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Abstract: It has been suggested that the enterprise of developing mechanistic theories of the 
human cognitive architecture is flawed because the theories produced are not directly 
falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of 
scientific progress in which cognitive architectures should be understood as theories that 
develop over time. However, Newell’s own candidate cognitive architecture adhered only 
loosely to Lakatosian principles. This paper reconsiders the role of falsification and the 
potential utility of Lakatosian principles in the development of cognitive architectures. It is 
argued that a lack of direct falsifiability need not undermine the scientific development of a 
cognitive architecture if broadly Lakatosian principles are adopted. Moreover, it is 
demonstrated that the Lakatosian concepts of positive and negative heuristics for theory 
development and of general heuristic power offer methods for guiding the development of an 
architecture and for evaluating the contribution and potential of an architecture’s research 
program. 

1. Introduction 
1.1 Newell’s call for cumulative research programs 
In a now famous commentary reflecting on a set of papers presented at a symposium on 
information processing psychology, Newell (1973) expressed serious concern at the direction in 
which theorizing within cognitive psychology was progressing. He argued that impressive 
empirical work was leading to a detailed understanding of the processes underlying specific 
cognitive phenomena, but that this understanding was not being integrated into wider cognitive 
theory. The knowledge associated with each phenomenon was isolated and ultimately 
fragmentary. Newell argued that the then contemporary methods would not yield progress on 
(what he regarded as) the important question, and that such progress required the development 
of integrative theories that spanned cognitive domains. Newell’s argument evolved into a call 
for Unified Theories of Cognition (UTCs: Newell, 1990) – theories that specify “a single set of 
mechanisms for all of cognitive behavior” (Newell, 1990, p. 15) – and the assertion that UTCs 
would take the form of mechanistic cognitive architectures. To clarify and support his 
arguments Newell also presented the Soar cognitive architecture as a candidate UTC. 

The shift from single domain theories to UTCs involves more than a shift in theoretical focus. It 
involves shifts in research methodology and criteria for measuring scientific progress. 
Theoretical development of single domain theories within cognitive psychology can be 
characterized as resulting from joint processes of empirical confirmation and Popperian 
falsification (Popper, 1935), with theories making predictions and empirical work supporting or 
refuting those theories. Newell’s claim (as is clear from the title of his 1973 paper: “You can’t 
play twenty questions with nature and win”) was that the development of UTCs would require 
an alternative methodology. Newell (1990) made this explicit by arguing that Popperian 
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falsification is inappropriate for the development of UTCs, and that a more adequate model for 
theory development is that of a cumulative research program, as described by Lakatos (1970).1 

1.2 The need for a systematic methodology 
The move from a Popperian to a Lakatosian model of scientific progress is highly significant. 
Newell’s rationale was that theories cumulate: “They are refined and reformulated, corrected 
and expanded” (Newell, 1990, p. 14). Certainly examples of theory refinement and expansion 
abound in Lakatos’ historical analyses of scientific progress (see Lakatos, 1970), but Lakatos’ 
primary concern was with the differentiation of science from non-science, and specifically with 
whether Popperian falsification was a necessary feature of a scientific theory. Newell (1990) 
argued against falsification by citing Lakatos, but he did not provide a detailed demonstration 
that Soar – his candidate UTC – did indeed adhere to Lakatosian principles. In fact, it is possible 
to give a broadly Lakatosian reconstruction of the development of Soar (see Cooper, 2006), but 
the issue of falsification is more real for Soar and UTCs in general than for single domain 
theories. Indeed, there remains reluctance within some sectors of the cognitive sciences to 
accept research on cognitive architectures as valid science, and at least some of this reluctance 
may be traced to the view that cognitive architectures are not falsifiable, and hence are more 
akin to belief systems than scientific theories (e.g., Hunt & Luce, 1992; Vere, 1992). 

Historically, the motivation for the method of falsification arose from the Logical Positivists’ 
attempts to differentiate the science of Einstein and Newton from what they viewed as the 
pseudo-science of Freud and Marx, coupled with Popper’s (1935) critique of confirmation as a 
method for determining the truth of universally quantified statements. From this perspective, 
falsification is just a method and one can justify rejecting falsification provided one adopts an 
appropriate method in its place. Specifying such a method was precisely what Lakatos (1970) 
was attempting to do. Newell’s argument, then, is that, at least within the field of UTCs and 
cognitive architectures, the methodology of Lakatos is an appropriate scientific methodology. 

Methodology is an issue for the development of architectures because, as Newell (1990) himself 
noted, broad theories of behavior have come and gone. The behaviorist equivalent of unified 
theories of cognition, “grand theories” such as that of Hull (1943), were common in mainstream 
US psychology between 1930 and 1950, but such theories failed to survive the cognitive 
revolution of the 1960s. In part the demise of such grand theories can be attributed to their 
methodologically weak foundations, and in particular to the ease with which apparently 
confirmatory data for a broad theory of behavior may be selected from the thousands of known 
behavioral regularities while recalcitrant findings are assigned to “future research” (Cooper & 
Shallice, 1995). A sound methodological basis is therefore of critical importance in the 
development of theories of the cognitive architecture. 

1.3 The structure of this paper 
Lakatos’ account of scientific change is not the only alternative to Popperian falsification that 
has been proposed (see, e.g., Laudan, 1977; Thagard, 1992). This paper’s goal is not to evaluate 
these alternative accounts. Rather, its goals are, first, to consider the place of falsification in the 
development of cognitive architectures, and second, to demonstrate how Lakatosian principles 
can support the scientific development of cognitive architectures in the absence of falsification.  

The remainder of the paper begins with a brief review of the historical background to 
falsification and Lakatos’ conception of a scientific research program so that the role of 
falsification in scientific theorizing in general and cognitive architectures in particular may be 
more clearly evaluated. We then consider the extent to which applying the Lakatosian 
                                                        
1 This is not to suggest that the model of theory development described by Lakatos and discussed 
throughout this paper is inappropriate for single-domain theories. Indeed, Lakatos’ claim is that his model 
of theory development and scientific change is appropriate for characterising the development of all 
scientific theories. 
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perspective to the development of cognitive architectures might address the concerns that led 
Newell to originally suggest it. It is concluded first that falsification has only a secondary role in 
the development of cognitive architectures – the primary role belongs to prediction and 
empirical testing and this does not entail falsification – and second that the Lakatosian 
perspective has much to offer, particularly with respect to distinguishing between central 
assumptions and peripheral hypotheses, with its emphasis on empirical testing of peripheral 
hypotheses, and with its notion of a positive heuristic for theory development. We also consider 
several implications of the analysis for the development of cognitive architectures, concerning 
both methods to ensure architectural progress and the evaluation of a cognitive architecture in 
terms of its “heuristic power”. Throughout, the arguments are illustrated with examples of 
architectural change taken from the development of Soar and ACT-R, two cognitive 
architectures whose heritage can each be traced back in the public record for more than 30 
years. 

2 Falsification and demarcation criteria 
2.1 Falsifiability as an attribute of scientific theories 
Historically, Popper, Lakatos and related philosophers were primarily concerned with 
specifying so-called “demarcation criteria” – criteria that might be employed to distinguish 
between endeavors that are generally agreed to be scientific (e.g., modern physics and 
chemistry) and endeavors that might claim scientific credibility, but which the majority of 
reputable scientists are hesitant to endorse (ranging from Freudian psychoanalytic theory and 
Marxist economic theory to astrology and creationism). Falsification was at the heart of 
Popper’s account of the distinction between the two. For Popper, a scientific theory was any 
theory that could, in principle, be falsified. 

The dominant view prior to Popper was that science was characterized by the method of 
induction, in which universal laws were “induced” from a set of instances. Thus, Newton might 
have induced the law F = ma from a set of observations of objects with different masses (m) 
subject to different forces (F) and different resultant accelerations (a). Popper’s insight was to 
understand the limits of induction – it is not possible to prove a universal statement (such as F = 
ma) with any number of instances – and to offer the method of falsification as a constructive 
alternative. According to the method of falsification, scientific theories (or laws) make 
predictions that may fail to match empirical observation. Thus Newtonian mechanics was 
scientific because one could use Newton’s laws to predict how a body would behave given its 
mass and the forces acting upon it. These predictions could then be tested through empirical 
studies. Confirmation via such studies might add weight to a theory, but this is not what makes 
the theory scientific. What makes a theory scientific from the Popperian perspective is that its 
predictions might fail, in which case the theory is falsified and can be rejected. 

Popper’s arguments for falsification were so persuasive that falsification has effectively become 
enshrined in “the scientific method” as, for example, taught in many secondary school science 
courses, but it is necessary to distinguish between a theory that is falsifiable and falsification as 
a method. Consider, for example, the method of contemporary experimental psychology. Here 
the standard approach is to generate predictions from theory (a necessary first step in the 
method of falsification, and something that is only possible if a theory is indeed falsifiable), but 
the goal of experimental work is generally not to falsify those predictions. Rather, the goal is to 
confirm or obtain support for those predictions. Thus, contemporary experimental psychology 
appears to accept that theories must be falsifiable without adhering to the method of 
falsification.2 

                                                        
2 The approach of contemporary experimental psychology is more easily related to Popper’s later view – 
that science proceeds through the experimental testing of “bold conjectures” (Popper, 1965).  
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2.2 The difficulty of falsifying architectures 
Popperian falsification is not appropriate for the development of cognitive architectures 
because, in the absence of task knowledge, architectures make few if any predictions. Thus, 
while architectures such as Soar or ACT-R might be used successfully to simulate performance 
on, for example, problem solving or reasoning tasks such as cryptarithmetic (Newell, 1990) or 
algebraic reasoning (Anderson, 2005), to do so requires a specification of task knowledge. 
Conceptually, this task knowledge amounts to a separate theory of the task being modeled, and 
both the task theory and the architecture in which it is embodied are required in order to make 
predictions. Given this, any attempt at falsification (i.e., any attempt at empirically testing the 
predictions of the architecture/task theory) cannot address the architecture in the absence of the 
task theory. If predictions are found to be false, it is unclear if the predictive failure should be 
attributed to the architecture or the task theory. 

The situation is complicated further in the case of architectures that contain free parameters 
and/or implementation details to which the architectural theorist is not committed, particularly 
when the dominant methodological approach is to demonstrate a match between performance of 
the architecture and performance of human participants on equivalent tasks. If free parameters 
are involved, simulating behavior may amount to parameter fitting, which demonstrates merely 
that an architecture is consistent with the behavior being simulated (Roberts & Pashler, 2000). 

Yet more complications arise from that fact that the functioning of complex systems can 
generally be described at several different levels (e.g., Newell, 1981; Marr, 1982; Pylyshyn, 
1984). Cognitive architectures frequently span these levels. Thus Newell (1990) presented Soar 
as a theory at the problem space level (in which cognition involves the selection and application 
of operators to a problem solving state) and a theory at the symbol level (in which selection and 
application of operators involves the firing of condition-action rules), with the symbol level 
implementing the problem space level. While the use of levels of description may clarify the 
theoretical commitment of different aspects of an architecture, it also raises the possibility that 
assumptions at one level might be falsified without impacting upon those at another. We take 
the view that the issue of levels of description is largely orthogonal to that of falsification, and 
hence do not discuss this complication in any further detail. 

In the limit, falsifying a cognitive architecture requires a demonstration that the architecture 
cannot account for some aspect of observed behavior on some task. This in turn requires a 
demonstration that the architecture cannot account for the behavior with all possible theories of 
that task, all possible parameter variations, and all possible implementations of architectural 
implementation details. Demonstrating that the architecture cannot account for the data with one 
specific theory of the task, one parameter setting or one implementation merely falsifies that 
specific combination of architecture, task theory, parameter setting and implementation, rather 
than any element of that combination. The same architecture, with a different theory of the task, 
different parameter setting or different implementation, may be able to account for the data. 
Falsification in the case of architectures, is therefore subject to the same criticism that Popper 
applied to the Logical Positivists’ method of induction: it requires attempting to prove a 
universally quantified statement through a series of instances, where the universally quantified 
statement is that for each possible theory of a task, parameter setting and implementation, the 
combined architecture/task theory fails to reproduce the observed data. 

2.3 Interim conclusion 
Given the difficulties discussed above in falsifying architectures, it seems that we have three 
options. Either: 1) we accept that cognitive architectures are not scientific theories; 2) we 
dismiss the proposition that there exist demarcation criteria that distinguish between science and 
pseudo-science; or 3) we provide and justify alternative demarcation criteria that admit research 
on cognitive architectures as scientific. 
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The first option is counter-intuitive given that we have no reason to believe that the object of 
study (i.e., the putative information processing mechanisms of the brain) is not open to scientific 
investigation. If one accepts that the putative information processing mechanisms of the brain 
are open to scientific investigation, then one must accept that scientific theories of these 
mechanisms can be developed. The issue then is of finding appropriate methods to support the 
scientific investigation of the putative mechanisms. 

Laudan (1983) has presented strong arguments in favor of the second option. His conclusion 
was that there are no necessary and sufficient conditions that distinguish science from pseudo-
science. While this may be the case, it does not mean that we have to give up demarcation. One 
plausible view that is consistent with Laudan’s basic position is that while there is no essential 
characteristic that differentiates science from pseudo-science, instances of science, like 
instances of Wittgenstein’s games, share family resemblance (Wittgenstein, 1953). On this 
view, falsification may be a feature common to many scientific theories, but it is not the only 
feature common to many scientific theories, and more critically it is not a necessary feature of a 
scientific theory. Indeed, on the family resemblance view no single feature is necessary and 
sufficient in defining science. 

It is the third option that Newell (1990) endorses with his claim that the development of 
cognitive architectures requires a methodology based on that proposed by Lakatos (1970).3 Note 
though that in attempting to provide alternative demarcation criteria, it is not constructive to 
simply provide criteria that distinguish putative science from putative pseudo-science. Rather, if 
the criteria are to play a positive role in the development of UTCs they must be functional in the 
sense that they facilitate the development of scientifically rigorous theories of the information 
processing mechanisms that support human (and possibly animal) cognition. In other words, we 
seek criteria that may be applied descriptively to historical cases and prescriptively to facilitate 
scientifically progressive architectural development. 

3 Lakatos’ proposal: The cumulative research program 
Popper was prescriptive in his approach. In his arguments for falsification rather than 
confirmation (Popper, 1935) and his later arguments for the use of bold conjectures to test 
theories (Popper, 1965), he was concerned with providing science with sound methods. Lakatos 
(1970) took a more descriptive approach. On the basis of historical analyses, Lakatos’ argued 
that while the empirical nature of science was an important characteristic, real scientists did not 
discard their theories when their predictions were not met; rather, predictive failures were the 
catalyst for theory development. Furthermore, Lakatos argued, empirical testing of theories was 
not unguided and scientific theories did not develop in a haphazard way. 

Lakatos (1970) argued that a theory in isolation could not be considered either scientific or 
pseudo-scientific. He took the view that science was characterized by its methods rather than by 
its theories, and hence that it was theory development, and the way in which a theory responded 
to predictive failures, that distinguished science from pseudo-science. He argued that theories, 
whether they are scientific or pseudo-scientific, consist of two parts: 

• A hard core of central assumptions to which the theoretician is committed; and 

• A protective belt of peripheral hypotheses that are the subject of theoretical advance. 

                                                        
3 This option is not logically inconsistent with a family resemblance view of scientific theories: one could 
argue that while neither “being falsifiable” nor “being developed within a structured research program” 
are necessary characteristics of a scientific theory, both of these characteristics are shared by many 
scientific theories. It is not the purpose of this paper to explore this argument. 
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On Lakatos’ view the theoretician makes a methodological decision that core assumptions are 
irrefutable. The process of science is then concerned with the resolution of anomalies and 
apparent counter-examples by appropriate adjustments to the peripheral hypotheses and 
incorporation of those hypotheses into the hard core. It is for this reason that such hypotheses 
are the subject of theoretical advance. The concept of a succession of theories, each with a hard 
core and protective belt, and with theoretical advance based on adjustments to peripheral 
hypotheses and the incorporation of peripheral hypotheses into the hard core, defines a 
Lakatosian research program. 

While the concept of a Lakatosian research program emphasizes theory change, it does not 
discriminate between positive and negative change, or between scientific research programs and 
pseudo-scientific research programs. Lakatos (1970) also posited criteria for assessing change. 
According to these criteria, a research program is theoretically progressive if “each new theory 
has some excess empirical content over its predecessor” (Lakatos, 1970, p. 118) and empirically 
progressive if “some of this excess empirical content is also corroborated” (Lakatos, 1970, p. 
118). A research program is scientific if it is at least theoretically progressive. Otherwise it is 
pseudo-scientific. It is progressive if it is both theoretically and empirically progressive, and 
degenerating if not. These distinctions are summarized in Table 1. A degenerating period within 
a scientific research program does not mean that the research program is doomed, as future 
empirical results may corroborate theoretical predictions resulting in a progressive research 
program. They are, however, cause for concern. 

Table 1: Varieties of Research Program (based on Lakatos, 1970) 

  Theoretically Progressive 
(increasing empirical content) 

  Yes No 
Empirically Progressive 

(predictions corroborated) 
Yes Scientific; Progressive Pseudo-scientific 
No Scientific; Degenerating Pseudo-scientific 

 

Lakatos’ (1970) concept of a research program was intended to augment Popperian falsification 
rather than to replace it. Lakatos argued that scientists make what he referred to as a 
“methodological commitment” to their hard core of central assumptions: In the absence of any 
better methodology, scientists assume that their core assumptions are true and do not subject 
them to empirical testing. Falsification remains a key element of the methodology in the way 
that peripheral hypotheses support theoretical advance. The approach is effectively to attempt to 
falsify peripheral hypotheses in the context of a hard core of accepted assumptions. Lakatos 
argued that this restricted form of falsification is necessary; there is simply no alternative given 
that a) all observation is theory dependent (and so any data we use to corroborate or falsify a 
theory itself assumes that we are committed to a theory of observation), and b) science is a 
cumulative endeavor (and so science progresses by assuming a body of knowledge and building 
on that). 

4 Cognitive architectures as Lakatosian research programs 
Three significant implications follow if one accepts Lakatosian methodology as an appropriate 
model for the development of mechanistic theories of the cognitive architecture. First, theorists 
should distinguish between core assumptions and peripheral hypotheses. Second, theoretical 
development should be accompanied by empirical research focused on falsifying or 
corroborating peripheral hypotheses. Third, over time peripheral hypotheses should be 
incorporated into the hard core. These implications may be considered both in historical 
analyses of architecture developments to date, and as normative criteria for facilitating 
progressive development. 
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4.1 Central assumptions and peripheral hypotheses in Soar and ACT-R 
Despite Newell’s (1990) call, existing architectures have not explicitly adopted a Lakatosian 
methodology. Nevertheless, it is possible within the development of two of the most influential 
cognitive architectures of the last quarter century – Soar and ACT-R – to distinguish between 
central assumptions and peripheral hypotheses.4 Within Soar, for example, one can argue that 
one central assumption is that cognition is goal directed and proceeds through the selection of 
operators which transform a representation of the problem state, while a second is that cognitive 
processing proceeds via a cyclic process consisting of an elaboration phase, where knowledge is 
brought to bear to propose and argue for or against alternative operators, followed by a decision 
phase, in which one operator from those proposed is selected (see, e.g., Newell, 1990, pp. 170–
174). Details of the procedure used to weigh up alternatives within the decision phase would, 
however, appear to represent peripheral hypotheses. At least this was the case in the first half of 
the 1990s, when those details were revised on several occasions (see Laird & Rosenbloom, 
1996). 

The task of distinguishing between central assumptions and peripheral hypotheses in Soar is 
necessarily subjective because while Newell (1990) advocated a Lakatosian approach, Newell 
himself never provided a definitive list of central assumptions or peripheral hypotheses. Indeed 
Newell (1992) argued, in apparent contradiction with his earlier appeal to Lakatos, that no such 
list could be provided. The situation with respect to ACT-R is different. In his early work, 
Anderson was clear that the original ACT theory (the precursor to ACT-R) was built upon a set 
of explicit “preconceived notions”: 

The shape of the ACT theory has been strongly influenced by preconceived 
notions […] about the nature of cognitive functioning. […] The biases are 
not precisely defined [… and they …] do not completely specify the ACT 
theory. They basically provide the skeleton of the model which [… is fleshed 
out …] with assumptions that would enable ACT to fit the data. When ACT 
proves wrong on some score, it is the ‘fleshing-out’ assumptions that are first 
to be sacrificed. 

(Anderson, 1976, pp. 114–115).  

Anderson’s “preconceived notions” are none other than Lakatosian central assumptions, while 
the fleshing-out assumptions that enable ACT to fit the data are Lakatosian peripheral 
hypotheses. The characterization of the theory in terms of preconceived notions fleshed out with 
additional assumptions, with the additional assumptions bearing the brunt of testing, appears to 
have been arrived at by Anderson (1976) independently of Lakatos (1970). It may be taken as 
further evidence for the relevance of Lakatosian criteria to the development of theories of the 
cognitive architecture.  

Anderson’s view captures the key principle of Lakatosian methodology as applied to the 
development of theories of the cognitive architecture. It is not simply that an architecture is a 
scientific theory that changes with time, or that by adopting Lakatosian methodology 
architectures do not need to be accompanied by an empirical strand of research. The key 
principle is that by differentiating between central assumptions and peripheral hypotheses 
Lakatosian methodology gives guidance on the design of empirical tests for the theory, and 
guidance on how to respond to those tests. From a Lakatosian perspective, empirical tests 
should test peripheral hypotheses. If predictions are met, these empirical tests give support to 
peripheral hypotheses, which may eventually be incorporated into the theory’s hard core of 
central assumptions. If predictions are not met, it is the peripheral hypotheses which must be 
adjusted to bring the theory in line with data. 

                                                        
4 See Cooper (2006) for a reconstruction of Soar and ACT-R as Lakatosian research programs. 
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4.2 Theory development in Soar and ACT-R 
While both Soar and ACT-R may appear Lakatosian in that central assumptions and peripheral 
hypotheses may be identified for each of them, the critical element for distinguishing science 
from pseudoscience for Lakatos was theory development. In this section we therefore consider 
some critical developments in Soar and ACT-R from a Lakatosian perspective. To anticipate, 
both architectures have witnessed theory change that from a Lakatosian perspective would be 
classified as scientific and progressive, but both have also been subject to more problematic 
theory change. 

4.2.1 The case of Soar 
Soar developed from Newell’s early interest in human problem solving (see, for example, 
Newell & Simon, 1972). The basic architecture consists of a working memory which contains a 
representation of details of the current goal and task and a long-term memory containing 
condition-action rules. Processing is cyclic with each cycle consisting of an elaboration phase, 
in which all rules are applied to the contents of working memory to generate a set of possible 
operators (i.e., ways of transforming the problem solving state) and preferences indicating the 
relative or absolute worth of those operators, followed by a decision phase, where the most 
preferred operator is selected and installed in working memory. The next cycle is then initiated. 
If processing is blocked because, for example, no operators are available or multiple operators 
appear equally suitable, Soar will automatically create a subgoal to explore different possible 
courses of action. Processing then shifts to this subgoal. When the subgoal is resolved (through 
Soar deciding upon a single preferred operator at the higher level), Soar automatically creates a 
new condition-action rule whose conditions are the relevant aspects of the processing state that 
lead to the blockage and whose action is to prefer the operator that resolved the blockage. The 
blockage is known as an impasse, the creation of the subgoal is known as automatic subgoaling, 
the new condition-action rule is known as a chunk, and the process of creating the rule is known 
as chunking (see Newell, 1990, for more details). 

The basic mechanism of universal subgoaling followed from a fundamental desire of the Soar 
theorists to have the architecture set its own subgoals. This led to the proposition that all 
subgoals arise from impasses in problem solving and the subsequent classification of abstract 
impasse types (including tie impasses, where multiple operators appear to be equally good, and 
no-change impasses, where no operators appear suitable). The basic classification (Laird et al., 
1987) has withstood the test of time. The chunking learning mechanism, which has also 
withstood the test of time, follows directly from universal subgoaling, in that once the 
architecture can create and resolve subgoals in response to impasses, it is natural to record the 
conditions that led to the impasse and its resolution within a new condition-action rule. These 
advances in the Soar theory were broadly successful, allowing Soar to be applied with some 
success to a range of tasks. The advances are theoretically progressive in the Lakatosian sense 
(as they resulted in an architecture with greater scope and hence greater empirical content), but 
assessment of the developments as empirically progressive depends on the stance one takes on 
prediction. It is unclear, for example, if power-law speed up in behavior following learning in 
Soar was an a priori prediction of the chunking mechanism or a post hoc finding which 
matched the existing literature. Either way, these early developments in the history of Soar 
would seem to be scientific in Lakatos’ terms. This is despite that fact that the details of the 
universal subgoaling and chunking mechanisms changed in almost every release of Soar since 
1987. In Lakatosian terms such details are peripheral hypotheses, and changes to such 
hypotheses do not impact upon the scientific status of the theory (provided that such changes do 
not reduce the empirical content of the theory). 

A more problematic development in Soar’s history was the introduction of the single state 
principle, in the guise of “destructive state modification”. Prior to this development, Soar could 
support multiple states within a single representation of a problem. Thus, a problem 
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representation could simultaneously include one state in which an object was closed and another 
in which the same object was open. This was considered to be implausible for well-grounded 
psychological reasons (see Newell, 1990, pp. 251–252). Furthermore, limiting the architecture 
to a single state for each problem representation yielded an explanation for one of the most 
common human problem solving strategies, that of progressive deepening (Newell & Simon, 
1972). The single state principle was therefore incorporated in Soar 5 in 1990. That 
incorporation took the form of destructive state modification – a set of mechanisms that allowed 
the state of a problem representation to be modified. While this is justifiable in theory, the 
implementation introduced numerous complications (such as micro-decisions on almost all 
elements of working memory and mico-impasses relating to those decisions). Many of these 
complications have since been reversed.  

The apparent failure of destructive state modification (evidenced by successive retraction of 
changes introduced in Soar 5) may be attributed to at least two factors. First, the developers of 
Soar made an early commitment to a specific (and overly complex) instantiation of the principle 
in the apparent absence of any attempt to explore alternative instantiations. Alternative 
instantiations involving fewer alterations to Soar 4 clearly existed. The current implementation 
of Soar (Soar 8) contains one, while another was suggested by Cooper et al. (1996).5 Second, 
the implementation of destructive state modification in Soar 5 interacted in complex ways with 
the assumptions of earlier versions of the theory (particularly in relation to learning, but also in 
relation to more basic aspects of processing such as selection and application of state-changing 
operators). This made it difficult to attribute predictive failures to specific peripheral 
hypotheses. 

4.2.2 The case of ACT-R 
ACT-R’s heritage lies in Anderson and Bower’s early work on human associative memory 
(Anderson & Bower, 1973), but the architecture shares some features with Soar. First, like Soar 
there is a distinction between two memory stores: a procedural memory (whose elements are 
condition-action rules) and a declarative memory (which serves a similar function to Soar’s 
working memory). Processing, as in Soar, involves the application of condition-action rules, but 
selection of which rule to fire at any time is based on a numerical calculation that weighs the 
costs and the anticipated benefits of each applicable rule: on each processing step, all rules that 
match the current goal are considered and that with the greatest utility is selected. Unlike most 
versions of Soar, elements in declarative memory have associated activation values, with 
activation spreading between associated elements. The time taken to apply a rule, once selected, 
depends on the time taken to match or retrieve its conditions in declarative memory, which in 
turn depends on the level of activation of declarative memory elements. 

Since the early 1990s, work within the ACT framework has concentrated on revising the 
architectural mechanisms so that they are consistent with the principle of rationality, namely 
that “the cognitive system optimizes the adaptation of the behavior of the organism” (Anderson, 
1991, p. 3). In Lakatosian terms, this move has clearly been both theoretically and empirically 
progressive, but this move did not occur overnight or in one step. Thus, Anderson’s original 
arguments for rational analysis (Anderson, 1990) were not tied specifically to the ACT 
framework. Indeed, Anderson (1990, p. xi) made it clear that there appeared to be some tension 
between rational analysis and the architectural approach. A partial resolution of this tension 
came three years later in the form of principled equations for determining how the activation of 
declarative memory elements and the numerical parameters underlying the utilities of condition-
action rules change through experience (Anderson, 1993). Adjustment of the rational analysis 
aspects of ACT-R continued throughout the 1990s as refinements to the equations were 
developed and explored (see Anderson & Lebiere, 1998, pp 431–439). The incorporation of 

                                                        
5 It is possible that such alternatives were not explored in the early 1990s because of prevailing 
sociological factors, namely Newell’s declining health. 
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rational analysis into the ACT framework thus illustrates that an exploratory/experimental 
approach to theory development can bear fruit. It is, however, both time and resource intensive.  

A more problematic example of theory evolution within the ACT series concerns the account of 
rule learning. Successive versions of ACT* and ACT-R have incorporated a range of different 
approaches to the learning of new condition-action rules. Thus, ACT* initially supported four 
mechanisms by which condition-action rules could be learned – discrimination, in which the 
conditions of an existing rule are augmented to limit the rule’s applicability, generalization, in 
which the conditions of an existing rule are relaxed to allow the rule to apply more generally, 
composition, in which two rules that are performed in sequence could be combined into a single 
rule, and proceduralization, in which the actions of a rule could be specialized, thereby 
eliminating the need to recall declarative knowledge. Discrimination and generalization were 
removed from the 1987 version of the ACT* theory due to problems in limiting their 
applicability and lack of empirical support (Anderson, 1987). The initial version of ACT-R 
(Anderson, 1993) replaced the remaining mechanisms with a single mechanism based on 
analogy (allowing the formation of new condition-action rules by analogy with existing rules). 
This was then replaced with a production compilation mechanism (Anderson & Lebiere, 1998) 
that bore some similarities to Soar’s chunking mechanism in that learning was linked to the 
creation and resolution of subgoals. This too has now been replaced. The current approach (as 
described by Taatgen & Anderson, 2002) allows memory retrieval operations to be merged into 
existing condition-action rules that subsequently use the retrieved information. It shows 
considerable promise, but it is too early to say whether it has resolved all outstanding issues. 

Why has learning within the ACT framework been subject to so much flux? Unlike other 
aspects of ACT-R, there is a tight integration or dependence between possible learning 
mechanisms and the rest of the architecture. Thus in the current instantiation (ACT-R 6.0) 
learning is intimately related to the use of ACT-R’s goal buffer, a construct extensively revised 
in the transition from ACT-R 4.0 to ACT-R 5.0. Clearly, some level of dependency is inevitable 
for a mechanism such as learning, which can always be thought of as an add-on that modulates 
the functioning of the system by creating or modifying long-term knowledge structures, rather 
than a more “basic” mechanism of central importance such as, say, production matching. 
However, dependencies between assumptions are relatively rare within ACT-R in that one can 
explore variants of ACT-R in which different assumptions are swapped in or out. For example, 
within the basic activation-based production-system substrate, one can explore different 
approaches to the flow of activation, the matching and selection of productions, the creation and 
maintenance of goals (cf. Altmann & Trafton, 2002) and even the creation of new productions 
and the tuning of production parameters during processing (i.e., learning).  

The dependency of learning assumptions on prior assumptions is therefore relatively unusual in 
ACT-R. It has two consequences. First, assumptions relating to learning are at the mercy of 
more basic (in the sense of the previous paragraph) assumptions, and second, the consequences 
of learning cannot easily be attributed to the specific learning assumptions, for they result from 
the interaction of the learning assumptions and the more basic assumptions on which learning is 
founded. This second consequence echoes the difficulties faced by Soar following introduction 
of destructive state modification. However both of these consequences work against the smooth 
development of ACT-R’s learning mechanism.  

4.3 Contrasting approaches to theory development 
The Lakatosian analysis of developments in Soar and ACT-R ignores the fact that radically 
different approaches to theory development have been adopted by theorists working with Soar 
and ACT-R. Thus, when confronted with an apparent predictive failure, the approach of Newell 
and the Soar community, at least during the 1980s and 1990s, was one of “listening to the 
architecture” (Rosenbloom, et al., 1993, p. xxv). This approach was complemented by a 
methodological assumption of one mechanism for each function (and so, for example, a single 
mechanism for all forms of learning). The Soar community would therefore attempt to develop 
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solutions to predictive failures by using the existing architecture in novel or ingenious ways. For 
example, learning of paired associates presented difficulties for Soar. The basic task requires 
that, when given a nonsense cue (e.g., BAJ), the architecture should produce the associate given 
in an earlier training session (e.g., GID). However, the obvious way of applying Soar’s learning 
mechanism to the problem led to a situation in which Soar could only produce an associate if 
given both the cue and associate, not just the cue (Newell, 1990, pp. 326–345). Following 
detailed analysis of learning within the architecture, the paired-associates problem in Soar was 
solved by breaking the task in the training session into generate and test subtasks, with the 
generate subtask producing all possible associates and the test subtask picking out the correct 
one. Thus, rather than modify the architecture, the architecture was analyzed to understand the 
reason for the difficulty with learning paired associates and how that difficulty could be 
overcome. 

The contrast with ACT-R is clear. Experimentation with the mechanisms and assumptions 
underlying ACT-R is common and encouraged. For example, Byrne & Anderson (2001) were 
concerned with perceptual and motor aspects of behavior, an area that had previously been 
outside of the scope of the ACT theories. Their inspiration was the work of Meyer & Kieras 
(1997a, 1997b), who developed EPIC, a novel architecture in which perceptual and motor 
systems were assumed to be distinct, modular, subsystems that interacted with a central parallel 
processor. Building on this, Byrne & Anderson (2001) developed ACT-R/PM, a variant of 
ACT-R in which a central serial processor (basically the standard ACT-R system) interacted 
with numerous modular perceptual and motor subsystems. ACT-R/PM was shown to be capable 
of capturing much of the data which had been cited in support of EPIC. In addition, it made 
novel predictions about so-called “cognitive PRP effects” – predictions which Byrne & 
Anderson (2001) went on to test. After additional experimentation with other tasks, the 
modularization of ACT-R/PM was incorporated into the main ACT-R theory. 

The ACT-R community thus supports an approach that has been summarized as “let a thousand 
flowers bloom” (Anderson, 2003, personal communication). If one measures the success of an 
architecture in terms of the number of researchers working with it or the number of published 
peer-reviewed papers in which it serves an explanatory role, then ACT-R is currently more 
successful than Soar. The relative success of ACT-R may be attributed in part to this “let a 
thousand flowers bloom” approach and the relative independence of ACT-R’s assumptions. The 
first of these emphasizes the empirical nature of ACT-R – exploring numerous variant 
architectures before committing to any one option – while the second simplifies the attribution 
problem. 

In fact, in recent years a more experimental approach appears to have been adopted by some in 
Soar community, with renewed interest in Soar being accompanied by a range of proposed 
augmentations to the architecture, including an EPIC-like perceptual-motor component (Chong 
& Laird, 1997), activation-based working memory (Chong, 2003; Nuxoll et al., 2004) and a 
reinforcement learning mechanism (Nason & Laird, 2004). It is far too soon to attempt an 
evaluation of the long-term impact of these developments, but the shift towards a policy of 
experimenting with the architecture reflects a fundamental change in the approach to 
architecture development by proponents of Soar. 

5 Implications 
We have seen that Lakatos’ characterization of theories in terms of a hard core of central 
assumptions and a protective belt of peripheral hypotheses, together with his proposed 
characterization of the process of science in terms of a cumulative methodology whereby 
peripheral assumptions are absorbed into the hard core, provide a plausible model for the 
development of theories of cognitive architecture. The model does not address the lack of 
falsifiability of cognitive architectures, however, as that lack of falsifiability arises from the 
necessity of task knowledge when developing predictions, and not from the existence of 
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peripheral hypotheses. It is legitimate to ask, then, if the Lakatosian perspective can serve any 
functional purpose in the development of cognitive architectures, or whether it simply offers the 
endeavor a smokescreen of scientific credibility. In this section it is argued that adoption of the 
Lakatosian perspective as a normative methodology for the development of a cognitive 
architecture can provide guidance not just on the development of the cognitive architecture, but 
also on the development of models that are embedded within the architecture and on how the 
cognitive architecture itself might be evaluated. 

5.1 Prediction, falsifiability and attribution 
Lakatosian methodology distinguishes between falsifiability and prediction. Predictive failures 
do not falsify central assumptions. They falsify peripheral hypotheses in the context of central 
assumptions. Thus, in order to address predictive failures within a Lakatosian research program, 
it is necessary to attribute each predictive failure to one or more specific peripheral hypotheses. 
The relevant hypotheses may then be adjusted in an attempt to address the predictive failure. 
There are two key difficulties in this process of addressing predictive failures: attribution and 
hypothesis adjustment. The latter is an issue for the specific architecture. The former is more 
generic. 

Before considering the problem of attribution, it should be noted that predictive failures are not 
necessarily bad, as they provide the impetus for theory development. Thus, if a cognitive 
architecture is found never to fail (possibly because testing is too conservative or because the 
architecture is insufficiently constraining), then there will be no pressure to develop the 
architecture and it will stagnate. At the same time if theory development were unduly 
responsive to predictive failures then development would be ad hoc. Thus, predictive failures 
are positive but must be understood (and prioritized) within the context of long-term research 
goals (i.e., within the context of the “positive heuristic” as discussed below). 

Given that a predictive failure has occurred, it is far from obvious, a priori, that attribution will 
be unambiguous. In general, cognitive architectures consist of multiple central assumptions and 
multiple peripheral hypotheses that interact in yielding a behavior. Thus, when a cognitive 
architecture’s behavior differs from observed behavior, attribution requires isolating one or 
more specific peripheral hypotheses whose interaction with central assumptions results in the 
predictive failure. Attribution will be most straightforward when peripheral hypotheses are 
tested in isolation from each other. Experimental testing of an architecture therefore needs to be 
conducted with attribution in mind.  

The situation is complicated by the fact that, as noted above, when a cognitive architecture is 
supplemented with task knowledge in order to develop predictions, predictive failures may be 
attributed either to architectural peripheral hypotheses or to task peripheral hypotheses. It is 
tempting to suggest that, where attribution is ambiguous, that preference should be given to task 
peripheral hypotheses, and these should be the subject of revision rather than architectural 
peripheral hypotheses. This line of argument is justified by the fact that modification of 
architectural peripheral hypotheses is likely to have implications for other models developed 
within the architecture, and so these should only be modified as a last resort. However, a more 
progressive strategy is to consider architectural development and task development as separate 
research programs. This has significant implications for the use of cognitive architectures in 
developing task models (as discussed below in the section Model Development within an 
Architecture), but this second strategy appears to have emerged naturally in the case of the 
ACT-R architecture. 

The strategy of separate research programs for cognitive architectures and task models is only 
feasible if peripheral hypotheses from both cognitive architectures and task models can be tested 
in isolation from each other. Examination of one recent modification to the ACT-R architecture, 
the replacement of the goal stack by a goal buffer with activation-based retrieval of goals from 
declarative memory, suggests that this can be the case. 
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Goal-directed processing was introduced within the ACT series of architectures in Anderson’s 
(1983) presentation of ACT*. It was not present in the original ACT (Anderson, 1976) or HAM 
(Anderson & Bower, 1973) theories from which ACT* evolved. It is clear that Anderson was 
never comfortable with the concept of an unlimited goal stack as adopted by the Soar 
architecture (Laird, et al., 1987; Newell, 1990). Thus, in the original description of ACT*, 
Anderson stated that “it might be reasonable to assume that three to five goals are available … 
The rest of the goals, however, will have to be retrieved from long-term memory if they are to 
be had at all” (Anderson, 1983, p. 161; see also Anderson, 1993, p. 136, for comments 
concerning the goal stack in ACT-R 2.0, and Anderson & Lebiere, 1998, p. 459, for comments 
concerning the goal stack in ACT-R 4.0). Nevertheless, an unlimited goal stack was 
implemented as a convenience within the computational instantiations of the ACT* theory and 
all versions of its successor, ACT-R, prior to 2003. 

In considering the status of goals within the problem solving literature, Altmann and Trafton 
note that “a reader might be forgiven for coming away with the view that backtracking was 
supported by some kind of special cognitive structure” (Altmann & Trafton, 2002, p. 43; see 
also Altmann & Trafton, 1999). A goal stack is of course the specialized cognitive structure to 
which Altmann and Trafton refer. Altmann and Trafton (2002) go on to criticize not just the 
concept of a goal stack, but the concept of a dedicated goal memory, and develop a model of the 
Tower of Hanoi task (a goal-subgoal intensive task) within the ACT-R architecture using only 
general spreading-activation processes for goal retrieval. The model is shown to perform as well 
as an existing ACT-R model (that of Anderson & Lebiere, 1998) on some measures (move 
latencies), but it does this with fewer assumptions. In addition, the Altmann and Trafton model 
is able to account for error data, on which the Anderson and Lebiere model is silent. Altmann 
and Trafton (2002) therefore provide specific, targeted, evidence against the necessity of the 
goal stack assumption, while at the same time providing a plausible alternative consistent with 
other assumptions of the ACT-R architecture. Furthermore Altmann (2002) and Altmann and 
Gray (2002) provide specific experimental evidence for the decay of goal representations (and 
the need for deliberate “refreshing” of goal representations) in tasks beyond the Tower of 
Hanoi. This evidence is itself consistent with the approach of Altmann and Trafton (2002) and 
inconsistent with a special-purpose goal stack. Finally, Anderson & Douglass (2001) present 
experimental evidence from a variant of the Tower of Hanoi task designed specifically to 
address the issue of goal encoding and retrieval costs. Their data suggest that goals are subject 
to the same decay processes as other information in declarative memory, and moreover that, at 
least in their variant of the Tower of Hanoi task, participants are able to reconstruct goals if they 
are not accessible (e.g., because their trace has decayed). These findings hence also argue 
against a special purpose goal stack. 

This case study demonstrates that within ACT-R it is possible to target individual peripheral 
hypotheses. It is not clear that this targeting is possible in all cognitive architectures. As 
discussed above in the section Theory Development in Soar and ACT-R, ACT-R is a somewhat 
loose collection of independent assumptions and hypotheses. Within Soar, for example, 
hypotheses are more tightly integrated and targeting one assumption independently of others 
may require greater ingenuity.  

5.2 From data fitting to prediction 
The preceding section assumed that predictive failures may occur within an architecture’s 
research program. This requires some comment as the view that behavior only follows from an 
architecture when parameters are fixed, a task theory is adopted, and implementation 
assumptions (if present) are made concrete suggests that true prediction is not possible. 

In general, task theory assumptions, parameters and architecture implementation details each 
contribute degrees of freedom to the behavior to be modeled, and true prediction only follows 
when the number of such degrees of freedom is zero. In fact, qualitative predictions can be 
made even with non-zero degrees of freedom. For example, Soar’s chunking mechanism 



Falsification and Architectures 

 14 

predicts that learning in all tasks will follow a power law. At the same time, both Soar and 
ACT-R research programs have made clear attempts to reduce the number of degrees of 
freedom as they have developed. Thus, Soar has few parameters but attempts have been made to 
fix the timings of various sub-processes (see Newell, 1990), while in ACT-R, which has of the 
order of 30 parameters (see Table 12.3 of Anderson & Lebiere, 1998, pp. 434–435), default 
values have been established for all parameters and these default values are routinely used 
across tasks. There is also an attempt to develop models within ACT-R that process task 
instructions, thereby reducing the degrees of freedom available in coding specific task theories 
within the architecture (Anderson, 2006, personal communication; see also Huffman et al., 
1993, for a related attempt within Soar). 

All of these tactics reduce the number of degrees of freedom and therefore allow for something 
approaching true, quantitative, prediction. Note though that even without these methods of 
reducing degrees of freedom, it is still possible to achieve prediction through cross-validation. 
This technique, which is standard in machine learning, involves dividing the data to be 
explained into two subsets, and then fitting the behavior of the model + architecture to one 
subset though adjusting parameters. The resultant model + architecture can then be used to 
predict, with fixed parameters, the second subset of the data. The process may be repeated with 
different randomly selected subsets of the dataset. Cross-validation may be particularly 
important early in an architecture’s development, when the number of degrees of freedom is 
likely to be high. 

5.3 Model development within an architecture 
Cognitive architectures have two distinct roles: as theories of the structure and functioning of 
the subprocesses supporting cognitive function, and (in virtue of this and the now standard 
method of specifying an architecture in terms of an implementation) as computational systems 
within which theories of behavior on specific tasks (ranging from the Stroop task to air traffic 
control tasks) or of specific cognitive functions (such as short-term memory, attention, or 
problem solving) may be developed. A Lakatosian approach to architectural development has 
implications for the development of models within that architecture. Most clearly, if a model’s 
behavior depends on an architecture’s peripheral hypotheses and the model is successful (i.e., it 
accounts for the relevant data) then this adds weight to the architecture’s peripheral hypotheses. 
Equally, however, if the peripheral hypotheses are later revised or abandoned this will 
undermine the original model. It is therefore critical when developing a model within a 
cognitive architecture to understand the extent to which the model’s behavior is dependent on 
the architecture’s central assumptions and peripheral hypotheses.6 

One illustrative case where dependence and independence can be seen arises in the work of 
Goal et al. (2001), who developed a model of the Tower of Hanoi task within the 3-CAPS 
architecture. They then used their model to investigate theories of frontal lobe dysfunction. 
While the model was developed within a specific architecture, the authors expressed minimal 
commitment to that architecture. For the purposes of the model, all that was important was that 
3-CAPS provided a capacity limited working memory which could be impaired (to mimic 
frontal lobe dysfunction) by increasing the rate at which working memory elements decayed. 
Two questions follow: Would the results transfer to 4-CAPS (Just et al., 1999), the successor of 
3-CAPS, and would the results transfer to other architectures with similar working memory 
subsystems? Both questions may be answered in the affirmative. The critical feature of 3-CAPS 
is retained in 4-CAPS, while Goel et al. (2001) specifically address the issue of development of 
the model in ACT-R, arguing that their results are consistent with the work of Kimberg and 
Farah (1993), who developed a general model of frontal lobe dysfunction in an early version of 
ACT-R. In sum, the work demonstrates that architectures can provide a useful substrate for the 

                                                        
6 If a model’s behavior is independent of both the architecture’s central assumptions and its peripheral 
hypotheses then there is nothing gained by developing the model within the architecture – the architecture 
is serving as nothing more than an implementation language. 
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implementation and development of specific models, but that analysis of the dependency 
between model behavior and specific architectural assumptions is critical in order to draw out 
the full implications of the model. 

5.4 Heuristics for theory development 
Two additional concepts introduced by Lakatos (1970) but not discussed above are those of 
positive and negative heuristics for theory development. These are rules of thumb about what is, 
and what is not, permissible within Lakatos’ model of scientific enquiry. The negative heuristic 
is constant across all research programs. It simply states that central assumptions are considered 
to be irrefutable, and hence that empirical work should not attempt to falsify these assumptions. 
The positive heuristic, in contrast, specifies a plan for theory development. It is “a partially 
articulated set of suggestions or hints on how to [...] modify, sophisticate, the ‘refutable’ 
protective belt” (Lakatos, 1970, p. 135). 

The positive heuristic consists of a recipe for theory development. Lakatos (1970, pp. 135–136) 
cites Newton’s approach to his theory of planetary motion as a prime example, arguing that 
Newton began by working out his theory with a point-like planet orbiting a fixed point-like sun. 
This was then modified such that the bodies orbited a common center. Multiple planets were 
then considered, and then the point-like bodies where generalized to massive bodies, and so on. 
Each stage required greater mathematical sophistication, and Newton even had to develop new 
mathematical techniques (the calculus) to support the theoretical development. The moral of this 
example is that successful scientific theories do not develop in an ad hoc fashion or even in a 
way that is excessively responsive to predictive failures. Thus, from a Lakatosian perspective if 
a cognitive architecture is to be methodologically sound it must be developed within an overall 
plan that is at least partially specified in advance. 

The simplicity of the negative heuristic is misleading, for it has implications for when a theory 
(or at least some of its central assumptions) should be abandoned. This is when a theory’s 
predictive failures can no longer be addressed through adjustments to peripheral hypotheses. 
While it is not in general possible to prove that any specific predictive failure cannot be 
addressed through some ingenious adjustment to one or more peripheral hypotheses, the weight 
of predictive failures and the increasing complexity of peripheral hypotheses needed to patch up 
the theory can eventually undermine a theory. A good case in point is learning within the Soar 
architecture. A central assumption of Soar prior to 2004 was that all learning arises from a 
single mechanism: the chunking of subgoal hierarchies which is held to occur continuously 
during all cognitive activities. 

In its basic form, chunking is an elegant and powerful learning mechanism. As noted above it 
accounts for the so-called power-law of learning, and its hypothesized ubiquitous nature is 
consistent with the ubiquitous nature of the power-law of learning, which has been 
demonstrated in tasks ranging from choice reaction time (Seibel, 1963) to reading of inverted 
text (Kolers & Perkins, 1975) and proving theorems in a syntactic calculus (Neves & Anderson, 
1981). Chunking does, however, have serious difficulties as the only form of learning. Thus, as 
discussed above rote learning of paired associates has long presented a major difficulty for the 
mechanism, as has learning from external feedback. Methods have been proposed which 
circumvent these difficulties, but the complexity of the methods (which effectively consist of 
peripheral hypotheses about the cognitive processes involved in learning in these situations) 
undermine the elegance of Soar’s basic chunking mechanism. The predictive failures, together 
with the complex peripheral assumptions proposed in response to those failures, suggest that 
either Soar as a theory of the human cognitive architecture should be abandoned, or at the very 
least that Soar’s theory of chunking as the only mechanism of learning must be reconsidered. 

In fact, proponents of Soar have recently begun to explore the implications of the second of 
these possibilities. Thus, Nason & Laird (2004) have suggested augmenting the Soar 
architecture with a second learning mechanism (reinforcement learning: Sutton & Barto, 1998). 
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The rationale for this was not the difficulties in chunking highlighted above, but rather 
difficulties in learning within knowledge-lean statistical environments where feedback is limited 
to knowledge of success or failure. In addition, the incorporation of reinforcement learning is 
consistent with a wider development that has served to revitalize interest in Soar as a theory of 
cognitive processing, namely the incorporation of sub-symbolic, activation-based, processing 
within working memory (Chong, 2003; Nuxoll et al., 2004). 

Together, the positive and negative heuristics allow us to answer a central question in the 
development of a cognitive architecture: How can one maximize progressive development while 
guarding against false advances? The Lakatosian answer lies in articulating central assumptions, 
acknowledging predictive failures, and having a clear plan for theory development in which 
those predictive failures may be addressed. In the case of learning within Soar, the central 
assumptions were well articulated, and the predictive failures were clear. The difficulty for Soar 
prior to 2004 was that there was no plan in which predictive failures might be addressed beyond 
sophisticating the peripheral hypotheses in whatever way was necessary to preserve the 
assumptions of the hard core. Thus, there were few if any constraints on how the peripheral 
hypotheses might be modified or extended to account for the problematic learning phenomena. 

Could things have been done differently? One can envisage alternative approaches to the 
problems of chunking within Soar, such as introducing additional learning mechanisms or even 
modifying the conditions under which subgoals are created or resolved, but these all involve 
rejecting central assumptions of the Soar architecture, and without an overall plan for theory 
development would in any case be ad hoc. Thus, the main difficulty for Soar in responding to 
the predictive failures of chunking was that Soar’s positive heuristic which had operated since 
the early 1980s had been exhausted. While that heuristic had not been well articulated, it guided 
research within Soar for well over a decade via the addition of a range of concepts and 
mechanisms, including impasses and automatic subgoaling, chunking, and the single state 
principle. 

To suggest that the positive heuristic which drove Soar development through the 1980s and 
1990s has been exhausted does not mean that Soar was or is a failure. At the time of writing 
interest in Soar appears to be growing, possibly because a new positive heuristic now appears to 
be driving theory development (as reflected in the incorporation of activation-based processing 
in Soar’s working memory). Regardless of this renewed interest, Soar has a significant legacy 
even if it is rejected as a theory of the human cognitive architecture. Below we suggest 
(following Lakatos, 1970) that unified theories of cognition be judged on their “heuristic 
power”. Soar’s positive contribution in this respect is great.  

5.5 Heuristic power and the evaluation of architectures 
A final critical issue concerns the evaluation of architectures. The Lakatosian concept of 
heuristic power provides a way in which the contribution of an architecture’s research program 
may be quantified. Lakatos defines heuristic power rhetorically by asking of research programs 
(or the positive heuristic that has driven them) “how many new facts did they produce, how 
great was their capacity to explain their refutations in the course of their growth?” (Lakatos, 
1970, p. 137). What counts as a “new fact” is not always clear,7 and the difficulties inherent in 
falsifying architectures undermines the force of the second of these questions, but we may still 
ask the first of these questions of Soar and ACT-R. Indeed, we may ask the same question of the 
connectionist research program revived by Rumelhart and McClelland (1986; see also 
McClelland & Rumelhart, 1986). 

Consider first the case of Soar. Evaluation of Soar is compromised by difficulty in identifying 
its positive heuristic. As suggested above, since 1990 Soar development has largely been driven 

                                                        
7 For example, does a novel account of an existing fact, not previously considered in the development of 
the architecture, count as a “new fact”? 
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by incorporation of the single state principle and real-time AI concerns. Only recently has a 
group of researchers working with Soar returned to its psychological roots. While the single 
state principle had a solid psychological foundation, it has not produced any obvious new facts. 
Development related to real-time AI concerns has been based purely on engineering concerns, 
and so it too cannot provide positive evidence of Soar’s heuristic power. It is too early to judge 
the success of the current wave of psychological development of Soar. 

The evaluation of ACT-R, and particularly rational analysis, is more positive. In part, this is 
because the ACT-R research program has retained a strong empirical strand, but this is not the 
only reason. Anderson (1990) demonstrated that rational analysis could account for aspects of 
behavior across four domains (memory, categorization, causal inference and problem solving), 
and the incorporation of rational analysis into the ACT framework has led to the colonization by 
ACT-R of numerous additional domains within cognitive psychology (e.g., choice, cognitive 
arithmetic and analogy: see Anderson & Lebiere, 1998). In short, the heuristic power of rational 
analysis, particularly in combination with the ACT framework, has been great.8 Evaluation of 
ACT-R’s most recent development, driven by modularization and mapping to neurophysiology, 
also appears to be positive. Again, these have produced genuine predictions which have, 
following subsequent experimentation, been corroborated (e.g., Byrne & Anderson, 2001; 
Anderson et al., 2004; Anderson, et al., 2005). 

Turning to connectionism, it is hard to identify a single positive heuristic that has guided the 
approach. Nevertheless there are numerous examples were connectionism has provided novel 
accounts of phenomena, particularly within neuropsychological modeling (e.g., Hinton & 
Shallice, 1989). On these grounds, connectionism has been a successful research program. 
Connectionism is a doubly interesting case as it has been subject to numerous attempted 
refutations (e.g., Broadbent, 1985, Fodor & Pylyshyn, 1988, and subsequent articles). The 
extent to which connectionist attempts to explain refutations (e.g., Chater & Oaksford, 1990; 
Elman, 1990) were successful remains a matter of debate, but it is clear that the positive 
heuristic guiding the development of connectionist models is also changing, with increased 
attention now being directed at functionally modular models with increased neurophysiological 
plausibility (e.g., O’Reilly & Munakata, 2000). 

Given all of the above, an architecture is successful to the extent that it remains theoretically or 
empirically progressive. From this perspective, while Soar may have been successful during the 
late 1980s and early 1990s, architectural developments following the publication of Newell’s 
call to arms (Newell, 1990) were neither theoretically nor empirically progressive. More recent 
developments may, in time, yield a more positive assessment. In contrast, ACT-R is currently 
highly successful precisely because it remains theoretically and empirically progressive. Other 
less high profile architectures may also be judged on the criteria of theoretical and empirical 
progressiveness, though that judgment is hampered by the scarcity of publications relating to 
other architectures. 

Is ACT-R likely to remain successful? The answer to this largely depends on whether there is 
much mileage left in the positive heuristic that has driven ACT-R through much of the last 
fifteen years (rational analysis), and whether a new positive heuristic can be found to further 
theory development once rational analysis is exhausted. Two related recent developments in 
ACT-R mentioned above, namely the modularization of non-central processes and the 
subsequent mapping of modules to neural structures, suggest that a new positive heuristic, based 
on a concern for neuroscience, has emerged. The immediate future of ACT-R therefore appears 
assured. This does not mean that other, “competing”, architectures will continue to be 

                                                        
8 The substantial heuristic power of rational analysis raises the intriguing question of whether rational 
analysis could have been adopted within the Soar research program, and if so whether it might have been 
as successful. 
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dominated by ACT-R, particularly if such architectures successfully develop and exploit their 
own positive heuristics. 

6 Discussion and conclusion 
The issue of architecture development has been couched in terms of Lakatosian research 
programs because of Newell’s explicit reference to Lakatos and Anderson’s explicit but 
independent adoption of a highly similar methodological position. For these reasons, Lakatos’ 
account of scientific progress seems particularly apt in the case of cognitive architectures. At the 
same time Lakatos’ account is not the only account of theory change within science. We briefly 
consider the relevance of two more recent accounts. 

Laudan (1977) argued that in developing his account of research programs Lakatos (1970) 
worked with an idealized view of history. According to Laudan, real scientific theories – even 
the ones cited by Lakatos – do not develop according to the strict rules of Lakatosian research 
programs. The above consideration of the development of Soar and ACT-R is consistent with 
this argument – there is evidence in both cases of non-progressive development. Laudan argued 
that Lakatos (1970), and Kuhn (1962) before him, both falsely viewed theoretical development 
in strictly monotonic terms (e.g., in the case of Lakatos, through an increasing number of central 
assumptions between one instance of a theory and the next). Laudan also argued that Lakatos 
and Kuhn both failed to consider the role of conceptual problems in the development of 
theories. Both Kuhn and Lakatos accepted logical positivist notions of theoretical progress, in 
which progress was defined in terms of one theory having greater empirical content than its 
predecessor. Thus, neither account allowed for progress that might come from reducing a 
theory’s conceptual problems (e.g., by removing an ad hoc assumption), unless that reduction 
also led to greater empirical content. 

Laudan’s difficulty with monotonicity is well illustrated with reference to theories of the 
cognitive architecture through the recent exploratory work involving the abandonment of some 
of Soar’s hitherto central assumptions (chunking as the only learning mechanism and the all-or-
nothing representation of elements in working memory), and this move within Soar might be 
taken as support for a view of architecture development based on the concept of a research 
tradition, which Laudan (1977) presented as an alternative to Lakatosian research programs. 
This position has several immediate difficulties. First, research traditions are characterized by 
“general assumptions about the entities and process in a domain of study, and about the 
appropriate methods to be used for investigating the problems and constructing the theories in 
that domain” (Laudan, 1977, p. 81). Thus, behaviorism, information processing psychology, and 
even computationalism might be viewed as research traditions, but specific architectures such as 
Soar or ACT-R are not. Instead, instances of those architectures (e.g., Soar 4.5 or Soar 8.2 or 
ACT-R 4.0 or ACT-R 6.0) are more accurately viewed as theories within a research tradition 
grounded in computationalism. Second, in abandoning monotonicity Laudan accepts that 
scientific progress need not be cumulative, but in so doing he sacrifices the distinction between 
central assumptions and peripheral hypotheses. Together, these two difficulties imply that to 
apply Laudan’s approach to the development of a cognitive architecture would require greater 
specification of the relation between successive theories within a research tradition, and of how 
competing theories within a research tradition may be closely or distantly related. 

A final concern raised by Laudan’s position is that he provides no account of how science might 
be demarcated from pseudo-science. In later work Laudan goes even further, denying that 
demarcation is an issue and arguing that “we ought to drop terms like ‘pseudo-science’ and 
‘unscientific’ from our vocabulary” (Laudan, 1983, p. 125).   

In the light of these points, whole-hearted acceptance of Laudan’s approach cannot proceed 
without elaboration of the relation between theories within a research tradition, and even given 
that, Laudan’s rejection of demarcation is unlikely to address the concerns of those who criticize 
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cognitive architectures on the grounds that they are not falsifiable. At the same time, Laudan’s 
notion of progress – through maximizing the number of empirical problems solved while 
minimizing the number of conceptual problems raised – cannot be easily dismissed. 

A second alternative to the Lakatosian view is provided by Thagard’s (1992) work on 
conceptual change and explanatory coherence. Thagard’s distinctive contribution was to 
develop and apply cognitive scientific theories of knowledge and conceptual representation to 
the analysis of scientific change. Thagard uses a constraint satisfaction algorithm to model the 
relations between evidence and hypotheses – and hence the “explanatory coherence” – of a 
number of influential scientific theories (including many that have been superseded by theories 
with greater explanatory coherence). In principle the approach might be applied in a descriptive 
fashion to chart the development of Soar or ACT-R. Thagard’s approach is of interest, 
particularly in the light of the difficulties raised with Laudan’s concept of research traditions, 
because his simulations allow one to quantify the degree to which individual hypotheses 
contribute to the explanation of a body of evidence. It thus offers the prospect of allowing one 
to reconstruct a graded version of the central/peripheral distinction of Lakatos, without 
committing to a strictly cumulative view of theory development. 

Notwithstanding these alternate characterizations of scientific progress, we have seen that the 
concept of a Lakatosian research program offers a plausible model for the development of 
cognitive architectures through the distinction between central assumptions and peripheral 
hypotheses, but that this model does not directly address the issues raised by the lack of 
falsifiability of cognitive architectures. We have argued, however, that even without a response 
to the falsifiability issue, adoption of the Lakatosian model in the development of cognitive 
architectures has numerous advantages. Thus, it highlights the importance of attribution in 
accounting (or failing to account) for empirical phenomena, it provides guidance on 
architectural development through the explicit statement of the positive heuristic and through 
the methodological prescription of directing empirical testing at peripheral hypotheses, and it 
provides a means for evaluating the scientific contribution of an architecture in terms of the 
success of its positive heuristics.  
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