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CONSTRAINTS AND MARR’S LEVELS 2

Abstract

Blokpoel reminds us of the importance of consistency of function across Marr’s levels, but we argue that

the approach to ensuring consistency that he advocates — a strict relation through exact implementation of

the higher-level function at the lower level — is unnecessarily restrictive. We show that it forces

over-complication of the computational level (by requiring it to incorporate concerns from lower-levels)

and results in the sacrifice of the distinct responsibilities associated with each level. We propose an

alternative, no less rigorous, potential characterisation of the relation between levels.
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On the relation between Marr’s levels: A response to Blokpoel (2017)

Introduction

Blokpoel’s attempt to constrain relationships between Marr’s levels is to be welcomed. As Blokpoel

notes, if one assumes only a loose relation between each of Marr’s three levels then consistency between

levels (however that might be defined) cannot be ensured. Blockpoel proposes a two-pronged approach to

the problem of constraining relations between levels. First, he calls for a strict relation between successive

levels, whereby each “subordinate level is an exact implementation of the higher level” (p. 3), and second

he advocates the use of computational-level constraints on inputs (i.e., constraints at the top-most,

computational, level) as a way of placing limits on lower-level accounts.

The Primary Difficulty for Strict Relations

While we support Blokpoel’s goal, his call for a strict relation between successive levels seems to us

to be unnecessarily restrictive. It fails to acknowledge that different levels are subject to qualitatively

different types of constraint and in so doing it forces higher-level descriptions to incorporate consequences

that derive from lower-level considerations (and arguably vice versa).

Consider the example of (well-defined) goal-directed problem solving. An informal

computational-level theory based on the work of Newell and Simon (1972) might claim this requires

finding a path through state-space from the initial state to a goal state by applying a sequence of operators

(i.e., state transition functions). More formally, the problem may be characterised in the language of

Blokpoel, Kwisthout, van der Weide, Wareham, and van Rooij (2013) as follows:

Input: ⟨S, s0, E, g⟩, where S is a set of states, s0 ∈ S is the start state, E ⊂ [S × S] is the set

of edges between states, reflecting valid state transitions, and g : S → [0, 1] is a function that

maps states to 1 if and only if they satisfy the goal (and 0 otherwise).

Output: p ∈ S+, where p1, the first element of p, is s0, each successive pair of elements in the

path p is in E (i.e., ⟨pi−1, pi⟩ ∈ E for 0 < i ≤ n, where n is the length of the path p), and pn

(the last element of p) is a goal state (i.e., g(pn) = 1).

This computational-level characterisation is intentionally minimal and one might argue for additional

constraints on p (e.g., that it contains no loops or that it is a shortest path, etc.). One might even argue that
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CONSTRAINTS AND MARR’S LEVELS 4

the characterisation should specify output(s) for each potential input (as Blokpoel appears to suggest).

Critically, however, even with such constraints, the computational level account makes no reference to

algorithmic concepts (i.e., to concepts related to specific algorithms that might meet the computational

requirement).

Consider now an algorithmic-level model of goal-directed problem solving that meets the

computational-level specification. Algorithmic-level accounts typically incorporate some form of limited

look-ahead, whereby participants are argued to imagine the consequences of different sequences of two or

three possible moves, attach a valuation of the subsequent states, and choose the moves with the greatest

valuation. This can be repeated until a goal state is achieved. More information is required to flesh out this

sketch into a specific algorithm. Minimally we require a valuation function v : S → R that maps states to

values, and which is maximised for goal states, together with a look-ahead parameter (typically denoted k)

that specifies the depth of look-ahead. While one can imagine different algorithmic-level models based on

different value functions (v), the look-ahead parameter (k) reflects a resource constraint — a limitation on

the algorithm imposed either by the human cognitive aparatus or by the requirement to act in a timely

manner.

Consider now a specific problem, say one that requires at least d steps for its solution. For values of

k less than d there is no guarantee that the algorithmic-level account will concur with the

computational-level account, but for all solvable problems (i.e., all problems that can be solved in a finite

number of moves), regardless of the value function, the output of the algorithmic account will match the

computational-level for a sufficiently large value of k.

Our example is somewhat different from the example cited by Blokpoel. He discusses Bayesian

Inverse Planning (BIP) as an account of how one might infer an agent’s goals from its actions (and

knowledge of the probabilistic relations between actions and goals). In the case of BIP, the argument (from

tractability considerations) is that for the theory to be psychologically plausible one of two constraints must

hold. These constraints concern the number of goals that must be considered, the maximum number of

“values” for those goals (e.g., within the BIP framework a goal such as satisfy hunger might have three

values: big-hunger, medium-hunger or little-hunger), and the probabilities of different combinations of

goals. In this case the constraints relate to the environment within which BIP is tractable. But presumably

even with a suitably constrained environment, different algorithms may introduce different resource
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CONSTRAINTS AND MARR’S LEVELS 5

constraints such that the algorithm will only approximate the computational-level BIP theory.

Alternatively, the limits on the number of goals etc. required for BIP to be tractable may be imposed by

architectural limitations (e.g., working memory capacity limitations), which flow from lower-level

considerations (and not the computational level).

An Alternative Proposal

Given the above arguments, we propose an alternative account (to that of Blokpoel, 2017)

concerning the relationship between levels. In order to ensure consistency between levels, Blokpoel

proposes:

A(i) = C(i)

for all inputs i within the cognitive capacity’s domain, where C is a computational-level theory and A is a

corresponding algorithmic-level theory. We propose instead the following relation between the algorithmic

and computational levels:

lim
r→∞ Ar(i) = C(i)

for all valid inputs i, where r denotes the resources of the specific algorithm Ar which implements (in the

sense of Blokpoel) C, the target computational-level theory. Critically, in this alternative formulation r

concerns the algorithmic level and does not feature in the computational-level theory.1

In formal terms, it is of course possible to fold r into the computational level so as to preserve the

position of Blokpoel (2017), viz.:

A(i, r) = C(i, r)

However, this formulation adds unnecessary complication to the computational-level specification — one

must consider resources and their availability as a further input to the computational level. Perhaps more

critically it locates r at the wrong level as r is a property of a specific algorithm. Different algorithms may

use qualitatively different resources, and pushing the resource into the computational level means that the

computational-level description is no longer algorithm independent.

These concerns are magnified if one adopts the logical extension of Blokpoel’s approach to the

implementation level. Here one would be required to fold neural constraints into both the algorithmic and
1We assume a similar formulation of the relation between the algorithmic and representational level and the implementation

level.
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CONSTRAINTS AND MARR’S LEVELS 6

representational level and then into the computational level. Doing so loses one of the main reasons for

distinguishing between levels in the first place — namely that one can work at one level without being

overly concerned by lower (and higher) level constraints.

An Additional Concern

A subsidiary argument made by Blokpoel (2017) is that “each computational-level constraint limits

the set of possible algorithms” (p. 8). While this may well be true of some computational-level constraints,

it is not true of all computational-level constraints. The tractability constraint is a case in point. As van

Rooij (2008) notes, some researchers have dismissed various computational-level theories on the grounds

that they are intractable, meaning that there is provably no known algorithm that can compute the output of

the computational-level theory in a reasonable time (where “reasonable” time is defined as a polynomial

function of some complexity parameter of the input, such as the input’s length). van Rooij further argues

that this dismissal is unjustified if the specific inputs which require unreasonable time are not typically

encountered. In other words, van Rooij’s argument is that restricting inputs effectively renders tractable

some computational-level theories that would otherwise be intractable. This is a position that we, and

Blokpoel (2017) endorse. However, restricting inputs typically increases the space of potential algorithms

because algorithms that might be unreasonable on the full set of inputs may be reasonable when the set of

inputs is restricted. Consequently, it is not the case that computational-level constraints necessarily limit

the set of possible algorithms.

Conclusion

We have argued that the relation between the computational and algorithmic levels proposed by

Blokpoel (2017) is idealistic. It may hold in the limit as resource (and other algorithmic-level) constraints

are relaxed, but demanding that it hold independently of algorithmic-level constraints does not fully

appreciate the purpose of distinguishing between levels. In our view, the root of the difficulty arises from

Blokpoel’s assertion that “the competence/performance distinction [is] orthogonal to Marr’s levels of

analysis” (Blokpoel, 2017, p. 2). While the distinction is not without its own difficulties (e.g., in identifying

competence based purely on performance), Marr (1982) explicitly identified the competence theory of

Chomsky (1965) as a computational-level theory, contrasting it with an algorithmic-level performance
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theory.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



CONSTRAINTS AND MARR’S LEVELS 8

References

Blokpoel, M. (2017). Sculpting computational-level models. Topics in Cognitive Science, This issue.

Blokpoel, M., Kwisthout, J., van der Weide, T. P., Wareham, T., & van Rooij, I. (2013). A

computational-level explanation of the speed of goal inference. Journal of Mathematical

Psychology, 57(3), 117–133.

Chomsky, N. (1965). Aspects of a theory of syntax. Cambridge, MA: MIT Press.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of

visual information, henry holt and co. Freeman and Company.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939–984.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Your PDF file "response_to_blokpoel.pdf" cannot be opened and processed.  
Please see the common list of problems, and suggested resolutions below. 
 
Reason:   
 
Other Common Problems When Creating a PDF from a PDF file 
----------------------------------------------------------------- 
 
You will need to convert your PDF file to another format or fix the 
current PDF file, then re-submit it. 

PDF of full manuscript Click here to download Manuscript response_to_blokpoel.pdf 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


