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After a short preface, the first of the three sections of this paper is devoted t o  historical and 
philosophic aspects of categoricity. The second section is a self-contained exposition, including 
detailed definitions, of a proof that every mathematical system whose domain is the closure of its 
set of distinguished individuals under its distinguished functions is categorically characterized by 
its induction principle together with its true atoms (atomic sentences and negations of atomic 
sentences). The third section deals with applications especially those involving the distinction 
between characterizing a system and axiomatizing the truths of a system. 

0. PREFACE 

Aside from the analysis of the logical structure of mathematical propositions 
and the formalization of mathematical reasoning, perhaps the most striking 
achievement of pre-Godelian mathematical logic was the categorical 
characterization of traditional mathematical systems (Euclidean geometry, the 
natural numbers, the rational numbers, etc.) viewed as interpretations of formal 
languages. Section 1 treats historical and philosophical aspects of the notion of 
categoricity (and, thus, also isomorphism) within the broader context of a 
discussion of characterization of a mathematical system by means of a set of 
sentences which hold in it. Section 2 considers mathematical systems which are 
categorically characterized by means of one (second order) induction principle 
supplemented only with atomic sentences and negations of atomic sentences 
(i.e., using no properly first order sentences). In particuIar it is shown that a 
system can be categorically characterized by such means provided only that it 
is inductive, i.e. that its domain is the closure of a finite number of its 
individuals under a finite number of its operations (any number of relations 
may also be present). This theorem leads immediately to a very weak test of 
categoricity. Section 3 shows that the test has useful applications in axiomatiz- 
ing inductive systems. The weakness of the test, especially when viewed in rela- 
tion to examples given, suggests that the importance of categoricity may have 
been exaggerated and that the relationship between characterizing a model and 
axiomatizing its truths, is not as close as had been thought. In particular, the 
test is used to establish a categorical characterization of the natural number 
system from which it can not be deduced that zero is not a successor. Other 
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188 J .  C O R C O R A N  

examples of deductively very we. 1( theories which are nevertheless categorical 
are also given. 

1. C A T E G O R I C A L  C H A R A C T E R I Z A T I O N S  O F  M A T H E M A T I C A L  SYSTEMS 

By the turn of the century mathematicians had distinguished mathematical 
systems from axiomatizations. A mathematical system was thought of, in 
effect, as a class of mathematical objects together with a finite family of dis- 
tinguished relations, functions and elements.' An axiomatization of a system 
was often thought of as a set of propositions about the system. Some 
mathematicians took the notion of a proposition about a system so literally 
that they could not conceive of a reinterpretation of a set of axioms (Frege 
lPO6,79). 

At this time, one must recall, there was no such thing as a formal grammar. 
Nevertheless, certain mathematicians (e.g. Hilbert 1899; Veblen 1904) con- 
ceived of the axioms for a mathematical system as propositional forms 
interpreted in the given system but admitting of other interpretations as well.2 

Today we can speak of mathematical systems without reference to 
particular formal languages interpreted in them, but we often do not. For 
example, when we speak of the system of natural numbers we often mean the 
intended interpretation of one of the formal languages commonly used for 
number theory. And we have to be reminded of the fact that we can refer to the 
system of natural numbers in itself, so to speak. We also have to be reminded 
of the fact that an interpretation of a formal language is not merely a 
mathematical system but it also involves (among other things) a precise 
specificatioq of which formal symbols get assigned to which distinguished rela- 
tions, functions, and elements. In general, a set of formal axioms can be 
interpreted in a given system in more than one way. Thus, strictly speaking, a 

I .  The term 'mathematical system' was and is widely used in just this sense (compare Hunt- 
ington (1917, 8) and Birkhoff and MacLane (1944, 1953)). From a philosophical and historical 
point of view it is unfortunate that the term 'mathematical structure' is coming to be used as a 
synonym for 'mathematical system'. In the earlier useage, which we follow here, two 
mathematical system having totally distinct elements can have the same structure. Thus in this 
sense a structure is not a mathematical system, rather a structure is a 'property' that can be 
shared by individual mathematical systems. At any rate a structure is a higher order entity. The 
relation between a given structure and a system having that structure is analogous to  the relation 
between a quality and an object having that quality. For mathematical purposes it would be 
possible to 'identify' a structure with the class of mathematical systems having that structure, but 
such 'identification' may tend to distort one's conceptual grasp of the ideas involved. 

A referee suggested that some readers could confuse 'mathematical system' in the above sense 
with 'axiom system' in the sense of an axiomatization. This would be analogous to confusing an 
event with a description of the event or to confusing the set of solutions to an equation with the 
equation. All three cases confuse subject-matter with discourse 'about' that subject-matter. 

2. Resnik (1974, esp. pp. 390-392) discusses this particular aspect of Hilbert's thought as 
reflected in the so-called 'Frege-Hilbert controversy'. The interpretation of Hilbert advanced 
here is in full agreement with Resnik. 
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CATEGORICITY 189 

set of formal axioms does not delimit a class of mathematical systems but 
rather it delimits a class of interpretations of its language. (An exact definition 
of 'interpretation' is given in sub-section 2.2 below.) 

In the rest of this paper certain confusions can be avoided by keeping the 
above distinctions in mind. Especially important is the fact that, strictly speak- 
ing, a set of formal sentences true in a given interpretation should be regarded 
as an axiomatization of the interpretation rather than an axiomatization of the 
underlying mathematical system. 

Let K be a set of non-logical constants and let LK be a formal language 
having K as its set of primitives. Let i be an interpretation of LK and let T(i) be 
the set of sentences of LK true in i. A complete axiomatization of i requires the 
choice of a subset A of T(i) which logically implies the rest. 

An axiomatization of a given interpretation provides a description of the 
interpretation. Without meaning to suggest that one can uniquely describe an 
interpretation by means of a set of sentences, Hilbert (e.g. in 1899) permitted 
himself remarks to the effect that a set of sentences can 'define' an interpreta- 
tion. Frege's criticism of Hilbert shows that Frege misunderstood Hilbert's 
remarks as implying the possibility of unique axiomatic characterizations 
(Frege 1899, 6-10). But Hilbert's reply shows that Hilbert was fully aware of 
the impossibility of such characterizations. Hilbert (1899L, 13-14) wrote: 
'. . . each and every [satisfiable] theory can always be applied to infinitely many 
systems of basic elements'. (See also footnote 2 above.) 

Even today one occasionally finds a passage which admits of the same mis- 
construal. For example, Kac and Ulam (1968, 171) write: 'The axioms are 
meant to describe simple properties of the objects under consideration; one 
hopes that in these properties the essence of the objects will be captured com- 
pletely'. 

Nevertheless, by the turn of the century, at least, it had become clear that 
truth in a formal language has nothing whatever to do with the 'essence' of the 
objects in an interpretation, but rather depends solely on the form of the 
interpretation or, as it is sometimes put, on the formal interrelations among the 
objects. The notion of isomorphism between two interpretations was adopted 
as a mathematical formulation of the idea of two interpretations having the 
same form.3 

3. A mathematically precise definition of isomorphism is given in sub-section 2.3 below. It is 
important to realize that the concept comes into play in a context where the language is fixed and 
the interpretations are changed (not when the interpretation is f w d  and the language is 
changed): This confusion is rather widespread in the informal parts of the literature of the recent 
past. For example, in introducing the proof that any two mathematical systems satisfying the 
integral domain postulates are isomorphic, Birkhoff and MacLane say that the postulates 'are 
true of the integers not only as expressed in the usual decimal notation; they are also true of the 
integers expressed in the binary, ternary or any other scale!' (1944, 37). Notice that the Birkhoff 
and MacLane remark is true and that it would still be true regardless of whether the postulate set 
in question were categorical. Their remark is totally beside the point and could only be made in 
this context by persons confusing change of system with change of notation. 
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190 J. CORCORAN 

One occasionally reads that if two interpretations are isomorphic they are 
'identical except for the names' of the elements and relations (Fraleigh 1967, 
55) or that isomorphic interpretations 'differ only in the notation for their ele- 
ments' (Birkhoff and MacLane 1953, 33). Such remarks can be misleading 
becau'se generally two isomorphic interpretations have dzgerent elements and 
relations. The whole point is that the two have the same 'form', and what sets 
of objects the two each involve, be they identical or different, is beside the 
point. (Compare footnote 3 above.) 

For example, let LK be the algebraic language based on one binary opera- 
tion symbol *. One familiar interpretation takes as domain the four so-called 
complex units, 1, -1, i and -i and as interpretation of * it takes multiplication. 
Another interpretation takes as its universe the four social classes of the 
Kariera society and as interpretation of * it takes the function which yields the 
class of a child when applied to the class of its father and the class of its 
mother. ~evi - '~ t rauss  has discovered that such a function exists and, indeed, 
that the interpretation just mentioned is isomorphic to the interpretation in the 
complex units (compare Barbut 1966). Surely one would not want to say in this 
context that a complex unit and a social class differ only in notation. The form 
which is common to these two interpretations is, of course, the so-called 'the 
Klein group'. 

The insight that truth in a formal language depends solely on the form of the 
interpretation (and is independent of content or matter) is partly reflected in the 
fact that isomorphic interpretations have the same set of truths, i.e. if i and j are 
isomorphic then T(i) = T( j). Moreover, it has been clear at least since the turn 
of the century (Hilbert 1899L, 14) that given any interpretation i, there are 
other interpretations isomorphic with i but having no content in common with 
i. The existence of such isomorphic 'images' implies, of course, the impossi- 
bility of uniquely characterizing an interpretation by means of a set of sen- 
tences in a formal lang~age.~ Accordingly, it is sometimes said that the best 
possible characterization of an interpretation would be a 'characterization up 
to isomorphism', where a set A of sentences is said to characterize i up to 
isomorphism if every interpretation which satisfies A is isomorphic to i. 

Thus instead of an ideal of exact characterization, mathematicians adopted 
the ideal of characterization up to isomorphism, and terminology was 
introduced to indicate the property of sets of sentences which characterize up 
to isomorphism the interpretations they characterize (Veblen 1904,346). More 
precisely, a set of sentences A is said to be categorical if every two interpreta- 

4. As late as 1944 some writers were still not clear about this point. For example, Birkhoff 
and MacLane 1944 are clear that, within the class of formal languages that they were using, no 
postulate set could distinguish between isomorphic systems; but they did not see that this is a 
feature of all classes of formal languages. They wrote: '. . . no postulate system for the integers 
(or the type which we have used) could distinguish between two isomorphic systems' (Birkhoff 
and MacLane 1944,37). 
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tions which satisfy A are is om or phi^.^ (Because of the peculiarity of 'every', a 
contradictory set A is vacuously categorical.) Incidentally, Veblen noted that 
the term 'categorical' was suggested by the philosopher John Dewey (ibid.). 

By the middle of the frst quarter of this century categorical characteriza- 
tions of several important interpretations had been established. Many of these 
results are reported in Huntington 1905. It became common to 'identify' the 
intended interpretation of a formal language used to discuss a standard 
mathematical system with the system itself. For example, the phrase 'the 
system of natural numbers' sometimes indicates the intended interpretation of a 
language LK, where K is a set of 'arithmetic primitive symbols'. Using this ter- 
minology it can be said that the following systems had been categorically 
characterized: the natural numbers, the integers, the rationals, the reds, the 
complex numbers, and Euclidean space.6 

Investigation of formal languages led to the further insight that whether a 
categorical characterization is possible depends not only on the form of the 
interpretation in question but also on the logical devices (variables and logical 
constants) available in the language chosen. For example, if L K  is a first-order 

5. Calvin Jongsma (University of Toronto) pointed out that some early mathematicians and 
logicians understood Veblen to be applying the term 'categorical' to systems that would now be 
called 'semantically complete' or, to use Church's phrase, 'complete as to consequences', as 
opposed to deductively complete (Church 1956, 329; compare Skolem 1928,523). Categoricity, 
of course, implies semantic completeness but the converse does not in general hold, as can be 
seen from Skolem's paper (ibid.). Later I noticed that Bukhoff and MacLane treat the 
categoricity of the axiom set for integral domains in a section called 'Completeness of the 
postulates for the integers' (1944,36). It is worth noting that, in that section, there is not a word 
about completeness in either the semantic or deductive senses. Incidentally, the mathematical use 
of the t e n  'categorical' is certainly due to Veblen (1904,346). However, it is not at all clear that 
Veblen uses it in its modem sense. In fact, he seems to be using 'categorical' to mean 
'semantically complete'. The earliest use of 'categorical' in the modem sense is no later than 
Young (1911,49). 

6. The fact that categorical characterizations of the traditional mathematical systems were 
see-consciously obtained by early mathematical logic suggests that the discovery of such 
characterizations may have been a stated goal of the field (see footnote 7 below). Developments 
leading up to research aimed at categoricity results are not well-known. An idea similar to 
isomorphism is attributed to Galois (1811-1832) and the tmn is found in an 1870 paper of 
Carnille Jordan (Kline 1972,765,767). Related ideas are found in Cantor's Grundhgen of 1883 
(Jourdain 1915,76, 112) and in Dedekind (1887,93). Cantor and Dedekind each have theorems 
which can easily be applied to yield categoricity results, but neither seemed to have the idea of 
characterizing a class of systems by means of sentences (or propositional functions). The earliest 
genuine categoricity result I know of is due to Huntington (1902). Kline Ands that 'this notion 
[categoricity] was first clearly stated and used by . . . Huntington in a paper devoted to the real 
number system' (1972, 1014). Kline is referring to Huntington 1902, which proves the 
categoricity of s set of 'uxiorns' for 'absolute continuous magnitude'. It was alleged, falsely and 
without justification, by Young (1911, 154) that Hilbert's Founhtions of geometry (1899) con- 
tains a proof that Hilbert's axiomatization of geometry is categorical. Ironically, Hilbert 1899 
does not even show awareness of semantic completeness, despite Veblen's apparent comment 
(I 904,346) to the contrary. 
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192 J. CORCORAN 

language (i.e. one having only individual variables) without identity then no 
categorical characterizations are possible, and if LK is a frst-order language 
with identity, then only finite interpretations can be categorically characterized. 

Kreisel (1965, 148) points out that this limitation of first-order languages 
came as a surprise to logicians,' and he also makes the interesting observation 
that all finite interpretations are categorically characterizable in first order 
languages so that being finite and being first-order categorically characteriz- 
able are equivalent properties of interpretations. Many writers, includhg 
Kreisel (ibid.) and Montague (1965, 136), have noted that the many known 
categorical characterizations of the familiar classical systems all involve 
languages of second order, at least. 

However, if one moves beyond a first-order language with identity by the 
smallest possible amount, i.e. by allowing one one-place predicate variable, 
then not only are some infinite interpretations categorically characterizable but 
many important infinite interpretations are so characterizable. For example, if 
mathematical induction is written 

(Po & Vx(Px r> Psx)) 3 v y  Py 

then the natural number system (relative to a primitive 0 for zero and s for 
successor) is categorically characterizable. Likewise, the integers, the reds and 
other important systems are also categorically characterizable using these 
'slightly augmented first-order languages' CMontague 1965). 

To be more precise, define the formulas of the slightly-augmented language 
with non-logicalprimitives K, abbreviated 'SULK', to be exactly the formulas of 
the first-order language with identity but based on K + {PI, where P is a one- 
placed predicate symbol not in K. The sentences of SULK are the formulas 
which lack free occurrences of the individual variables. The truth conditions for 
sentences of saLK are exactly these of the first-order sentences involving 
K + {PI except that a sentence S(P) involving P i s  true under an interpretation i 
iff it is satisfied by every assignment of a subset of the universe of i to P. Thus 
every sentence S(P) is understood to be universally quantified with respect to P 
taken as a variable. Henceforth, P is called 'a one-placed predicate variable'. 
Note that S(P) and --S(P) are contraries, not contradictories. 

Note that SULK is not equivalent to the language in which there is universal 
quantification of P, unless one requires (1) that only one occurrence of the 
universal quantification of P is allowed per sentence, and (2) that the single 
universal quantification must occur at the front. Thus for example, VPS(P) is 

7. How much of a surprise this was is another matter. Ellentuck says: 'One of the earliest 
goals of modem logic was to characterize familiar mathematical structures up to isomorphism 
. . . in a first order language' (1976, 639). In the opinion of this author it is doubtful whether any 
logicians held this as a goal, at least for very long. By the time of Skolem 1920, it was clear that 
no uncountable systems (e.g., geometry, the reds, or the complex numbers) could be 
categorically characterized in fust order, and there appears to have been very little interest in 
first order languages before that. 
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CATEGORICITY 193 

equivalent to the SULK sentence S(P), but -VPS(P) is not in general 
equivaleht to a SULK sentence. In particular, the existential predicate-variable 
quantifier is not definable in SULK. 

If somehow required to classify a slightly-augmented language as first-order 
or as second-order, many mathematical logicians would probably not hesitate 
to call it second-order. However, if slightly augmented languages are so 
classified it must be noticed that they are weaker than t h e w a l  second-order 
languages (Enderton 1972, 268-269) in four ways. In the first place, SULK 
has no function variables. Second, it has no n-ary predicate variables for n 
greater than one. Third, instead of infinitely many one-placed predicate 
variables SULK has but one. Fourth, instead of formulas with arbitrarily many 
universal predicate-variable quantifications arbitrarily deeply imbedded, SULK 
contains only formulas with at most one such quantification occumng at the 
front, i.e. not imbedded at all. Thus SULK would be an extremely weak 
second-order language. In fact, Church has implicitly classified SULK as an 
applied first-order language with identity (1956, 548). 

In the opinion of the author, (1) classification of SULK as a first-order 
language would introduce confusion because there are many properties usually 
thought of as intrinsically first-order but which do not hold of SULK, and ( 2 )  
classification of it as second-order would tend to mask its expressive weakness 
and its simplicity. It would seem best simply to refer to SULK by the name 
given above, or by the name 'slightly augmented first-order language'. 

The rest of the paper treats categorical characterization in the context of 
slightly augmented first-order languages." Section 2 establishes an extremely 
weak sufficient condition for categoricity which is nevertheless useful in con- 
structing categorical sets of sentences. The main theorem is that an interpreta- 
tion which satisfies an induction principle is categorically characterized by its 
induction principle together with its true atomic sentences and the negations of 
its false atomic sentences. In effect, we show that the form of an inductive 
interpretation is determined by its atoms. The proof of the theorem involves no 
reference to truth-functional combinations or to quantifications (except, of 
course, to those involved in induction principles). 

Section 3 applies the result of section 2. The paper is intended to be largely 
self-contained. Moreover, since terminology in logic has not yet been 

8. The idea of categoricity is attractive even to logicians who want to avoid quantification 
over 'higher-order objects'. For example, in order to save categoricity in contexts devoid of such 
quantificiation Ellentuck 1976 goes to infintary languages, and Grzegorczyk 1962 restricts the 
interpretations to what he calls 'constructive models'. Other writers 'weaken' the idea of being 
categorical to being 'categorical in a power'. An axiornatization A is said to be categorical in k, 
where k is a cardinal number or power, if any two models of A whose universes have cardinality 
k are isomorphic. For further discussion see Enderton (1972, 147). This writer, however, has no 
interest in avoiding quantification over high-order objects, something he regards as a funda- 
mental aspect of mathematical language. The motivation for considering slightly augmented 
languages is to isolate an idea which could have served as the core idea in many known 
categoricity proofs. 
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standardized, it was thought worthwhile to repeat some rather elementary 
definitions. However, when this is done it is only done to the extent necessary 
for the immediate purposes at hand. 

2. CATEGORICITY IN saLK 

Sub-sections 2.1 and 2.2 below deal with 'grammatical' and semantic pre- 
liminaries. Since categoricity is a purely semantic concept having no intrinsic 
dependence on object-language deductions, no system of formal proofs is 
provided. If the reader wishes to have a system of formal proofs for SULK it is 
sufficient to take any standard system for first-order with identity, e.g. 
Mendelson (1964, 57, 75) and for the monadic predicate variable take the 'rule 
of substitution' (which amounts to regarding a sentence involving P as a 
scheme). Sub-section 2.3 repeats the standard, exact notions of isomorphism 
and categoricity. Sub-section 2.4 associates with each interpretation a 'bar 
interpretation'. Sub-section 2.5 proves the main theorem. 

2.1. Syntax for atoms and induction formulas 

Let K be a finite set of non-logical constants containing at least one individual 
constant and at least one function symbol. Besides these K can contain any 
number of individual cgnstants and, for each n > 1, any number of n-ary func- 
tions symbols and any number of n-ary relation symbols. For each such K, TK 
is the set of constant terms of K, i.e. TK is the closure of the set of individual 
constants of K under the operations of attaching an n-ary function symbol f in 
K to a string t, . . . t,, of n constant terms (formingft, . . . tJ. 

An atomic sentence of K is an identity 't, = t,' or a string 'RT, . . . t,' where 
R is an n-ary relation symbol in K and t,, . . . , and t, are all constant terms. 
The negation of an identity is written 't, # t,', and the negation of 'Rt, . . . t; is 
written '--Rt, . . . I,'. Atomic sentences add their negations are called atoms. 

Let P be the monadic predicate variable. If K = {O, s) where 0 is an 
individual constant and s is a monadic function symbol, then the induction 
formula for K is the following: 

I {O, s} (W & V x(Px 3 Psx)) 3 v y  Py. 

If K = {O, 1, s, + I  where 0 and S are as above, 1 is an individual constant, and 
+ is a binary function symbol then the induction formula for K is as follows: 

I {O, 1, s, + I  ((Po & PI)  & vx,x, ((Px, & Px,) 
3 (Psx, & P + x,x,))) 3 Vy Py. 

In general an induction principle has the form 

I (B & Vx, . . . x, (IH 2 IC)) 2 Vy Py, 

where B is the so-called 'basis', IH is the 'induction hypothesis', and IC is the 
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'induction conclusion'. Thus in order to define the induction formula IK for an 
arbitrary K it is suficient to define each of the parts, BK, IHK and ICK. The 
basis BK is the conjunction of all the formulas PC, where c is an individual con- 
stant of K. Let m be the maximum of the degrees ('arities') of the function 
symbols in K. Then the induction hypothesis IHK is the conjunction 
Px, & . . . & Px,. For each n-ary function symbol f in K, form Pfx, . . . x, The 
conjunction of all such formulas involves only the m variables x,, . . . , x, and 
is called the induction conclusion, ICK. Thus IK, the induction formula for K, 
is the following: 

IK (BK & Vx, . . . x, (IHK 3 ICK)) 3 Vy Py. 

The fact that I K  is not uniquely determined is not important. 

2.2. Semantics for atoms and induction formulas 

An interpretation i of LK is an ordered pair (u, d) where u is a non-empty set 
and d is a function defined on K and such that dc is in u if c is an individual 
constant, df is an n-ary function defined on u and taking values in u iff is an n- 
ary function symbol, and dR is set of n-tuples of members of u if R is an n- 
ary relation syrnb01.~ As usual, the denotation dit of a term t under an 
interpretation i is defined on TK as follows: 

di[c] = dc and diVt, . . . t,] = (df)di[t,l . . . di[tnl, 

i.e. the denotation of an individual constant is its interpretation and the denota- 
tion of a function symbol attached to terms is the interpretation of the function 
symbol applied to the denotations of the terms. 

As a result of the way that TK, the set of terms, is defined it is obvious that 
di is defined on all of TK. The range of diis then the set of objects in u which 
are denoted by constant terms. For example, if K = { 1, s}, u is taken to be the 
set of natural numbers including zero, dl is taken to be the number one and ds 
is taken to be the successor function, the range of d i  is only the set of positive 
numbers; the range of d i  need not be, all of u. 

9. It is true that, in the strict sense of the term 'set', each element "occurs" only once. Thus 
when one speaks of 'the set of solutions to an algebraic equation' the word 'set' is not being used 
in the strict sense. Sometimes the word "family" is used to indicate a 'set' wherein an element can 
have multiple occurrences. If repetitions of the same element are distinguished by indices, one 
speaks of an 'indexed family' (Halmos 1960, 34). Thus a system, in the sense of section 1, is a 
class of mathematical objects together with a finite family of distinguished elements, functions 
and relations. An interpretation can then be seen as a certain kind of system, namely as a system 
wherein the family is indexed by a set of symbolic characters (namely, by 9. It is important, 
however, that the indexing respect semantico/syntactic distinctions, i.e. that elements are indexed 
by individual constants, that n-ary functions are indexed by n-ary function symbols and that n- 
ary relations are indexed by n-ary symbols. Bridge (1977, 6, 16) treats the topic explicitly in this 
way. For a treatment of semantic categories, see Tarski 1934,2 15-236. 
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196 J. CORCORAN 

Let diTK be the range of di. Notice that because of the way TK is defined, 
diTK is the closure of the set of objects in u denoted by individual constants 
under the functions denoted by function symbols, i.e. diTK is a subset of any 
subset of u containing the said objects and closed under the said functions. 
Where no confusion results 'di' is sometimes written 'd'. 

As usual an identity 't, = t,' is true under i if dt, is the same object as dt, (i.e. 
dt, = dt,) and false under i if dt, and dt, are different (i.e. dt, f dt,). 'Rt, . . . t,,' 
is true under i if the n-tuple of objects denoted by the terms is in the relation 
denoted by R((dt,, dt,, . . . dtJ E dR), and 'Rt,t,. . . t,' is false under i, 
otherwise. Negation, of course, reverses truth-values. 

For a given interpretation i = (u, d) an assignment UP to the monadic pre- 
dicate variable P is simply a subset of u. When UP is assigned to P, (1) BK is 
true under i if UP contains the objects denoted by individual constants; (2) 
Vx, . . . x,,,(IHK 3 ICK) is true under i if a P  is closed under the functions 
denoted by function symbols; and (3) VyPy is true if UP = u. More 
particularly, to say that the induction formula IK is true of a P  under i is to say 
that if UP both contains the objects denoted by individual constants and is 
closed under the functions denoted by function symbols, then aP is u. And IK 
is true under i if IK is true of each UP under i. More particularly, I K  is true 
under i iff every subset of u which contains the objects named by individual 
constants and which is closed under the functions denoted by function symbols 
is u. Since the range of d \  diTK, is such.a subset, if IK is true under i then 
diTK = u. Conversely, if diTK = u then I K  is true under i. Thus, to say that IK 
is true under i is to say nothing but that diTK = u. In other words, the induc- 
tion formula 'says' that every object is denoted by some constant term. When 
induction holds in i, we say that i is inductive. 

2.3. Isomorphism and categoricity 

Let i = (u, d) and j = (v, e) be two interpretations of LK. Then i is said to be 
isomorphic to j if there is a one-one function h from u onto v which 'preserves 
the structure' in the sense that: if c is an individual constant then h[dc] = ec; 
iff is an n-ary function symbol then for every b,, . . . , b, in u, 

and if R is an n-ary predicte symbol then for all b,, . . . , b, in u, 

if and only if 

Let K = {0, s} and take i and j as follows. The universes u and v y e  both the 
set I of integers, ds and es are both the successor function, do is zero and eO is 
one hundred. The function hx = x + 100 is an isomorphism between i and j. 
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Here (and below) we exploit the set theoretic notion of a function being a set of 
ordered pairs by writing i = (I, (0, zero), (s, successor)) and j = (I, (0,100), 
(s, successor)). 

If i is isomorphic to j then any sentence of SULK true in one is true in the 
other, i.e. T(i) = T(j). The proof of this is straight-forward but it requires a set 
of definitions rather more complete than is otherwise required in this paper. 

Let A and B be two sets of sentences. Then i is a model (or true 
interpretation) of A if A c T(i) and A logically implies B if every model of A is 
a model of B. If A logically implies B then, for purposes of smooth expression, 
B is said to be a logical consequence of A.  If A has no models, A is said to be 
contradictory. Because of the peculiarity of 'every', a contradictory set implies 
every set. IfA implies B and B = {p} then A is said to imply p. 

A set A of sentences is categorical if all models of A are isomorphic to each 
other. Because of the peculiarity of 'all', contradictory sets are vacuously 
categorical. Notice that if A is categorical then for every sentencep not involv- 
ing P, A implies p or A implies -p. It fails in the case of sentences involving P 
only because for them negation does not reverse truth-values: S(P) and -S(P) 
are contraries, not contradictories. 

Examples. Let K =  (0, s). Let A0 be the set of sentences true in 
iN = (N, d )  where N is the natural numbers, do is zero, and ds is the successor 
function. Let SnO indicate n occurrences of S followed by 0. Notice that the 
true atoms are simply the logical identities (SnO = SnO) and the negations of the 
other identities ( P O  f SmO, for n f m). Let A be the Peano Postulates for zero 
and successor, i.e. 

A = {IK, Vxy(sx = sy 2 x = y), Vx(sx # 0)). 

Reasoning which shows that A is a categorical characterization of iN is 
familiar (compare Birkhoff and MacLane 1953,54-56). Let 

A 1 = {IK}. 

It is obvious that A1 is not categorical because it is satisfied by the unit model 
i l  = ({O}, d )  where do is zero and ds is the identity function. More generally it 
is clear that for any K, IK and any set of positive atoms is satisfied by the unit 
model, and thus, if IK and a set of atoms is categorical, a negative atom must 
be present. Let 

A2 = {IK, S O  f 0,. . . , SnO f 0,. . .}; 
It is worth noting that A2 implies Vx(Sx f 0). (IK 'says' that every object is 

named by a term S"0. The joint effect of the rest of the sentences in A2 is to 
say that if an object is named by a term its successor is not zero.) Nevertheless, 
it is clear that A2 is not categorical because it has as a model i2 = ({O, 11, d) 
where d o  is zero and ds is the identity function. Let A 3  be the result of 
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198 J. CORCORAN 

adding to A 2 the rest of the negative atoms, S'O f SW, for n f m and m f 0: 

Consider a sentence SS"O = SSmO 2 S"O = SmO. If m = n then the sentence 
is logically true. If m f n then, since the negations of the antecedents are atoms 
in A 3, the sentence itself is implied by the atoms in A 3 .  By the reasoning of 
the previous paragraph, then, A 3 implies V,'xy(sx = sy I> x = y). Thus A 3 
implies all three of the Peano postulates and is thus categorical. 

From the perspective of the next sub-section, the main feature of A3 is 
that it is atom-complete in the sense that for every atomic sentence p, either A3 
implies p or A3 implies -p. The main theorem is that every atom-complete set 
containing induction is categorical. 

2.4. Bar cointerpretations 

The denotation function di maps TK into u. Thus d i  can be used to define an 
equivalence relation Ei  on TK in the usual way, i.e. let tlEit, iff ditl = d't,. Let 2' 
be the equivalence class oft, and let TK' be the set of equivalence classes. Let 2' 
be the function from mi into u such that Z l i =  d't. Notice that 2' is one- 
one from TK~ onto d i ~ K .  

Let i = (u, d) be inductive. The mapping %'is therefore a one-one onto func- 
tion from mi, the set of equivalence classes of terms, to the universe of i. Now 
we define a denotation function 'b on K in such a way that ai is  an isomorphism 
from { r n Y i b }  to i =  {u,  dj. The interpretation ( m i ,  'b} thus induced by 
ii' is called the bar cointerpretation. 

One could, of course, define (TK', 'b) as 'the isomorphic image of i under the 
inverse of 2''. However, the information that we need to highlight is brought 
out better by defining ( m i ,  'b) explicitly and then verifying that i is its 
isomorphic image under ai. 

(1) The universe of (m ib) is, of course, TK' The interpreting function 8 is - 
defined as follows. (2) 'bc=ti. Now notice that ft, . . . t;=ff,+,.. . ti,, is 
implied by the following taken together I f = . . . ,I; = I&,. This means that 
the equivalence class of a term ft, . . . t, is a "function" of the equivalence 
classes of its components t,, . . . , t, (3) Thus we can define 'bf as follows: . 

Finally notice that 

taken together, imply that 'Rt, . . . t,' and 'Rtn,l.. . t2,' have the same truth- 
value in i. (4) Thus we can define the relation 'bR to hold of {i.,', . . . , I2 iff 
'Rt, . . . tnY is true in i. 
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To check that ai is an isomorphism, one need only check: 

(1) that 2' is one-one and onto from TK' to u, 
(2) that Ji{'bc) = dc, 
(3) that ;i'{('bf)(i/, . . . , Ii)} = (df)($$f, . . . , diT$, and 
(4) that (I,, . . . , I , )  E 'bR iff (&:, . . . , air/) e dR. 

The above reasoning establishes the following: 

Lemma. Each inductive interpretation is isomorphic to its bar cointerpretation. 

Now we establish the main lemma of the paper 

Lemma. Two inductive interpretations which satisfy the same atoms have the 
same bar cointerpretation. 

Proof: Let ( TK' '6) and ( m i ,  jb) be the two bar cointerpretations. To show: 
( I )  TK' = TKI, (2) 'bc = jbc, (3) ibf = jbf a d  (4) %R = j b ~ .  

To see (1) notice that t,Eit, holds iff 't, = t,' is true in i. By hypothesis the 
latter holds iff '1,  = 2,' is true in j. Again the latter part holds iff t,Ejt,. 
Therefore mi = mj. 

It follows then that 3 = 2j. Thus 'bc = jbc. (2) is established, 
It also follows that for all t,. ?=?, and, in particular, that -. - fr, . . . t; =frl . . . t,/. Thus 'bf = jbfi (3) is established. 
To see (4) notice first that (Ti , .  . . , i/) E 'bR iff 'Rt, . . . t i  is true in i. By 

hypothesis the latter holds iff 'Rt, . . . t,,' is true in j. Again using the definition 
of bar interpretation, now for j, it follows that 'Rt, . . . t,: is true in j iff 

SO 

'bR = jbR. Q.E.D. 

2.5. Main theorem 

Any atom-complete set of sentences which includes induction is categorical. 

Proof: Let S be such a set of sentences. If S is not satisfiable then S is 
vacuously categorical. 

Assume that S is satisfiable. Let i and j be models of S. Since S is atom- 
complete, i and j satisfy the same atoms. Since S includes induction, i and j are 
inductive. By the lemmas, i and j are isomorphic. Q.E.D. 

In order to put this theorem in perspective one can note that its import is 
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simply the following. The set of true atoms of an inductive interpretation, taken 
together with induction, characterize the interpretation up to isomorphism. 
Thus ifone is characterizing an inductive interpretation, and ifone can tell that 
the axioms already set down are sufficient to imply induction all of the true 
atomic sentences and the negations of the false ones, then the goal of 
categoricity is achieved. 

It is not hard to see that the same theorem holds in all stronger languages, so 
it holds for second order languages and for higher order languages. Thus one 
might wonder whether saLK can be weakened without losing the theorem. The 
immediate answer is affirmative because in the entireproof not a word was said 
about any sentences besides (constant) atomic sentences, their negations, and 
induction. Thus the result holds for inductive atomic languages which are 
deJned as follows. Let K be a finite set of non-logical constants as above. The 
logical constants of the inductive atomic language based on K, iaLK are =, - 
and a new symbol 'I' to be explained presently. The sentences are all of the 
atomic sentences of saLK, their negations, and I. The interpretations are the 
same as for saLK and the truth conditions for the atoms are the same. But I is 
true in i iff i is inductive. 

The question also arises whether the condition of atom-completeness plus 
induction can be weakened without losing categoricity. It is clear that one 
cannot 'throw out' the negations of the atomic sentences because the example 
A2 in sub-section 2.3 above shows that the true atorrlic sentences of an 
interpretation (plus induction) do not characterize the interpretation up to 
isomorphism. One can also easily show that if S contains induction and is 
categorical then S is equivalent to an atom-complete set. Thus the above 
theorem is the strongest possible in the sense that atom completeness is the 
weakest possible condition sufficient to guarantee that a set of sentences con- 
taining induction is categorical. 

3. APPLICATIONS 

3.1. Repetition theory 

Imagine that one is dealing with 'sets' of 'repeatable' objects where 
'multiplicities' are counted. For example 13,31 is the 'set of roots of 
x2 - 6x + 9 = 0' but 131 is 'the set of roots of x - 3 = 0'. Such 'sets' are called 
iterates (or heaps or multiplicities: Hailperin 1976, 88). At any rate if I i3 a set 
of objects being repeated then with each iterate, r, one can associate a unique 
function f from I into N such that for each repeatable object x, fx is the 
number of times x is repeated in r. The functions f are called repetitions of I . ' O  

We consider the case where I = {a, 6). Let u be the set of repetitions of I, i.e. 
the set of functions from {a, b} into N. Let 0, the null repetition, be the function: 

10. Compare footnote 9 above. 
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fa = 0,fb = 0. The a-successor function s, is the function which 'jacks up' the 
a-component off by one, i.e. sa f (a) = f (a) + 1 and sJ(b) = f (b). Likewise s b  is 
the b-successor function. Thus we are considering an interpretation i = (u, d )  
of SULK with K = (0, s,, sb}. 

A little thought suffices to see that the following axioms are true: 

A1 VX(S,X f 0 & SbX f O), 

A2 Vxy((s2 = say 2 x = y)  & (sbx = sby 2 x =>, 
A3 Vx(sasbx = s~s,x), 

A4 Vx(sax 4 sbx), 

A5 IK. 

By looking at what the constant terms denote one can see that an identity 
't, = t,' is true in i iff the repetition of {s,, sb} in t ,  is the same as the repetition 
of {so, sb} in t,. For example the repetition of ha, sb/ in the terms 

4, 
A51, implies each true identity and the'negation of each false identity. Thus it 
implies an atom-complete set including induction, which is categorical by the 
theorem, and so it is categorical itself. 

3.2. Other possibilities 

It is already clear that various versions of Peano arithmetic (or number theory) 
admit of this treatment. Kleene (1952, 246) has discussed an infinite class of 
interpretations which he calls 'generalized arithmetics'. It is certainly possible 
to categorically characterize any one of them and perhaps to give a general 
formula for treating all of them - of course, using the above method. There is 
an infinite class of theories of strings based on Tarski 1934, 172 and 
categorically axiomatized in Corcoran, Frank and Maloney 1974. In the same 
work one finds another infinite class of theories dealing differently with strings 
based on an idea of Hermes. Both of these classes admit of treatment by this 
method. In addition it is possible to deal with finitely branching trees and 
hereditarily finite sets in this way. 

For purposes of discussion assume that K has no relation symbols. This 
restriction does not matter in principle but it holds in all the familiar examples 
which will come to mind. Define an equation in K to be any constant identity 
(as above) or any sentence of the form Vx, . . . x,t, = t, where t ,  and t, are 
terms in K and all variables occurring in t, or t, or both are among x, . . . x,. 
Let A be a set of equations. A model of A is called an A-algebra. Let I(A)  be 
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the set of constant identities implied by A. Let NI(A) be the set of negations of 
the constant identities not implied by A. If i is a model of A + IK  + NI (A) 
then i is what has been called a 'free' A-algebra. For example if 
A = { ~ x y z ( x + 0 , + z ) = ( x + y ) + z ) )  and K = i a ,  ...., a, ,+}  then the 
models of A + IK  + NI(A) are the free semigroups on n generators. 

It is clear that the above methods constitute one approach to getting 
categorical axiomatizations for the theories of free A-algebras. If A or NI(A) is 
not recursively enumerable then the above approach may not work at all, even 
given a maximum of ingenuity. 

3.3. Strong induction 

The induction principle IK treated above is the weakest possible induction 
principle for LK, a language whose set of non-logical constants is K. We saw 
that I K  is true in i iff every object of u is denoted by a term in TK. The weak 
induction principles IK are essentially unique, but for each K there are many 
stronger induction principles and, in fact, there are generally several which are 
maximally strong. To consider the first class of stronger induction principles 
for LK consider a proper subset K1 of K which still contains at least one 
individual constant and one function symbol. The induction principle IK1 used 
in LK is stronger than IK because it holds.in i iff every object in u is denoted 
by a term in TK 1 (a proper subset of TK). Clearly, IK 1 implies IK but not vice 
versa. Thus IK 1 is 'stronger' than IK. 

For the general definition of strong induction principle, let T be a proper 
subset bf TK. Let S(K) be a sentence possibly involving the monadic predicate 
variable. If S (K)  has the truth condition that it is true in i iffevery object in u is 
denoted by a term in T, then S(K) is a strong induction principle for LK. For 
example take K = {I ,  +}. Then IK  is 

(PI & Vxy(Px & Py 3 P(x + y)) 3 VzPz. 

The following, however, is a strong induction principle: 

(PI & Vx(Px 3 P(x + 1)) 3 VzPz. 

The truth condition for this sentence is that every object in u is denoted by a 
term of the following class: 1, (1 + I), ((1 + 1) + I), . . . , which leaves out 
(1 + (1 + I)), ((1 + 1) + (1 + I)), etc. It is obvious that IK + associativity 
implies this strong induction principle.ll At any rate, since every strong induc- 

11. One of the referees wanted to know whether there are 'maximally strong' induction 
principles, i.e. whether there are strong induction principles which are not weaker than any 
others. One strengthens a strong induction principle by restricting the class T of terms which it 
'forces to cover the universe'. For example, the principle cited above can be strengthened by 
replacing the (non-constant) term 'x + 1' by ' (x  + 1) + 1'. The most restrictive class of terms is, 
of course, the null set which corresponds to a contradictory 'induction principle', e.g. VyPy. 
Short of this the strongest induction principles would 'force a unit set to cover the universe', e.g. 
PC 2 V.vPy. 
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tion principle implies IK, the above results hold when a strong induction 
principle is substituted for the induction principle. 

3.4. 'Negative' applications 

In this sub-section let LK be any second-order language with identity and let 
DK be any sound and recursive system of deductions for LK. For example, let 
DK be the system of Church I956 suitably extended with rules and axioms 
dealing with function symbols. 

In this sub-section it is important to recall the distinction between 
(1) characterizing an interpretation i by means of a subset of T(i) (the truths of 
9 and (2) axiomatizing the truths of i. The point of characterizing i is descrip- 
tive and criterial; one aims at distinguishing i from other interpretations. The 
point of axiomatizing is to form the basis for a deductive development of the 
truths of i. From the standpoint of characterization the best that can be done 
(when it can be done) is a categorical characterization. With a categorical 
characterization an interpretation is distinguished from every other interpreta- 
tion from which it can be distinguished by formal means. From the standpoint 
of axiomatization it is clear that the best that can be done (when it can be done) 
is a deductively complete axiomatization, i.e. a recursive subset of T(i) from 
which every member of T(i) is deducible by a (finite) deduction. It is obvious 
that the set of theorems deducible from a set of axioms is necessarily a 
recursively enumerable subset of the truths no matter which sound, recursive 
system of deductions is used but that, in general, the set of theorems is sensitive 
to choice of deductive system. Below we assume a fmed deductive system DK. 

Some early postulate theories (e.g., Veblen 1904, 346) were clear about the 
conceptual distinction between characterization and axiomatization and about 
the possibility of an axiomatically inadequate categorical characterization at 
least to the extent of explicitly mentioning the possibility that a categorical 
characterization need not be a (deductively) complete axiomatization. This 
possibility, of course, entails the possibility of 'logically' incomplete underlying 
logics (wherein semantic consequences of a given set of axioms are not 
deducible as theorems). 

At that time, however, there was no suspicion of the idea of recursiveness, 
nor, afortiori, of the relevance of recursiveness and recursive enumerability to 
problems of axiomatizability. Now we can see that if the set of truths of an 
interpretation is not recursively enumerable then there is no way to give a com- 
plete axiomatization even if the logic is complete. It follows immediately from 
the Godel incompleteness result that a (recursive) set of sentences which 
provides a categorical characterization need not provide a complete 
axiomatization. Moreover, in such cases, it follows that there are infinitely 
many other categorical characterizations each of which provides a better 
axiomatization in the sense of providing the basis for the deduction of 
additional theorems not deducible from the fust characterization. 

Separate from the recursiveness considerations which lead to mismatches 



D
ow

nl
oa

de
d 

B
y:

 [C
or

co
ra

n,
 J

oh
n]

 A
t: 

18
:4

3 
6 

M
ar

ch
 2

00
8 

204 J. CORCORAN 

between characterization and axiomatization are the so-called 'compactness' 
considerations which lead to additional mismatches (compare Corcoran 1972, 
378) .  Since every deduction is finite and therefore involves only finitely many 
axioms, no consequence of an infinite axiom set which depends on infinitely 
many of the axioms can be deducible from those axioms. It is compactness 
considerations rather than recursiveness considerations which are operative in 
the rest of this discussion. 

It might be thought that any categorical characterization of an interpreta- 
tion provides the basis (given a suitable deductive system) for the deduction of 
the 'obvious' truths of the interpretation. That is, one might expect that any 
truth not deducible from a categorical characterization must be a 'pathological' 
or 'complicated' proposition such as a so-called Godel sentence or a statement 
of consistency. Admittedly this point has not been discussed much in the 
literature (see Paris 1978). Nevertheless, the test of categoricity given above 
permits the establishment of categorical characterizations from which the most 
elementary general truths are not deducible, no matter what sound deductive 
system is used (regardless of the criterion of recursiveness). 

Take K = (0, st and take S as the set of all true arithmetic identities 
(snO = snO) and the negations of all of the false ones. By the above theorem 
S + IK is a categorical characterization of i = (N, (0, zero), ( s, successor)). 
Thus S + IK implies Vx(sxf 0). However, it is impossible to deduce 
p = Vx(sx $0 )  from S + IK using DK or any other sound deductive system 
DK1 because if, say, p, . . .p ,p  is a deduction of p from S + IK and DKl is 
sound then p is implied by the finite number of premises in p, . . .pn. But it is 
easy to see that no finite number of sentences in S + IK implies Vx(sx 4 0). 

Examples of this sort can be multiplied. Take K = {0, s, +). Take i = (N, (0, 
zero), (s, successor), (+, addition)). 

For S take 

Vx(sx # 0), Vxy(sx = sy 3 x = y), 

and the true identities (snO + smO = sn + "0) and the negations of the false ones. 
S + IK is categorical but it is impossible to deduce Vxy((x + y )  = 0.I + x)) from 
S + IK using a sound deductive system. 

These examples are but other illustrations of the vast difference between 
characterizing an interpretation and axiomatizing its set of truths. The 
examples point to the conclusion that the connection between the two is weak. 
In particular, it is now clear that a 'best possible' characterization can be a very 
poor axi~matization.'~ The class of categorical characterizations of a given 
inductive system includes many which are virtually useless as axiomatizations. 

12. Since semantic completeness is implied by but does not imply categoricity, it follows that 
semantic completeness is not sufficient for an axiomatization to be 'good'. In fact, as far as 
axiomatization is concerned, semantic completeness seems to be beside the point unless supple- 
mented by other conditions formulated in accordance with goals arising in particular cases. 
These observations are due to George Weaver. 
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It is clear from a survey of the relevant literature not only that the early 
postulate theorists were unaware of the recursiveness considerations (as 
mentioned above) but also that they were unaware of compactness considera- 
tions as well. One can not automatically conclude, however, that they were 
misguided in using categoricity as an index of worth of an axiomatization. One 
must realize that the above counterexamples all involve infinite sets of axioms 
whereas the earlier logicians, occasionally explicitly (Veblen 1904, 343), con- 
ceived of an axiomatization as inherently finite. And in the opinion of this 
writer, the philosophical wisdom of abandoning the finiteness condition should 
be questioned despite the undeniable advances that came as a result of con- 
sidering the mathematical consequences of relaxing that condition. 

3.5. Heuristics 

The above test of categoricity requires, for its application to a given set of 
axioms for an inductive system, that one first establish that the axiom set 
implies each of the true atoms of the system. It is entirely possible that this pre- 
liminary step is more demanding in a given case than a straight-forward 
categoricity proof. However, if one is given the system (interpretation) alone 
and the problem is to find a manageable categorical set of axioms then the goal 
of deducibility of the true atoms is often an effective heuristic which leads to 
the discovery of the required axiom set. 
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