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BEYOND THE UNIVERSAL TURING MACHINE

B. Jack Copeland Richard Sylvan

ABSTRACT
We describe an emerging field, that of nonclassical computability and
nonclassical computing machinery. According to the nonclassicist, the set of
well-defined computations is not exhausted by the computations that can be
carried out by a Turing machine. We provide an overview of the field and a
philosophical defence of its foundations
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1.  Introduction

Two of our heresies—in the dictionary sense of ‘opinions contrary to the

accepted doctrine on any subject’—are these.1

Proposition 1.  The so-called Church-Turing thesis is false.

The so-called Church-Turing thesis purports to draw a borderline between

computability and noncomputability and which is, it seems, pretty well

universally accepted among computer scientists, cognitive scientists, and

philosophers of mind.  In point of fact neither Turing nor Church endorses, or

even states, this thesis. Their  theses, proved equivalent by Turing, concerned

the functions that are in principle computable by an idealised human being

unaided by machinery. Careful authors do use the term 'Church-Turing thesis'

to refer to one or other of the various equivalent forms of the theses that

Church and Turing themselves put forward. Proposition 1. concerns not that

equivalence class of theses but a claim lying outside the class and widely but

improperly termed 'the Church-Turing thesis'. We distinguish this thesis from

members of the equivalence class by the use of riders such as 'so-called'. The

so-called Church-Turing thesis is the claim that the class of well-defined

computations is exhausted by the computations that can be carried out by

Turing machines.

Proposition 2.  Computability is a relative notion, not an absolute one.

1  Richard Sylvan did not live to see this paper written. He contributed a draft

of section 8 and fragments of sections 1, 2 and 9. Our collaboration began in

August 1994, when Richard became interested in my descriptions of

machines forbidden by the so-called Church-Turing thesis, and I in his ideas

concerning the extent to which one's notion of computability is relative to

one's logic (the topic of Sylvan and Copeland 199-).
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There is no such thing as the  class of well-defined computations.  The extent

of the computable functions is resource-relative.  The richer the resources

that are made available, the greater the extent of the computable.  For

example, if the resources run to a device (a 'black box', perhaps) that returns

values of the halting function, then the classical first-order predicate calculus

is decidable.  The notion of relative computability is a familiar one in

generalised recursion theory, where a function f is said to be computable

relative to a set X just in case f is computable by a Turing machine with

access to an additional resource that supplies on demand answers to queries

of the form 'Is ... in X?'.  We maintain that relative computation really is

computation.  There is no essential difference in kind between the machines

that figure in the definition of the classicist's supposedly absolute set of

computable functions, namely Turing machines with exactly the primitive

capabilities specified by Turing in 1936, and the machines just described.

The difference is merely one of degree, a matter of the extent of the primitive

capabilities with which the machines are endowed.  All computation, classical

or otherwise, takes place relative to some set or other of primitive

capabilities: all computation is relative computation.  The primitives specified

by Turing in 1936 occupy no privileged position.  One may ask whether a

function is computable relative to a subset of these resources or to a superset.

The characterisations of the central terms of computability theory should

make no reference to some particular  set of resources nor to equivalence

classes thereof.

In this relativist landscape two sets of functions are of special—although

certainly not exclusive—interest.  These are the functions that are computable

by an idealised human being who is unaided by machinery, and the functions

that are in principle computable in the real world, which is to say, are

computable by machines, or organs, or in general entities, that physically
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could exist, given the resources on offer in the real world, even if they do not

actually exist, nor ever do so.  Turing argued, we think persuasively, that the

first of these sets is coincident with the set of Turing-machine-computable

functions.  We believe that the extent of the second set is an open, empirical

question.

Propositions 1. and 2. are connected, in that the second entails the first.

For the so-called Church-Turing thesis seeks to provide an absolute set, of

course.  But the converse entailment does not hold.  Someone (da Costa

perhaps) can maintain that more is computable than the so-called Church-

Turing thesis allows, for instance by analogue means, without adopting our

relativist position.

In the present paper we focus largely on proposition 1. although much of

what we say also bears intimately on proposition 2.  Proposition 2. receives

further discussion elsewhere (Sylvan and Copeland 199-).

2.  Fundamentals and their reorientation

Here are some typical statements of the so-called Church-Turing thesis

(aka 'Church's thesis').

(i) '[A]nything computable is Turing-machine computable.'  (Dennett

1978: 83.)

(ii) 'That there exists a most general formulation of machine and that it

leads to a unique set of input-output functions has come to be called Church's

thesis.' (Newell 1980: 150.)

(iii) '[S]ince all computers operate entirely on algorithms, the ...  limits of

Turing machines ... also describe the theoretical limits of all computers'

(McArthur 1991: 401).
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(iv) 'Turing's analysis of what is involved in computation ... seems so

general that it is hard to imagine some other method which falls outside the

scope of his description ... so ... anything which can be computed can be

computed by a Turing machine.'  (Phillips writing in the 'Handbook of Logic

and Computer Science';  Abramsky, Gabbay and Maibaum 1992: 123.)

(v) Any 'problem for which we can find an algorithm that can be

programmed in some programming language, any  language, running on some

computer, any  computer, even one that has not been built yet but can  be

built, and even one that will require unbounded amounts of time and

memory space for ever-larger inputs, is also solvable by a Turing machine'.

(Harel 1992: 233.)

(vi) 'Every algorithm can be implemented by a Turing machine'. (Franklin

and Garzon 1991: 133.)

Franklin and Garzon expand on this as follows (and in so doing provide

an excellent statement of some commonly held beliefs that we wish to call

into question):

By their rendering the notion of a lgor i thm  precise and unambiguous,

Turing machines afford researchers in the theory of computability with a

valuable tool for determining whether given tasks can be successfully

completed, or for proving that they cannot be completely solved by any

physical machine ... regardless of how much memory or computing time

we may be willing to provide.  (Ibid. 132-133.)

We will argue that the conceptions of computation and algorithm

underlying the so-called Church-Turing thesis are biased in favour of a subset

of digital and digitally emulable procedures.  The thesis serves only to draw a

boundary between what we shall call orthodox  and heterodox  computing

devices (figure 1).
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ORTHODOX								               HETERODOX		

DIGITAL

ANALOGUE

Turing machines

von Neumann
 machines

Shannon's GPAC

Differential
 analysers
(mechanical and
 electronic)

Turing's O-machines
Coupled Turing 
machines
Asynchronous 
networks of Turing 
machines

certain
biological
systems?

Accumulator machines

Scarpellini-type
machines

Certain connectionist
networks

Accelerating digital 
machines 

FIGURE 1

Some of the machines shown in figure 1 are real while others, such as

Turing machines and the GPAC ('general-purpose analogue computer';

Shannon 1941, Pour-El 1974), are idealisations ('notional' machines).

Accumulator machines, Scarpellini-type machines, O-machines, coupled

Turing machines, asynchronous networks of Turing machines, and heterodox

connectionist networks are described in what follows.  For discussion of

accelerating digital machines and the GPAC see Copeland 1997, 1998c,

1998d.2  Our conjectural location of certain biological systems on the

2  Also of interest are Mark Hogarth's anti de Sitter machines (Hogarth 1992,

1994).



7

heterodox side of the diagram reflects our belief that for all that is currently

known the human brain could turn out to be a heterodox computing device

(see Copeland 1997 and 1998a for development of this theme).

There is an algorithm  or effective procedure or method for solving a class

of problems if and only if there is a program for some computing machine

which will cause the machine to produce a correct answer for each problem in

the class.  The general requirements for a computing machine are simple. Part

of the machine must be capable of being prepared in configurations that

represent the problem to be solved, and part of the machine must be capable

of coming to assume, as a result of activity within the machine, configurations

that represent the solution. Subdevices of the machine—'black boxes'—must

make available some number of primitive operations. The machine must have

resources sufficient to enable these operations to be sequenced in some

predetermined way.3 Chief among these resources will be provision for

'feedback', whereby the results of previous applications of primitive

operations may become the input for further applications of those selfsame

operations. (In the case of some computing machines this will be feedback in

the literal sense: the output of a black box effecting some primitive operation

may return as the box's input, either immediately or after passing through

some intervening sequence of operations.) This recursive application, or

iteration, of primitives is the essence of computation (Copeland 1996a, 1997).

A computing machine is not always finite in all respects: Post was the first

explicitly to allow a machine with an infinite 'symbol space' (1936: 103; and

see also Turing 1947: 107). A computing machine takes a finite time to

3   The term 'sequencing' should not be taken to imply a linear mode of

operation. The sequence of operations may consist of cycles of parallel

activity.
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execute any of its primitive operations, but there is no lower limit on the time

taken, and while the program must consist of finitely many instructions, there

is no upper limit on the number of them, nor on the length of time for which

the computing machine may run.  In short, the whole affair is, like the story

of Turing machines, idealised.

Text after text offers the formal notion of execution by a Turing

machine as an explication of the informal notion of a computation.  This

approach is no doubt very convenient.  It absolves proponents of the so-

called Church-Turing thesis from much, or any, effort as regards establishing

the hypothesis.  But sometimes some  effort is made.  For instance, it is

demonstrated that Turing machines can compute a range of perhaps unlikely

functions.  Or, as in the remark by Phillips quoted above, the thesis is

asserted on the basis of the claimed generality of 'Turing's analysis of what is

involved in computation'.  In fact Turing himself offered the Turing machine

only as an analysis of the activity of an (idealised) human mathematician

engaged in the process of computing a real number using (only) pencil and

paper (1936: 231).  (As Wittgenstein put it, 'Turing's ... machines are humans

who calculate' (1980, §1096).)  Turing himself certainly did not claim for his

analysis the generality that Phillips (and others) apparently discern in it.

Turing's concern in his 1936 paper was with the theoretical limits of what a

human mathematician can compute, the whole project being directed towards

showing, in answer to a question famously raised by Hilbert, that there are

classes of mathematical problems whose solutions cannot be discovered by a

mathematician working 'mechanically'.  Turing advanced, and argued for, a

hypothesis much weaker than the so-called Church-Turing thesis:

Any procedure that can be carried out by an idealised human clerk

working mechanically with paper and pencil can also be carried out by a

Turing machine.



9

(See, for example, Turing 1936: 232, 249, Turing 1948: 7; see also Copeland

1996b, 1998a.)  This thesis (the Church-Turing thesis properly so called)

concerns the limits only of what a human being can compute, and carries no

implication concerning the limits of machine computation.  Yet the myth has

somehow arisen that in his paper of 1936 Turing discussed, and established

important results concerning, the theoretical limits of what can be computed

by machine.4  The myth is quickly dispelled by a careful reading of Turing's

actual words.

We will call the class of procedures available to an idealised human

mathematician working mechanically the class of manual methods.  One

argument for the so-called Church-Turing thesis, regularly reiterated,

concerns convergence: all the various accounts and analyses of this class of

4  Here are some typical expressions of the myth.  'Turing had proven—and

this is probably his greatest contribution—that his Universal Turing machine

can compute any function that any computer, with any architecture, can

compute'  (Dennett 1991: 215).  Turing's 'results entail something

remarkable, namely that a standard digital computer, given only the right

program, a large enough memory and sufficient time, can compute any  rule-

governed input-output function' (Churchland and Churchland 1990: 26).

'There are certain behaviours that are "uncomputable"—behaviours for which

no  formal specification can be given for a machine that will exhibit that

behaviour. The classic example of this sort of limitation is Turing's famous

Halting Problem: can we give a formal specification for a machine which,

when provided with the description of any  [Turing] machine together with its

initial state, will ... determine whether or not that machine will reach its halt

state? Turing proved that no such machine can be specified' (Langton 1996:

46).
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methods spun out in the 1930s, and later, turned out to be equivalent (in the

sense that they define the same class of functions).  It is easy to see that such

equivalence results could have been guided (by a less than invisible hand):

those who produced the analyses were all were working in the same frame of

reference and no doubt hoping for equivalence theorems.  Moreover, as

Kreisel has pointed out, those who wish to run this convergence argument

have to be ready with an answer to the question 'What excludes the case of a

systematic  error?' (Kreisel 1965: 144). But, in any case, the convergence

argument is beside the point.  The convergence of various prima facie very

different characterisations of the notion of a manual method is at best ground

for thinking that the extent of this notion has been correctly delineated, but

the convergence has no bearing on the quite different issue of the extent of

what can be computed by machine.  Equally worthless is the argument from

computational experience, here stated by Börger (1989: 49):

The experience of electronic computing machines confirms that each

'computable' function is Turing-computable.

Of course every function computable by means of the electronic digital

machinery actually in use is Turing-machine-computable, for this machinery

is modelled on the Turing machine. Here is how Turing put the point:

Electronic computers are intended to carry out any definite rule of thumb

process which could have been done by a human operator working in a

disciplined but unintelligent manner. (1950: 1.)

Likewise other customary arguments in favour of the so-called Church-

Turing thesis are not compelling.  There is the challenge, not really something

one expects to encounter in the exact sciences:  'no-one has yet produced a

procedure that is intuitively mechanical yet which cannot be translated into a

program for a Turing machine'.  This is sometimes misdescribed as an

'inductive argument'; perhaps those who borrow the term feel it enhances the
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cogency of their case. No doubt querulous students are crushed with: put up

or shut up.

Finally, there is the weakest argument of them all, again expressed by

Phillips, and a close cousin to the challenge: it is 'hard to imagine' some

computational procedure that lies beyond the scope of a universal Turing

machine.  The following sections, which describe some simple machines that

compute more than the universal Turing machine, give the lie to all these

arguments .

3.  Coupled Turing machines

Turing machines accept no input while operating. A finite amount of

data may be inscribed on the tape before the computation starts, but

thereafter the machine runs in isolation from its environment. A coupled

Turing machine is the result of coupling a Turing machine to its environment

via one or more input channels (Copeland 1997: 694). Each channel supplies a

stream of symbols to the tape as the machine operates. The machine may also

possess one or more output channels, which return symbols to the

environment. (Turing considered coupled Turing machines of a specific sort in

the course of a discussion of machine learning, calling these 'P-type' machines

(Turing 1948: 17-20; see also Copeland and Proudfoot 1996: 369-371).)

Any coupled Turing machine that halts can be simulated by universal

Turing machine, since the streams of symbols supplied by the coupled

machine's input channels are, in this case, finite in length, and so can be

inscribed on the universal machine's tape before it commences its task.

However, the universal Turing machine is not always able to simulate a

coupled Turing machine that—like an idealised automatic teller machine or air

traffic controller—never halts.
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A computable real number (as defined by Turing) is a real number that

a Turing machine can be programmed to 'churn out' digit by digit.  π

(3.14159...) is an example. A Turing machine computing π never halts (since

there is no last digit in the representation of π); nevertheless each digit is

produced by the machine after some finite amount of processing.  Since the

set of Turing machine programs is countable (which is to say, can be put into

one-to-one correspondence with the integers, 1, 2, 3, ... ), the set of all

computable real numbers is also countable.  So, the set of real numbers being

uncountably large, there are uncomputable  real numbers: real numbers that

no Turing machine can be in the process of 'churning out'.

Given this fact, the proof of the existence of coupled Turing machines

that cannot be simulated by universal Turing machine is trivial.  Let T be a

coupled Turing machine with a single input channel and no output channels.

Let u be some uncomputable real number—between 0 and 1, say—and let the

decimal representation of u be written 0.u1u2u3... . T's input channel writes to

a single square of T's tape and each successive symbol in the input stream

overwrites its predecessor on this square. The first symbol in the input

stream is u1, the second is u2, and so on. As each of these symbols arrives T

performs some trivial computation with it—multiplies it by 2, say—and writes

the result on some designated squares of the tape (the result of each of these

multiplications being overwritten by the result of the next). No Turing

machine can be in the process of producing the succession 2‡u1, 2‡u2, etc. (for

if one could, it could also be in the process of producing the decimal

representation of u). A coupled Turing machine can calculate more than the

universal Turing machine: an input stream makes all the difference. As in the

case of the situated microrobots of modern AI, and the ant in Herb Simon's

famous parable (Simon 1981: 63-65), T's complex behaviour is a function of
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relatively simple internal processing and complex input from the

environment.

4.  Accumulator machines

One function that no Turing machine can compute is addition over the

real numbers.  A Turing machine can add any pair of real numbers that are

computable in Turing's sense, but cannot add any arbitrary pair of real

numbers.  This is easily shown.  Let c be one of the real numbers that no

Turing machine can be in the process of churning out.  Let a and b sum to c.

No Turing machine can be in the process of adding the numbers a and b.

Accumulator machines (Copeland 1994, 1997) are able to compute addition

over the real numbers, and other functions inaccessible to Turing machines.

These machines, which are analogue in nature, compute in exactly the sense

explained earlier.

Accumulator machines are notional machines—as, of course, are Turing

machines, with their indefinitely long and so indefinitely massive tapes, and

their components that never wear out, functioning reliably through all

eternity.  The question that we are presently addressing, namely whether the

class of functions that are in principle computable by envisagable

mechanisms is wider than the class of functions computable by Turing

machine, is indeed one that concerns notional machines.

Any continuously-valued physical magnitude—for example, the rate at

which an idealised neuron fires—can be used to represent arbitrary real

numbers. Accumulator machines represent real numbers by means of a

continuously-valued physical magnitude that, for vividness, will be termed

'charge' (no close analogy is intended with the concept of charge found in
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modern physical theory, which is discrete).  Any real number can be

represented by some quantity of charge.

An accumulator, as depicted in figure 2, is a device for storing quantities

of charge.

FIGURE 2 ABOUT HERE

When two charges (of the same sign) are applied to the input lines i1 a n d

i2 they accumulate in the device and their sum is available at the output line

o.  Consider a machine consisting of a single accumulator embedded in a

programmable control structure.  The machine's program is as follows (':='

may be pronounced 'becomes').

BEGIN

INPUT TO i1 (A charge is received from some external 

device and applied to line i1. )

i2 := i1 (The control clears i2 and copies the charge on i1 

to i2.)

ADD (i1, i2) (The charges on i1 and i2 enter the accumulator.)

i2 := o (i2 is cleared and the charge on o is copied to i2. )

ADD (i1, i2)

OUTPUT o (The output of the accumulator is delivered to 

some external device.)

HALT

When the representation of any real number r is presented as input, the

machine delivers a representation of 3r as output.  The function over the

reals of multiplication by 3 is not Turing-machine computable, but the

accumulator machine computes it.
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It is a feature of this machine that if its inputs are restricted to

computable numbers (in the sense defined earlier) then a Turing machine can

exactly mimic its behaviour, for if the accumulator machine's primitive

operations are restricted in their application to computable numbers, all

remains within the bounds of Turing-machine-computability.  It is also the

case that (even without this restriction) a Turing machine can approximate

the behaviour of the accumulator machine to any required degree of

precision, in the sense that if a universal Turing machine is given a

representation of the inputs into the accumulator machine to n significant

figures, for any n, then it can compute an approximation to the accumulator

machine's output to n significant figures or better.  Neither of these features

holds generally of accumulator machines.  To mention one example, a machine

lacking  both features can be obtained by adding a little extra hardware to the

machine already described. (The machine is described in detail in Copeland

1997.)  Essentially this hardware performs subtractions, exploiting the idea

that charge may be negative in value.  The machine computes a real function

E defined: E(x,y)=1 if and only if x=y, and E(x,y)=0 if and only if x≠y.  Even

where x and y range over only the computable real numbers, E(x,y) is not

Turing-machine-computable (Rice 1954: 786; Aberth 1968: 287).  And

obviously no Turing machine can reliably arrive at values of E(x,y) from

approximations to x and y.

5.  Asynchronous networks of Turing machines

The standard textbook proof that any finite assembly of Turing

machines can be simulated by a single universal Turing machine—which

involves the idea of the universal machine interleaving the processing steps

performed by the individual machines in the assembly—is sound only in the
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case where the machines in the assembly are operating in synchrony (yet this

restriction is seldom mentioned). Under certain conditions, a simple network

of two non-halting Turing machines m1 and m2 writing binary digits to a

common, initially blank, single-ended tape, T, cannot be simulated by

universal Turing machine.5 m1 and m2 work unidirectionally along T, never

writing on a square that has already been written on, and writing only on

squares all of whose predecessors have already been written on. (If m1 and

m 2 attempt to write simultaneously to the same square, a refereeing

mechanism gives priority to m1.) If m1 and m2 operate in synchrony, the

evolving contents of T can be calculated by the universal machine. This is true

also if m1 and m2 operate asynchronously and the timing function associated

with each machine, ∆1 and ∆2 respectively, is Turing-machine-computable.

∆1(n) = k (n, k ≥ 1) if and only if k moments of operating time separate the

nth atomic operation performed by m1 from the n+1th; similarly for m2 and

∆2. Where ∆1 and ∆2 are both Turing-machine-computable, the universal

machine can calculate the necessary values of these functions in the course of

calculating each digit of the sequence being inscribed on T. If at least one of

∆1 and ∆2 is not Turing-machine-computable and m1 and m2 are not in

synchrony, m1 and m2 may be in the process of inscribing an uncomputable

number on T.

6.  A classification of algorithms

On the conceptualisation of matters presented in (Copeland 1997) the

main divisions are as shown in figure 3.

5  With thanks to Aaron Sloman for pointing this out in correspondence.
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algorithms

classical

manual
methods

the rest

nonclassical

FIGURE 3

An algorithm is classical just in case the function whose arguments are

inputs into the algorithm and whose values are the corresponding outputs—

the characteristic function of the algorithm—is Turing-machine-computable.

Thus an algorithm may be classical even though it calls for the execution of

primitive operations that no Turing machine can perform (quantum

operations, for example).  An algorithm is nonclassical just in case it is not

classical.  Derivatively, a nonclassical or heterodox computing machine is a

computing machine that is capable of executing some nonclassical algorithm.

As previously explained, manual methods—which were the object of Turing's

investigation of 1936—are algorithms whose steps can be carried out by a

human being working mechanically with pencil and paper, unaided by

machinery, and idealised to the extent of having available unlimited amounts

of time, internal memory, patience, scratchpad, and so forth.  The Church-

Turing thesis properly so called (section 2) asserts, in effect, that all manual

methods are classical algorithms.



1 8

It is perhaps surprising that not all classical algorithms are manual

methods.  That this is in fact the case has emerged from recent work on

quantum computation (Deutsch 1985, Solovay and Yao 1996).  Algorithms for

quantum Turing machines are not in general manual methods, since not all

the primitive operations made available by the quantum hardware can be

performed by a person unaided by machinery.  Nevertheless the algorithms

executed by Deutsch-Solovay-Yao quantum Turing machines are all classical

in the sense used here.6

7.  Real hardware

It would be a surprise if an accumulator machine as here described were

actually to be constructed and used to compute values of some non Turing-

machine-computable function.  Nevertheless, these machines serve their

purpose in our a priori argument concerning the theoretical limits of

computability.  But our concern is not exclusively with a priori matters.  We

are also interested in the issue of whether it is practicable to build machines

capable of computing functions that are uncomputable in the classicist's sense.

The received view, certainly, is that such a project is akin to alchemy or

worse. (For example, on the basis of the convergence argument, the argument

from computational experience, and others of the arguments examined above,

Börger hazards that just 'as we no longer seek for perpetual motion in

physics, so today there are no good grounds for looking for algorithmically

computable but non-[Turing-machine-computable] functions' (1989: 50).) We

offer an all-too-brief discussion of this matter.

6  On these points Copeland is indebted to conversations with Solovay.
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First, a possible objection.  Does not any conceivable real machine have

only a finite lifespan, no matter how long?  If so, it delivers only finitely

many outputs during its finite life: which is to say, computes only finitely

many values of functions.  And cannot a Turing machine always compute

these same values, if only in virtue of embodying the appropriate lookup

table, a finite array pairing inputs with outputs?  So how can any real

machine possibly compute more than a Turing machine?

This fallacious line of reasoning is discussed in detail elsewhere

(Copeland 1997, 1998e; see also Copeland 1993: 237-8 and Proudfoot and

Copeland 1994: 502-503 for more on the finitude argument).  Notice that

even if one were to agree that a Turing machine embodying a lookup table

can always reproduce the actual input-output behaviour of any real machine,

it certainly does not follow that the construction of nonclassical computing

machines would be otiose.  Let f be some non Turing-machine-computable

function such that, for some reason—industrial or military, say—the calculation

of some finite number of f's values is a matter of consequence.  An orthodox

computer that is given these values in the form of a lookup table is certainly

capable of spitting them out again, but within orthodox computability theory

there is no way of fully automating the process of calculating these values in

the first place.  However, the toil of human mathematicians may not be

capable of producing the values fast enough to satisfy industrial or military

demands.  (One non Turing-machine-computable function that has received

considerable attention is the so-called Busy Beaver function (Rado 1962).

Despite more than three decades of investigation, only the first four values of

the function have so far been calculated (Brady 1988, Machlin and Stout
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1990).)  A suitable nonclassical device might produce the required values of f

with the customary swiftness of automatic computing machinery.7

Others, few as yet in number, share our interest in the construction of

nonclassical hardware.  Mike Stannett is investigating the physical

implementability of devices logically similar to accumulator machines which

he calls 'X-machines'.  He restricts his search for an implementation to

(theoretical) components that can be constructed and connected under the

control of a system governed by a Turing machine. This restriction ensures

that, if a design is forthcoming, the circuitry involved can be reproduced at

will by processes governed by a controller no more esoteric than those

already widely in use in industry. As Stannett says, 'an arbitrarily produced

circuit might implement a normally uncomputable function, but this is of little

practical use if the construction of this circuit cannot be repeated in a

controlled manner' (1990: 339).

In an unpublished memo written in 1982 Jon Doyle wrote as follows:

One of the most common abstract phenomena in our world is that of

equilibriating systems: parts of the universe that settle into one of a

spectrum of equilibrium states after certain boundary conditions are

imposed.  There are, in fact, many equilibriating systems with discrete

spectra, for example the quantum states of molecules.  Given the

definiteness of these systems, we might take the operation of

7   Another springboard for objections is the issue of noise . Can a machine

whose components are subject to noise compute more than a universal Turing

machine? Chalmers, for one, assumes not (1996: 330-331), thereby begging

delicate mathematical and empirical questions. See Copeland 1997: 703-704,

Lokhorst and Copeland 199-, Maass and Orponen 1997, Maass and Sontag

1997.
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equilibriating as an effective one.  Note carefully, I do not mean that

equilibria are computable by Turing's operations, but that equilibriating

can be so easily, reproducibly, and mindlessly accomplished that we

grant it equal status with marking and moving slips of paper.  My

suspicion is that physics is easily rich enough so that ... the functions

computable in principle given Turing's operations and equilibriating

include non-recursive functions.8 (Doyle 1982)

Some twenty years earlier Scarpellini wrote in German of related

matters, in an article that has until recently received little attention.

Scarpellini's specific concern was to illustrate the possibility (at the classical

or non-quantum level) of natural processes that are not Turing-machine-

computable.  He wrote:

One can ask the question whether it is possible to build a computing

machine that is in a position to simulate functions f(x) so that the

predicate Ô f(x) cos nx dx >  0 is not decidable, while the machine decides

through direct measurement whether Ô f(x) cos nx dx is greater than zero

or not. (1963: 289.)

Kreisel, too, has written on the issue of whether there may be natural

processes that are not Turing-machine-computable, his thoughts taking the

form of scattered remarks throughout a series of papers spanning three

decades (for example, Kreisel 1965, 1967, 1971, 1972, 1974, 1982, 1987).

Like Scarpellini, he believes that it is an open question whether classical

mechanics and classical electrodynamics—let alone quantum mechanics—is

everywhere Turing-machine-computable.  So too Pour-El and Richards (1979,

1981), who describe a possible classical physical system whose behaviour is

8   We first learned of Doyle's memo in January 1996 when Doyle wrote to

Copeland after seeing a draft of Copeland 1997.
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in accordance with a function that is not Turing-machine-computable. Others

who have speculated about the existence of physical processes that are not

Turing-machine-computable include Geroch and Hartle 1986, Komar 1964,

Penrose 1989, 1994, and Vergis et al. 1986.

Scarpellini makes it clear that, in his view, talk of 'building' such a

machine is to be understood at the level of idealisation and thought

experiment.  He says

Such a machine is naturally only of theoretical interest, since faultless

measurement is assumed ... as well as, probably, ... the existence of

infinitely thin resistance-free wires. All the same, the (theoretical)

construction of such a machine would illustrate the possibility of non-

recursive natural processes. (1963: 289.)

However, in a recent article da Costa and Doria raise the possibility that

processes of the sort described by Scarpellini might be 'usefully harnessable'

(contra a thesis which they attribute to Penrose to the effect that there can be

no harnessable noncomputable physical processes at the classical level).9

9   Da Costa and Doria's project is to establish the falsity of this thesis of

Penrose's, not to establish the falsity of the so-called Church-Turing thesis.

Indeed, da Costa and Doria seem to subscribe to this thesis, infiltrating it into

their translation of passages from Scarpellini (1991: 366).  They consistently

refer to the action of the machine they envisage, and to the functions that it

solves, as 'noncomputable'.  Penrose himself seems to consider his work to be

anti-computational in nature, and he frequently stresses that in his view the

brain cannot be a computer.  He gives no serious discussion of the concept of

relative computability and does not question the so-called Church-Turing

thesis.
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8.  Scarpellini-type machines

Da Costa and Doria suggest that the system they describe would solve not

only an undecidability problem at the level of classical physics, but, more,

'leads to a sort of idealised solution to the Halting Problem for Turing

machines' (1991: 363, 371).  Let us separate these issues, addressing first the

matter of deciding a classically undecidable class of physical problems, before

turning, in section 9, to the halting problem.

What we consider (now rather slavishly following da Costa and Doria) are

combinations of two (sorts of) physical systems, the evolution of each of

which through time can be described by means of a certain function (in fact a

Hamiltonian function).  One system is a single free particle moving in a 2-

dimensional flat space; let h be the function describing it.  The other, with

function h', is a harmonic oscillator on a 2-dimensional flat phase space with

real Cartesian co-ordinates.  It is assumed that the harmonic oscillator is

bounded, and that boundary conditions ensure this.  We can also suppose that

we are considering both systems within appropriately bounded regions of 2-

dimensional space.  Both systems are physically simple, integrable, and

deterministic, and evidently quite distinct and easily distinguished.

Now define, for positive integers m, the following family {hm} of

functions

hm=Θmh+(1-Θm)h',

where Θm =Θm (x) and where Θm (x) itself is a function from a family of

functions {Θm (x)} (parametrized by the positive integers), the value of each of

which is constant, 0 or 1, for all real numbers x.  These functions are such that

there is no general procedure, of a sort that can be performed by a Turing

machine, for determining whether Θm  is 0 or 1. There are various ways in
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which the family {Θm (x)} can be constructed, an important matter to which

we return shortly.

Immediate salient points are these:  If Θm =1 then hm  represents a single

free particle (since hm =h), while if Θm =0 then hm  represents an harmonic

oscillator (since hm =h').  These systems are topologically, and indeed

qualitatively different, according as they involve a bounded oscillator or a

single free particle: in the one case the particle oscillates between the bounds

and in the other it flies off to infinity.  However, for arbitrary m, there is no

general recursive procedure to decide for hm  whether it represents a free

particle or an harmonic oscillator.  This is the gist of the undecidability result

on which we focus.10  Still more exactly the result is as follows:

Classical undecidability proposition. Subject to a normal logistic assumption,

there are explicit recursively characterised expressions for a family {hm } of

Hamiltonian systems parametrized by the positive integers such that for each

m, hm  represents a simple integrable system, either a single freely moving

particle or a bounded harmonic oscillator.  However, for arbitrary m, there is

no recursive procedure to decide whether hm  represents a free particle or an

oscillator.

The 'normal logistic assumption' is that the background logistic system

ZFC, of Zemelo-Fraenkel set theory with the axiom of choice, is arithmetically

consistent, that is to say that all the arithmetic theorems of ZFC are true in the

standard model for arithmetic.  This assumption is required for the

underlying proposition from which the main proposition is derived, namely

Richardson's undecidability result for the algebra A  of real elementary

10  It is part of the 'main result', proposition 2.5, of da Costa and Doria 1991:

370.
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functions—extended to include the absolute value function |x|.  It is through a

corollary of Richardson's result that the function Θm (x) is constructed.

For the record (and for essential notation for comprehending Θm ), the

underlying result is as follows:

Richardson's undecidability proposition.  Subject to assumption:

There is a family Bm (x) of smooth real functions in A  parametrized by the

positive integers such that given each positive integer m, either for all real x,

Bm (x)>1, or there is a real x so that Bm (x)≤1.  If the second alternative is the

case, then for every real ε>0 there is a real x so that Bm (x)<ε.  There is another

family Cm (x) of continuous, piecewise smooth, non-negative real functions in

A  parametrized by the positive integers such that given each positive integer

m either for all real numbers C m (x)=0 or there exist real numbers so that

C m (x)>0, but such that there is no general recursive procedure to decide, for

an arbitrary m, which situation holds.  Moreover, we can explicitly and

algorithmically construct the expressions for both Bm  and Cm .

For an algebra B  extending A , the following corollary is obtained:

Corollary.  Subject to assumption, we can explicitly and algorithmically

construct the expression for a function Θm (x)∈ B  so that:

1.  For all real x, Θm (x)=0 iff there is no real x such that Cm (x)>0 .

2.  For all real x, Θm (x)=1 iff there is a real x such that Cm (x)>0 .

By Richardson's proposition there is no general recursive procedure to decide

which situation obtains.  (For proofs of these various propositions the reader

may consult da Costa and Doria and works cited therein.)  Now we are more

or less prepared for intended applications.

As Scarpellini suggests, it is comparatively straightforward to describe

analogue machines that decide for each hm  whether there is a free particle or

a harmonic oscillator.  For example, the machine could compare what

transpires with inbuilt paradigms.  A line recognition arrangement would
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suffice, or a line versus vibrator recognition system.  For example, the

machine might take a copy of a lower half of motion in the 2-dimensional

space, and then check it for linearity.  Call such a machine a simple

recognition machine.  Similarly, of course, observers can inspect the combined

system in each case and in principle in every case, and decide whether it is a

free particle, shooting off to infinity, or an harmonic oscillator, oscillating over

a band.  Either way, decidability ensues: what is there is decided in each case.

Moreover, what such a machine (or observer) accomplishes counts as

computation .  It proceeds through a finite series of effective steps, and so on.

Nonclassical decidability, for instance analogue decidability, of classically

undecidable problems has not so far been taken very seriously.  Even those

who have glimpsed nonclassical possibilities tend to be dismissive.  Thus

Scarpellini emphasizes the impracticality and mere theoretical interest of

analogue electrical equipment.  Da Costa and Doria are cagey:

Is such a contraption actually feasible? .... Scarpellini has emphasized that

his predicates would be decided by an analogue machine in ideal

circumstances.  In the concrete world, analogue devices are notoriously

unreliable, and it seems to the authors that some new technology would

have to be available in order to realistically implement such a [machine].

(1991: 372)

New, no doubt, but perhaps not very new.  Out there in the concrete

world, analogue equipment—telephones and so on—works more or less as well

as digital, and for reliable communication often better.  We believe that all

the major questions concerning the limits of analogue computation in the real

world are open.  No one knows what might be achievable because there has

been no investigation.  (What exploration there was, in the days when

analogue computation was still popular, was restricted to machines of the

differential analyser type: see Copeland 1997 for more information.)  Nor is
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anyone terribly likely to investigate while computer science and electrical

engineering remain in thrall to the idea that the primitive operations

specified by Turing in 1936 constitute a full answer to the question 'What can

an information-processing machine do?'—an idea forcefully expressed in

many textbooks.

9.  The halting problem

The halting function H(x,y) may be defined as follows.  H(x,y)=1 if and

only if the Turing machine whose program is the binary numeral

representing the integer x eventually halts if set in motion with the binary

numeral representing y inscribed on its tape; and H(x,y)=0 otherwise.  Turing

proved that no Turing machine can compute the halting function (1936, sect.

11).  (This result is what is meant by the claim that no Turing machine can

'solve the halting problem'.)

There is certainly nothing outlandish in the idea that an analogue device

may compute the halting function (and accordingly much else besides).  For

example, da Costa and Doria forge a connection between the halting function

and Scarpellini-type predicates (da Costa and Doria 1994).  Let M m (n) be the

Turing machine that halts if and only if H(m,n)=1.  Then:

Halting function proposition.  One can explicitly and algorithmically construct

an expression Θ(m,n) within the language of classical elementary analysis

such that

1.  Θ(m,n)=1 if and only if the machine M m (n) halts

2.  Θ(m,n)=0 if and only if the machine M m (n) never halts.

And Θ(m,n) is Θm (n) (1994: 1918).  A Scarpellini-type machine can in

principle solve the halting problem.
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Next we state some results concerning accumulator machines and the

halting problem:

I  (After Abramson 1971.)  A machine consisting of an array of

accumulators embedded in a control structure can compute the halting

function provided the following capabilities are assumed (in addition to the

primitive capabilities of the first accumulator machine described in section 4):

• The machine is able to multiply any pair of real numbers.

• Test-and-branch.  The machine is able to test whether the number stored

in a specified accumulator is zero, greater than zero, or less than zero.  The

test is carried out in such a way that its outcome determines which

instruction in the program is executed next.

• The machine is able to take the greatest lower bound of a finite string of

real numbers.

(Abramson himself—in a paper that has been unjustly neglected—considered

not accumulator machines but what he called 'extended Turing machines' or

ETMs.  An ETM is able—by unspecified means—to store a real number on a

single square of its tape. Interest in Abramson's paper has been stimulated

by its rediscovery by Blum, Shub and Smale (1989). The latter develop a

general abstract framework for sequential computation over arbitrary

ordered rings (e.g. the real numbers).)

II  (Broadley 1996.)  A network consisting of nothing but finitely many

interconnected accumulators (and no control) can compute the halting

function for Turing machines provided:

• The accumulators perform weighted  addition. Where i and j are the inputs

to an accumulator and m and w are two constants, the output is mi+wj.

This is achieved by placing weights on the two input lines, as in a

connectionist network. (m and w may both be 1.)
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• Output from an accumulator is never negative. An accumulator will output

0 if the weighted sum of its inputs is less than 0. This cut-off introduces a

non-linearity into the input-output function of an accumulator.1 1

10.  Heterodox connectionist networks

A neural network is said to be recurrent  (as opposed to feedforward) if

there exist feedback loops among its hidden units.  A processor network

(Siegelmann and Sontag 1994, Siegelmann 1995, 1996) is a recurrent neural

network of fixed physical structure consisting of a finite number of units

('neurons') with real-valued weights on the interconnections between the

units.12  In the special case where all the interconnection weights are rational,

each such network is equivalent to a Turing machine (Siegelmann and Sontag

1992).  If the connection matrix contains at least one irrational weight, the

processor network can compute non Turing-machine-computable functions,

even in polynomial time.1 3

11  Without the restriction that the number of accumulators in the network

be finite the result is trivial, since a network consisting simply of Boolean

nodes can compute the halting function provided there are as many nodes as

there are Turing machine programs. (A Boolean node is a node that computes

a Boolean function, such as conjunction, disjunction, negation.)

 12   Other work concerning heterodox connectionist networks is reported in

Garzon and Franklin 1989, MacLennan 1994, Wolpert and MacLennan 1993.

1 3   In polynomial time, the recognition power of processor networks is

identical to the recognition power of a certain subset of O-machines (section

11), the O-machines with so-called 'sparse oracles'.  (An oracle is sparse just

in case its ability to answer queries is constrained in a formally specified way
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Each neuron in the input and output layers of a processor network is a

straightforward binary device and the input into and the output from a

network is in binary code.   Thus the non-discrete aspects of the network's

functioning are invisible to the user, occurring only within the hidden layers

of the network.  This is in contrast to an accumulator machine, whose

operation involves the user in preparing and presenting non-discrete input

and identifying non-discrete output.

As previously mentioned, an accumulator machine can compute values of

the function E(x,y).  That is to say, given any pair of real numbers x and y the

machine can compare them and determine whether or not they are identical.

Such exact precision is not available in a processor network (not even among

the hidden units).  This is because the operation of the network is continuous

in nature: discontinuities are excluded by design.  Associated with each

network is a precision constant, ε, determined by the interconnection weights

of the network.  That is to say, the network is able to distinguish between any

two numbers that differ by at least ε.  By appropriate choices of weights ε can

be made arbitrarily small, though never zero.

There is an inverse relationship between the precision demands inherent

in an architecture and the reliability of the corresponding piece of hardware.

For example, the slightest leakages of charge from the accumulator will cause

the machine described earlier to become grossly unreliable at its task of

computing the function f(r)=3r.  (In a strict sense it will no longer compute

this function at all but some other function.)  Processor networks do not

suffer from this extreme brittleness.  Within limits, errors in the values of the

by the lengths of the queries presented to it.)  In exponential time, the

recognition power of processor networks is unbounded.
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interconnection weights make no difference to the set of functions computed

by the network.  This, and the discrete nature of the network's inputs and

outputs, are pleasing properties.  Although processor networks are purely

notional machines, there are faint but encouraging tinges of realism in their

specifications.

11.  O-machines

That Turing was the first person to consider nonclassical computing

machines is a fact that has been generally overlooked.  (Even those working

in the field speak inappropriately of 'super-Turing computation', 'computing

beyond the Turing limit', 'breaking the Turing barrier', 'escaping from the

Turing tar-pit', and the like.) This section gives a brief account of the O-

machines to which Turing devoted section 4 of his PhD thesis (Turing 1939:

172-173; see also Copeland 1997, 1998a, 1998b).

O-machines, like Turing machines, are quintessentially digital devices.

We will refer to functions whose arguments are integers and whose value is

always 0 or 1 as 'binary-valued integer-functions'.  An O-machine results

when an ordinary Turing machine is augmented with a primitive operation

(or several such) that returns the values of some binary-valued integer-

function that is not Turing-machine-computable.  Turing calls the subdevices

that execute these nonclassical primitive operations 'oracles'.  He says that an

oracle works by 'unspecified means' and that we need 'not go any further into

the nature of ... oracle[s]'.

An O-machine has three of its states and one of the symbols of its

alphabet reserved for special purposes, the call state, χ , the 1-state , the 0 -

state, and the marker symbol, µ .  (Machines with n nonclassical primitive

operations require n distinct call states.)  The machine writes the symbols
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that are to form an input to the oracle on some convenient segment of its

tape, using occurrences of µ  to mark the start and finish of this string.  When

the execution of some instruction in the machine's program puts the machine

into state χ , this input is delivered to the oracle and the oracle returns the

value of the function for that argument, by placing the machine in either the

1-state or the 0-state.  Obviously an O-machine can compute functions that

are not computable by a classical Turing machine (and more such than the

particular function(s) embodied in its nonclassical primitive(s)).

Turing postulated nonclassical primitive operations without providing

any details of how these operations might be implemented, nor even offering

an argument to the effect that their implementation in any form is a practical

possibility.  This procedure is perfectly sound.  Turing was engaged in

specifying the architecture of notional machines with a view to delineating

classes of mathematical problems.  The possibility of real existence, while an

interesting matter, is beside the a priori point of such constructions.  Certainly

no one complains about the fact that in 1936 Turing paid no attention to the

issue of how the primitive operations of a classical Turing machine might

practically be implemented, despite the fact that it was by no means obvious

how to do this, nor even clear that it could be done at all.  Turing was once

asked whether he thought a Turing machine could actually be constructed,

and he replied dismissively that the machine would need to be as big as the

Albert Hall.14  Not until during the war, when Turing became acquainted with

electronic technology developed for other purposes, did it become clear that

the notional machines of his 1936 paper could be turned into a reality.  Might

the world likewise come to witness the construction of an O-machine?  Are

there, in other words, real physical processes that are harnessable to do the

14  This was related to Copeland by Robin Gandy in 1995.
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work of an oracle?  This question is entirely open.  If a sufficient momentum

of investigation were to build up, perhaps the question might relatively

swiftly be settled in the affirmative.  Who would have suspected, when

Deutsch first described a notional quantum Turing machine in 1985, that by

1995 pieces of experimental quantum hardware would be sitting on

laboratory benchtops?

Issues of harnessability to one side, we would be profoundly surprised if

the physics of the real world can be properly and fully set out without

departing from the set of Turing-machine-computable functions.  These

functions have been the focus of intense interest during the brief six decades

since Turing delineated them, but the explanation of this is surely their

extreme tractability, together, of course, with the fact that they have made a

considerable number of people very rich, rather than because some inherent

suitability for exhaustively describing the structure and properties of matter

is discernible in them.  Moreover, as we have already related, these functions

were the fruit of Turing's analysis of the activity of an idealised human

mathematician working mechanically with pencil and paper.  It is simple

anthropomorphism to expect the same set of functions to be prominent in the

behaviour of the world minus human mathematicians.  In short it would—or

should—be one of the greatest astonishments of science if the activity of

Mother Nature were never to stray beyond the bounds of Turing-machine-

computability.



3 4

REFERENCES

Aberth, O. 1968. 'Analysis in the Computable Number Field'. Journal of the

Association of Computing Machinery, 15, 275-99.

Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds) 1992. Handbook of Logic in

Computer Science. Vol.1. Oxford: Clarendon Press.

Abramson, F.G. 1971. 'Effective Computation over the Real Numbers'. Twelfth

Annual Symposium on Switching and Automata Theory. Northridge, Calif.:

Institute of Electrical and Electronics Engineers.

Blum, L., Shub, M., Smale, S. 1989. 'On a Theory of Computation and

Complexity Over the Real Numbers: NP-Completeness, Recursive

Functions and Universal Machines' .  Bulletin of the American

Mathematical Society, New Series, 21, 1-46.

Börger, E. 1989. Computability, Complexity, Logic. Amsterdam: North Holland.

Brady, A.H. 1988. 'The Busy Beaver Game and the Meaning of Life'. In R.

Herken (ed.) 1988, The Universal Turing Machine: A Half-Century Survey,

Oxford: Oxford University Press.

Broadley, S. 1996. 'Relative Computation and Connectionist Networks'.

Typescript, University of Canterbury.

Chalmers, D.J. 1996. The Conscious Mind: In Search of a Fundamental Theory.

New York: Oxford University Press.

Copeland, B.J. 1993. Artificial Intelligence: a Philosophical Introduction.

Oxford: Blackwell.

Copeland, B.J. 1994. ‘Beyond Turing Computability: New Foundations for a

Computational Theory of Mind’. Talk given at Victoria University of

Wellington, June 1994.

Copeland, B.J. 1996a. 'What is Computation?'. Synthese, 108, 335-359.

Copeland, B.J. 1996b. 'The Church-Turing Thesis'.  In Perry, J., Zalta, E. (eds)

The Stanford Encyclopaedia of Philosophy  [http://plato.stanford.edu].



3 5

Copeland, B.J. 1997. 'The Broad Conception of Computation'. A m e r i c a n

Behavioral Scientist, 40, 690-716.

Copeland, B.J. 1998a. 'Turing's O-machines, Penrose, Searle, and the Brain',

Analysis , 58, 128-138.

Copeland, B.J. (ed.) 1998b. 'A Lecture and Two Radio Broadcasts on Machine

Intelligence by Alan Turing'. Machine Intelligence, 15, forthcoming.

Copeland, B.J. 1998c. 'Even Turing Machines Can Compute Uncomputable

Functions'. In Calude, Casti, Dinneen 1998.

Copeland, B.J. 1998d. 'Super Turing-Machines'. Complexity, 4 (October).

Copeland, B.J. 1998e. 'Narrow Versus Wide Mechanism'. University of

Canterbury Philosophy Research Papers no. 5.

da Costa, N.C.A., Doria, F.A. 1991. ‘Classical Physics and Penrose’s Thesis’.

Foundations of Physics Letters, 4, 363-374.

da Costa, N.C.A., Doria, F.A. 1994. ‘Undecidable Hopf Bifurcation with

Undecidable Fixed Point’. International Journal of Theoretical Physics, 33,

1913-1931 .

Dennett, D.C. 1978. Brainstorms: Philosophical Essays on Mind and Psychology.

Brighton: Harvester.

Deutsch, D. 1985. 'Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer'. Proceedings of the Royal Society, Series A,

400, 97-117.

Doyle, J. 1982. 'What is Church's Thesis? An Outline.' Laboratory for Computer

Science, MIT.

Franklin, S., Garzon, M. 1991. 'Neural Computability'. In O. Omidvar (ed.) 1991,

Progress in Neural Networks, vol. 1, Norwood, N.J.: Ablex.

Garzon, M., Franklin, S. 1989. 'Neural Computability II'. Abstract. Proceedings

(vol. I), IJCNN International Joint Conference on Neural Networks, 631-

637.



3 6

Geroch, R., Hartle, J.B. 1986. 'Computability and Physical Theories'.
Foundations of Physics, 16, 533-550.

Harel, D. 1992. Algorithmics: The Spirit of Computing. Reading, Mass.:

Addison-Wesley.

Hogarth, M.L. 1992. 'Does General Relativity Allow an Observer to View an

Eternity in a Finite Time?'. Foundations of Physics Letters, 5, 173-81.

Hogarth, M.L. 1994. 'Non-Turing Computers and Non-Turing Computability'.

PSA 1994, vol.1, 126-138.

Komar, A. 1964. Undecidability of macroscopically distinguishable states in

quantum field theory. Physical Review, second series, 133B: 542-544.

Kreisel, G. 1965. 'Mathematical Logic'. In T.L. Saaty (ed.) 1965, Lectures on

Modern Mathematics, vol.3, New York: John Wiley.

Kreisel, G. 1967. 'Mathematical Logic: What Has it Done For the Philosophy of

Mathematics?'. In R. Schoenman (ed.) 1967, Bertrand Russel l :

Philosopher of the Century, London: George Allen and Unwin.

Kreisel, G. 1971. 'Some Reasons for Generalising Recursion Theory'. In R.O.

Gandy, C.M.E. Yates (eds) 1971, Logic Colloquium '69, Amsterdam:

North-Holland.

Kreisel, G. 1972. 'Which Number Theoretic Problems can be Solved in

Recursive Progressions on π11−Paths Through 0?'. Journal of Symbolic

Logic, 37, 311-334.

Kreisel, G. 1974. 'A Notion of Mechanistic Theory'. Synthese, 29, 11-26.

Kreisel, G. 1982. Review of Pour-El and Richards. Journal of Symbolic Logic,

47, 900-902.

Kreisel, G. 1987. 'Church's Thesis and the Ideal of Formal Rigour'. Notre Dame

Journal of Formal Logic, 28, 499-519.

Langton, C.R. 1996. 'Artificial Life'. In Boden, M.A. (ed.) 1996. The Philosophy

of Artificial Life. Oxford: Oxford University Press.



3 7

Lokhorst, G.J., Copeland, B.J. 199-. 'O-Machines'. In preparation.

Machlin, R., Stout, Q.F. 1990. 'The Complex Behaviour of Simple Systems'. In S.

Forrest (ed.) 1991, Emergent Computation, Cambridge, Mass.: MIT Press.

MacLennan, B.J. 1994. 'Continuous Symbol Systems: The Logic of

Connectionism'. In D.S. Levine, M. Aparicio IV (eds) 1994, N e u r a l

Networks for Knowledge Representation and Inference, Hillsdale, N.J.:

Erlbaum.

Maass, W., Orponen, P. 1997. 'On the Effect of Analog Noise in Discrete-Time

Analog Computations'. NeuroColt Technical Report Series, NC-TR-97-042.

Maass, W., Sontag, E.D. 1997. 'Analog Neural Nets with Gaussian or Other

Common Noise Distributions Cannot Recognise Arbitrary Regular

Languages'. NeuroColt Technical Report Series, NC-TR-97-043.

McArthur, R.P. 1991. From Logic to Computing. Belmont, Calif.: Wadsworth.

Newell, A. 1980. 'Physical Symbol Systems'. Cognitive Science, 4, 135-183.

Penrose, R. 1989. The Emperor's New Mind Concerning Computers, Minds, and

the Laws of Physics. Oxford: Oxford University Press.

Penrose, R. 1994. Shadows of the Mind: A Search for the Missing Science of

Consciousness. Oxford: Oxford University Press.

Pour-El, M.B. 1974. 'Abstract Computability and its Relation to the General

Purpose Analog Computer'. Transactions of the American Mathematical

Society, 199, 1-28.

Pour-El, M.B., Richards, I. 1979. 'A Computable Ordinary Differential Equation

Which Possesses No Computable Solution'. Annals of Mathematical Logic,

17, 61-90.

Pour-El, M.B., Richards, I. 1981. ‘The Wave Equation with Computable Initial

Data such that its Unique Solution is not Computable’. Advances in

Mathematics , 39, 215-239.



3 8

Proudfoot, D., Copeland, B.J. 1994. 'Turing, Wittgenstein and the Science of the

Mind'. Australasian Journal of Philosophy, 72, 497-519.

Rado, T. 1962. 'On Non-Computable Functions'. Bell Systems Technical Journal,

91, 877-84.

Rice, H.G. 1954. 'Recursive Real Numbers'. American Mathematical Society

Proceedings, 5, 784-91.

Richardson, D. 1968. ‘Some Undecidable Problems Involving Elementary

Functions of a Real Variable’. Journal of Symbolic Logic, 33, 514.

Scarpellini, B. 1963. ‘Zwei Unentscheitbare Probleme der Analysis’, Zeitschrift

für mathematische Logik und Grundlagen der Mathematik, 9, 265-289.

Shannon, C.E. 1941. 'Mathematical Theory of the Differential Analyser'.

Journal of Mathematics and Physics of the Massachusetts Institute of

Technology , 20, 337-54.

Siegelmann, H.T., Sontag, E.D. 1992. 'On the Computational Power of Neural

Nets'. Proceedings of the 5th Annual ACM Workshop on Computational

Learning Theory, 440-449.

Siegelmann, H.T. 1995. 'Computation Beyond the Turing Limit'. Science , 268,

545-548 .

Siegelmann, H.T. 1996. 'Computability With Neural Networks'. Lectures in

Applied Mathematics, 32, 733-747.

Siegelmann, H.T., Sontag, E.D. 1994. 'Analog Computation via Neural Networks'.

Theoretical Computer Science, 131, 331-360.

Simon, H.A. 1981. The Sciences of the Artificial (2nd edition). Cambridge,

Mass.: MIT Press.

Solovay, R., Yao, A. 1996. 'Quantum Circuit Complexity and Universal Quantum

Turing Machines'. To appear.

Stannett, M. 1990. 'X-Machines and the Halting Problem: Building a Super-

Turing Machine'. Formal Aspects of Computing, 2, 331-341.



3 9

Sylvan, R., Copeland, B.J. 199-. 'Computability is Logic-Relative'. Forthcoming

in Hyde, D., Priest, G. (eds) Applications of Relevant Logics.

Turing, A.M. 1936. 'On Computable Numbers, with an Application to the

Entscheidungsproblem'. Proceedings of the London Mathematical Society,

Series 2, 42 (1936-37), 230-265.

Turing, A.M. 1939. 'Systems of Logic Based on Ordinals'. Proceedings of the

London Mathematical Society, 45, 161-228.

Turing, A.M. 1947. 'Lecture to the London Mathematical Society on 20

February 1947'. In B.E. Carpenter, R.W. Doran (eds) 1986, A . M .

Turing's ACE Report of 1946 and Other Papers, Cambridge, Mass.:

MIT Press.

Turing, A.M. 1948. 'Intelligent Machinery'. National Physical Laboratory

Report. In B. Meltzer, D. Michie (eds) 1969, Machine Intelligence 5,

Edinburgh: Edinburgh University Press.

Turing, A.M. 1950. 'Programmers' Handbook for Manchester Electronic

Computer'. University of Manchester Computing Laboratory.

Vergis, A., Steiglitz, K., Dickinson, B. 1986. 'The Complexity of Analog

Computation'. Mathematics and Computers in Simulation, 28, 91-113.

Wittgenstein, L. 1980. Remarks on the Philosophy of Psychology. Vol.1.

Oxford: Blackwell.

Wolpert, D.H., MacLennan, B.J. 1993. 'A Computationally Universal Field

Computer That is Purely Linear'. Santa Fe Institute Technical Report 93-

09-056 .


