ϕ is a theorem.

• The remaining cases α = β ∨ γ , with β, γ boolean and α = �β with β boolean can be proved
by cases in a similar way. �

PROPOSITION 4.17
The sublanguage of boolean formulas obeys the axioms of classical propositional logic.

PROOF. Since all the formulas obey the axioms of CPL+, over (∧, ∨, →), it is enough to check
that, if α and β are boolean formulas, then the formula (α → ∼β) → (β → ∼α) is a theorem of
AX∗

n+1,i. We first prove by induction that (Ax5) can be generalized to
(Ax5’) Δaα ↔ α, if α is boolean.

The base case is axiom (Ax5). Then we consider the following inductive steps:

• α = ∼β. In this case Δaα = Δa∼β, and, replacing ¬a by a in (Ax9), we get that the latter is
equivalent to ∼Δ(¬a)+β, and by I.H., this is equivalent to ∼β.

• α = β1 ∨β2. In this case, Δaα = Δa(β1 ∨β2), that by (Ax8) is equivalent to (Δaβ1)∨ (Δaβ2),
and by I.H., this is equivalent to β1 ∨ β2.

• α = �β. In this case, Δaα = Δa�β. Let b the smallest element of Łn+1 such that a ≤ (∗b)+,
then, by (Ax12), Δa�β is equivalent to Δb+β, and by I.H., this is equivalent to β, and by (1)
and (3) of Lemma 4.16, β is equivalent to �β.

Then let α and β be boolean. By definition, α → ∼β = ∼Δi/nα ∨ ∼β, and due to the above
(Ax5’), the latter is equivalent to ∼α ∨ ∼Δi/nβ that, by definition, is in fact β → ∼α. �

Finally, we prove soundness and completeness of the logic AX∗
n+1,i.

PROPOSITION 4.18
(Soundness of AX∗

n+1,i).
The calculus AX∗

n+1,i is sound w.r.t. the matrix 〈Ł∗
n+1, Fi/n〉, i.e. Γ �AX∗

n+1,i
ϕ implies that

Γ �〈Ł∗
n+1,Fi/n〉 ϕ, for every finite set of formulas Γ ∪ {ϕ}.

PROOF. Straightforward, taking into account the definitions of the terms Δas and χas in
Proposition 3.11. �

Since AX∗
n+1,i is a finitary Tarskian logic, completeness can be proved by using maximal non-

trivial sets of formulas. Thus, as a consequence of the well-known Lindenbaum–Łos theorem, if
Γ �AX∗

n+1,i
ϕ, then Γ can be extended to a maximal set Υ such that Υ �AX∗

n+1,i
ϕ. We will call the

set Υ maximal non-trivial with respect to ϕ in AX∗
n+1,i.

In the following proposition, we list the main properties of maximal non-trivial sets in AX∗
n+1,i.
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26 On the expressive power of Łukasiewicz square operator

PROPOSITION 4.19
Let Υ be a set of formulas which is maximal non-trivial w.r.t. some formula ϕ in AX∗

n+1,i. Then,

1. Υ is closed, i.e. Υ �AX∗
n+1,i

ψ iff ψ ∈ Υ , for every formula ψ ;
2. α ∨ β ∈ Υ iff either α ∈ Υ or β ∈ Υ ;
3. α ∧ β ∈ Υ iff α, β ∈ Υ ;
4. −i/nα ∈ Υ iff α /∈ Υ ;
5. α → β ∈ Υ iff either α /∈ Υ or β ∈ Υ ;
6. α ↔ β ∈ Υ iff either α, β ∈ Υ or α, β /∈ Υ ;
7. for every formula α, one and only one of the conditions ‘χaγ ∈ Υ ’, holds, for a ∈ Łn+1;
8. χaα ∈ Υ iff χ¬a∼α ∈ Υ ;
9. if χaα ∈ Υ , then χ∗a � α ∈ Υ .

PROOF.

1. This holds by construction of the maximal non-trivial sets.
2. The ‘only if’ part follows by the fact that Υ is maximal non-trivial w.r.t. ϕ, and by taking into

account that AX∗
n+1,i satisfies proof by cases (recall the observations after Definition 4.13).

Indeed, if α /∈ Υ and β /∈ Υ , then Υ , α � ϕ and Υ , β � ϕ; hence, Υ , α ∨ β � ϕ. From this,
α ∨ β /∈ Υ .

3. In order to prove that α ∧ β = ∼(∼α ∨ ∼β) ∈ Υ implies that β ∈ Υ it is
necessary to use (Ax1), showing that ∼(∼β ∨ ∼α) ∈ Υ , and so apply (Ax3) and
(Ax2).

4. Suppose −i/nα ∈ Υ , i.e. ∼Δi/nα ∈ Υ . Then, by (i) of Lemma 4.14, it follows that Δi/nα /∈ Υ

and, by (v) of the same lemma, it must be α /∈ Υ as well. Conversely, assume −i/nα /∈ Υ ,
i.e. ∼Δi/nα �∈ Υ . Then, by (Ax6), Δi/nα ∈ Υ , and hence α ∈ Υ , by (Ax11). That is, α /∈ Υ

implies that −i/nα ∈ Υ .
5. By definition, α → β = −i/nα ∨ β. Then, by item (2), α → β ∈ Υ iff either −i/nα ∈ Υ or

β ∈ Υ , iff either α �∈ Υ or β ∈ Υ , by (4).
6. Easily follows from (3) and (5).
7. By (viii) of Lemma 4.14 and by (1),

∨
0≤a≤1 χaα ∈ Υ . By (2), χaα ∈ Υ for some a ∈ Łn+1.

By (ix) of Lemma 4.14, there are no a �= b such that χaα, χbα ∈ Υ , since ϕ /∈ Υ . From this,
χaα ∈ Υ for one and only one a ∈ Łn+1.

8. It follows from (xii) of Lemma 4.14 and by (5).
9. If directly follows from (xiii) of Lemma 4.14 together with (5). �

LEMMA 4.20
(Truth Lemma for AX∗

n+1,i).
Let Υ be a maximal set of formulas non-trivial with respect to ϕ in AX∗

n+1,i. Consider the mapping
eΥ of formulas to Łn+1 defined as follows: for each formula α,

eΥ (α) = a if χaα ∈ Υ .

Then, eΥ is a 〈Ł∗
n+1, Fi/n〉-evaluation.

PROOF. First, observe that eΥ is well defined, i.e. every formula gets a unique value. This is an
immediate consequence of (7) of Proposition 4.19. We have to prove that the following conditions
are satisfied for every formulas α and β.

(i) eΥ (α∨β) = max(eΥ (α), eΥ (β)). Indeed, let c = eΥ (α∨β). By definition, χc(α∨β) ∈ Υ , and
so χc(α) ∨ χc(β) ∈ Υ , by (vii) of Lemma 4.14. By (2) of Proposition 4.19, either χc(α) ∈ Υ
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On the expressive power of Łukasiewicz square operator 27

or χc(β) ∈ Υ . That is, either eΥ (α) = c or eΥ (β) = c. By way of contradiction, suppose,
e.g. eΥ (α) = d > c and eΥ (β) = c. Then χc(α) ∈ Υ and χd(α) ∈ Υ and so, by (xi) of
Lemma 4.14, χd(α ∨ β) ∈ Υ . Hence, eΥ (α ∨ β) = d > c, contradiction. From this, d ≤ c
and c = max(eΥ (α), eΥ (β)).

(ii) eΥ (∼α) = 1 − eΥ (α). Indeed, let c = eΥ (α), i.e. χcα ∈ Υ . By (8) of Proposition 4.19,
χ1−c∼α ∈ Υ , i.e. eΥ (∼α) = 1 − c.

(iii) eΥ (�α) = ∗(eΥ (α)). Indeed, let c = eΥ (α). By definition, χcα ∈ Υ . By (9) of Proposition
4.19, χ∗c�α ∈ Υ , i.e. eΥ (�α) = ∗c.

This ends the proof. �
Finally, we can state and prove the completeness result for AX∗

n+1,i.

THEOREM 4.21
(Completeness of AX∗

n+1,i).
The calculus AX∗

n+1,i is complete w.r.t. 〈Ł∗
n+1, Fi/n〉, i.e. Γ �〈Ł∗

n+1,Fi/n〉 ϕ implies that Γ �AX∗
n+1,i

ϕ,
for every finite set of formulas Γ ∪ {ϕ}.
PROOF. Let Γ ∪ {ϕ} be a set of formulas of AX∗

n+1,i such that Γ �AX∗
n+1,i

ϕ. By Lindenbaum–Łos,

there exists a set Υ maximal non-trivial with respect to ϕ in AX∗
n+1,i such that Γ ⊆ Υ . Let eΥ

be the evaluation defined as in the Truth Lemma 4.20. Then, it follows that, for every formula α:
eΥ (α) ∈ Fi/n iff χ1α ∨ χ(n−1)/nα ∨ . . . ∨ χi/nα ∈ Υ , by the Truth Lemma 4.20. Moreover, by (xiv)
of Lemma 4.14, this is equivalent to the condition Δi/nα ∈ Υ . By (Ax10) and by (v) of Lemma 4.14,
the latter is equivalent to the condition α ∈ Υ . That is, for every formula α, we have eΥ (α) ∈ Fi/n
iff α ∈ Υ . Therefore, eΥ is an evaluation such that eΥ [Γ ] ⊆ Fi/n but eΥ (ϕ) /∈ Fi/n, since ϕ �∈ Υ .
This means that Γ ��〈Ł∗

n+1,Fi/n〉 ϕ. �

5 Subalgebras of Ł∗
n+1 and Gödel algebras with an involutive negation and

a � operation
In this section, we present an alternative approach to capture the behaviour of the square operator
in structures obtained by adding a unary operator � to Gödel chains with an involutive negation. In
order to do so, in the first subsection, we characterize the subalgebras of a Ł∗

n+1 algebra. The second
subsection is devoted to the study of structures obtained by adding a unary operation � to Gödel
algebras with an involutive negation in general. There, for each natural n, we will axiomatically
characterize the class of algebras such that the implication-free reducts of its chains (of length at
most n + 1) are isomorphic to a subalgebra of Ł∗

m+1 for some m, possibly different from n. We will
call such algebras representable.10

From now on, we will denote by [0, 1]∗MV the algebra defined over the real unit interval by the
Łukasiewicz operations ∧, ∨, ¬, ∗, 0 and 1, i.e. where ∗x = max(2x − 1, 0) and ¬x = 1 − x.

5.1 Finite subalgebras of [0, 1]∗MV

We start by noticing that, for every n > 1, Ł∗
n+1 and its subalgebras are subalgebras of [0, 1]∗MV .

Conversely, as it will be shown in Proposition 5.7, every finite subalgebra of [0, 1]∗MV is a subalgebra

10Note that these classes of algebras are different from the varieties of Λ�
n+1-algebras introduced in Section 4.2, which,

for each n, are generated by the single chain Ł∗
n+1.
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28 On the expressive power of Łukasiewicz square operator

of some Ł∗
n+1 (although, as seen in Example 3.10(1), it is not necessarily of the form Ł∗

m+1 for some
m ≤ n). Then, studying the subalgebras of Ł∗

n+1 (for any n > 1) turns out to be equivalent to study
the finite subalgebras of [0, 1]∗MV .

For what follows, it is useful to introduce the notion of skeleton of an element of a finite subalgebra
of [0, 1]∗MV . In order for the next definition be precise, let us notice that Definition 3.2, introducing
the procedure P, can be easily adapted to any finite subalgebra A of [0, 1]∗MV .

DEFINITION 5.1
Let A be a finite subalgebra of [0, 1]∗MV , let a be a positive element of A \ {1}, and let P(A, a) =
[a1, . . . , ak], with ak+1 = aj for some 1 ≤ j ≤ k. Then we define the skeleton of a in A, denoted by
Sk(A, a), as the finite string of symbols [o1, . . . , ok], where oi ∈ {∗, ¬} is such that oi(ai) = ai+1 for
all i = 1, . . . , k and thus ok(ak) = aj.

By definition of P, one can notice that the skeleton of every element a ∈ A is a string of symbols
of the form

[∗n1 , ¬, ∗n2 , . . . , ¬, ∗nk ],

with k > 1 and n1, . . . , nk−1 > 0, where ∗ni is a shorthand for ‘∗, ni. . ., ∗’, i.e. the string with
ni repetitions of ∗. Moreover, if nk = 0, then we assume the string of symbols reduces to
[∗n1 , ¬, ∗n2 , . . . , ¬]. In what follows, we will call this kind of strings sk-sequences.

Let us notice that, as in the case of Ł∗
n+1-algebras, if A is a finite strictly simple subalgebra of

[0, 1]∗MV and c is the coatom of A, then P(A, c) = [a1, . . . , ak] is such that ak = ¬c, i.e. P(A, c) ends
with the atom of A. Thus, Sk(A, c) = [o1, . . . , ok] is such that ok = ¬.

The following result presents a slight generalization of the above argument.

PROPOSITION 5.2
A finite subalgebra A of [0, 1]∗MV is strictly simple iff A = 〈a〉∗ for a positive element a ∈ A and
P(A, a) = [a1, . . . , ak] with ak+1 = a.

PROOF. Left-to-right. It is obvious that if A is strictly simple, then for any a ∈ A\{0, 1}, A = 〈a〉∗ (for
otherwise, 〈a〉∗ would be a proper subalgebra of A). Moreover, if A = 〈a〉∗ but P(A, a) = [a1, . . . , ak]
with ak+1 = ai for i > 1, then 〈ai〉∗ � A (since a �∈ 〈ai〉∗) and A would not be strictly simple.

Right-to-left. If A = 〈a〉∗ for some positive element a ∈ A \ {1} and P(A, a) = [a1, . . . , ak] with
ak+1 = a, then every positive element of A belongs to P(A, a) and, since ak+1 = a for any ai,
we have P(A, ai) = [b1, . . . , bk] with ai = b1 = bk+1, i.e. P(A, ai) is a cyclic permutation of the
sequence P(A, a). Therefore, for any positive element ai ∈ A, A = 〈ai〉∗ and A has no subalgebras,
i.e. it is strictly simple. �

EXAMPLE 5.3
Consider Example 3.10 (1). There, we have

A = 〈8/9〉∗ = {0, 1/9, 2/9, 4/9, 5/9, 7/9, 8/9, 1}
with c = 8/9 and P(A, 8/9) = [8/9, 7/9, 5/9, 1/9]. Then, Sk(A, 8/9) = [∗, ∗, ∗, ¬]. Observe that
8/9 is the solution of the equation ¬(∗3(x)) = x. Indeed, using the semantics of ∗, ¬ in [0, 1]∗MV ,
the equation ¬(∗3(x)) = x can be written as 1 − (2(2(2x − 1) − 1) − 1) = x which has a unique
solution x = 8/9. Notice also that Sk(A, 7/9) = [∗, ∗, ¬, ∗] and Sk(A, 5/9) = [∗, ¬, ∗, ∗] are cyclic
permutations of Sk(A, c).
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On the expressive power of Łukasiewicz square operator 29

The example above anticipates a general result that we are going to prove in the next proposition.
Henceforth, if R = [o1, . . . , ok] is any sequence where every oi ∈ {∗, ¬}, we will adopt the notation
fR to indicate the unary function in [0, 1] defined as

fR(x) = ok(ok−1(. . . o1(x) . . .)).

In particular, any finite subalgebra A of [0, 1]∗MV and any a ∈ A will have an associated function
fSk(A,a). For instance, taking into account Example 5.3 above, one has

fSk(〈8/9〉∗,8/9)(x) = ¬(∗(∗(∗(x)))),

while

fSk(〈8/9〉∗,5/9)(x) = ∗(∗(¬(∗(x)))).

PROPOSITION 5.4
Let S be a sequence of symbols from {∗, ¬}, and let fS be its corresponding function defined as
above. Then, we have

(i) if S is a sk-sequence, the equation fS(x) = x has a unique and rational solution xS > 1/2;
(ii) the equation fS(x) = d has a unique and rational solution for every rational number 0 < d < 1.

PROOF. First of all, observe that for any sequence S, as a function fS : [0, 1] → [0, 1], fS is
continuous, and it is increasing if the number of negations ¬ involved is even; otherwise, it is
decreasing. Let us assume then that fS involves an even number of negations, and hence fS is
increasing with fS(0) = 0 and fS(1) = 1. By composing the functions ∗ and ¬ in the required
form, one can easily check that fS is of the following form: there are rationals a, b ∈ [0, 1], with
0 ≤ a < b ≤ 1 such that

fS(x) =
⎧⎨
⎩

0, if 0 ≤ x ≤ a
(x − a)/(b − a), if a ≤ x ≤ b
1, if b ≤ x ≤ 1

As for (i), if S is a sk-sequence, by construction, the rational a is such that 1/2 ≤ a. Therefore, it
is clear that the equation fS(x) = x has as a unique rational solution xS = a/(1 − b + a), satisfying
a < xS < b.

As for (ii), since fS is always strictly increasing in the open interval (a, b), the graph y = fS(x)
always intersects the horizontal line y = d if 0 < d < 1, and hence the equation fS(x) = d has
always as unique solution xd = (b − a)d + a.

If fS involves an odd number of negations, then fS is decreasing, with fS(0) = 1 and fS(0) = 1,
and the arguments for (i) and (ii) are completely dual to the ones above. �

To graphically exemplify the above result, Figure 1 displays examples of functions fS for a sk-
sequence S containing odd and even occurrences of ¬ and how they intersect the diagonal in a single
point.

The following result is an easy consequence of the previous Proposition 5.4.

COROLLARY 5.5
Let A be a finite strictly simple subalgebra of [0, 1]∗MV , then

(1) if a is a positive element of A \ {1}, then a is the unique rational solution of the equation
fSk(A,a)(x) = x;
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30 On the expressive power of Łukasiewicz square operator

FIGURE 1 Examples of functions fS(x) with odd (central figure) and even (right-most figure)
occurrences of ¬.

(2) A is completely determined by Sk(A, c), meaning that for any two different strictly simple
subalgebras A and A′ of [0, 1]∗MV , Sk(A, c) �= Sk(A′, c′), where c and c′ denote the coatoms
of A and A′, respectively.

PROOF. (1) By Proposition 5.2, A = 〈a〉∗ and fSk(A,a)(a) = a. In other words, a is a solution of
fSk(A,a)(x) = x. Thus, by Proposition 5.4 (i), a is the unique and rational solution of the equation
above.

(2) Suppose Sk(A, c) = Sk(A′, c′) = S, this means that fS(c) = c as well as fS(c′) = c′. But since
by (1) the solution of the equation fS(x) = x is unique, we have that c = c′. Since A and A′ are
assumed to be strictly simple, we finally have A = 〈c〉∗ = 〈c′〉∗ = A′. �

In the corollary above, the hypothesis of A being strictly simple cannot be relaxed. Indeed, the
following example proves that not any sk-sequence can be the skeleton of a strictly simple subalgebra
of [0, 1]∗MV .

EXAMPLE 5.6
Consider the sk-sequence S = [∗, ∗, ¬, ∗, ∗, ¬], and suppose it is the skeleton of the coatom c of a
strictly simple subalgebra A of [0, 1]∗MV . Then c must be the rational solution of the equation fS(x) =
x, where fS(x) = 1−2(2(1−(2(2x−1)−1)−1)−1). The unique solution of this equation is 4/5. But
4/5 is the coatom of Ł∗

5+1 and P(Ł∗
5+1, 4/5) = [4/5, 3/5, 1/5], whence Sk(Ł∗

5+1, 4/5) = [∗, ∗, ¬],
which is different from the initial sequence S.

Proposition 5.4 and Corollary 5.5 allows us to prove, as announced above, that the set of all finite
subalgebras of [0, 1]∗MV coincides in fact with the set of subalgebras of all the Ł∗

n+1 algebras.

PROPOSITION 5.7
The following conditions hold:

(1) the subalgebra of [0, 1]∗MV generated by an element a ∈ [0, 1] is finite iff a is a rational
number;

(2) the finite subalgebras of [0, 1]∗MV contain only rational numbers;
(3) any finite subalgebra of [0, 1]∗MV is a subalgebra of some Ł∗

n+1.

PROOF. (1) Left-to-right. Let a ∈ [0, 1] and assume, without loss of generality, that a is positive, i.e.
a > 1/2 (clearly, if a was not positive one could consider its negation ¬a > 1/2).
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On the expressive power of Łukasiewicz square operator 31

If 〈a〉∗ is finite, then P(A, a) = [a1, . . . , ak], where ak+1 = ai for some i ≤ k. Then 〈ai〉∗ is finite
and strictly simple, and by Corollary 5.5, ai is rational. But since ai ∈ 〈a〉∗, there exists a term f (x)
as those considered in Proposition 5.4 such that f (a) = ai, and by (ii) of Proposition 5.4, a has to be
rational as well.

Right-to-left. Assume a = n/d is a positive rational number of [0, 1]. Then, as we already observed
in the proof of Lemma 3.19, the application of either ¬ or ∗ to a produces another rational number
in [0, 1] that, moreover, has the same denominator d. Indeed, ¬a = 1 − (n/d) = (d − n)/d and
∗(n/d) = 2n/d − 1 = (2n − d)/d. Thus, 〈a〉∗ is necessarily finite because there are only d + 1
rational numbers in [0, 1] sharing the same denominator d.

(2) It is an easy consequence of (1).
(3) Let A be a finite subalgebra of [0, 1]∗MV . Then all its elements are rational, and hence there must

exist n such that A ⊆ {0, 1/n, . . . , (n − 1)/n, 1} (for instance take n as the l.c.m. of all denominators
appearing in A), and therefore, A must be a subalgebra of Ł∗

n+1. �
In what follows, for every natural number n and every sequence R, we will denote by (n)R the

concatenation of R with itself n-times.
We say that a sequence S is periodic if it contains a strict subsequence R such that S = (n)R for

some n ≥ 2. A sequence S will be called non-periodic if it is not periodic.

PROPOSITION 5.8
For every finite strictly simple subalgebra A of [0, 1]∗MV , Sk(A, c) is non-periodic.

PROOF. Assume by way of contradiction that Sk(A, c) is periodic and hence that there exists a
subsequence R of Sk(A, c) such that Sk(A, c) = (n)R for some n ≥ 2. Since A is strictly simple,
by Corollary 5.5, c is the unique rational solution of fSk(A,c)(x) = x. Denote it by r/n. Now,
consider the equation fR(x) = x, and let k/m its unique rational solution. Notice that k/m is also
a solution of the equation fSk(A,c)(x) = x. In fact, fSk(A,c)(x) = fR(fR(. . . fR(x) . . .)), and since
fR(k/m) = k/m, fSk(A,c)(k/m) = k/m. This implies that r/n and k/m are solutions of the same
equation fSk(A,c)(x) = x. But the solution is unique and so r/n = k/m. Therefore, A = 〈k/m〉∗ and
Sk(A, c) = R, while we assumed that Sk(A, c) = (n)R for n ≥ 2. Contradiction. �

Finally, the next proposition presents additional properties of finite subalgebras of [0, 1]∗MV that
will be useful in the next section.

PROPOSITION 5.9
Let A be a finite subalgebra of [0, 1]∗MV . Then,

1. for every positive a ∈ A\ {1}, either A is strictly simple (i.e. A = 〈a〉∗ and fSk(A,a) = a) or 〈a〉∗
contains a unique strictly simple subalgebra;

2. if B, C are two different strictly simple subalgebras of A, then Sk(B, cB) �= Sk(C, cC), where
cB and cC respectively denote the coatom of B and the coatom of C;

3. if B1, B2, . . . , Br are the strictly simple subalgebras of A, then {B+
1 , ..., B+

r } is a partition of A,
where B+

i = {a ∈ A | 〈a〉∗ ⊇ Bi}.
PROOF. (1) If A is strictly simple, the claim follows from Corollary 5.5 (1). Thus, assume A is not
strictly simple, and take a positive a ∈ A \ {1}. By Proposition 5.2, this implies that P(A, a) = [a1 =
a, . . . , ak] with ak+1 = ai for some i > 1. Then, it is obvious that P(A, ai) = [ai, . . . , ak] with
ak+1 = ai. Then Ba = 〈ai〉∗ is strictly simple and Ba � 〈a〉∗. Moreover, by construction, for each
a ∈ A the subalgebra Ba is the unique strictly simple subalgebra contained in 〈a〉�.

(2) is an immediate consequence of Corollary 5.5 (2).
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32 On the expressive power of Łukasiewicz square operator

(3) Observe that (1) and (2) imply that the union of B+
i s is the whole domain A of the algebra A.

Obviously, two different, strictly simple subalgebras Bi and Bj must be disjoint since, if a ∈ (Bi ∩Bj)

by Proposition 5.2 Bi = Bj = 〈a〉∗. On the other hand, if a ∈ (B+
i ∩ B+

j ) by the previous (2) Bi = Bj

and thus B+
i = B+

j . �
We end this first subsection with the following observations.

REMARK 5.10

(1) Notice that in all finite subalgebras of [0, 1]∗MV , Gödel implication is definable as we did for
every Ł∗

n+1-algebra (see Section 3).
(2) The logic whose algebraic semantics is the variety generated by a finite subalgebra A of

[0, 1]∗MV can be axiomatized in the signature Σ = (∨, ∼, �, ⊥, �) following the same method
used for Ł∗

n+1 in Subsection 4.3.

The first remark clearly relates subalgebras of [0, 1]∗MV with Gödel chains with an involutive
negation plus an ∗ operation. This relation is deepened in the next subsection.

5.2 Adding a �-operator to involutive Gödel algebras

In this subsection, we present an alternative algebraic approach to capture the behaviour of
Łukasiewicz square by adding a unary operator � to a Gödel algebra with an involution.

Let us hence define the following structures.

DEFINITION 5.11
A Gödel-algebra with an involution ∼ and an operator � (IG�-algebra for short) is a triple (A, ∼, �)
where (A, ∼) is a Gödel algebra with involution and � is a unary operator on A satisfying the
following equations:11

(�1) �x ≤ x;
(�2) Δ(x ⇔ �x) = Δ(x ∨ ∼x);
(�3) Δ(x ⇒ ∼x) = ¬G � x;
(�4) Δ(∼x ⇒ x) ∧ Δ(∼y ⇒ y) ∧ Δ(�x ⇒ �y) ≤ Δ(x ⇒ y),

where ⇒ stands for Gödel implication and ¬G for Gödel negation, and Δx and x ⇔ y are
abbreviations for ¬G∼x and (x ⇒ y) ∧ (y ⇒ x), respectively. If A is a Gödel algebra in the
variety IGn+1 (recall Section 2), we will say that (A, ∼, �) is an IG�

n+1-algebra. The varieties of
IG�-algebras and IG�

n+1-algebras, over the signature Σ+ = (∧, ∨, ⇒, ∼, �, ⊥, �), will be denoted
by IG� and IG�

n+1, respectively.

Observe that, analogously to the case of the varieties Λ�
n+1 from Section 4.2, IG� and IG�

n+1 are
discriminator varieties with the same discriminator term t(x, y, z), and thus they are arithmetical and
semisimple as well.

Let us explain the equations above on an standard IG-algebra ([0, 1]G, ∼) where ∼ : [0, 1] →
[0, 1] is an involution with fixpoint 1/2. First of all, recall that in ([0, 1]G, ∼) the following conditions

11As it was done with Λ�
n+1-algebras in Subsection 4.2, we will use the same symbols for the connectives ∧, ∨, ⇒ and

� and for the respective operators in IG�-algebras.
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On the expressive power of Łukasiewicz square operator 33

hold for all x: x ∨ ∼x = 1 iff either x = 1 or x = 0; x ⇒ ∼x = 1 iff x ≤ ∼x iff x is negative, i.e.
x ≤ 1/2 and Δ(∼x ⇒ x) = 1 iff ∼x ≤ x iff x is positive, meaning that x ≥ 1/2.

(�1) This axiom is self-explanatory, it requires �x be not greater than x.
(�2) Since Δz ∈ {0, 1} for all z ∈ [0, 1], the formula Δ(x ∨ ∼x) = Δ(x ⇔ �x) states that x = �x

iff either x = 0 or x = 1. Therefore, taking into account (�1), this means that �0 = 0, �1 = 1
and �x < x for all x ∈ (0, 1).

(�3) As we recalled above, x ⇒ ∼x = 1 iff x ≤ ∼x iff x ≤ 1/2. Thus, Δ(x ⇒ ∼x) = 1 if x ≤ 1/2
and it is 0 otherwise. Moreover, ¬G � x = 1 if �x = 0 and ¬G � x = 0 if �x > 0. Therefore,
Δ(x ⇒ ∼x) = ¬G � x states that �x = 0 iff x ≤ 1/2, or equivalently, �x > 0 iff x > 1/2.

(�4) The term Δ(∼x ⇒ x) ∧ Δ(∼y ⇒ y) ∧ Δ(�x ⇒ �y) only takes value 0 or 1. In particular, it
takes value 1 iff x, y ≥ 1/2 and �x ≤ �y. Similarly, Δ(x ⇒ y) = 1 iff x ≤ y. Thus, (�4) states
that the � is strictly monotone (and thus, one-to-one) for positive elements: for all positive x, y,
if x > y, then �x > �y. This, together with (�3), yields that � is non-decreasing in the whole
interval [0, 1].

Now, we rise the question whether the equations introduced in Definition 5.11 above are enough
for � to capture the standard behaviour of the Łukasiewicz square operator ∗ on [0, 1]. Equivalently,
we are asking whether every countable IG�-chain embeds into the algebra

[0, 1]∗GMV = ([0, 1], ∧, ∨, ⇒, ∼, ∗, 0, 1), (2)

which is the expansion of [0, 1]∗MV with Gödel implication ⇒,12 where ∗x = max{0, 2x − 1} and
∼x = 1 − x is the involution.13

By definition, the variety IG� of IG�-algebras is prelinear. We begin investigating the finite
linearly ordered algebras of IG�. Basic properties are the following.

1. If A = (A, ∧, ∨, ∼, ∗, 0, 1) is a finite subalgebra of [0, 1]∗MV , then ⇒ is definable in A and
(A, ∧, ∨, ⇒, ∼, ∗, 0, 1) is a finite chain of IG�. However, the variety generated by [0, 1]∗MV is
not the one generated by [0, 1]∗GMV , as ⇒ is not definable in the infinite chain [0, 1]∗MV .

2. The procedure P described in Definition 3.2 can be easily adapted and used so as to define
〈x〉�, the subalgebra generated by an element x in any finite chain of IG�.

3. For every finite IG�-chain A and every a ∈ A, the notion of skeleton Sk(A, a) is defined as for
subalgebras of [0, 1]∗MV in the previous subsection.

4. Proposition 5.9 (1) is also valid for finite IG�-chains.

It is clear that any finite subalgebra of [0, 1]∗MV can be embedded into a finite chain of IG�. The
converse is not true in general as the following examples show.

EXAMPLE 5.12
Let A be the 6-element IG�-chain with support A = {1, a, b, ∼b, ∼a, 0}, where 0 < ∼a < ∼b <

b < a < 1, the operations ∧, ∨, ⇒ are defined according to the order, and �a = ∼b, �b = ∼a.
This algebra is not embeddable in [0, 1]∗MV because both elements a, b satisfy in A the equation
∼�∼�(x) = x, while the corresponding equation in [0, 1]∗MV , ¬∗¬∗(x) = x, has as a unique solution
x = 2/3. The algebra generated by 2/3 in [0, 1]∗GMV , 〈2/3〉∗, has universe {1, 2/3, 1/3, 0} and hence

12It is worth observing that Gödel implication ⇒ is not definable in [0, 1]∗MV .
13In this subsection, without danger of confusion, we will use ∼ to denote the Łukasiewicz involution instead of ¬ to

emphasize that we look at [0, 1]∗GMV as a IG�-chain.
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34 On the expressive power of Łukasiewicz square operator

Figure 2 Graphical representation of the algebras 〈a〉∗, 〈b〉∗ and A from Example 5.13.

〈2/3〉∗ is not isomorphic to A. Notice that, by definition of A ∈ IG�, Sk(A, a) = Sk(A, b) =
[�, ∼, �, ∼]. This sequence is periodic and we have already proved in Proposition 5.8 that there is no
strictly simple finite subalgebra of [0, 1]∗MV with such a skeleton.

Also, observe that in this algebra it is not possible to define the operators Δz for every z ∈ A as
defined in Proposition 3.11. In fact, the algorithm given in the proof of that proposition does not
terminate. As a consequence, the axiomatization given in Section 4 for the many-valued logic with
semantics on a Ł∗

n+1-chain is not generalizable to the case of a finite IG�-chain.

EXAMPLE 5.13
Let A be the 14-element IG�-chain whose support is A = 〈a〉� ∪ 〈b〉�, where a > b and, for x = a, b,
〈x〉� is made of the elements

1 > x = ∼�∼�2x > �x > ∼ �2 x > �2x > ∼�x > �∼ �2 x > 0

as in Figure 2, and the operations ∧, ∨, ⇒ are defined according to the order.
An easy computation shows that A is not embeddable into [0, 1]∗MV since 〈a〉� and 〈b〉� are strictly

simple and Sk(〈a〉�, a) = Sk(〈b〉�, b) = [�, �, ∼, �, ∼], while, by Proposition 5.9, in [0, 1]∗MV there
are no two different strictly simple subalgebras with the same skeleton.

In light of the examples above, let us introduce the following definition.

DEFINITION 5.14
A finite chain of IG� is called representable when its implication-free reduct is embeddable into
[0, 1]∗MV , or in other words, when it is isomorphic to a finite subchain of [0, 1]∗MV .
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On the expressive power of Łukasiewicz square operator 35

Representable IG�-chains (RIG�-chains for short) form a proper subset of finite chains of IG�. Our
next theorem characterizes RIG�-chains. Before showing this, we will need a first result that extends
Proposition 5.9 to finite IG�-chains. To this end, let us point out that, for every IG�-chain A which
is not necessarily a subalgebra of [0, 1]∗MV and for every a ∈ A, the procedure P (Definition 3.2)
launched on a still produces a list of elements of A and it stops when it finds an element b already
met at a previous step. Thus, analogously to the case of finite subalgebras of [0, 1]∗MV , in a finite
IG�-chain A one can also easily define, for every a ∈ A, the skeleton of a in A and the strictly simple
subalgebra 〈b〉� associated with a (according to (1) of Proposition 5.9), and, moreover, for every
strictly simple subalgebra B of A, one can also define the set B+ as in (3) of Proposition 5.9. With
these preliminaries, the following proposition holds.

PROPOSITION 5.15
Let A be a finite IG�-chain, and let B1, B2, . . . , Bk the strictly simple subalgebras of A. Then
{B+

1 , ...B+
k } is a partition of A \ {0, 1}. Furthermore, if Bi has a non-periodic skeleton, Bi is

representable and each B+
i , regarded as partial algebra, partially embeds into [0, 1]∗MV .

PROOF. The first part of the claim is proved, with no modification, by the same proof of Proposition
5.9. Indeed, in that proof, no assumption on the fact that A is subalgebra of [0, 1]∗MV is made and
hence it perfectly applies to this more general case.

As for the second part of the statement, assume that Bi has a non-periodic skeleton. Thus, in
particular, Sk(Bi, ci) for ci being the coatom of Bi. Thus, the equation fSk(Bi,ci)(x) = x has a unique
rational solution r in [0, 1]∗MV . It is then easy to see that the finite subalgebra 〈r〉∗ of [0, 1]∗MV is
indeed isomorphic to Bi and the assignment λ : b �→ r determines an embedding of Bi into [0, 1]∗MV .

Finally, in order to partially embed the partial algebra B+
i into [0, 1]∗MV recall that B+

i = {a ∈ A |
〈a〉� ⊇ Bi}, or equivalently, B+

i = Bi ∪ {a ∈ A | fR(a) ∈ Bi for some finite sk-sequence R}. Since we
already showed that Bi embeds into [0, 1]∗MV , it is left to show how to map the elements as such that
fR(a) = ba ∈ Bi for some sk-sequence R. Since Bi embeds, through a mapping λ, into the rational
subalgebra of [0, 1]∗MV , the equation fR(x) = λ(ba) has a rational solution, say ra. Then, extend λ to a
mapping sending each a of the above kind to ra. The so-obtained map clearly is a partial embedding
of B+

i into [0, 1]∗MV . �
Now, we are ready to characterize the representable IG�-chains.

THEOREM 5.16
A finite IG�-chain A is representable iff

1. for any strictly simple subalgebra B of A and for any positive b ∈ B \ {1}, Sk(B, b) is non-
periodic and

2. for each pair of strictly simple subalgebras B and C of A there are no positive elements b ∈
B \ {1} and c ∈ C \ {1} such that Sk(B, b) = Sk(C, c).

PROOF. Left-to-right. If A is representable, then it is (isomorphic to) a subalgebra of [0, 1]∗MV .
Therefore, (1) and (2) immediately follow from Propositions 5.8 and 5.9 (2), respectively.
Right-to-left. Assume (1) and (2) hold. (1) implies, by Proposition 5.15, that, for each strictly
simple subalgebra B of A the partial algebra B+ partially embeds into the rational subalgebra
of [0, 1]∗MV and hence it embeds into an Ł∗

nB+1 for some natural number nB. Moreover, (2)
implies that for two different strictly simple subalgebras B and C of A, B+ and C+ do not
partially embed into the same Ł∗

n+1. In other words, for every strictly simple subalgebra B of
A, there exists a unique nB and a unique partial embedding λB of B+ into Ł∗

nB+1. Let k =
lcm{nB | B is a strictly simple subalgebra of A}. Thus, each B+ partially embeds into Ł∗

k+1 by
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36 On the expressive power of Łukasiewicz square operator

the same map λ which, adding λ(0) = 0 and λ(1) = 1, determines and embedding of A
into Ł∗

k+1. �
A direct inspection on the proof of Theorem 5.16 above suggests that points 1 and 2 of its

statement can be equationally described. Indeed, in the following result, we will prove that for every
n, representable IG�

n+1-algebras form a proper subvariety of IG�
n+1.

In order to see it consider, for all n ∈ N, for all sk-sequences R = [o1, . . . , ot] and for all natural
numbers r such that rt ≤ n + 1, the following equations:

(R1n) ∼x ∨ x ∨ (x ⇔ y) ∨ [Δ(fR(x) ⇔ y) ⇒ ∼Δ(f(r−1)R(y) ⇔ x)] = 1;
(R2n) ∼x ∨ x ∨ ∼y ∨ y ∨ [Δ((fR(x) ⇔ x) ∧ (fR(y) ⇔ y)) ⇒ Δ(x ⇔ y)] = 1.

THEOREM 5.17
Let A be a finite IG�-algebra such that its G-reduct belongs to G(n + 1). Then A is representable iff,
for all sk-sequences S = [o1, . . . , ok] and for all natural numbers r such that rk ≤ n + 1, A satisfies
(R1n) and (R2n).

PROOF. (Left-to-right). Assume A is not representable. Then, by Theorem 5.16, either (1) A has a
strictly simple subalgebra B such that Sk(B, b) is periodic, for a positive b ∈ B \ {1} or (2) A has two
strictly simple subalgebras B and C with positive elements b ∈ B \ {1} and c ∈ C \ {1} such that
Sk(B, b) = Sk(C, c).

Assume that (1) is the case, and let S = [o1, . . . , ok] be the periodic skeleton of b in B. Then there
is an initial non-periodic sk-subsequence R = [o1, . . . , ot] of Sk(b, B) and a natural number r such
that [o1, . . . , ok] is the repetition r-times of [o1, . . . , ot], i.e. S = (r)R. Call c = fR(b). Thus, we have
that ∼b < 1, b < 1 and b ⇔ c < 1. On the other hand, Δ(fR(b) ⇔ c) = 1 holds by definition of c,
and also, Δ(f(r−1)R(c) ⇔ b) = 1 holds because (r)[o1, . . . , ot] = [o1, . . . , ok] is the skeleton of b.
Thus, ∼Δ(f(r−1)R(c) ⇔ b) = 0 and hence (R1n) is not satisfied.

Hence, assume that (2) is the case. Since B and C are both strictly simple, B\{0, 1}∩C\{0, 1} = ∅.
Take positive elements b ∈ B \ {1} and c ∈ C \ {1}. By hypothesis, Sk(B, b) = Sk(C, c) = S =
[o1, . . . , ok]. Then one has Δ((fS(b) ⇔ b)∧ (fS(c) ⇔ c)) = 1 while Δ(b ⇔ c) = 0. This shows that
(R2n) fails as well.

(Right-to-left). Let us assume that there exists a non-periodic sk-sequence S = [o1, . . . , ok] and a
natural number r such that rk ≤ n and either (R1n) fails or (R2n) fails.

If (R1n) fails, then there exist x, y ∈ A different from 0 and 1 such that x �= y, fR(x) ⇔ y = 1 and
f(r−1)R(y) ⇔ x = 1. Thus, f(r)R(x) ⇔ x = 1, meaning that the subalgebra 〈x〉� generated by x has a
periodic skeleton. Thus, A is not representable by Theorem 5.16.

If (R2n) fails, then there are two distinct positive elements b, c ∈ A\{1} having the same skeleton.
The strictly simple subalgebras 〈b〉� and 〈c〉� of A witness the fact that A is not representable again
by Theorem 5.16. �

REMARK 5.18
(1) As it was observed after the Proposition 3.11, in any finite RIG�-chain A, it is possible to define
the operators Δx for every x ∈ A. This implies that the axiomatization of the variety generated by
the chain Ł∗

n+1 given in Definition 4.4 and the proof of Theorem 4.10 can be easily generalized to
axiomatize the variety generated by a single finite RIG�-chain.
(2) Theorem 5.17 gives an axiomatization of the variety generated by the representable IG�-chains
whose length is less or equal to n + 1. This is the axiomatization of a variety generated by a
finite family of chains, very different from the axiomatization in Definition 4.13 that gives the
axiomatization of the variety generated by a single RIG�-chain.
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On the expressive power of Łukasiewicz square operator 37

Now we know that the answer to the question posed after Definition 5.11 is negative and we
reformulate the question as whether every countable RIG�-chain embeds into the algebra [0, 1]∗GMV .
In the next result, we will denote by RIG� the variety generated by the finite representable
IG�-chains while V� will denote the variety generated by [0, 1]∗GMV .

PROPOSITION 5.19
The following statements are valid:

1. the variety V� has the finite model property;
2. the varieties V� and RIG� coincide;
3. the variety V� is axiomatized by the axioms of IG� plus the infinite set of axioms (R1n) and

(R2n) for every n ≥ 2.

PROOF. To prove (1), suppose that ϕ is not a tautology in V�. Then there is an evaluation e into
the chain [0, 1]∗GMV such that e(ϕ) < 1. Then there is also a rational evaluation v (i.e. a good
approximation of e) such that v(ϕ) < 1 and for any propositional variable p appearing in ϕ, e(p)

is rational. Since the subalgebra generated by the set of values {v(p)| p is a propositional variable
appearing in ϕ} ⊆ [0, 1] is finite, ϕ is not valid in a finite RIG�-chain.

On the other hand, (2) is immediate from (1) since both varieties are generated by finite
subalgebras of [0, 1]∗GMV which are the representable IG�-chains.

Finally, (3) is a direct consequence of (2). �

6 Conclusions and final remarks

In this paper, we have been concerned with the logical and algebraic analysis of the reduct of
finite-valued Łukasiewicz logics over the signature Σ = (∨, ∼, �, ⊥, �), where � represents the
square operator ∗x = x � x, with � being Łukasiewicz strong conjunction. Our main contributions
are the following. First of all, we have characterized for which n of the corresponding structures
Ł∗

n+1, over the (n + 1)-element domain {0, 1/n, . . . , 1}, the Łukasiewicz implication is definable,
and thus for which n the algebra Ł∗

n+1 is term-equivalent to the MV-chain Łn+1. Second, we have
studied the matrix logics arising from the Ł∗

n+1 structures with order filters. We have shown they
are all algebraizable, we have described the resulting varieties of Λ∗

n+1-algebras that constitute their
equivalent algebraic semantics and provided a complete and uniform Hilbert-style axiomatization in
a suitable signature that enjoys nice logical properties. And third, we have considered an alternative
approach to capture the behaviour of the square operator in algebraic structures obtained by adding
a unary operator � to n-valued Gödel chains with an involutive negation and have identified the
conditions under which they can be embedded into some Ł∗

m.
At this point, we would like to make a couple of additional remarks we deem interesting to

highlight. An interesting question is whether the well-known relationship between the finite-valued
logics Łn and the infinite-valued logic Ł = 〈[0, 1]MV , {1}〉 is preserved between the logics Λ∗

n and
their corresponding [0, 1]-valued version Λ∗. It is well known that, with respect to their finitary
consequence relations, Ł is the intersection of all finite-valued logics Łn, i.e.

⋂
n Łn = Ł. It is not

difficult to check that this relationship extends to our setting as follows:

- in the signature Σ = (∨, ∼, �, ⊥, �), we have that
⋂

n Λ∗
n = 〈[0, 1]∗MV , {1}〉, the latter

standing for the matrix logic defined in the obvious way;
- while in the expanded signature Σ+ = (∧, ∨, ⇒, ∼, �, ⊥, �), we have that
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38 On the expressive power of Łukasiewicz square operator

-
⋂

n Λ∗
n = 〈[0, 1]∗GMV , {1}〉.14

Another way to look at the relation
⋂

n Łn = Ł is that Łukasiewicz logic is complete with respect
to the whole class of finite MV-chains. From the results of Subsection 3.3, we know that, if n is a
prime number in Π (recall Definition 3.18), then the algebras Łn+1 and Ł∗

n+1 are term-equivalent.
Thus, we rise the question of whether primes from Π are enough to define a complete semantics for
Ł. In other words, whether Ł is complete with respect to the set of finite chains Ł∗

n+1 where n ∈ Π .
Clearly, in order to provide an answer to the question above, we would need first to elucidate whether
Π is an infinite set or not.

Our future work in this topic will also concern the variety IG�, introduced in Subsection 5.2. In
particular, we will investigate whether IG� can be generated by standard algebras, i.e. to say, by
IG�-chains on the real unit interval and if, moreover, IG� can be generated by its finite chains. The
latter, then, would give the finite model property for its associated logic.
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Appendix

In Subsections 4.1 and 4.2, we have presented properties of the logics Λ∗
n+1,i that are commonly

investigated by Abstract Algebraic Logic (AAL) means. Indeed, as it was suggested by one of the
anonymous referees, adopting the AAL perspective, not only allows to provide an alternative proof
for some of our results from a more abstract perspective, but it may also pave the way to address
several issues that would be otherwise quite complex to tackle.

In this appendix, we hence present an alternative proof of the main result of Subsection 4.2
stated in Corollary 4.11, i.e. the fact that, for every n ∈ N, the variety Λ∗

n+1 is, for all i ≤ n,
the equivalent algebraic semantics of the logic Λ∗

n+1,i. For the proof communicated to us by the
aforementioned referee, it is convenient to recall some basic notions and results form AAL. All the
relevant definitions and background results can be found in [5, 20].

(1) Let L be an algebraizable logic. By Alg(L), we will denote the equivalent algebraic semantics
of L.

(2) For every sentential logic L, the intrinsic variety of L is the variety generated by the Lindenbaum–
Tarski algebra of L on countably many propositional variables.

(3) A congruence θ of an algebra A is compatible with a set F ⊆ A, if for all a ∈ A, a ∈ F iff the
congruence class of a modulo θ , a/θ belongs to F/θ = {f /θ | f ∈ F}. Then, the Leibniz congruence
of a matrix 〈A, F〉 is the largest congruence ΩAF of A compatible with F. Finally, a matrix 〈A, F〉
is Leibniz reduced if ΩAF is the identity.

THEOREM A.1
For all n ∈ N and i ≤ n, the variety generated by Ł∗

n+1, Λ∗
n+1, is the equivalent algebraic semantics

of Λ∗
n+1,i.

PROOF. For every natural number n, the logic Λ∗
n+1 is, by its own definition, determined by the finite

matrix 〈Ł∗
n+1, {1}〉. By Corollary 3.13 (ii), Ł∗

n+1 is simple, so that the congruence corresponding to
{1} is the Leibniz congruence of 〈Ł∗

n+1, {1}〉 that clearly is the identity. Therefore, by [20, Proposition
5.79], its intrinsic variety V(n + 1) coincides with Λ∗

n+1.
We are now going to show that, indeed, the equivalent algebraic semantics Alg(Λ∗

n+1) of Λ∗
n+1

coincides with V(n+1), and hence, also with Λ∗
n+1. Notice that the latter implies the claim because,

by Lemma 4.2, for all i ≤ n the logic Λ∗
n+1,i is equivalent to Λ∗

n+1.
The intrinsic variety of any algebraizable logic contains its equivalent algebraic semantics. Thus,

V(n + 1) ⊇ Alg(Λ∗
n+1). Let us hence show that V(n + 1) ⊆ Alg(Λ∗

n+1) as well.
By Corollary 4.12, Λ∗

n+1 = V(n + 1) is congruence-distributive. Therefore, by Jónsson [28]
lemma, the subdirectly irreducible elements of V(n + 1) are homomorphic images of subalgebras of
its generator, in symbols, V(n+1)SI ⊆ HS(Ł∗

n+1). Recall from Corollary 3.13 (ii) that every algebra
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in S(Ł∗
n+1) is simple; thus, in particular Ł∗

n+1, besides the trivial algebra, only has one homomorphic
image, i.e. itself. Hence, HS(Ł∗

n+1) = S(Ł∗
n+1).

By Theorem 4.3, Λ∗
n+1 is algebraizable and hence Alg(Λ∗

n+1) is a quasivariety, whence it is closed
under subalgebras, i.e.

V(n + 1)SI ⊆ S(Ł∗
n+1) ⊆ Alg(Λ∗

n+1).

Finally, since Alg(Λ∗
n+1) is closed under subdirect products, by Birkhoff theorem [5, Theorem 8.6],

we conclude that SP(V(n + 1)SI ) = V(n + 1) ⊆ Alg(Λ∗
n+1) and hence the equivalent algebraic

semantics of Λ∗
i+1 coincides with its intrinsic variety V(n + 1). This settles the claim. �
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