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ABSTRACT

The metaphysical concept of continuity is important, not least because physical 

continua are not known to be impossible. While it is standard to model them 

with a mathematical continuum based upon set-theoretical intuitions, this essay 

considers, as a contribution to the debate about the adequacy of those intuitions, 

the neglected intuition that dividing the length of a line by the length of an indi-

vidual point should yield the line’s cardinality. The algebraic properties of that 

cardinal number are derived pre-theoretically from the obvious properties of a 

line of points, whence it becomes clear that such a number would cohere sur-

prisingly well with our elementary number systems. 

1. Introduction. 

ere there physical continua, e.g. space-time, there would be an 

objective fact of the matter about the truth of our hypotheses about 

continuity. One hypothesis that has shaped modern mathematics (and 

thence logic and metaphysics) to a very great extent is that the geometrical 

line and the real number line are isomorphic, which I will call C-D, as it is 

due to Cantor and Dedekind. That hypothesis is assumed by almost all sci-

entists nowadays, but nonetheless its philosophical analysis might one day 

benefit from our having available the widest possible range of alternative 

hypotheses (e.g. see Ehrlich 1994, not to mention such category-theoretic 

possibilities as synthetic differential geometry). In this essay I take an in-

formal (pre-theoretic) look at one neglected hypothesis. I cannot consider 

any of its philosophical ramifications in any depth, not as well as defining 

it (in §2) and exhibiting its structural coherence (in succeeding sections), 

but I will at least be enabling that to be done. 

 My hypothesis may be introduced as an extrapolation from the famil-

iarly finite. If we consider sand grains to be cubic millimetres of silicate, to 

keep things simple, then a sandstone mountain, say M, composed entirely 

of such grains and occupying a cubic kilometre, would contain 10
9

m
3
 ÷ 

10
–9

m
3
 = 10

18
 grains. That may be expressed, using Kessler’s (1980, 69) 

empiricistic notation, as 10
18

(M, being-a-grain). By extrapolating, it is not 

W
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hard to imagine that, if lines were composed of points, each of length 0, 

then a line of arbitrary unit length u might contain 1·u ÷ 0·u = 1/0 points. 

Such extrapolations, from finite cases to an infinite case, are unreliable, but 

they do not necessarily fail (e.g. they found set theory, see principle b of 

Hallett 1984, p. 7) and that one turns out to be coherent enough, as you will 

see.

 First I should define my terms a little more precisely. Let the primi-

tive line be the line that would be physically instantiated, e.g. as time, were 

time infinitely divisible. That idea, of a pre-theoretic geometrical line, 

makes sense whether or not there actually are any physical continua, and is 

more fundamental (conceptually) than such formal mathematical models of 

it as the standard real number line. Let primitive cardinality be what col-

lections that may be related by bijections (one-to-one correlations) must 

have in common. That concept is also fundamental, and therefore its nature 

is also highly debatable, but the following may contribute to such debates, 

so I shall simply assume that definition. Finally, let k denote the (primitive) 

cardinality of the continuum. In other words, if lines were composed of 

points, and if there were physical continua, so that a line of points, say L,

would be instantiated, then we would have k(L, being-a-point) in Kessler’s 

notation.

 I will begin to clarify what the possibility of k resembling 1/0 

amounts to in §2, but an immediate problem is that you may already regard 

1/0 as an impossible whole number. You may think, for example, that from 

1 × 0 = 2 × 0 we would be able to deduce 1 = 2, were we to allow arith-

metical division by 0, so I shall end this introductory section by challeng-

ing that particular reason. For an apposite historical analogy, when Cantor 

introduced (informally) his transfinite whole numbers he first had to chal-

lenge prejudices against their possibility (see Cantor 1883, pp. 892-893) 

before arguing that they were not just possible, but were actually coherent 

and useful. 

 Now, although the 1 = 2 above does follow from assuming 0/0 = 1 

(together with associativity), why should 0/0 = 1? One reason might be that 

a/a = 1 whenever a/a is defined at present (for finite a), and additionally 

defining 0/0 is like allowing a to be 0. But that kind of extrapolation is no-

toriously unreliable, and note that indeterminate forms within the calculus 

are often denoted by 0/0, the reason being that all the finite numbers yield 

0 upon multiplication by 0. In fact, it need only follow, from dividing 1 × 0 

= 2 × 0 by 0, that 0/0 includes x iff (if and only if) it contains 2·x, and that 

would allow arithmetical division by 0 (if not as a function) if 0/0 could be 
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a collection of numbers (if not a set of numbers). I consider such collec-

tions in §2; but incidentally, multifunctions and mereological collections 

have indeed proved to be mathematically coherent and useful. 

 Another reason might be that ‘division by x’ means ‘multiplication 

by the multiplicative inverse of x’ within the number fields, and x’s multi-

plicative inverse is whatever yields 1 when multiplied by x. But from 0/0 ≠
1 it need only follow that division by 0 is not allowed within number 

fields. You will see (in §5) that it is allowed within number pitches, which 

contain number fields in an algebraically strong way. Note that I will not 

be suggesting that functions and fields are not useful. They are extremely 

useful, but we may certainly extend that repertoire so as to include other 

structures that nature might be instantiating. By analogy, there is an obvi-

ous utility to having the cardinality of a collection increase by 1 when a 

new object is added to it, yet we may consider infinite cardinals whenever 

we have reason to. 

2. A Non-set-theoretic Cardinal. 

We may begin to consider the metaphysical possibility of k resembling 1/0 

by considering the coherence of adjoining an undefined symbol # to the 

natural numbers (in §3), where the informal properties of # are derived 

from two heuristic assumptions: 

 (ha1) that # is a possibility for k; and 

 (ha2) that 1/# is the length of a point. 

Such an approach is relatively direct because it is analytically metaphysical 

(i.e. pre-theoretic, not unlike Cantor 1883) rather than axiomatically 

mathematical (usually set-theoretic, cf. Kitcher 1983, p. 190) and so it 

avoids prejudging what kinds of numbers are possible (cf. §7). Note that # 

is not defined to be 1/0, the reason being that # is, if coherent, a cardinal 

number, which is a more fundamental kind of number than a ratio of mag-

nitudes.

 In case, at the outset, your suspicions are roused by # not being one 

of our numbers already, note that # cannot be a set-theoretic cardinal: were 

k the cardinality of a set, 0·k would equal 0, because the Cartesian product 

of ∅ (the empty set) with any set is ∅ (note that, for an arbitrary number x,

0·x does not necessarily have to equal 0, e.g. it need not within category 

theory). Furthermore, the major alternative to set theory as a foundation for 

mathematics has been constructivism, which prefers its lines not to be full 

of points. Consequently, even a coherent # may well have been over-
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looked. You will be better placed to decide whether or not the metaphysi-

cal (and perhaps empirical) hypothesis k = # coheres with the concept of a 

line of points after the following essay. But of course, it is hardly unnatural 

to treat continua mereologically, whether or not they are full of points. And 

in order to presume as little as possible about what numbers really are, in 

this pre-theoretic essay, I shall require their sort of collection to be an in-

formal kind of atomic mereological sum (as formally described in Simons 

1987, p. 14). A suitable collection has the following 4 informal properties 

(at least) and I call such a collection a mere-sum and denote it by square 

brackets.

 The first property of mere-sums of numbers is that the individual 

numbers are regarded as atoms. That is, mere-sums of numbers are not also 

mere-sums of whatever comprises those numbers (in a different way) if 

anything does (e.g. their elements, if numbers are classes). Secondly, be-

cause the mereological sum of x and y is just x and y, internal brackets can 

be eliminated (e.g. [[1, 2], 3] = [1, 2, 3]), and the mere-sum of a single 

number is merely that number (e.g. [1] = 1). Thirdly, two mere-sums are 

naturally defined to be equal iff a bijection between them may relate each 

atom with an equal atom. Consequently, [x, y] = y iff each atom of x is also 

an atom of y, so that x is a part of y (formal mereologies being part-whole 

theories), which is abbreviated to x ∠ y below (e.g. [1, [1, 2]] = [1, 2], so 1 

∠ [1, 2]). Furthermore, if x ∠ y, and also z ∠ x implies x ∠ z, then x is an 

atom of y, abbreviated to x @ y below (e.g. 1 @ [1, 2]). And finally, arith-

metical operations naturally distribute over mere-sums of numbers (e.g. 

adding 1 to both 1 and 2 yields 2 and 3, and so 1 + [1, 2] = [(1 + 1), (1 + 

2)] = [2, 3]). 

 Mere-sums make very natural pre-theoretic collections (of numbers) 

and not even that much geometrical mereology will be required, not explic-

itly (cf. §7). But # does require that primitive lines might be made of 

points. Points are quite possible and conceivable, of course; e.g., an imagi-

nary black square on a white background has points at its corners, where its 

edges intersect. Although planes do seem more like, for example, glass 

panes than sandpaper, that intuition cannot imply that they are not full of 

points, because points, having size 0, are infinitely smaller than sand 

grains, which hardly conflicts with planes being infinitely smoother than 

sandpaper. Furthermore, lines in planes are not like scratches put onto

glass panes, because the positions of such scratches would make much bet-

ter analogies for primitive lines, and they were clearly there already. In Ar-

istotle’s (spatial) line, a point had a potential existence that was actualised 
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only if something happened there, but it is not uncommon to think that if 

something could happen there then an actual position (or point) must have 

been there already, so that it could happen there. While points are not a 

metaphysical necessity (see Dummett 2000 and Slater 2003), if points do 

exist then, as there is nowhere in a line where it cannot be intersected by 

another (0-width) line, lines are clearly full of points. A primitive line is ef-

fectively thought of as being some infinitude of points with the single 

thought that such intersections may occur anywhere within it. So the fact 

that it is also a single operation that yields 1/0 = # (see §3) indicates that k

= # is not an intrinsically unreasonable hypothesis. 

 Nor is k = 2^ℵ0 of course, where ^ denotes standard cardinal expo-

nentiation (because I use the more familiar superscript notation for a more 

familiar form of exponentiation in §4) and ℵ0 is the cardinality of the natu-

ral numbers (regarded as an actual infinity). That equation for k follows 

from C-D, so note that the significance of that widespread assumption may 

be assessed properly only if all the alternatives to it are also considered. 

For almost a hundred years, mainstream mathematicians have been using 

numbers that are (isomorphic to) ZF sets, not least because geometry was 

reduced to analysis following Descartes, and analysis was reduced to set 

theory following Cantor. But while ZF set theory provides mathematics 

with a definite subject-matter, not incoherently (e.g. see Steinhart 2002), it 

is hardly a comprehensive theory of cardinality, such as would be required 

for deciding the metaphysical propriety of #. E.g., we ourselves instantiate 

the natural numbers, so we can hardly just define them (see Hamming 

1998), and note that it is only their emulation by some ZF sets (the finite 

von Neumann ordinals) that justifies those sets being called natural num-

bers within ZF. (For various thoughts about the natural numbers, see Ti-

eszen 1989, Dehaene 1997 and Heck 2000.) In particular, the totality of the 

natural numbers might even be potentially infinite, for all we really know. 

That possibility is already reflected within mathematics by the persistence 

of constructivism, and it will be accommodated in the last few sections of 

this relatively platonistic essay by considering lines of # points in two 

cases, C-I, in which the natural numbers form an actual infinitude, and C-

II, in which they do not. At the opposite extreme, for another example, we 

know that the cardinality of the totality of all the sets, say Ω, is not the size 

of a set, and yet it is certainly a primitive cardinal number because ℵα de-

notes a transfinite cardinal iff α denotes an ordinal (so those two classes 

correlate one-to-one). (Furthermore, it is obviously coherent to regard the 

totality of the cardinals and the totality of the ordinals as 2 totalities, de-
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spite the impossibility of doing so within ZF.) 

3. From Notion to Fraction. 

First I adjoin # to the natural numbers, N =df [1, 2, 3, …], to make N
#
 =df

[N, #], which I call the notional numbers, in order to see how strong the 

arithmetic of N
#
 can be, given ha1 and ha2. That is a good beginning (espe-

cially if C-II is the case) because little is as straightforward as the informal

arithmetic of the natural numbers. (Incidentally, although a formal exten-

sion of an algebraic structure would define new operations upon new ob-

jects, with some part of the new structure being isomorphic to the whole of 

the old domain, I shall call that part and the new operations by their old 

names as far as possible, for clarity.) The exclusion of 0 from N might 

strike you as odd, because we are used to including it in our ZF set of natu-

ral numbers, but it is desirable to exclude it here because the informal 

properties of # are going to be obtained via the concept of a line of # 

points. In that context, 0 is primarily the length of a point, it is a magnitude 

(an answer to ‘How much?’) rather than a multitude (an answer to ‘How 

many?’), and so 0 will be introduced as an abbreviation for 1/# when I 

consider the ratios of notional numbers, at the end of this section. Of 

course, 0 is indeed a finite cardinal number (if one of a unique kind) and so 

beginning with [N
#
, 0] would have been a coherent (if less clear) alterna-

tive.

 To begin with (where n is, as usual, a natural number variable) # + n,

# + #, #·n and #·# all equal #, for the following reasons. The first equation, 

# + n = #, could hardly be false given the second, which is a special case (n

= 2) of the third, #·n = #, which follows (via ha1) from how the points of a 

line of length n correlate one-to-one with the points of a unit line. Replac-

ing # by k in the fourth equation makes it say that planes have the same 

cardinality as lines, as we would expect nowadays (and it also follows 

from ha2 below). All 4 equations should be unsurprising nowadays, as they 

remain valid if any transfinite cardinal replaces #. And, as we would expect 

of arithmetical operations that may apply to numbers of points, addition 

and multiplication may both remain associative and commutative (the con-

sistency of retaining those algebraic strengths is clear enough because any 

finite expression containing # just equals #). Furthermore, it is trivial to 

check that multiplication distributes over addition, via a few typical equa-

tions such as #·(# + n) = #·# = # = # + # = #·# + #·n.

 Note that N
#
 is clearly (just as N is) closed under both operations. I 
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call a mere-sum S closed under a (binary) commutative operation o if x o y

@ S whenever x and y are atoms of S because that is isomorphic to the fa-

miliar definition of closure (a set S being closed under o if x o y ∈ S when-

ever x and y are elements of S). Isomorphic definitions will not usually be 

stated explicitly, for brevity, but that definition extends rather naturally to a 

concept that is more useful with the inverse operations. I say that S is 

mere-closed under o if x o y ∠ S whenever x and y are atoms (or other 

parts) of S. That concept coheres with the informal meaning of algebraic 

closure because if a mere-sum is mere-closed then operating within it can-

not generate anything that is not there already. 

 The inverse of o is usually an operation i such that x i y = z iff x = y o

z, e.g. 3 – 2 = 1 because 3 = 2 + 1 and nothing else (of current interest) 

yields 3 when 2 is added to it. But # – # and #/# (which is 0/0) will be col-

lections of numbers (cf. §1), so a more appropriate definition of i (in terms 

of o, and within a domain containing atoms x, y and z, and which I call In)

is z @ x i y iff x @ y o z (which includes the usual definition as a special 

case). E.g., # – n = # follows from In, since # + n = # and N is closed under 

addition, and #/n = # also follows from In, since #·n = # and N is closed 

under multiplication. Similarly, # – # = N
#
, since # + # = # = n + #, and #/# 

= N
#
, since #·# = # = n·#. Subtraction and division are not closed in N, so 

they are not mere-closed in N
#
, and unsurprisingly they are neither associa-

tive nor commutative. 

 For our first surprise, however, multiplication cannot distribute over 

subtraction, within N
#
, because (2 – 1)·# = # does not equal 2·# – # = N

#
.

That must seem like bad news for #, but consider the (informal) set N∪{0,

ℵ0}, where N is given by n ∈ N iff n @ N. Cardinal multiplication cannot 

distribute over subtraction within that set, lest ℵ0 = (2 – 1)·ℵ0 = 2·ℵ0 – ℵ0

= ℵ0 – ℵ0 = (1 – 1)·ℵ0 = 0·ℵ0 = 0. Defining ℵ0 – ℵ0 would be useful, e.g. 

removing ℵ0 objects from ℵ0 objects would leave m objects, where m ∈
N∪{0, ℵ0}, but N

#
 would be relatively strong anyway, even were ℵ0 – ℵ0

undefined, because at least # – # is defined. So it is likely that failures of 

distributivity are just as natural for infinite cardinals as failures of commu-

tativity are for infinite ordinals (cf. my glance at exponentiation in §4). 

And although multiplication will stop distributing over addition when 

negative numbers are adjoined (in §4), it is not especially unnatural for a 

commutative multiplication to fail to distribute over a commutative addi-

tion (e.g. it may do so within category theory). 

 Anyway, consider next the ratios of the notional numbers, because 

within the motivating context of a line of # points we may consider # 



98

points, and n points for any n, and also n line intervals. The continuity of 

the line makes it possible (in principle) to continue to subdivide intervals 

endlessly, so it is natural to extend N
#
 next to a domain that is mere-closed 

under division. I shall call a ratio of two notional numbers, if it is not #/#, a 

fractional number, an atom of F
#
. The elementary arithmetic of F

#
 sub-

sumes that of N
# ∠ F

#
 of course, and includes that of 1/#, and the remain-

ing atoms of F
#
 are of the form r = n/m, where n and m are relatively prime 

natural numbers with m > 1. Addition and multiplication may remain 

commutative and associative, with multiplication distributing over addition 

(it is trivial, if tedious, to show the consistency of retaining those algebraic 

strengths). Note that dividing the notional equation #·n = # by m yields #·r

= # (since #/m = #), while dividing # ± n = # by m yields # ± r = #, and 

multiplying #/n = # by m yields #/r = #. 

 It follows from ha2 that 1/# is the additive identity because, for ex-

ample, ignoring one of the end-points of a line interval would not affect its 

length, so n ± 1/# = n and r ± 1/# = r, from which # ± 1/# = # follows by 

adding #. And via In, n – n = 1/# and r – r = 1/#. Consequently, 1/# + 1/# = 

2·n – 2·n = 1/#, and r/# = r
2
 – r

2
 = 1/#, and (1/#)·(1/#) = 2·n

2
 – 2·n

2
 = 1/# 

(which yields the fourth notional equation, #·# = #, upon inversion), and so 

forth. In short, 1/# is isomorphic to the familiar magnitude 0 within the fi-

nite part of F
#
, so 1/# will now (for clarity) be called 0. Also via In, # – # = 

F
#
 and #/# = F

#
, and clearly #/# = #·0 = 0/0, so we may now see (to pick up 

a point from §1) that dividing 1 × 0 = 2 × 0 by 0 within F
#
 just yields F

#
 = 

F
#
.

Reiterating those arithmetical operations would be consistent, as a 

few typical equations (skipped for brevity) would show, so the coherence 

of # is already indicated (to some extent) by the algebraic strengths of N
#

and F
#
. The most natural way to extend F

#
 would be by adjoining irration-

als (and infinitesimals, see §7), because #·0 should include all such num-

bers: if k = #, then lines of arbitrary length are # points, each of length 0; 

and there are similarly geometrical reasons why # and 0 should be values 

of #·0, because a line of # points is 0% of an area, which has #·# = # points. 

You will see (in §5) that such extensions could retain the algebraic 

strengths of F
#
, but for brevity the negative numbers will be adjoined next, 

because a resulting algebraic structure, the number pitch (defined in §5), 

extends the other number fields just like it extends the rationals (revealing 

more of the coherence of #). 

4. Dividing by Zero Vectors. 
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It is useful to assign numerical coordinates to a line’s points, relative to 

two arbitrary points labelled 0 and 1 (see §7), and so it is quite natural (in 

the current context) to regard the adjunction of negatives as the introduc-

tion of two directions, ±1. So consider two signed collections +F
#
 and –F

#

defined by +x @ +F
#

iff x @ F
#

iff –x @ –F
#
, with the familiar properties of 

signs, e.g. –x = –y iff x = y and (–x)·(–y) = +(x·y), following from the natu-

ral properties of directions. The equations for +# are those for the frac-

tional #, reading r as +r, etc., while the equations for –# follow from con-

sidering the fractional equations in the direction –1 instead of +1 (e.g. –# ± 

–x = –#, for x @ F
#
). Addition and multiplication may remain commutative 

and associative (as is easily checked), so the arithmetic of +# and –# fol-

lows from that of #. E.g., +# – +# includes all the rationals and +# (via In)

so, +# being an atom of +# – +# = +# + –#, therefore –# also yields a mere-

sum that includes +# when added to +#, and so +# – +# = [+F
#
, –F

#
]. The 

remainder of the signed arithmetic is mostly that straightforward, but there 

is one odd-looking result, because (+#)·(+0) = +F
#
, whereas (+#)·(–0) = –

F
#
, which means that +0 (i.e. +(1/#)) is not quite the same as –0. 

 Nonetheless the rational equation 0 = (–1)·0 is obtained by replacing 

0 =df [+0, –0] with an individual object (not necessarily a pair-set) that re-

lates to the other numbers just like 0 does and which will be called 0 when 

the positive numbers are called by their previous (unsigned) names. That is 

not inappropriate because the rational 0 is not an undirected quantity, not 

in the way that the fractionals are undirected, so it really does not make 

less sense to think of it as having all the directions (of the domain) rather 

than none. Furthermore, approaching the rational 0 via 0 coheres with 

other consequences of ha1 and ha2, such as the existence of infinitesimals 

(see §7), which can have either sign. Of course, if replacing 0 by a single 

isomorphic object was a particularly unnatural thing to do, then the plausi-

bility of k = # would be challenged, but the main thing is that 0 is indeed 

isomorphic to the rational 0 (and the mainstream approach is less natural, 

e.g. its integers are equivalence classes of pair-sets of finite ZF ordinals). 

 That isomorphism follows from how rationals are not changed by the 

addition or subtraction of 0, and how any rational times 0 equals 0, as fol-

lows. From +F
#
, +0 + +0 = +0, so +0 is an atom of +0 – +0 = +0 + –0, and 

so –0 is too, and nothing else is, so +0 + –0 = 0, and furthermore (from –

F
#
) –0 + –0 = –0, so 0 + 0 = 0, and so 0 ± 0 = 0 because –0 = 0. More 

briefly now, (from +F
#
) +r ± +0 = +r, and (from –F

#
) –r ± –0 = –r, and 

similarly with n instead of r, and furthermore (+r)·(+0) = +0 and (+r)·(–0)
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= –0, so (–r)·(–0) = +0 and (–r)·(+0) = –0, again with n instead of r. Fi-

nally, directly from the properties of signs, 0·0 = 0.

So, with 0 replaced by an isomorphic atom called 0, and the positive 

numbers called by their old names, the new domain consists of #, –# and 

all of the rationals. Division by # and –# are still multiplication by +0 and 

(respectively) –0, by definition, so multiplication by 0 is now division by 

[#, –#], and 1/0 = [#, –#]. Although it was the case within F
#
 that 1/0 = #, 

such differences between domains are not too unusual, even within school 

mathematics, cf. how square numbers (e.g. 1, 4, 9) each have one square 

root in N, but two in Z (where x @ Z iff x ∈ Z, the informal set of integers 

that we learnt about at school, and which is arithmetically isomorphic to 

the ZF set of integers). What is more of a problem is that although # – # 

now equals the whole domain, #/# is only the non-negative part of it. A 

more useful structure therefore results from replacing both 0 and Θ =df [#, 

–#] by new atoms. 

That structure is the rational number pitch, in which 1/0 = ΘΡ (de-

fined in §5). But before I define that algebraic structure, note that although 

Z was bypassed as the number systems were built up via F
#
, that was not 

because of any inconsistency between Z and #. In fact, because 1/0 + 1/0 = 

Θ + Θ = # – # = 0/0 (which will become ΘΡ + ΘΡ = 0·ΘΡ below), the famil-

iar rules for adding and multiplying ratios of integers, i.e. (w/x) + (y/z) = 

(w·z + x·y)/(x·z) and (w/x)·(y/z) = (w·y)/(x·z), may now remain valid when 

w, x, y and z are any integers, and of course, being able to round out the va-

lidity of familiar rules indicates coherence. Furthermore, that particular ex-

ample occurred because multiplication by ±# (below, ΘΡ) cannot distribute 

over addition now that the subtraction of a number is the addition of its 

negative. So such extensions of validity compensate somewhat for (and 

thereby indicate the coherence of) that algebraic weakness. 

Coherence is similarly indicated by situations that involve to con-

sider exponentiation in any breadth it is apposite to note that 0
(2 – 1)

 = 0 and 

0
(1 – 2)

 = Θ (below, ΘΡ), whereas 0
2
/0 = 0/0 = 0/0

2
, so that the extension of 

the familiar rule z
(x + y)

 = z
x
·z

y
 to include z = 0 is the weaker rule z

(x + y)∠ z
x
·z

y

(cf. mere-distributivity in §5). But that weakness allows 0
0
 to equal 1 in-

stead of 0/0, and it can be useful to stipulate that 0
0
 = 1, e.g. when alge-

braically manipulating polynomials (cf. Kaplan 1999, p. 169) or when re-

cursively defining exponentiation. Furthermore, a relatively natural (if 

quasi-multifunctional) way to handle rational powers is via biconditionals 

such as x @ y
½

iff x
2
 = y. Then y

(½ + ½)
 = y ∠ [y, –y] = y

½
·y

½
 , and the rule 

(y
½
)

2
 = (y

2
)

½
 can be kept even when y is negative; whereas the familiar root 
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function, say √, takes only positive values, so (√x)·(√y) = √(x·y) must fail 

when x and y can be negative (e.g. becoming –1 ≠ 1 when x = y = –1). Note 

that although √((1)
2
) = 1 is certainly better looking than ((1)

2
)

½
 = [1, –1], 

less attractive is √((–1)
2
) = 1. 

5. One Pitch, Two Teams. 

Some algebraic structures have naturally appeared, so in this section I shall 

define the pitch and team structures (to refer to in §7). The substructure of 

the arithmetic of [F
#
, –F

#
] within which # and –# only occur in the forms 0

and Θ will be called the rational number pitch because (i) it contains the 

rational number field and (ii) any field may be extended to its correspond-

ing pitch, as follows. A number field F is usually a set F of numbers to-

gether with two arithmetical operations that satisfy the familiar field axi-

oms. But an isomorphic structure is therefore possessed by a mere-sum Φ
given by x @ Φ iff x ∈ F, when @ replaces ∈ in those axioms. Adjoining a 

number ΘΦ (with the following properties) to the field Φ makes the num-

ber pitch ΦΘ
 =df [ΘΦ, Φ]. The arithmetical operations are extended by the 

following 6 equations (where x @ Φ and x ≠ 0). 

ΘΦ + 0 = ΘΦ ΘΦ + x = ΘΦ ΘΦ + ΘΦ = ΦΘ

ΘΦ·0 = ΦΘ
   ΘΦ·x = ΘΦ   ΘΦ·ΘΦ = ΘΦ

Also, division by 0 is multiplication by ΘΦ, and vice versa, and the subtrac-

tion of ΘΦ is the same as its addition, and addition and multiplication both 

remain commutative and associative within the pitch, which is therefore 

rather neat. Pitches are mere-closed under addition, subtraction, multiplica-

tion and division. Consistency is easily shown by a few equations such as, 

for an example of associative multiplication, 0·(0·ΘΦ) = 0·ΦΘ
 = [0·ΘΦ, 0·Φ]

= [ΦΘ
, 0] = ΦΘ

 = 0·ΘΦ = (0 × 0)·ΘΦ. And the only algebraic cost of extend-

ing a field to a pitch is what I call mere-distributivity, i.e. if x, y and z are 

atoms of ΦΘ
, then x·(y + z) ∠ x·y + x·z, with equality (distributivity) only if 

x ≠ ΘΦ.

 In particular, when F = Q (the rational number field), adjoining ΘΡ to 

Φ = Ρ (rho, for rational, or Pythagoras) yields the pitch ΡΘ
, which is the 

same structure that replacing Θ by an isomorphic atom (in §4) would yield, 

as is easily checked. The previous paragraph therefore provides a summary 

of the previous sections, whilst being applicable to the other number fields 

as well. Let the field ∆ (delta, for Dedekind) be defined by x @ ∆ iff x ∈ R

(the real number field). The adjunction of Θ∆ to ∆ yields the pitch ∆Θ
.
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However, lines of # points occur in two possible cases, C-I and C-II (see 

§6), corresponding to N being an actual (completed, finitesque, combinato-

rial) infinity or (respectively) a potential infinity, and in C-II only reals that 

could (in principle) be defined by finite laws are legitimate. Denoting such 

a field by Λ (lambda, for legal), the adjunction of ΘΛ yields what I will call 

a legal real number pitch, ΛΘ
. Similarly, let the field Γ (gamma, for Gauss) 

be defined by x @ Γ iff x ∈ C (the complex number field), which is a 

Gaussian plane. The adjunction of ΘΓ yields the pitch ΓΘ
, which is a pro-

jection of a Riemann sphere. In C-II, adjoining the imaginary unit i to Λ
yields a legal complex number field, Ι (iota, for imaginary), with i’s ad-

junction to ΛΘ
 yielding ΙΘ

. Incidentally, had irrational magnitudes been ad-

joined to F
#
 (in §3) both Θ∆ and ΘΛ would also have replaced [#, –#], just 

as ΘΡ did, while ΘΓ and ΘΙ would have replaced all the #·e
iθ

 for 0 ≤ θ < 2π
(legal θ, in the case of ΘΙ).

 A precise description of the increase in symmetry caused by the ad-

junction of ΘΦ to a field is facilitated by defining the following structure, 

T, e, a, M , which I call the number team T. Teams are so-called because 

they are commutative generalizations of Abelian (i.e. commutative) 

groups, e.g. Z, 0, +, ∅  is an improper team, as follows. T is any mere-

sum of numbers that is mere-closed under an associative and commutative 

arithmetical operation a, with an identity e @ T such that, for each x @ T, e

a x = x and there is a y @ T such that e @ x a y. The finite set M contains 

those x for which that last @ cannot be replaced by equality, teams being 

‘proper’ if ∅ is a proper subset of M, e.g. the proper multiplicative team of 

the fractionals is F
#
, 1, ×, {0, #} . So, whereas a field Φ contains an addi-

tive Abelian group Φ, 0, +, ∅  and a multiplicative commutative monoid, 

a pitch ΦΘ
 is relatively symmetrical because it contains two proper teams, 

ΦΘ
, 0, +, {ΘΦ}  and ΦΘ

, 1, ×, {0, ΘΦ} .

6. Another Continuum Problem. 

After all that algebra, perhaps a brief recap would be useful. The arithmetic 

of # was deduced (in §3) from two assumptions, (ha1) that # is the number 

of points in a line, and (ha2) that 1/# is the length of a point. (The symbol # 

was chosen because it illustrates one intuition for the existence of points 

within lines.) Directions were then given to the fractional magnitudes (in 

§4), whence the isomorphism between [+(1/#), –(1/#)] and the rational 0 

led to the replacement of [+(#/1), –(#/1)] by a new number ΘΡ. (The sym-
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bol Θ was chosen because an ideal point at infinity turns an infinite line 

into an infinite circle, cf. §7.) There were several signs of the coherence of 

# with our elementary number systems. But, as mentioned in §5, it will 

make a difference whether the infinitude of N is actual or potential, when 

coordinates are given to a line of # points (in §7), so in this section I will 

look at those two possibilities. As mentioned in §2, # must be a non-set-

theoretic cardinal. Although 0·# ≠ 0, whereas 0·ℵα = 0 for every ordinal α,

there are still two possibilities, as follows. Either (C-I) # is bigger than 

every ℵα, or else (C-II) # is cardinally incomparable with every ℵα. In C-

I, lines of # points would contain all transfinite cardinalities of points, 

which is a lot of points (but then, 0 is very small); and in C-II, lines of # 

points could not even contain ℵ0 points, which is to say that the infinitude 

of N is potential (a concept that is usually associated with constructivism, 

but which has also been associated with proper classes, see Hart 1976). 

I call the choice between C-I and C-II another continuum problem 

because of Cantor’s famous continuum problem, which concerns the unre-

solved details of standard cardinal exponentiation (see Feferman et al.

2000). So, before looking a little closer at C-I and C-II (although a detailed 

comparison must await such developments as those mentioned in §7) I will 

glance at cardinal exponentiation involving #. A simple ‘diagonal argu-

ment’ involving the diagonal of a geometrical square shows that the num-

ber of ways in which a 0 or a 1 may be associated arbitrarily with each 

point of a line of # points is a number bigger than #, say #
+
, not 2

#
 because 

that notation has already been used for the kind of exponentiation that ex-

tends the field operation (e.g. 0
0
 in §4) and there is no obvious isomor-

phism. Now, although #
+
 shows that # is increasable (cf. the transfinites), 

so that within an appropriately extended number system #
+
 would be one 

of the values of 1/0 (cf. –# becoming part of 1/0 in §4), with #
+
 + #

+
 = #

+

and #
+
·# = #

+
 etc. (cf. transfinite cardinal arithmetic), nonetheless since #

+

does not directly concern continuity such arithmetic is not pursued here. 

 The first thing to note about C-I is that, within any reasonable theory 

of (well-ordered) classes, the Cartesian product of the null-class with any 

class is likely to be the null-class, so # = Ω also seems unlikely. (Given the 

axiom of choice, we can rule out # = 2^ℵ0, of course.) One heuristic prin-

ciple of Cantorian set theory is that “any potential infinity presupposes a 

corresponding actual infinity” (principle a of Hallett 1984, p. 7), which 

might imply, intuitively, that # > Ω. But another Cantorian principle is that 

Ω “cannot be mathematically determined” (principle c of Hallett 1984, p. 

7). Whilst being actual (in the sense of principle a), Ω cannot be as fi-
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nitesque (in the sense of principle b) as the transfinites, which might imply 

that lines of # points would not also contain Ω points. It might therefore be 

appropriate to call Ω’s infinitude potential, although Cantor called it abso-

lute. In short, proper classes are quite mysterious, and so little can be said 

pre-theoretically about (e.g. against) C-I at present. 

 Looking ahead to C-II, note that Ω is often likened to a potential in-

finity because of ZF’s hierarchical nature. ZF’s axiom of infinity is just the 

smallest of several axioms of infinity (see Feferman et al. 2000) and with-

out it the natural numbers would form a proper class, just as the totality of 

all the ZF sets would be a set within a set theory containing a large cardinal 

axiom. (Assuming that each transfinite is a proper number, one might wish 

to consider an arbitrary subcollection of Cantorian cardinals, and hence the 

totality of all such subcollections, which would be cardinally larger than 

Ω.) In C-II, N would effectively be a potentially infinite kind of totality, at 

least by comparison with a line of points. It is certainly the repeated addi-

tion of 1 that yields the names of the finite cardinals in N, starting from 1, 

via 2 =df 1 + 1, and 3 =df 2 + 1, and so forth, so their totality (i.e. all of 

those cardinals, the ones with such names) is defined in an endlessly hier-

archical kind of way, which is quite different to the way that lines are full 

of points (cf. §2). So it is logically possible that, although there are n

points, for any (natural number) n, in a line of points, there are not ℵ0
points, just because of the endlessly hierarchical way in which N is defined 

(pre-theoretically).

 C-II is a counter-intuitive possibility, but it has therefore been over-

looked and has not, in particular, been refuted. In fact, good reasons why N

should act finitesquely (as N does) that are not also reasons why the proper 

class of all the cardinals should are rather elusive (cf. Fletcher forthcom-

ing). Even when N’s infinitude is regarded as actual, the concepts of cardi-

nal and ordinal begin to diverge with ℵ0 and ω because of N’s endlessness, 

so that endlessness is certainly able to cause some shift away from fi-

nitesque behaviour. And the approach of the natural numbers to ℵ0 does 

resemble the approach of the cardinal numbers to Ω, even though Ω cannot 

be as actually (or finitesquely) infinite as ℵ0. So note that the possibility of 

C-II just requires that two infinite collections (the endless sequence of the

natural numbers and the primitive line of points) that are even more differ-

ent in kind (than ℵ0 and Ω) might differ significantly. Furthermore, al-

though # is not necessarily a number at all, it would, were it a number, be 

primarily a possible number of points, and so arguments that ℵ0 is better at 

being a number of numbers than a number of spatio-temporal objects (e.g. 
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Cooke 2003) amount to an argument for C-II. 

7. Infinitesimals. 

Admittedly, neither C-I nor C-II appears particularly attractive, intuitively, 

but that may just be the way with lines of points (cf. the famous Banach-

Tarski paradox, and also Freiling 1986). So, neither case having been con-

sidered in any detail yet, let alone refuted, the points of an infinite line (sat-

isfying Hilbert’s axioms of incidence, order and congruence) will now be 

given numerical labels, under the assumption of k = #. Calling an arbitrary 

point 0 gives us our origin, and calling any other point 1 defines a unit of 

length and a positive direction. Any point, say p, between the points 0 and 

1 lies in one of the tenths of that interval (e.g. between the points called 0·0 

and 0·1), and in one of the tenths of that tenth (e.g. between 0·00 and 0·01), 

and so forth, and is therefore associated with an endless decimal expan-

sion, say d(p) (e.g. 0·000…), which is basically a real number. 

 In C-I, d is a structure-preserving function that maps each point that 

is a finite distance from 0 to a real number. If just one point mapped to 

each real, the number of points would be 2^ℵ0, and so if # ≠ 2^ℵ0 (e.g. via 

the axiom of choice) then there are infinitesimals in C-I. Any point, say i,

apart from 0 but with d(i) = 0, could be used to define an infinitesimal unit 

of length. The uniformity of the line means that i might have been chosen 

as the point called 1 (above, following our choice of origin), and so the 

point that was actually called 1 shows (under the alternative labelling) that 

there are also points infinitely distant from 0. Such points can be given the 

numerical label Θ∆ (see below). Lines are therefore partitioned by the func-

tion d from any point q to some d(q) @ ∆Θ
, in C-I, and so the real number 

line is quite a good mathematical model of the primitive line in that case. 

(Number lines corresponding more precisely to C-I will not be considered, 

because this essay is primarily concerned with introducing the possibility 

of k = #.) 

 In C-II, the endless decimal expansions would be potentially infinite, 

so the arbitrary expansions that would be associated with most points 

would be impossible to identify, even in principle, except via those points. 

Consequently, the most analytically useful reals would be those whose ex-

pansions could be specified individually by finite laws, which I call the le-

gal ones (e.g., recursive or computable ones; cf. Weyl’s line, although it 

was not composed of points, e.g. see Bell 2000). Legal functions would not 

include the classical monsters, but could include Dirac’s useful delta func-
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tion because there are also infinitesimals in C-II, as follows. In any infi-

nitely extended line of points, there are points that are n unit lengths from 0 

for every n, but in C-II there is no sequence of all such lengths (since there 

are not ℵ0 points) and so there are points that are infinitely distant from 0 

(relative to any unit of length). Such points are naturally associated with 

ΘΛ (see below), and because one of those points might have been called 1 

originally, there are also infinitesimals (via the converse of the argument 

above).

 Since the coherence of # is indicated by the use of Θ∆ or ΘΛ to label 

points infinitely distant from 0, I shall briefly justify that use of Θ∆ (the 

case of ΘΛ being analogous). For real x ≠ 0, all of Θ∆ + 0, Θ∆ + x, Θ∆·x and 

Θ∆·Θ∆ must equal Θ∆ (see §5), where the additions correspond to vector 

additions (e.g. the first corresponds to going an infinitesimal distance from 

a point infinitely distant from 0, which amounts to remaining infinitely dis-

tant from 0) and similarly for the multiplications. So the other three equa-

tions, and also the commutative and associative laws, are clearly satisfied. 

Also required is Θ∆ + Θ∆ = ∆Θ
, so consider any two points infinitely distant 

from 0, on either side of 0; going an infinite distance from one point back 

towards 0 (and possibly beyond it) could amount to being at any other 

point. And Θ∆·0 = ∆Θ
 is clearly satisfied too because the multiplication of 

an infinitesimal magnitude with an infinite magnitude may result in any 

magnitude, of positive (or negative) sign if the signs of the multipliers are 

the same (respectively different). 

 Incidentally, # and –# might be used to represent the two infinite re-

gions separately, but using # to label points at infinite distances from 0 is 

not to say that such points are # units from 0, no more than using 0 to label 

i amounts to saying that i is not distinct from 0. Furthermore, coherence 

may also be indicated by the use of Θ∆ (or ΘΛ) and ΘΓ (respectively ΘΙ)

within other mathematical structures that, assuming C-I (respectively C-II), 

resemble division by 0. The ideal point ∞ at infinity in extended lines, for 

example, could be called Θ∆ (respectively ΘΛ), with the planar ∞ becoming 

ΘΓ (respectively ΘΙ). And 0/0 is already used to denote indeterminate 

forms in the calculus. In C-II, lines contain n points for any n, and # points, 

but no intermediate amounts, so ΘΙ would be a natural choice for un-

bounded complex limits, in that case, with ±# denoting unbounded real 

limits, such as the gradients of vertical lines. 

 Of course, infinitesimals are certainly counter-intuitive, but it is not, 

given the extreme smallness of 0, especially counter-intuitive that infini-
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tesimals should occur in lines of points. One argument against infinitesi-

mals (cf. Grattan-Guinness 2000, p. 236, and Moore 2002, p. 325) con-

cerns a point-object going I =df (i + i + i + …) from 0, and therefore going 

just as far as one going I from n·i, because n·i + I = I. Nonetheless, in C-II 

such counter-intuitive situations cannot arise, while in C-I we may simply 

deduce that I is undefined. It would be appropriate to regard I as undefined 

because (1 + 1 + 1 + …) is similarly undefined, and furthermore the Ba-

nach-Tarski paradox (which follows from the Banach-Tarski theorem of 

real analysis via C-D) is usually resolved by deducing that the counter-

intuitively decomposed sphere’s parts are measureless. Note that the ab-

sence of infinitesimals (and their reciprocals, see below) is therefore asso-

ciated with a similar counter-intuitiveness. 

 Consider a rocket going a metre in 1 second, another metre in ½ sec-

ond, another in ¼ second, etc., along a straight line within an infinite ‘flat’ 

space containing no infinitesimals (e.g. R
3
). It appears that the rocket 

should vanish, or at least teleport, after 2 seconds (see Saari and Xia 1995, 

for similar vanishings from a Newtonian space). But intuitively, the rocket 

would neither vanish nor teleport, and we might prefer to imagine it reach-

ing instead an infinitely distant part of space (vanishing only from a 

Euclidean universe of discourse). Were k = #, an infinite ‘flat’ space 

would, by containing such infinitely separated places, be more like the 

space of projective geometry, which is the most symmetrical of the geome-

tries (in their group-theoretic classification). So note that symmetrical 

structures do seem more likely than asymmetrical ones to be physically in-

stantiated (cf. Penrose 2000, pp. 230-231; see also Castellani 2002). 

 Infinitesimals are often regarded as unrealistic, but the basic concept 

cannot be too incoherent because several formal kinds, e.g. ‘hyperreal’, 

‘surreal’ and ‘smooth’ ones, already exist (primarily to assist standard 

analysis). Those in lines of # points, say ‘irreal’ ones, are not being posited 

for their utility, but if lines might contain # points then it would obviously 

be useful to know more about them. So inevitably the issue of axiomatiza-

tion arises. A good set of axioms for # would require not only more of #’s 

informal properties than I have been able to mention in this essay, but also 

a good formal language. That would presumably be a mereological one 

(judging by the above) but such languages are still in the process of devel-

opment (see Forrest 2002) and while a mereological approach would 

probably facilitate the comparison of C-I, C-D, C-II and the cases of lines 

not being full of points, which would clearly be useful, it is precisely be-

cause such comparisons would be useful that the choice of a formal lan-
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guage ought to depend upon what the other options for k are. In short, even 

more informal metaphysics (such as the above) should precede the formal 

mathematics of #. 

 To sum up, there could be physical continua, for all we really know, 

and lines may well be full of points. One coherent (if occasionally counter-

intuitive) metaphysical possibility is of course k = 2^ℵ0, but another may 

well be k = #. Since lines of k points may have any length, it is hardly 

counter-intuitive that 0·k should equal 0/0. And continuity is a relatively 

simple notion, so the informal coherence of the elegant hypothesis k = # 

(demonstrated above) makes it relatively plausible that the essence of con-

tinuity is captured by 0·k ≠ 0. Whether or not points exist, there are there-

fore strong indications that we would be wise to take a mereological ap-

proach to the metaphysics of spaces and classes. Furthermore, the introduc-

tion of the concept of # may also contribute, indirectly, to the plausibility 

of the natural numbers forming a (non-constructive kind of) potential in-

finitude, which is a concept usually associated with lines not being full of 

points.
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