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Transfinite Number in Wittgenstein’s Tractatus

James Connelly

In his highly perceptive, if underappreciated introduction to
Wittgenstein’s Tractatus, Russell identifies a “lacuna” within
Wittgenstein’s theory of number, relating specifically to the topic
of transfinite number. The goal of this paper is two-fold. The
first is to show that Russell’s concerns cannot be dismissed on
the grounds that they are external to the Tractarian project, de-
riving, perhaps, from logicist ambitions harbored by Russell but
not shared by Wittgenstein. The extensibility of Wittgenstein’s
theory of number to the case of transfinite cardinalities is, I shall
argue, a desideratum generated by concerns intrinsic, and internal
to Wittgenstein’s logical and semantic framework. Second, I aim
to show that Wittgenstein’s theory of number as espoused in the
Tractatus is consistent with Russell’s assessment, in that Wittgen-
stein meant to leave open the possibility that transfinite numbers
could be generated within his system, but did not show explic-
itly how to construct them. To that end, I show how one could
construct a transfinite number line using ingredients inherent in
Wittgenstein’s system, and in accordance with his more general
theories of number and of operations.
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Transfinite Number in Wittgenstein’s
Tractatus

James Connelly

1. Introduction

In his highly perceptive, if underappreciated introduction to
Wittgenstein’s Tractatus Logico-Philosophicus (TLP), Russell iden-
tifies a “lacuna” (TLP xxiii) within Wittgenstein’s theory of num-
ber, relating specifically to the topic of transfinite number. Ac-
cording to Russell, Wittgenstein’s theory “is only capable of deal-
ing with finite numbers”, and “(n)o logic can be considered ad-
equate until it has been shown to be capable of dealing with
transfinite numbers” (TLP xxiii). While Russell thus identifies
transfinite number as an issue upon which Wittgenstein’s theory
“stands in need of greater technical development” (TLP xxiii),
he is also careful to note that, there is nothing “in Mr. Wittgen-
stein’s system to make it impossible for him to fill this lacuna”
(TLP xxiii).

This paper has two principal, and interrelated goals. The first
is to show that these concerns of Russell’s cannot be dismissed
on the grounds that they are external to the Tractarian project,
deriving, perhaps, from logicist ambitions harbored by Russell
but not shared by Wittgenstein. By contrast, the extensibility of
Wittgenstein’s theory of number to the case of transfinite num-
ber is, I shall argue, a desideratum generated by concerns internal
to Wittgenstein’s logical and semantic theory. Second, I aim to
show that Wittgenstein’s theory of number as espoused in the
Tractatus is consistent with Russell’s assessment, in the sense that
Wittgenstein meant to leave open the possibility that transfinite

numbers could be generated within his system,1 by making re-
course to his theory of operations, and to the general form of
an operation (TLP 6.01). Though he did not show explicitly how
this was to be done, he specified two distinct operations, denoted

by Σ and � respectively, the structure of each of which is such
that it would be plausible to deploy them in such a construction.
The way the Σ operation in particular is introduced at TLP 4.27
and 4.42, strongly suggests that Wittgenstein intended it to have
further applications beyond those in association with which it is
immediately deployed in that context.

To these ends, I will show how requirements internal to the
Tractatus require that the number of elementary propositions
constitutes an infinite totality, while also therefore requiring that
the number of truth-possibilities, and truth-functions of those
elementary propositions, must constitute higher, transfinite to-
talities. The number of elementary propositions must be an infi-
nite total, and the relationship between elementary propositions
on the one hand, and their truth-possibilities as well as truth-

1At a first blush, the idea that Wittgenstein meant it to be possible to ex-
tend his theory of number to the domain of transfinite number might seem
incompatible with the voluminous evidence compiled and summarized by
Rodych (2000) to the effect that Wittgenstein was strongly critical of transfinite
set theory (or TST). Yet, Rodych’s own thesis is that Wittgenstein was strongly
critical of TST “(f)rom his return to philosophy in 1929 through at least 1949”.
(2000, 281) The Tractatus does not lie within this period of Wittgenstein’s philo-
sophical development and thus the evidence contained in Rodych’s paper is
inconclusive with respect to the issue of whether Wittgenstein was strongly
critical of TST when he wrote TLP. The general picture which will emerge over
the course of this paper is that in the Tractatus, Wittgenstein is critical of some
aspects of TST but not others. In particular, though he appears to reject set
theory as “superfluous in mathematics” (TLP 6.031), and to dispute the special
status of axioms, or “primitive propositions”, relative to that of other logical
propositions (TLP 6.1271), this does not amount to a wholesale rejection of
Cantor’s theory of transfinite number. Instead, Wittgenstein hopes to lay the
groundwork for a theory of both finite and transfinite number, consistent in
many respects with Cantor’s, by deploying a theory of iterative operations in
lieu of an axiomatic theory of classes.
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functions on the other, must be one-to-many. Explicating and
supporting these points will first involve delving into the me-
chanics of Wittgenstein’s N-operator notation in Section 2. In
Section 3, it will then involve reflecting on the size of the domain
of quantification, and defending the idea that the number of Trac-
tarian objects must be infinite (though this may only be shown
but not literally said in a logically adequate notation). Building
on this, Section 4 will probe the mechanics of Wittgenstein’s
truth-tabular notation, and show how it implicates and involves
transfinite cardinalities. In Section 5 I will then show how, using
ingredients already present within Wittgenstein’s logical system,
one could extend his theory of number from natural, to trans-
finite numbers. In sum, this could be done by first applying an
iterative Ω operation to generate the successive progression of fi-
nite, natural numbers, and then taking the limit ordinal of these

numbers, $, as the base of an iterative power operation
∑′(�)

which, applied successively, generates the series of transfinite
Beth numbers.2

In a Tractarian notation, the general form of transfinite num-
ber yielded by such a power operation could be symbolized as

follows: [$, �,
∑
(�)], where $ represents all digitally encoded

subselections of members of the natural number series, � rep-

resents any arbitrary sub-selection of bases or results of
∑′(�),

and
∑
(�) represents an operation which calculates summations

of binomial coefficients corresponding to numbers of subselec-
tions of selections of digital sequences (which in the base case,
encode subselections of natural numbers). Applying this oper-

ation iteratively,
∑′(�) could be used to calculate the number

of subselections of natural numbers (
∑
($)), yielding i1(= 2$),

then calculate the number of subselections of the original subs-
elections, yielding i2(= 22$ ), and so on.

2In Section 5, it will be made clear why I choose to develop the Beth series
instead of the Aleph series.

Aside from going some way to address the “lacuna” identi-
fied by Russell, an added benefit of this demonstration will be
to display the deep, and philosophically illuminating internal
relationships between Wittgenstein’s treatments of logic, lan-
guage and mathematics, all of which make essential recourse, as
we shall see, to structurally analogous operations, as well as to
the general form of an operation, Ω′(�), identified at TLP 6.01.

Indeed, N’(�) and
∑′(�) are each straightforward substitution

instances of Ω′(�).
Russell is not alone in noting the existence of gaps within

Wittgenstein’s theory of number. (see, e. g., Frascolla 1997, 362,
Frascolla 2017, 307, and Ramsey 1931, 17.) However, and as Fras-
colla (2017, 307) notes, it was “misdirected” of Ramsey to char-
acterize Wittgenstein as providing a “ridiculously narrow view
of mathematics” (1931, 17). Such gaps exist in Wittgenstein’s
presentation not because Wittgenstein offered “the equational
fragment of arithmetic as an exhaustive exposition” (Frascolla
2017, 307) of the general form of number, but instead insofar as
he intended that fragment to serve “as a model for the interpreta-
tion of the remaining parts of mathematics” (2017, 307). In other
words, the “equational fragment” provided in the Tractatus is not
supposed to constitute a robust formal exposition of a theory of
number and of the foundations of mathematics, so much as it
aims merely to suggest, and work out the beginnings of a novel
and alternative approach to number, particularly relative to the
logicism of Frege and Russell. (Something analogous is true re-
garding Wittgenstein’s exposition of his N-operator notation.)
Indeed, Wittgenstein himself is careful to note, in his preface,
that the Tractatus should not be construed as a textbook (TLP 4),
and that he has “fallen a long way short of what is possible” (TLP
4) in terms of clearly expressing his logical, mathematical, and
philosophical thought. Wittgenstein subsequently invites others
to “come and do it better” (TLP 4), that is, to clarify and flesh out
the details of his system. That said, it will be important to keep

Journal for the History of Analytical Philosophy vol. 9 no. 2 [2]



in mind as we exposit Wittgenstein’s system and attempt to flesh
out the relevant details, that ultimately, for many interrelated
reasons, the Tractarian system is irreparable and does not work.
Nevertheless, it is a highly influential and illuminating system
which we can learn from by carefully examining both its insights
and deficiencies alike.

2. Operator N and the General Form of a
Truth-Function

It is tempting to dismiss Russell’s admonition of Wittgenstein,
that he fails to sufficiently develop a theory of transfinite number,
on the grounds that it emerges from and reflects logicist concerns
external to the Tractarian project. Perhaps, it might be argued,
Wittgenstein should simply be read as a finitist (see, e. g., Li
2018), who would have no truck with transfinite numbers. If this
were in fact the case, then Russell’s assessment of Wittgenstein’s
system as being compatible with the introduction of transfinite
numbers would be both odd and incorrect. In Section 4 of this
paper, however, it will be shown that contrary to this tempta-
tion, transfinite cardinalities are implicit within features internal
to Wittgenstein’s early philosophy of logic and language, consis-
tent with Russell’s assessment. In order to understand how and
why, it will be helpful to first explicate some of these features.
In this section, more specifically, we will take a closer look at
Wittgenstein’s N-operator notation and reflect on how Wittgen-
stein likely intended to deploy it to recover quantification over
infinite domains. Doing so will provide crucial background con-
text, for subsequent discussion of the scholarly controversy over
the size of the Tractarian domain, and of the reasons to think that
Wittgenstein’s logical system involves implied transfinite cardi-
nalities. It will also serve to highlight crucial, structural simi-
larities between Wittgenstein’s construction of truth-functions,
and the construction of transfinite cardinalities which can be un-
dertaken by deploying elements of his theory of operations and
truth-functions.

At the heart of Wittgenstein’s early philosophy of logic and lan-
guage is what he calls the “general form of a proposition” (TLP

6). Within his symbol for the general form of a proposition ([?, �

N(�)]), which he also calls “the general form of a truth-function”
(TLP 6), Wittgenstein specifies a procedure whereby all possible
truth-functions may be built up via successive applications of
a single, truth-functional operator, specifically N, to selections
of elementary propositions. Hence, according to Wittgenstein’s
symbol for the general form of a truth-function, we start with
all selections of elementary propositions (?) as our base, and
from there, generate truth-functions by applying N successively,

first to any such selection of those elementary propositions (�),
and then to the N-expressed truth-functions of those elemen-
tary propositions which result. (To say that a truth-function is
“N-expressed” means that it is symbolized using successive it-
erations of N alone, exclusive of other, equivalent combinations
of truth-functional operators such as “∼” (i. e., negation) or “&”
(i. e., conjunction)). Notably, N functions similarly to joint nega-
tion (e. g., ∼ p & ∼ q) except that it may be applied to more than
two propositions at a time. Indeed, N is defined such that it may
take an indefinite number of arguments, from 1 to an infinite
number of arguments. The bar on top of “p” or “�” represents
an operation which generates selections of whatever arguments
it applies to.3 For instance, within Wittgenstein’s symbol for

3Russell has engendered some confusion about the bar notation by describ-
ing the symbol ? in his introduction as standing “for all atomic propositions”
(TLP, xvii). Yet when Wittgenstein himself describes the bar notation in TLP
5.501 he is careful to note that it indicates not all elementary propositions
but rather selections thereof (though ‘all’ is clearly one such selection among
others). Specifically, he says it indicates all “values” which are “terms of the

bracketed expression”, e. g., “(�) = (P, Q, R)”. (TLP 5.501) Wittgenstein calls
these “values” because they are the results of a selection operation performed
on whatever base they are applied to. The bar indicates this selection opera-
tion, and when it appears over � it indicates an arbitrary selection from among
those indicated by ?, which serves as the base for the N-operation character-
istic of the general form of a truth-function. Wittgenstein alludes to Russell’s
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the general form of a proposition, “p” serves as a sentence-letter
metavariable which ranges over all elementary propositions, and
the bar on top of the “p” generates all subselections of those argu-

ments (i.e., elementary propositions). � represents any arbitrary
one of those selections, for instance (p, q, r). (TLP 5.101) Sub-

sequently, the � operation can be deployed again in succession,
to select the results of N-operations, namely N-expressions, for
presentation to N. The first term within Wittgenstein’s symbol

for the general form of a truth-function, ?, thus tells us what the �
operation is being applied to. In other words, it tells us what the
base of the selection operation specified therein is. In the case
of the general form of a proposition it is elementary proposi-
tions, but it need not always be. As we will see in more detail in
Section 5, at TLP 6.01 Wittgenstein deploys � as a metavariable
within his symbol for the general form of an operation Ω

′(�),
to stand for any arbitrary base of the selection operation repre-

sented by �.

In order to express negation using Wittgenstein’s N’(�) oper-
ation, for instance, we would apply N to a single elementary
proposition, like so: N(p). In order to express the conjunction of
p and q, we would apply N, successively, first to each of p and q,
and then place each of these resulting N-expressions under an
additional iteration of N as follows: N(N(p), N(q)). The disjunc-
tion of p and q, we would express by applying N first to (p, q),
and then, successively, applying another iteration of N to the re-
sulting N-expression, like so: N(N(p, q)). Given that conditional
statements are true whenever either their consequents are true,
or their antecedents are false, p → q is equivalent to ∼ p ∨ q,
and that in turn can be expressed via successive applications of
Wittgenstein’s N-operator, as follows: N(N(N(p), q)).

Furthermore, by allowing N to take an infinite selection of ar-
guments, and by allowing those arguments to be each of the infi-

misunderstanding in an August 1919 letter where he writes to Russell that “I

suppose you don’t understand the notation of ‘�’. It does not mean ‘for all
values of �. . . ”’ (Wittgenstein 1995, 126)

nite number of substitution instances of a propositional function
such as fx, for example, we may then use N to express something
equivalent to Russellian quantification. As Wittgenstein explains
in TLP 5.52, for instance, “if � has as its values all the values of
a function fx for all values of x, then N(�) = ∼ (∃x).fx”. In other
words, if we substitute each of an infinite number of individual
constants for x in fx, and then place each of the infinite number
of elementary propositions which result within the brackets un-
der the scope of the N operator, like so: N(fa, fb, fc, fd, . . . , f$),
then we will thereby express something that is equivalent to the
negation of (∃x).fx. To express the equivalent of (∃x).fx, then,
we need simply to apply an additional “N” to the front of this N
expression in succession, as follows: N(N(fa, fb, fc, fd, . . . , f$)).

Like (∃x).fx, {N(N(fa, fb, fc, fd, . . . , f$))} is equivalent to a
truth-functional expansion, a disjunction which takes each of
an infinite number of substitution instances of the propositional
function fx, as disjuncts. The equivalent truth-functional expan-
sion can thus be given in the form of a disjunction as follows: fa
∨ fb ∨ fc ∨ fd ∨ . . . ∨ f$. Earlier, we saw how to express the
conjunction of p and q using the N-operator, and from this it is
easy to see how the N-operator may be used to recover universal
quantification. For instance, we may express (∀x).fx by using N
to recover something equivalent to the conjunction of each of
the substitution instances of fx, like so: N(N(fa), N(fb), N(fc),
N(fd), . . . , N(f$)). This N-expression is then equivalent to the
following, conjunctive, truth-functional expansion: fa & fb & fc
& fd & . . . & f$.

In explicating how to deploy the N operator in order to con-
struct several common truth-functions, for illustrative purposes
we have followed Wittgenstein (TLP 5.52, 5.501) in focusing
on how N may be used to recover quantification into monadic
propositional functions. In TLP 5.501, Wittgenstein briefly indi-
cates one way in which we might expand this same basic method
to capture quantification over propositional functions of higher
arity. Specifically, the third of the three kinds of description he
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identifies, by which we may select arguments for presentation to
the N operator (i. e., stipulate terms to occur within the brackets
under the scope of an iteration of N) involves “giving a for-
mal law that governs the construction of the propositions” (TLP
5.501). In that case, what will occur in the brackets under the
scope of one or more iterations of N will be “all the terms of a
series of forms” (TLP 5.501). Here Wittgenstein seems to have in
mind the sorts of formal series described in TLP 4.1252, which in-
volves several distinct objects (a, b, etc.,) being ordered in a series
by iterations of a dyadic relation R. In this case, the propositional
function “xRy” serves as a sort of prototype, or recipe which can
be used to gather together substitution instances of a dyadic, as
opposed to monadic propositional function, for presentation to
the N-operator. With regards to each of the second and third
kinds of description identified at TLP 5.501, there would seem
to be no barrier to using the same basic procedures, or others
like them, to gather together substitution instances of triadic,
quadratic, or other propositional functions of even higher arity,
in order to use N to recover quantification over such proposi-
tional functions, via the method of truth-functional expansion
exposited above.

In developing our exposition, however, we have also made
two additional, and crucial presumptions. The first is that ex-
istential and universal quantifications are equivalent to infinite,
truth-functional expansions, i. e., disjunctions and conjunctions,
respectively. The second is that that the totality of substitution
instances of any monadic propositional function is infinite. De-
fending the idea that Wittgenstein adhered to this second pre-
sumption will be the focus of Section 3. In the remainder of
Section 2, we will look at the first presumption. It will be re-
called that our goal here is not to defend the Tractarian logical
system. Instead it is to give a general indication of the lines along
which Wittgenstein thought it would be possible to construct a
transfinite number line, given other things we know about his
system.

One thing we can be fairly confident about with regards to his
system is that he did indeed think that existential and universal
quantifications were equivalent to infinite, truth-functional ex-
pansions, and that these could be expressed with his N-operator
notation. Hence in a lecture on 25 Nov 1932, G. E. Moore records
Wittgenstein as identifying “a most important mistake in the
Tractatus” (Stern, Rogers and Citron 2016, 216) which is “mud-
dling up a sum with the limit of a sum” (2016, 217). In this
context, he claims that “if all general propositions were iden-
tical with logical products or logical sums. . . then any general

proposition could be written” (2016, 217) using N. The notes
don’t contain the letter “N”, but it is clear that his N operator is

what he means by the expression “(�̂)[-------T}”, which he says
represents the “negation of all propositions that are values of
�” (2016, 217). Continuing on, he says that in the Tractatus, he
mistakenly supposed “that (∃x)fx = fa ∨ fb ∨ fc & so on was of
laziness, when it wasn’t”. Moreover, he claims that if the “& so
on” were “of laziness” then “it could be replaced by an enumer-
ation” (2016, 217).

The picture Wittgenstein is sketching of the nature of the re-
lationship between N and quantification here, is as follows: N
could be used to express infinite, truth-functional expansions
corresponding to existential and universal quantification, by op-
erating on enumerable lists of elementary propositions. (If the
expansions in question were not infinite, then it could not have
been a “mistake” to think that their terms could be enumerated.)
The thought here seems to be that, the propositional function fx
describes a selection of propositions, specifically, substitution in-
stances of that propositional function, which may then be listed
under one or more iterations of N, as outlined above, in order
to recover expressions involving quantification. In the simplest
instance, described at TLP 5.52, listing them under one iteration
of N recovers the negation of an existential quantification, for
example. Immediately following this remark, Wittgenstein goes
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on in TLP 5.521 to explicate the way in which logical products
and sums provide a bridge between quantification, and the N-
notation. There he says that quantification is “embedded” in the
notions of logical product and sum, but that there are certain
complications, or difficulties, with introducing generality in as-
sociation with them. In order to obviate these difficulties, we
have to treat quantified expressions as indicating logical pro-
totypes (e. g., “fx” in (∃x).fx), in which variables and constants
are clearly disambiguated, since constants are prominently dis-
played therein as those symbols which are not bound by quan-
tifiers (TLP 5.522). Using these prototypes, we can then gather
together lists of substitution instances for presentation to the N-
operator, and thereby use N to express something equivalent
to existential and universal quantifications. The complications
identified by Wittgenstein, here, may be of precisely the sort
identified by Fogelin (1982, 1987) and Soames (1983), that emerge
when N is applied to expressions containing certain sorts of com-
binations, or iterations, of quantifiers. Such difficulties would
then explain why Wittgenstein insists that we must “dissociate”
generality from truth-functions, meaning that N does not ap-
ply to anything with quantifiers in it. Instead it will apply to
lists of elementary propositions which we use logical prototypes
contained in quantified expressions to generate.

While it would obviously be impracticable to write these
whole lists down, it must nevertheless be possible, according to
Wittgenstein, in principle. At the very least, it would have to be
the case that these lists could be treated as if they were enumer-
able. On this view, the second and third, “recipe” or “prototype”
methods of stipulating arguments for presentation to N identi-
fied at TLP 5.501, could thus, in principle if not in practice, be
replaced by the first, i. e., direct enumeration. Hence, referring
back to the Tractatus, Wittgenstein explains in the Big Typescript
that

My understanding of the general proposition was that (∃x).fx is a
logical sum, and that although its terms weren’t enumerated there,
they could be enumerated (from the dictionary and the grammar
of language) (Wittgenstein 2005, 249).

Importantly, Wittgenstein never thought of the N-operator no-
tation as something which it would be practically convenient to
use. Its significance within the Tractarian system is philosoph-
ical, not practical (see Connelly 2017). It shows that, provided
we can treat it as if operating on enumerable lists of elemen-
tary propositions, there is a single, truth-functional operator, N,
which can in principle be used to recover the expressive capacity
of any other possible notation. N thus yields the general form
of a truth-function, and that, in turn, is the general form of a
proposition (TLP 6).

Later, however, Wittgenstein came to realize that the idea of a
general propositional form is a mistake, the nature of which we
can see by, inter alia, looking more closely at the cases in which
the expressive power of N breaks down. A vast literature has
grown around this issue of the expressive completeness of N,
where and how exactly it fails.4 In the portions of Moore’s notes
quoted above, Wittgenstein is telling us how. It is not that N can-
not express mixed, multiply general quantifications because it
cannot operate on different variables within its scope in different
ways. (compare Fogelin 1987, 79, Soames 1983, 575–76, Landini
2007, 136–37.) Wittgenstein means to obviate problems like this
by “dissociating” (TLP 5.521) quantifiers from N. N thus does not
operate on anything containing variables, or internal, quantifica-
tional structure (Connelly 2017). Instead, though such lists may
be generated with the help of propositional functions containing
variables (in which case they serve as a sort of “recipe” for select-
ing, or “prototype” of, the propositions comprising the list), N
ultimately instead operates upon lists of elementary propositions

4See, e. g., Fogelin (1982, 1987), Geach (1981, 1982), Soames (1983), McGray
(2006), Rogers and Wehmeier (2012), and Connelly (2017).
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(Connelly 2017, 4). Because elementary propositions are logically
independent, they may be assigned semantically atomic sen-
tences letters which lack any internal structure (Connelly 2017,
20). It is these semantically atomic sentence letters which occur
in the brackets under the scope of N, just as Wittgenstein indi-
cates in his symbol for the general form of a truth function at TLP
6. The operation this symbol specifies, however, does ultimately
break down, and it does so in the infinite case because in that
case the lists upon which N must operate are not enumerable,
even in principle, and therefore cannot convincingly be treated
as if they are.

In the portion of Moore’s notes from the 1932 lecture quoted
above, Wittgenstein is telling us that in the Tractatus, he mis-
takenly presumed that the terms of an infinite, truth-functional
expansion could be treated as if they were enumerable. That is
why he describes his mistake as akin to “muddling up a sum
with the limit of a sum”. In Section 4 when we examine Wittgen-
stein’s

∑
notation and consider its associations with the binomial

theorem and Pascal’s triangle, we will explore some additional
possible reasons why he might have thought this. In an ordi-
nary, arithmetical sum which has a final term, in any case, you
can enumerate all of the terms of the sum. For instance, in 1 +
1 = 2 the final term of the sum is “1”. When you are dealing
with a sum which approaches a limit, by contrast, you cannot
enumerate all of the terms it contains because they are infinite,
and so endless, in number. So, for example, as in the case of 1+
1, 2 is also the sum of 1 + 1

2 + 1
4 + . . . = . Both sums “terminate”

in the number 2 in the sense that 2 is the “answer” or solution to
both sums. But from this it does not follow that, like 1 + 1, this
second sum has a final term. On the contrary, in the second case
2 is the “answer” in the sense that it is the limit of a sum with
an endless number of terms. In his Tractatus, Wittgenstein seems
to have wanted to be able to treat truth-functional expansions
as if they could be infinite in length while still having a “limit”
in the sense of an end, or terminus. This explains why, when

Ramsey (1931, 74) describes Wittgenstein’s analysis of universal
quantification (e. g., “For all x, x is red”) in terms of conjunction,
he provides as his illustration of that analysis a terminal, truth-
functional expansion (i. e., “a is red and b is red and . . . and z
is red”.) As Wittgenstein later realized, however, this notion in-
volved a mistake analogous to conflating these two distinct sorts
of arithmetical sums.

A somewhat less charitable way of characterizing Wittgen-
stein’s mistake is that he has made the “elementary blunder”
(compare Soames 1983, 578) of muddling up infinite with fi-
nite lists. Reading the author of the Tractatus more charitably,
however, what has happened is that he has adopted a concep-
tion of infinity according to which infinite lists can be treated
as terminal, and though counterintuitive, such a conception is
required in order for language to have determinate sense. If in-
finite, truth-functional expansions do not terminate, or cannot
be treated as if they do, then you cannot express quantification
over infinite domains within the scope of the general form of
a truth-function. From the extensionalist perspective of the au-
thor of the Tractatus, what it means to be a proposition is to be
expressible via iterations of the general form of a truth-function.
So, from that perspective we have to bite the bullet and accept
that infinite truth-functional expansions can be treated as if they
are terminal. A counter-intuitive conception of infinity is, from
this perspective, the cost of making sense of classical logic and
of its relationship to language.5

5Based upon an interpolated notecard from a 1946 lecture of Quine’s,
Burgess (2008, 74–77) considers the prospects of a proposal for handling diffi-
culties in the expression of prohibitively lengthy truth-functional expansions
“by admitting “and so on” as an irreducible part of the language” (2008, 74).
Could, as an anonymous referee has suggested, Wittgenstein similarly deploy
an “and so on” operator in association with his N-operator in order to obviate
the need to appeal to this counter-intuitive conception of infinity, so as to ad-
dress concerns regarding the recovery of quantification over infinite domains?
Conceivably. Though intriguing, such a suggestion seems anachronistic at a
first blush, however, given that it appears to be a brainchild of Quine’s from the
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In remarks to Desmond Lee sometime in 1930-31, Wittgenstein
thus identifies an associated error on which his extensionalism
depends. Elaborating on the Tractarian notion that “there are ele-
mentary propositions, each describing an atomic fact, into which
all propositions can be analysed” (King and Lee 1980, 120), he
claims that this is an erroneous notion which “arises from two
sources” (1980, 120). The second has to do with colour exclu-
sion and the problem it poses for the logical independence of
elementary propositions. Further discussion of this issue would
take us two far afield of our present purposes.6 The first, which
is directly relevant to our present concerns, and to the issue of
whether N may be used to express infinite, truth-functional ex-
pansions, is the error of “(t)reating infinity as a number” (1980,

40’s and TLP was published in the 20’s. In any case, there appears to be little
evidence Wittgenstein considered such a proposal, which is perhaps due to its
incompatibility with other integral aspects of his philosophy of logic, such as
his claim that all propositions, including those which lack prohibitively lengthy
truth-functional expansions, have a common form which can be expressed in

a single, uniform variable (which contains N(�) as its sole primitive operator,
to the exclusion of “and so on” along with any other operations). What he
did do, instead, was to build the very concept of “and so on” into his concept
of successive applications of an operation. (TLP 5.2523) And this approach
gives rise to precisely the concerns that are raised by Wittgenstein in Moore’s
notes on his lecture dealing with the N-operator: ‘and so on’ is ambiguous
with respect to whether or not it can be replaced by an enumeration of its
terms. It is not clear that a distinct “and so on” operator fares any better in
this respect, though perhaps the ambiguity could be resolved by appeal to two
distinct operators. This latter suggestion, however, strays implausibly far from
Wittgenstein’s intent, in multiplying the number of primitive operators far be-
yond the “one and only general primitive sign” (TLP 5.472) he says is involved
in the general form of a proposition. Thus, while there may be something
to this proposal as a means of tackling truth-functional expansions, it is not
Wittgenstein’s and does not appear compatible with his philosophy of logic. It
thus cannot be appealed to as a plausible alternative reading of Wittgenstein’s
N-operator notation which obviates the need to appeal to the counter-intuitive
conception of infinity outlined above.

6See Ramsey (1923, 473) for further discussion of the nature of the problem
which “colour-exclusion” poses for Wittgenstein’s early logical and semantic
system.

120). In other words, the error involved here is thinking that you
could treat $ as if it were a huge number at the end of an in-
finitely long list of natural numbers. If you could, then it is easy
to see how N could be used, as outlined above, to express the
infinite, truth-functional expansions corresponding to existen-
tial and universal quantifications. In the illustrative case of the
monadic propositional function fx, you would just list all of its
substitution instances within the scope of an N expression of the
appropriate structure. For instance, in order to express (∃x).fx,
you would simply list each of the infinite number of substitu-
tion instances of fx produced by substituting a name for each of
the infinite number of objects under a single iteration of N. You
would then add another N on the left end, like so: N(N(fa, fb, fc,
fd, . . . , f$)). The “. . . ” here corresponds to the interpretation of
“& so on” Wittgenstein is talking about in Moore’s notes, quoted
above. I have used the limit ordinal “$” as the name for the
object referred to within the last substitution instance, in order
to covey the idea that it is not only the last but also the infinitieth
substitution instance on the list. Though Wittgenstein does not
himself use this notation, it is a helpful way of capturing what
he must have meant, given the textual evidence provided above.

We will see in more detail in Section 4 that, from within the
perspective of Wittgenstein’s Tractarian logical system, adding
substitution instances corresponding to other monadic predi-
cates and logical forms to the list will not increase the size of
the infinite totality it comprises. In other words, just as the even
numbers, as well as the odd numbers, constitute infinite totalities
which are equivalent in size to the natural numbers, the num-
ber of substitution instances of an infinite number of monadic
predicates, and of an infinite number of logical forms, will each
be the same size as the infinite totality of substitution instances
of any monadic predicate. These facts will be important when
we explore the ways in which Wittgenstein’s system can be seen
to require higher, transfinite numbers. For the time being they
are also significant because they suggest that, from Wittgen-
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stein’s Tractarian perspective, it should be possible to express
any meaningful truth-function by applying N successively to an
infinite number of elementary propositions, since this will in-
volve no more or less steps than were involved in applying N
successively so as to recover quantification into monadic predi-
cates. Wittgenstein’s Tractarian conception of infinite lists is one
that combines two agreeable, if ultimately incompatible proper-
ties: its terms are enumerable in principle, but you can always
add more items to the list without increasing its size. The incom-
patibility of these two properties reflects the “muddle” between
ordinary sums and limits of sums, finite lists and infinite lists,
alluded to above in Moore’s notes. At the time of authoring
the Tractatus, Wittgenstein saw this “muddle” as a counterin-
tuitive conception of infinity that he was willing to accept, in
order to preserve other things, such as extensionalism, that he
was committed to. In some sense, Wittgenstein’s conception is
not especially less intuitive than the Cantorian, and Russellian
conception of the actual infinite from which it is derived and
by which it is inspired. The latter, for example, also entails the
counterintuitive consequence that the set of even numbers has
the same cardinality as that of the natural numbers, even though
the latter includes some numbers, the odds, that the former does
not. Looked at from this perspective, Wittgenstein’s conception
of an infinite totality is hardly the most counter intuitive view
defended by an early analytic philosopher in an attempt to make
classical logic work. Ramified types, objective falsehoods, and
subsistent but non-existent entities come to mind. Russell’s own
experiences in this endeavor, and his appreciation of the difficul-
ties inherent in it, explains why “(a)s one with a long experience
in the difficulties of logic”, he goes on to praise Wittgenstein for
having “constructed a theory of logic which is not at any point
obviously wrong” (TLP, xxv).

3. Fixed and Infinite: the Domain of Quantification
in Wittgenstein’s Tractatus

In any case, turning now to the second of the two presumptions
of our exposition of the general form of a truth-function, un-
dertaken above in Section 2, in this section we will see that the
number of substitution instances of any monadic propositional
function must be infinite, since the number of Tractarian objects
and so the Tractarian domain of quantification must be infinite.
Within the context of attempts to explicate Wittgenstein’s N-
operator notation, and to assess the expressive completeness as
well as consistency of the Tractarian logical system, by contrast, a
number of commentators have detected an alleged ambivalence
within Wittgenstein’s characterization of the size of the domain
of quantification. In particular, Wittgenstein is claimed to be in
some way indecisive regarding, uncertain about, or wishes to
leave as an open, empirical question, the issue of whether the
domain of quantification is to be construed as finite or infinite.
Soames, for instance, claims that for Wittgenstein “the number
of actual objects, and hence names, is not a matter of logic. One
cannot specify the number of names in an ideal symbolism, nor
can one assume that it must be finite” (1983, 574). Likewise, ac-
cording to Rogers and Wehmeier, Wittgenstein wishes to leave
the size of the domain as an open question, “entertaining the
possibility that it might be infinite”, but ultimately concluding
that it “is not a question that can be decided by logic alone” (2012,
539). According to James McGray, finally, the number of objects
in the Tractarian domain is “perhaps” (2006, 148) or “possibly”
(2006, 152) infinite, though in any case “unknown, and perhaps
even unknowable” (2006, 168). In this section of the paper, I will
show that readings of these sorts are unstable in the sense that,
given other things we know him to be committed to, Wittgen-
stein cannot be thought to be ambivalent concerning the size
of the domain of quantification without thereby also, and con-
trarily being thought to take a definite stand on it. Interpretive
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charity thus demands that we not attribute to Wittgenstein the
idea that the question of domain size might be an open one, since
the alternative is to view him as being embroiled in a quagmire
of confusions and self-contradictions.

While Wittgenstein can conceivably leave as open the issue of
whether the empirical universe contains a finite or infinite num-
ber of complexes, it is important to note that, within the logical
perspective of the Tractatus, variables of quantification do not, ul-
timately, range over complexes, but instead over metaphysically
simple objects. Ordinary names for complexes are merely dis-
guised descriptions. They are shorthand for complete descrip-
tions of complexes (TLP 2.0201) via conjunctions of elementary
propositions which depict the several atomic facts that make the
complex up. While quantifiers do not occur within such elemen-
tary propositions, they can be used, similarly to ordinary names,
as shorthand for much lengthier truth-functional expansions of
elementary propositions (conjunctions or disjunctions). And in
that case, these quantifiers range over the simple constituents,
that is objects, which make up the atomic facts portrayed by
elementary propositions.

Tractarian simple objects are, however, logical as opposed to
empirical objects. They constitute both the scaffolding or “un-
alterable form” (TLP 2.023) of logical space, as well as the un-
derlying substance of the world (TLP 2.0211) which is common
to all possible worlds (TLP 2.024), including those comprised of
an infinite number of facts. For elementary propositions to have
sense at all (TLP 2.0211), the names they contain must stand for
timeless, indecomposable, simple objects. Atomic facts are com-
binations of such objects, (TLP 2.01) and complexes are made up
of existing atomic facts. (TLP 2, 2.021) The existence of facts and
complexes thus presupposes the subsistence of objects.

If, then, it is even possible for an infinite number of empirical
complexes (i. e., contingent particulars) to exist in logical space
(which it must be if Wittgenstein wants to leave it as an open
question whether they do), an infinite domain of simple, logical

objects must inevitably subsist in order to secure and manifest
that possibility. If, on Wittgenstein’s view, it is even possible that
logical space contains an infinite number of simple objects, more-
over (which it must be if Wittgenstein wants to leave it as an open
question whether it does) it must contain an infinite domain of
simple objects to secure and manifest that possibility. While we
have good reason to think that Tractarian quantifiers ultimately
range over simple objects, a domain of infinite size is implied,
regardless of which way we interpret them. Logical space after
all, is a space of possibility. If, on Wittgenstein’s view, it is even
possible that the cardinality of Tractarian objects is infinite (and
if Wittgenstein wants to leave that as an open question then it
must be on his view), it must be permissible for quantifiers to
range over infinite domains: “Whatever is possible in logic is
always permitted” (TLP 5.473). Reading Wittgenstein charitably,
then, he does not regard an infinite domain of quantification as
an open possibility, so much as a modal reality.

Concerns about the charity of readings which attribute am-
bivalence on this issue arise, because the idea that Wittgenstein
might think of it as an open possibility that the domain is in-
finite, but also an open question whether it is permissible for
quantifiers to range over infinite domains, is in conflict with sev-
eral remarks he makes regarding the nature of the relationship
between logic and its application. For example, at TLP 5.551
Wittgenstein identifies as his “fundamental principle” the idea
that

whenever a question can be decided by logic it must be possible to
decide it without further ado. (And if we get into a position where
we have to look at the world for an answer to such a problem, that
shows we are on a completely wrong track) (TLP 5.551).

In other words, either the issue of domain size is undecidable, or
it is decidable “without further ado”. It is not instead the case,
that the question of whether the domain is finite or infinite is
a mystery about which we might have to speculate, or investi-
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gate empirically, and which could conceivably turn out either
way. Hence, Wittgenstein insists: “there can never be surprises
in logic” (TLP 6.1251). And again:

It is clear that logic must not clash with its application. . . logic
has to be in contact with its application. Therefore, logic and its
application must not overlap (TLP 5.557).

The idea that a domain of infinite size might be logically possible,
and yet it might nevertheless not be permissible to quantify over
it, would be precisely the kind of case that Wittgenstein means
to rule out here when he says that logic cannot “overlap” with
its application. The illegitimate proposal, here, would be that
the infinite domain of objects belongs to one category, that of the
logically possible, and that quantification over infinite domains
belongs to the other category, that of logically permissible appli-
cations, and quantification over infinite domains might, or might
not be in the intersection. But that idea, Wittgenstein claims, is
bogus. There is no such “overlap” between what’s logically pos-
sible and syntactically permissible. If a domain of infinite size
is logically possible, then, by virtue of the internal relatedness
of the two formal concepts, it is also syntactically permissible
to quantify over that domain. The very idea that Wittgenstein
is ambivalent on the size of the domain implies that it is pos-
sibly infinite and therefore, by Tractarian principles, that it is
permissible to quantify over the infinite domain and thus that
the domain is infinite.

To be clear, the argument here is not that “Wittgenstein does
not know whether the domain is finite or infinite, thus it must
be possible for it to be infinite, and therefore it is infinite”. That
would involve a fallacy associated with moving from an epis-
temic premise about Wittgenstein’s beliefs to a modal conclusion
about logical space. Moreover, Wittgenstein’s considered beliefs
are not ambivalent on this issue at all, as we shall see in more
detail momentarily. Instead, my argument, aimed at a would be
Wittgenstein interpreter, is that “If you suppose that Wittgen-

stein regards it as an open possibility that logical space contains
an infinite number of objects, then unless you want to attribute
inconsistent views to him, you must also suppose him to regard
it as logically permissible to quantify over all of them”. The ar-
gument, that is, moves from one interpretive claim about what
Wittgenstein regards as a possibility, to a second claim about
what a charitable interpreter must therefore hold him to regard
as permissible. The argument is not given from the perspective
of Wittgenstein and does not concern what he does or does not
know. It is instead offered to an interpreter who is constrained to
offer a charitable, and thus consistent reading of Wittgenstein’s
views.

Another conceivable objection to my argument would be to
insist that, on the supposition that Wittgenstein wishes to leave
it an open question whether the domain is infinite, he must
also wish to leave it as an open question whether the domain is
finite. On that supposition, there must therefore be a possible
world in which the domain is finite. But then, since my argument
presupposes constancy of domain across possible worlds, does
it not imply, absurdly, that a fixed, finite domain of Tractarian
objects must be a “modal reality” just as much as a fixed, and
infinite domain of objects is?

Again, however, this objection glosses over the integral dis-
tinction between empirical and logical possibility, and fails to
note a crucial, and related asymmetry between the finite and the
infinite case. Wittgenstein can regard it as an open, empirical
possibility that the universe contains only a finite number of ex-
isting complexes. But he cannot charitably be thought to regard
it as an open possibility that it contains only a finite number
of logical objects. This is because, an infinite domain of logi-
cal objects can accommodate quantification over both an infinite
number of either empirical complexes, or logical objects, as well
as a finite number of either empirical complexes, or logical ob-
jects. Given an infinite domain of objects, for instance, one can
easily quantify over a finite subset of them by applying a restric-
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tion on the domain. On the other hand, a fixed, finite domain of
logical objects can account for quantification only over a finite,
but not an infinite number of either empirical complexes, or log-
ical objects. If it turns out that the domain is finite in the logical
sense, then it cannot be an open question whether it is infinite in
either the empirical or the logical sense. Thus, the supposition
that Wittgenstein wishes to leave as an open question the issue
of whether the domain of quantification is finite or infinite, is
consistent only with a fixed, infinite, domain of logical objects,
not a fixed, finite domain of logical objects. In other words, if
Wittgenstein wants to leave it as an open question whether the
domain is infinite, then this would require him, ultimately, to
deny that it is an open question since one of the supposedly
open possibilities, the finite case, is incompatible with the initial
assumption. Wittgenstein therefore cannot leave it as an open
possibility that the domain of Tractarian objects is finite, and a
charitable interpreter cannot credibly interpret him that way.

Reading Wittgenstein as ambivalent on the question of
whether the domain is finite, or infinite, is thus deeply prob-
lematic, and uncharitable given other things we know him to be
committed to. But can any positive, textual evidence be provided
for the claim that he regards the domain as fixed, and infinite?
Much of the textual evidence for the claim that Wittgenstein
regards the domain of objects as fixed across possible worlds
can be found in the 1’s and 2’s of TLP. So, for example, at TLP
1.13 he writes that “The facts in logical space are the world”.
This remark anticipates a distinction developed in greater detail
later in the text, and which we discussed earlier, between subsis-
tence and existence. Logical space subsists independently of the
world, which is all that exists. As Wittgenstein remarks in TLP
1 and then in TLP 2, “The world is all that is the case . . . what
is the case—a fact—is the existence of states of affairs”. Logical
space, as opposed to the world, is thus not made of up facts but
rather of objects. As Wittgenstein insists at TLP 2.021, and 2.024,
“Objects make up the substance of the world”, and “Substance

is what subsists independently of what is the case”. Tractarian
objects constitute not only the substance of the world, but also
its “unalterable form” (TLP 2.023). The world thus has a logical
form, constituted by objects, which subsist in all possible worlds
regardless of the actual facts that exist in any of them. Indeed, it
is obvious, Wittgenstein insists, “that an imagined world, how-
ever different it may be from the real one, must have something—a
form—in common with it” (TLP 2.022). So the domain of objects
is fixed across possible worlds in the sense that they provide both
the substance, and the form of the logical space in which various
possibilities may manifest as actual. All possible worlds contain
the same objects; what differs from world to world is the way
these objects are combined to produce facts which, as we have
seen, consist in the existence of states of affairs. As Wittgenstein
explains at TLP 2.0271–2.0272, “Objects are what is unalterable
and subsistent; their configuration is what is changing and un-
stable. The configuration of objects produces states of affairs”.

But where is the textual evidence that the domain of objects,
which is fixed across possible worlds, is also infinite in number?
Well, at TLP 2.0131 Wittgenstein writes, for example, that “(a)
spatial object must be situated in infinite space”. This provides
prima facie evidence that Tractarian logical space is infinite, on the
assumption that geometrical space is included in, or coextensive
with logical space. Evidence that Wittgenstein thinks the space
of geometry is coextensive with logical space comes at TLP 3.032–
3.0321, where he writes that

It is as impossible to represent in language anything that “contra-
dicts logic” as it is in geometry to represent by its coordinates a
figure that contradicts the laws of space . . . Though a state of af-
fairs that would contravene the laws of physics can be represented
by us spatially, one that would contravene the laws of geometry
cannot (TLP 3.032–3.0321).

Moreover, at TLP 3.41–3.411 Wittgenstein claims that proposi-
tional signs provide the “logical coordinates” (TLP 3.41) of a
“logical place” (TLP 3.411), and that these “agree” (TLP 3.411)

Journal for the History of Analytical Philosophy vol. 9 no. 2 [12]



with the coordinates of a “geometrical place” (TLP 3.411) in
which existence is possible. In both passages, again, we find
Wittgenstein appealing to a distinction between logical space
and the world, but in this case the emphasis is placed on the fact
that the former (logical space) is described by geometry while
the latter (the world) is described by physics. Physical laws are
contingent, but the logical and geometrical space the phenom-
ena they describe exist in has certain a priori logical features,
including that of being infinite.

Wittgenstein clearly regards not only logical space as infinite,
but also, and correlatively, regards it as an open possibility that
the empirical universe, i.e., the world, is infinite. Thus, he claims
at TLP 4.2211 that

Even if the world is infinitely complex, so that every fact consists of
infinitely many states of affairs and every state of affairs is composed
of infinitely many objects, there would still have to be objects and
states of affairs. (TLP 4.2211)

Wittgenstein’s main point here appears to be that, regardless of
how complex the world is, the logical space it exists in must be
characterized by certain basic a priori features, including the sub-
sistence of objects, and (possibly, at least) the existence of states
of affairs. Indirectly, though, in reflecting on the possibility of
an infinite empirical universe, Wittgenstein has suggested that
the logical space in which that possibility may become manifest
must itself be infinite, and so that there must be an infinite num-
ber of objects to compose it. This interpretation is confirmed by
Wittgenstein’s characterization of logical space at TLP 4.463 as
an “infinite whole” which is left open by a tautologous assertion.

So, we can be sure both that Wittgenstein regards it as an open
possibility that the empirical universe is infinite, and that the
logical space which contains the world, whether that world is in-
finite or not, is infinite. But what about the possibility that there
are only a finite number of objects, and an infinite volume of log-
ical space between, or around them? Couldn’t logical space be

infinite without the domain of Tractarian objects being infinite?
Implicitly, this seems to be ruled out in so far as logical space
is constituted by objects. As we have seen, objects make up the
unalterable form of logical space which subsists in any actual,
possible, or imaginable world. In any case, however, Wittgen-
stein explicitly rules this combination of views out at TLP 5.511,
where, referring back to TLP 5.51, he describes his N-operator
notation as part of an “all embracing” logical calculus, which
serves as a “great mirror” in which is reflected the “infinitely
fine network” that is the world. Here Wittgenstein is thinking of
the world of physics, and its a priori logical features as described
by geometry. But obviously, if the world so conceived is actually
an infinitely fine network, it must be possible for it to be. Logical
space, in other words, like the geometrical space with which it
is co-extensive, is infinitely divisible. It must therefore contain
an infinite number of objects into which logical, and geometrical
space may be divided.

This feature of logical space, that it contains an infinite num-
ber of simple, logical objects, is not “unknown” (McGray 2006,
168) so much as it is “unsayable”. Hence Wittgenstein writes
(in TLP 4.1272) not that it is “impossible to know” the number
of objects, but only that it is “senseless to speak” of that num-
ber (compare Rogers and Wehmeier 2012, 539–40). Russell lends
support to this interpretation when he writes in his introduc-
tion that “the totality of possible values of x which might seem
to be involved in the totality of propositions of the form fx is
not admitted by Mr. Wittgenstein among the things that can be
spoken of” (TLP, xxiv). With regards to Russell’s “axiom of in-
finity”, moreover, Wittgenstein explains that what it “is intended
to say would express itself in a language through the existence
of infinitely many names with different meanings” (TLP 5.535).
Again, however, if Wittgenstein thinks such a language is log-
ically permissible, then interpreting him charitably requires he
hold that an infinite domain of simple objects subsist in order
to ensure that possibility. (That which is logically/syntactically
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permitted is also logically possible.) Hence, the axiom of infinity
is neither false nor dubitable, on Wittgenstein’s view, so much
as it simply tries to say what may only be shown in an infinitary
logical notation. Contrast this with what Wittgenstein has to say
about Russell’s axiom of reducibility (TLP 6.1232), which he crit-
icizes on the grounds that it is a contingent, rather than a logical
proposition.

Finally, what of Wittgenstein’s remark at TLP 5.55 that “we are
unable to give the number of names with different meanings”?
Does this not show that since the number of names with different
meanings is unspecifiable, the number of objects is likewise un-
specifiable? And, thus, that the number of names and so objects
is not infinite, as I have suggested, but rather open and indeter-
minate as has been suggested by Soames, McGray, and others?
On the contrary, if the number of names cannot be specified and
so is open and indeterminate, it must be possible for the num-
ber of names to be infinite. For it to be possible that there be an
infinite number of names with different meanings, there must
be an infinite domain of objects to ensure that possibility. It is
notable that Wittgenstein does not mention the word “object” in
TLP 5.55, and nor does he say that we cannot give the number
of objects. What he says is that we cannot give the number of
different names and this is because, thanks to the subsistence of
an infinite domain of objects, there is an endless, open possibil-
ity of producing new names. We thus cannot give their specific
number, and nor can we give the specific composition of all pos-
sible elementary propositions. This is because, given the infinite
domain of objects it will always be possible to produce endlessly
new forms.

4. Implied Transfinite Cardinalities

Since we know that in Wittgenstein’s system, there are an infinite
number of objects, names of each of which may be substituted
into any monadic propositional function, the totality of possi-

ble substitution instances of any monadic propositional function
must therefore constitute an infinite sub-selection of the infi-
nite totality of all possible substitution instances of all monadic
propositional functions. The totality of all possible substitution
instances of all monadic propositional functions must also consti-
tute an infinite sub-selection of the infinite totality of all possible
substitution instances of all propositional functions of whatever
arity. None of these totalities can be finite, since they each in-
volve an infinite number of possible substitution instances. But
some of these selections nevertheless contain members which
other selections do not. Thus, just as the even numbers consti-
tute an infinitely large sub-selection of the natural numbers while
having the same cardinality as the natural numbers, and prime
numbers constitute an infinitely large sub-selection of the natural
numbers while having the same cardinality as both the natural
and the even numbers (see Steinhart 2009, 156–58, Bostock 2012,
25–26, and Russell 1919, 80), the infinite totality of all possible
substitution instances of monadic propositional functions has
the same cardinality as both the infinite totality of possible sub-
stitution instances of any monadic propositional function, as well
as the infinite totality of all possible substitution instances of all
propositional functions of whatever arity. Moreover, if you add
each of these infinite totalities together, the result is an infinite
totality which is the same size as each of the three individually,
specifically, ℵ0. This reflects the feature of transfinite arithmetic
that, if we add the ordinal number $ of each of these totalities
together, we get a totality which has the same cardinality, ℵ0, as
we would get by adding 1 to $, 147 to $, or if we simply left
it alone (see Steinhart 2009, 168, Bostock 2012, 25–26). Addition
does not increase the size of any transfinite ordinal any more
than multiplication or exponentiation does.

Given what was said in Section 3, we know that the domain
of Tractarian objects must be infinite. But why should the car-
dinality of that domain be ℵ0 and not, say, ℵ1? We know that
the number of Tractarian objects cannot be ℵ1 because ℵ1 is the
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number of points on a continuous line, or in a continuous space.
A continuous line or space is “dense” in that it is divisible with-
out limit. However, Tractarian logical space cannot be divisible
without limit because the Tractarian objects which compose its
scaffolding are indivisible. We saw above in Section 3 that Trac-
tarian logical space must be infinitely divisible, but since it is
made up of indivisible objects, it cannot be continuous. This im-
plies that the analysis of actual and possible facts in logical space
will terminate at a level on which logical space, though infinitely
divided, cannot be further divided. On the plausible assumption
that Tractarian objects are akin to geometrical, space time points,7
the infinity of points (objects) which make up logical space must
therefore be denumerable. I will say a bit more on Wittgenstein’s
views about the continuum, and about Cantor’s continuum hy-
pothesis in Section 5, but for now the important point is that if
the transfinite cardinality of Tractarian objects must be one or
the other, it must be that of the natural as opposed to the real
numbers. The cardinality of the set of real numbers is equal to
that of the continuum, and while the continuum is “dense” in the
sense of being divisible without limit, configurations of objects
within Tractarian logical space are not.

In the case of all elementary propositions of the form fx, each
substitution instance of a monadic propositional function at the
elementary level can thus be paired off with a natural number,
in a one-to-one relation. No matter how many substitution in-
stances we add to this list, provided it is an infinite list, it will
remain the same size, and it will be countable via a list of natural
numbers which has 1 at the beginning and the limit ordinal $ at
the end. If we wanted to construct a truth-table listing all possi-
ble truth-functions of all elementary propositions of the form fx,
we could start by listing each of the infinite totality of elementary

7See Bizarro (2010), Connelly (2015) and Eisenthal (2018) for more thorough
explication, discussion and defense of this idea, and of related “Hertzian”
themes and influences inherent in Wittgenstein’s early philosophy.

propositions of this form in columns on the left hand side of our
table like so:

fa fb fc . . . f$

T T T . . . T

T T T . . . F

T T T . . . T

T T T . . . F

. . . . . . .

. . . . . . .

. . . . . . .

F F F . . . F

We could then pair each column up with one of the natural
numbers 1- $ as follows:

1 2 3 . . . $

fa fb fc . . . f$

T T T . . . T

T T T . . . F

T T T . . . T

T T T . . . F

. . . . . . .

. . . . . . .

. . . . . . .

F F F . . . F

The cardinality of this list would then be ℵ0. Theoretically, we
could then list all other elementary propositions, of whatever
logical form, or arity, along the top of the left-hand side of our
truth-table, without increasing the size of the total number of
elementary propositions listed. In this sense, assigning propo-
sitions to the cells at the top of columns on the left hand side
of our table would involve a process very similar to that which
characterized the thought experiment of the “Hilbert Hotel” (see
Steinhart 2009, 158–59), which is a fully occupied hotel with an
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infinite number of rooms, but new busses show up with new
infinite totalities of guests and so we make room for them by
emptying rooms corresponding to infinitely large subselections
of the rooms (e. g., we might empty all even numbered rooms,
or all prime numbered rooms).

At a first blush, the procedure I am attempting to explicate here
might be dismissed out of hand as a blatant violation of Cantor’s
theorem. Cantor (1895/1995) proved that you cannot list all of
the natural numbers and nor, a fortiori, can you list all of their sub-
sets (see Bostock 2012, 20–22). Does not the idea of a truth-table
of the sort I am describing here presuppose the (incoherent) no-
tion that one might actually write down a series equal in length
to the natural numbers, and to a set of all subsets of the natural
numbers? Well, yes. Assuming a reduction of quantified propo-
sitions to truth-functions of elementary propositions of the sort
sketched in Section 2, moreover, it is also contrary to Church’s
theorem as well, since if that reduction went through, and we
could write down all truth-functions of elementary propositions
in a table, we would have a decision procedure for predicate
logic. That, however, is just what Church (1936) showed to be
impossible. But in a sense, that is the whole point of what I am
arguing in this section of the paper: Wittgenstein’s system in-
volves commitment to transfinite cardinalities which he, in turn,
problematically construes as applying to in principle enumer-
able, but nevertheless transfinite totalities. Again, Wittgenstein
wants to be able to adhere to a conception of the actual infinite
which combines the two agreeable, but mutually incompatible
properties of being endless but limited, where actually infinite
lists which are limited may be treated as if they were terminal
(just as we might erroneously treat the limit of an endless sum
as if it were the terminus of the sum).8 That is the only way he

8To conceive of or intuit the conception of endless, but limited totalities of
the sort I am attributing to Wittgenstein, the reader may find it helpful to think
of M. C. Escher’s “Circle Limit” artworks based on the Poincaré disk model of
the hyperbolic plane (Dunham 2010). The diagrams in these artworks have an

saw it as possible for logic to come out as a decision procedure.
And from his perspective, writing long before Church proved
otherwise, it was obvious that it was one: “One can calculate
whether a proposition belongs to logic, by calculating the logical
properties of the symbol” (TLP 6.126).

On Wittgenstein’s view, the propositions of logic are all, essen-
tially, tautologies. Any valid argument can be put in the form of
a “corresponding material conditional” (Bergmann, Moor and
Nelson 2014, 100–1) which would be a logical proposition and
thus a tautology. And if it were a tautology, then it would have
to be possible in principle to symbolically calculate and thereby
prove that it was. Perhaps fallible, finite creatures such as human
beings could not conceivably write out the relevant truth-table,
which proves quantificational validity, in its entirety. But from
Wittgenstein’s Tractarian perspective, it does not follow that the
table is in principle impossible to write out, check, or compre-
hend. A sufficiently powerful and long-lived God, supercom-
puter, or temporally un-situated and so timeless “metaphysical
subject” (TLP 5.641) might readily do so. Logic is not contingent
upon human psychology, and thus neither is the information
encoded in Tractarian truth-tables.

From the perspective of the author of the Tractatus, moreover,
the information contained in such a table, though infinite, is
limited in a way which allows us to treat it as enumerable. Thus,
checking such a truth-table would not amount to completing an
infinite task in a finite amount of time, but rather to completing an
infinite but limited task in an infinite, but limited amount of time.
Human beings can use Russellian quantifiers and other short-

outer limit, but there is always an infinite distance between the center of the
diagram and the limit, regardless of where the center is stipulated to be. If an
imaginary subject located within the picture tried to travel from the center to
the outer limit of the circle, no matter how far they travelled from their original
location they would never reach the limit and would always remain located in
the center of the space. So in one sense the space is endless, but in another it
comprises a bounded totality.
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hand techniques to encode this information. But the information
has to be truth-functionally determinate in the first place in order
for it to be possible to encode it. From Wittgenstein’s Tractarian
perspective, if the truth-functional expansions corresponding
to quantifiers do not terminate, then they do not convey any
truth-functionally determinate information and nothing does, or
does not follow from them. If you cannot write down the truth-
conditions of a sentence in a table, then it is not an intelligible
sentence with sense. If something is not an intelligible sentence
with sense then it cannot be entailed by anything else.

At this point, it is important to recall, however, what was said
in Section 2. First, we are not claiming that the Tractarian system
actually works. We are merely trying to indicate how one might
attempt to construct a transfinite number line within that that
system given what we know about it, and to show why it would
require such a construction to be possible. Second, recall that
Wittgenstein identified muddling up finite and infinite lists as
“a most important mistake” (Stern, Rogers and Citron 2016, 216)
in the Tractatus. If we are going to faithfully represent Wittgen-
stein’s system, we are going to have to provisionally make that
same mistake here too.

In any case, undertaking this allocation of cells along the top of
the columns on the left-hand side of our truth-table may require
a bit more ingenuity than is involved in rearranging guests in
rooms where each is assigned a natural number, but, granting
the (mistaken) idea that such lists are possible, there is no rea-
son why it could not be done in principle. In principle, within
the Tractarian perspective, any ordered, infinite list of elemen-
tary propositions we might come up with could be paired up
one-to-one with the infinite series of natural numbers that be-
gins with 1 and ends with the limit ordinal $. This means that
$ is the limit of the natural number series, though it is not the
immediate successor of any natural number in the series. It thus
limits the natural number series though it has no unique, im-
mediate predecessor and is not itself a finite natural number. In

Wittgenstein’s system, just as the “totality of objects” limits em-
pirical reality without being finite, $ limits the natural numbers
without being finite.

By an argument straightforwardly analogous to Cantorian di-
agonalization, however, we could then show that the number
of truth-possibilities, and truth-functions of those elementary
propositions must each have larger, transfinite cardinalities. The
truth-possibilities of any list of elementary propositions cannot
be paired off one-to-one with those elementary propositions, be-
cause no matter how many elementary propositions we have,
they will always stand in a one-to-many relationship to their
truth-possibilities. This one-to-many relationship is defined by
the operation 2n, where n = the number of elementary proposi-
tions. Something similar is true of the possible truth-functions
of any number of elementary propositions. This number we may
arrive at by raising 2 to the power of m, where m= the number of
truth-possibilities. Since m = 2n, the number of truth-functions
of a selection of elementary propositions is simply the exponent
of an operation which raises 2 to an exponent. First 2 is raised to
the power of n, and then 2 is raised to the power of m, where m
is the result of raising 2 to the power of n.

When Wittgenstein describes these one-to-many relations of
relative cardinality first at TLP 4.27–28 and then at TLP 4.42,
it is notable that he expresses them as summations, yielding
the number of possible combinations of truth-values, and thus
truth-possibilities and truth-functions, of n elementary proposi-
tions.9 In each of TLP 4.27 and TLP 4.42, Wittgenstein means to
reference the binomial theorem (Brauldi 2009, 130), and to use
it to calculate the values  = and != which are, respectively, the
number of truth-possibilities and truth-functions of n elemen-
tary propositions. At TLP 4.27, the value  = is defined by the
following summation:

9Credit is due to my student Jeremiah Cashore for his assistance in working
out important philosophical and mathematical details in this section dealing
with Wittgenstein’s

∑
notation, and with helping to create the required math-

ematical expressions.
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 = =

=∑

E=0

(
=
E

)

What this says is that, in order to obtain the number of truth-
possibilities of n elementary propositions we may sum up the
binominal coefficients (Brauldi 2009, 127) that are solutions to the
equation  = =

=!
E!(=−E)!

, where v ranges from v=0 (lower limit)

to v=n (upper limit). The notation

(
=
E

)
which occurs within the

formula above is read “n choose v”. By summing up the binomial
coefficients which are solutions to the above equation we arrive
at the number of possible ways of choosing v positive facts from
n states of affairs; v is the number of positive facts within a
given combination of n negative and/or positive states of affairs
(or atomic facts). Because such combinations are isomorphic
to the truth-possibilities of elementary propositions, the above
summation also yields the number of truth-possibilities of n
elementary propositions. v corresponds to the number of “T’s”
within a selection of n truth-values that makes up either a truth-
possibility or a truth-function of elementary propositions (e. g.,
for (T, F, T, T) v=3). Expanding this summation yields

 = =

(
=!

E!(=−E)!

)
E=0

+
(

=!
E!(=−E)!

)
E=1

+
(

=!
E!(=−E)!

)
E=2

+ . . . +
(

=!
E!(=−E)!

)
E==

Building on the value  = , != is then the number of truth-
functions of n elementary propositions, and is defined by the
following summation given at TLP 4.42:

!= =

 =∑

:=0

(
 =
:

)

What this summation says is that, in order to obtain the number
of truth-functions of n elementary propositions, we may sum
up the binomial coefficients which are solutions to the equation

!= =
 = !

:!( =−:)!
where k ranges from k=0 (lower limit) to : =  =

(upper limit). The expression

(
 =
:

)
is read “ = choose k” where

k is the number of cases on which a proposition agrees with the
truth-possibilities of the elementary propositions of which it is a
truth-function, and  = is the number of such truth-possibilities.
At TLP 5.101, Wittgenstein lists the 16 different ways (truth-
functions) that propositions can agree or disagree with the truth
possibilities of n elementary propositions, where n=2. Expand-
ing the above summation yields

!= =

(
 = !

:!( =−:)!

)
:=0

+
(

 = !
:!( =−:)!

)
:=1

+
(

 = !
:!( =−:)!

)
:=2

+ . . . +
(

 = !
:!( =−:)!

)
:= =

Each of these two summations can be illustrated in the following
table, which corresponds to the infinite array known as Pascal’s
triangle (compare Brauldi 2009, 127-28):

E/:

=/ =

0 1 2 3 4 5 . . . Σ

0 1 1
1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
...

...
...

...
...

... . . .
. . .

...

When calculating  = , we take any value for n listed vertically
in the column furthest to the left, and we pair it with each of
the values for v listed horizontally along the top row, from v=o
to v=n. Taking each of these pairs as values for n and v within
the binomial theorem yields a series of coefficients which are
listed in the row beside any given n for each v. Summing them
up gives us  = in the column furthest to the right on the same
row as our chosen value for n. If n=2, for example then  = = 4.
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When calculating != , in turn, we take a value of those listed
vertically in the column furthest to the left as a value for  = , and
pair it up with each of the values listed along the top row for k,
from k=0 to : =  = . Applying the binomial theorem to each pair
we produce a series of coefficients listed alongside  = with one
for each k. Summing these coefficients yields != , which is listed
in the column furthest to the right along the same row as our
chosen value for  = . For example, if  = = 4 then != = 16. Note
that

∑
always yields a power of 2. This means that while 5 is a

possible value for n it is not a possible value for  = .
In any case, if Wittgenstein’s point is just to help us calcu-

late how many rows we need on our truth-table, and how many
truth-functions we can generate out of a selection of elementary
propositions, then why not just say that the number of truth-
possibilities can be found via the formula 2n, and that the num-
ber of truth-functions of those elementary propositions may be
found via the formula 2m where m = 2n (compare Schroeder 2006,
63–65, Black 1964, 215)? Over and above helping us to make these
determinations, by framing these calculations of summations of
binomial coefficients, Wittgenstein means to draw attention to
the possibility of using the binomial theorem to calculate the
cardinalities of selections of digital sequences or combinations.
He thereby means, in part, to draw attention to the fact that the
operation specified in his

∑
notation is structurally analagous

to the diagonal procedure that Cantor (1891) uses to prove the
existence of transfinite cardinalities, and may thus be used to
calculate them. Cantor’s procedure (1891, 920–21) works by en-
coding sequences of linear coordinates 0�,� (e. g., a1, 1, a1, 2, 01,�,
. . . ) using one of two characters m or w. Within this digital code,
there will be one infinite sequence containing all m’s (i. e., EI =
(m, m, m, m, . . . )), another containing all w’s (i. e., EII = (w, w,
w, w, . . . )), and the remainder will consist of some mixture of
m’s and w’s (e. g., EIII = (m, w, m, w, . . . )). As noted by Ferreirós
(2007, 287–88), this procedure encodes the set of all subsets of
coordinates within the linear continuum, since each infinite se-

quence of m’s, w’s, or a mixture of each, encodes a sub-set of such
coordinates. Arbitrarily, we can think of m as indicating that the
corresponding coordinate does occur in the sequence, and w as
indicating that the corresponding coordinate does not occur. The
infinite sequence EI then encodes the set of all coordinates, EII

encodes the empty set, and EIII encodes a sub-set which contains
every other coordinate but not those in between. Cantor’s diag-
onal argument then shows that the cardinality of the set of all
subsets of coordinates is larger than the set of coordinates itself.
In this and in other cases, the power set of a set, which consists
of all of a set’s subsets, has a larger cardinality than the set itself.
More specifically, if the cardinality of the set is n, then the car-
dinality of its power set will be 2n. If n is a transfinite number,
then the cardinality of the power set is going to be a transfinite
number which is larger than n, and more specifically equal to 2n.

Obviously, nothing hinges on whether we use the characters
“m” and “w” for our digital code, “0” and “1”, or “T” and “F”. By
using the

∑
notation to calculate the cardinalities of selections

of sequences of T’s and F’s, Wittgenstein means to highlight the
fact that there are more subselections of any such sequence than
there are members of the sequence. More specifically, there are 2n

more subselections of any such sequence than there are members
of the sequence. Thus, for n states of affairs there will be 2n ways
that such states of affairs can consist of positive and/or negative
facts. These correspond to the number of truth-possibilities of
n elementary propositions, since each elementary proposition
can either be T, or F. If there are 2=(=  =) truth-possibilities of
elementary propositions, then there will be 22= (= !=)ways that a
proposition can agree or disagree with those truth-possibilities,
and thus 22= truth-functions of those elementary propositions.
If n is a transfinite number, then  = will be a transfinite number
which is larger than n by a power of 2n, and != will be a transfinite
number which is larger by a power of 22= .

In his 1913 “Notes on Logic”, Wittgenstein deploys a notation
in which “a” and “b” are used in place of “T” and “F”, and
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building on this notation will help us to draw out the way in
which binomial expansions encode the information contained
in Tractarian truth-tables. The binomial expansion for (a + b)n

encodes the truth-possibilities for n elementary propositions,
while the binomial expansion for (a + b) = encodes the truth-
functions of n elementary propositions. If n=2, for example, we
calculate the binomial expansion for (a + b)2 to reveal the truth-
possibilities for 2 elementary propositions, while we calculate
the binomial expansion for (a + b)4 to reveal the truth-functions
of 2 elementary propositions. The binomial expansion for (a +
b)2 is (a2 + 2ab + b2), in which the first term a2 corresponds
to the one truth-possibility on which both elementary propo-
sitions are true, while the second term corresponds to the 2
truth-possibilities on which one elementary proposition is true
and the other is false, while the third term corresponds to the
one case on which both elementary propositions are false. The
binomial expansion for (a + b)4 is (a4 + 4a3b + 6a2b2 + 4ab3 +
b4), in which the first term corresponds to the one truth-function
of two elementary propositions on which all truth-arguments
agree with its four truth-possibilities, the second term corre-
sponds to the four cases on which three truth-arguments agree
with its truth-possibilities and one does not, the third term cor-
responds to the six cases on which two truth-arguments agree
and two do not agree, the fourth term corresponds to the four
cases one which one truth-argument agrees and three do not,
and finally, the fifth term corresponds to the one case on which
all four truth-arguments disagree with the truth-possibilities of
the elementary propositions. Binomial expansions will work in
this way to encode the truth-possibilities and truth-functions of
n elementary propositions for any, arbitrarily large n. Summing
the coefficients of these binomial expansions will always yield
the number of truth-possibilities ( =) or truth-functions (!=) for
n elementary propositions. In accordance with Pascal’s triangle
these numbers will always be powers of 2n.

One reason why Wittgenstein might have been led to “muddle
up” the idea of a sum with that of the limit of a sum is that

regardless of how long they are, binomial expansions always
end with a final term, whose coefficient is 1. Though Pascal’s
triangle is an infinite array, it is also an array which is limited
by the number “1” on each end of every row. Thinking in terms
of truth-tables, each “1” at the end of a row on Pascal’s triangle
corresponds either to the case of tautology or contradiction. No
matter how large n is, there is always only going to be one case
on which all n are true, and only one case on which all n are false.
(Analogously, in Cantor’s digital code there will only be one case
in which all coordinates are contained in the set (m, m, m, m, . . . )
and only one case in which no coordinates are contained in the
set (w, w, w, w, . . . )). This may go some way to explaining why
Wittgenstein characterizes logical space as an “infinite whole” at
TLP 4.463, but describes the world as a “limited whole” at TLP
6.45.

The main point, for our present purposes, is simply that n,  = ,
and != stand to one another in iteratively defined, one-to-many
relations. If you have two elementary propositions (n), then you
have four possible ordered pairs of truth-possibilities ( =), and
sixteen possible truth-functions (!=). Moreover, if n is an infinite
totality, then  = , and != must each have cardinalities that are
transfinite. The transfinite cardinality of  = will be arrived at by
applying a power operation to n, and the (even larger) transfinite
cardinality of != will be arrived at by applying the same power
operation to  = . More specifically,  = will be equal to 2n, and !=
will be equal to 2 = .

5. Transfinite Number and the General Form of a
Number

In Section 2, we saw that Wittgenstein sought to generate all
truth-functions of elementary propositions via successive appli-
cations of the general form of a truth-function. The general form
of a truth-function, as we saw, was also identified as the general
form of a proposition at TLP 6. Just a few remarks later at TLP
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6.02, Wittgenstein goes on to highlight an inner connection or
internal relation between the general form of a truth-function
and the general form of a number. According to Wittgenstein’s
analysis, the natural numbers are to be defined as exponents of
an operation that shares the same, basic, iterative structure as
N. Just as N generates all truth-functions of elementary propo-
sitions, by taking elementary propositions as bases and yielding
N-expressed truth-functions as results of successive applications
of N, Wittgenstein’s $ operation, defined at 6.02, takes 0 as a base
and yields the progression of all natural numbers as exponents,
or iterations of that operation.10

Notably, however, Wittgenstein insists at TLP 6.022 that “the
concept of number is simply what is common to all numbers,
the general form of number”. At 6.03, moreover, he singles out
the general form of integers, or whole numbers, as an instance
of the general form of number. This is significant for us, since it
suggests that Wittgenstein’s characterization of whole numbers
as exponents of an operation may be extensible to other sorts of
numbers, such as transfinite numbers. Since we saw above that
Wittgenstein’s N-operator, and truth-table notations implied that
infinite, and transfinite cardinalities belong to totalities such as
those of elementary propositions, truth-possibilities, and truth-
functions, such an extension would both support, and cohere
with Wittgenstein’s overall logical and semantic program.

Following von Neumann, for instance, we might define the
first transfinite number, the limit ordinal $, not as a member of
the natural number series (say the last member), but instead as
the series of natural numbers in its totality, the series generated
by applying the Ω operation first to 0 and then in turn to its suc-
cessors ad infinitum (see Ferreirós 2007, 371–74, Steinhart 2009,
151–52, 163). In Section 2 we saw that within the Tractarian sys-
tem, these two distinct conceptions of $ are conflated, and that

10For a much more detailed exposition of this construction, see Frascolla
(1994, esp. 1–22), Frascolla (1997).

Wittgenstein later identified this as a “most important mistake”.
Yet granting Wittgenstein’s mistaken, and ambiguous concep-
tion of $ for the sake of exposition, there is no reason it could
not be subject to an approach analogous to that developed by
von Neumann. Like 0 in the case of the natural number series, $
may then serve as the base for an operation which, applied iter-
atively, generates the series of transfinite numbers known as the
Beth numbers (see Steinhart 2009, 175–76). In this case, the rele-
vant operation will not simply be a successor operation but will
be a power operation. Much as the number of truth-possibilities
and truth-functions were given as exponents of an operation on a
number of elementary propositions n, successive Beth numbers
i1 − i$ may be obtained by iteratively applying a Cantorian
power operation.

In the case of finite numbers, we saw that by raising 2 to the
power of n, where n is the number of elementary propositions,
we obtained the number of truth-possibilities of those elemen-
tary propositions, and that by raising 2 to the power of m, where
m = 2n, we obtained the number of truth-functions of those el-
ementary propositions. Similarly, by raising 2 to the power of
i0, (which will be the cardinal number of $, the first transfinite
ordinal) we obtain the transfinite number i1. While in the case
of truth-tables, our base was 2 because there were 2 truth-values,
in this case our base is 2 because, with regards to any member
of the series of natural numbers which we have defined $ as,
we must decide “yes” or “no” with regards to whether to select
it in any particular sub-selection of the natural numbers, when
defining i1 as the number of all such subselections (Steinhart
2009, 169).

As we saw above in Section 4, Cantor (1891) devised a digital
code in which subsets of linear coordinates were encoded by a se-
quence of m’s and w’s, which we can likewise think of as a series
of yes/no choices. This method could also be applied to encode
subsets of the natural numbers as infinitely, but countably long
digital sequences. The operation specified in Wittgenstein’s

∑
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notation was designed, as we saw, to count the number of selec-
tions of digital sequences of a given power or size. For instance,
as the number of truth-functions of 2 elementary propositions,∑

tells us that there are 16 digital sequences of 4 entries each.
Each of these sequences could easily be construed of as encoding
a subset of a set of natural numbers. For instance, if we start with
the set {1, 2, 3, 4}, then (F, F, F, F) encodes the empty set ∅, while
(T, F, T, T) encodes the subset {1, 3, 4}, and (T, T, T, F) encodes the
subset {1, 2, 3}. This same procedure could then be extended to
the infinite sequence of natural numbers, subselections of which
would be encoded by infinite digital sequences.

The operation specified in Wittgenstein’s
∑

notation would
thus involve something akin to, but subtly, and importantly dis-
tinct from a “quasi-combinatorial” conception (Bernays 1935,
259–60, Ferreirós 2011) of such numeric, and digitial sequences.
While the quasi-combinatorial view conceives of such infinite
sequences, or subsets of natural numbers as objects which ex-
ist independently of our attempts to encode them, Wittgenstein
views the possibility of generating, and constructing such se-
quences, or selections of either natural numbers or digitial code
as subsisting independently of our actual generation, or construc-
tion of them via series of iterative operations. Such possibilities
are given along with the logical structure of the world, and sub-
sist regardless of whether we exploit these possibilities to do
mathematics, or not. Witggenstein is thus a Platonist not about
numbers, but about possibilities. We saw this to an extent already
in Section 3 where it was argued that Wittgenstein adheres to
a fixed domain of objects that are “modally real” in the sense
that they subsist in all possible worlds, and thereby make possi-
ble the existence therein, of any atomic facts composed of them.
Anticipating Benacerraf (1965), Wittgenstein was apt to charac-
terize numbers not as objects, but as iterations, or exponents of
operations which embody abstract structures of a certain nature.
In the case of the natural numbers, for example, Wittgenstein
means successive application of his Ω operation to embody the

abstract structure known as a “progression”. Wittgenstein’s con-
struction of the natural numbers thus involves neither ur ele-
ments, nor sets, but only an operation with abstract, structural
features which mirror the abstract structure of logical space.

At TLP 6.03, Wittgenstein provides a symbol meant to capture
the general form of a progression and thus the general form of
an integer (or natural number), specifically [0, �, � + 1]. Build-
ing on this notation, and on that which gives the general form
of a proposition, the general form of transfinite number could

be symbolized as [$, �,
∑′(�)]. Like N’(�),

∑′(�) would be an
instance of the general form of an operation Ω

′(�), in which the
metavariable (�) stands for a selection, or choice operation per-
formed on some type of arguments �, whether they be numbers
or elementary propositions ($ stands for the infinity totality of
natural numbers while p stands for the infinite totality of ele-
mentary propositions). In the symbol for the general form of a
transfinite number given above, $, again, represents all digitally

encoded subselections of natural numbers, � represents any ar-

bitrary sub-selection of bases or results of
∑
(�), and

∑
represents

an operation which calculates numbers of subselections of digi-
tal sequences which themselves encode subselections of natural
numbers. Through successive applications of this procedure,

∑
could be used to calculate the number of subselections of natural
numbers, yielding i1(= 2$), then calculate the number of sub-
selections of the original subselections, yielding i2(= 22$ ), and
so on.

The cardinality of the selection of all such subselections of nat-
ural numbers, i1 will thus be greater than that of $ by a factor
of 2i0 . By raising 2 to the power of i1 we may then obtain i2

and so on. i2 will be the cardinality of the number of possible
subselections, within the selection of all subselections of the nat-
ural numbers that we used to construct i1. This new selection
will be greater than the cardinality of the previous selection by a
factor of 2i1 . By iteratively applying a power operation based on
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this procedure of diagonalization, which takes 2 as a base and
a transfinite number as an exponent, we may obtain the infinite
series of transfinite, Beth numbers (Steinhart 2009, 176). This con-
struction will be structurally analogous to the one we followed
when we obtained the number of truth-functions of elementary
propositions, by applying an iterative operation which takes 2
as its base, and a (finite or infinite) number first of elementary
propositions, and then of truth-possibilities, as an exponent. It
will also cohere nicely with Wittgenstein’s characterization of
number as “the exponent of an operation” (TLP 6.021).

The reason to explicate the Beth series as opposed to the Aleph
series, is that it nicely correlates with the structure, and re-

sults of the power operation
∑
(�), which can be constructed out

of Wittgenstein’s Σ and � operations. Notably, however, even
though every Beth number is also an Aleph number, whether
the Beth numbers are identical to the Aleph numbers, and just
how we should go about correlating the Aleph series with the
Beth series, are each outstanding philosophical and mathemat-
ical problems and controversies, associated with the so-called
“continuum problem”.11 While it is well beyond the scope of
this paper to fully explicate the problem, and to adjudicate the
scholarly controversy surrounding it, it may be worthwhile to ex-
plain briefly what it is, and consider what it might imply about
Wittgenstein’s logical system. The “continuum problem” is sim-
ply the question of whether there is a transfinite number of in-
termediate size, or cardinality, between the cardinality of the
natural numbers and that of the real numbers. (It is called the
“continuum” problem because the real numbers are equivalent
in size to the number of points on a continuous line.) In other
words, just as we can ask whether the even numbers are equiv-
alent in size to the natural numbers, we can ask of any infinite
subset of the reals, whether it is equivalent in size to the total-

11For a more detailed exposition of the continuum problem, see Steinhart
(2009, 178) and Koellner (2016).

ity of reals. If there is an infinite subset of the reals which is not
equivalent in size to the reals, this would suggest the existence of
a transfinite number intermediate in cardinality between the nat-
urals and the reals. Cantor’s continuum hypothesis just says that
there is no such intermediate number. In other words, 2ℵ0 = ℵ1.
If the continuum hypothesis is true, then ℵ1 is thus equivalent to
i1 (ℵ1 = i1). In its generalized form, the continuum hypothesis
says that all Alephs share this same basic feature, and thus that
the Aleph series is equivalent to the Beth series. Raising 2 to
the power of any Aleph, according to the generalized continuum
hypothesis, will always yield the next largest Aleph, just as was
the case in our explication of the Beth series, above.

The construction of a transfinite number line in terms of the
Beth series provided in the previous paragraph, is thus certainly
consistent with the truth of Cantor’s continuum hypothesis,
though it seems irresponsible to represent Wittgenstein as tak-
ing any definitive stand on whether the continuum hypothesis
is true. Possibly, like Hilbert he simply accepted it as a “plausi-
ble theorem. . . which no one has succeeded in proving” (1900,
1103). Had Wittgenstein undertaken a more robust treatment of
transfinite number in the Tractatus, perhaps we would have a
better sense of where he stood on this matter at the time. But
unfortunately, and as noted above in Section 1 and by Russell in
his introduction to TLP, he did not. It might help matters if we
knew more about Russell’s own views on the continuum prob-
lem, but that is a topic worthy of careful study in its own right,
and which is beyond the scope of this already lengthy paper.
Likewise, Wittgenstein’s views on continuity and real numbers
are themselves a topic worthy of careful, critical and expository
research in their own right and, unfortunately, also beyond the
scope of this already rather lengthy discussion.12 If the contin-
uum hypothesis turns out to be false, then we have still provided

12See Rodych (2018) for further discussion of this rich, historically complex,
and fascinating topic.
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a way of constructing a transfinite number line that plausibly
extends Wittgenstein’s theory of number, and of operations, to
the transfinite case. It will be recalled that the goal of the paper
was not to show that Wittgenstein had solved the continuum
problem, but that his system implicates transfinite cardinalities
and contains ingredients which could plausibly be deployed to
construct them.

Within his development of the Tractarian logical system, ad-
mittedly, Wittgenstein never explicitly identifies or explicates
the Cantorian power operation which I have employed above
to construct a transfinite number line. Indeed, it is possible to
construe this as the very “lacuna” which Russell says it is not im-
possible for Wittgenstein to fill. Yet, Wittgenstein does identify
at least two distinct operations which, as we have seen, could
plausibly be deployed to implement such an operation, one of

which is associated with his � notation, and the other of which
is associated with his

∑
notation. The former generates selec-

tions of elementary propositions, while the latter calculates the
number of truth-possibilities and truth-functions of such ele-
mentary propositions. The first of these operations generates
all unordered subselections of elementary propositions, which
may be presented to the N-operator in the construction of all

meaningful propositions. In this respect, the � operation bears
obvious affinities to a Cantorian power operation which gener-
ates the power set of a set, by collecting together all subsets of
the set into a set.

Notice that, there are obviously significantly many more possi-
ble selections of elementary propositions for presentation to the
N operator, than those which can be determined by any of the
methods identified at TLP 5.501 (that is, either by 1) direct enu-
meration, or via 2) a propositional function, or 3) a formal law).
For example, N could easily operate upon a random selection
of elementary propositions whose corresponding propositional
functions differ in structure and arity from one another, to gen-

erate a truth-function of those elementary propositions. Such
a random selection might even be infinite in length, and could
be characterized as an “arbitrary subselection” of elementary
propositions analagous to an “arbitrary subset” of natural num-
bers of the sort presupposed by the quasi-combinatorial con-
ception of a set embraced implicitly by Cantor, Dedekind, and
others (Ferreirós 2011). Such subsets are “arbitrary” in the sense
that they exist whether or not they are definable. Analogously,
subselections of elementary propositions can be “arbitrary” in

the sense that they lie within the range of � whether they share
any defining feature or not. � is a propositional variable which
takes selections of elementary propositions as its arguments, but

over and above that, � could be construed as representing an
operation which generates all subselections of the elementary
propositions within the domain of �, whether those subselec-
tions share any defining feature or not. This fact partly explains
why Wittgenstein insists at TLP 5.501, that how we go about de-
termining or describing such subselections of elementary propo-

sitions is an “inessential” matter. His � operation ensures, in
advance, that all possible selections of elementary propositions,
whether definable or not, are available for the construction of any
conceivable truth-function. The expressive completeness of N is

thus supposed to be stipulated already within the N(�) symbol
contained within Wittgenstein’s broader symbol for the general
form of a proposition, or truth-function. (TLP 6). In other words,

� is part of the operation specified by N(�). In fact, Wittgenstein
never actually mentions an “N” operation in the Tractatus, but

does identify an N’(�) operation at TLP 6.001.

The expressive completeness of N(�) therefore has little to do
with the technical feasibility of the illustrative methods identi-
fied at TLP 5.501, of selecting elementary propositions for pre-
sentation to N. These are merely specific instances of what is

accomplished in general by the � operation, that are identified
by Wittgenstein because they are of assistance, psychologically,
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in that they help the reader understand how to translate from
N-expressions into Russellian notation.

As we have seen, moreover, the second of the two operations
specified by Wittgenstein, associated with his

∑
notation (given

at TLP 4.27 and 4.42), calculates the number of truth-possibilities
and truth-functions of n elementary propositions by summing
the binomial coefficients which correspond to ways that digital
characters, such as “T’s” and “F’s”, can be combined in sequences
of a given length. What Cantor’s diagonal argument shows,
and what Wittgenstein’s

∑
notation is designed to recover, is

that there are always more subselections of such sequences than
members of the sequence. Specifically, there will always be more
by a power of 2n, where n is the number of members in the se-
quence. As we have seen, this same operation could obviously
be used to count digital sequences which encode selections, or
subsets of the natural numbers. The number of such subsets
of natural numbers would be greater than that of the natural
numbers by a power of 2n.

Once the general idea of how to integrate these two operations
within an iterative, Cantorian power operation is in place, it be-
comes clear that Frascolla was right to characterize Ramsey as
“misdirected” when the latter claimed that Wittgenstein’s view
of mathematics was “ridiculously narrow”. Wittgenstein’s phi-
losophy of mathematics is thus not “narrow” so much as it is
underdeveloped, relative to the ideal of an exhaustive, formal
exposition. It is clear, however, that Wittgenstein did not aspire
to provide such an exposition within the Tractatus. Again, the
Tractatus is not a textbook so much as a treatise on logical phi-
losophy, which aims to provide a general framework which it
invites others to develop and flesh out, in some cases formally.

We cast Wittgenstein’s operations as selection-theoretic as op-
posed to set-theoretic, simply because that is how Wittgenstein
wants to frame the internal relations both between elementary
propositions and truth-functions, as well as between numbers
and their successors. Hence at TLP 6.031 Wittgenstein insists

that set theory is “completely superfluous”. He is emboldened
to make this assertion, in part, because he thinks he can generate
all truth-functions and all numbers iteratively, via distinct, but
structurally analogous operations, each instances of the general
form of an operation, and without reference to sets. Instead of an
“axiom of the power set” (Ferreirós 2007, 322), Wittgenstein can
appeal to a power operation which counts “power selections” of
the natural numbers, the cardinalities of which are equivalent to
transfinite, Beth numbers. The relative cardinalities of these Beth
numbers are themselves, in turn, defined by an iterative power
operation.

An added motivation Wittgenstein has to avoid appeal to sets
is to be found in his Grundgedanke, or “fundamental thought”
(TLP 4.032), according to which logical and mathematical propo-
sitions are purely formal and thus do not refer to, or represent
relations between logical or mathematical objects (such as sets).
Both logic and mathematics are, on this view, pure formal cal-
culi and thus lack substantive content. Logical and mathematical
propositions are true in virtue of their structure alone, and this
explains their a prioricity as well as necessity.

6. Conclusion

In this paper I have endeavored to explore and address Rus-
sell’s concern, that Wittgenstein’s theory of number stands in
need of further technical development specifically with respect
to the case of transfinite number. Regarding this “lacuna” in
Wittgenstein’s system identified by Russell, I set out in pursuit
of two distinct, but interrelated goals. The first was to show that
Wittgenstein’s philosophy of language and logic contains an im-
plicit commitment to transfinite cardinalities, while the second
was to sketch the general lines upon which one might extend
Wittgenstein’s theory of number to the transfinite case, given
ingredients already present within his system. In Section 2, we
probed Wittgenstein’s extensional construal of language, delved
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into the mechanics of Wittgenstein’s N-operator, and explored
how language was supposed to be built up truth-functionally by
successive applications of N. In Section 3, we then reflected on
the size of the Tractarian domain of quantification and defended
the claim that it should be construed as infinite. In Section 4,
we then saw that Wittgenstein’s conception of logic as embodied
within internal relations of truth-preservation between atomic
and molecular propositions displayed in truth-tables, involved
an implied commitment to transfinite, ordinal numbers of in-
creasing cardinality. In Section 5, we then observed the existence
of an inner connection, or internal relation between the general
form of a truth-function embodied in successive applications of
Wittgenstein’s N operator, and the general form of a number
as embodied in successive iterations of Wittgenstein’s Ω opera-
tor. We saw that this number line could then be extended into
the realm of the transfinite by specifying a Cantorian power op-

eration
∑
(�), that takes digitally encoded subselections of the

natural numbers as its base ($), and yields as its results, in
succession, a series of ordinal numbers of higher, transfinite car-
dinalities (i1 − i$).
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Trent University
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