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Abstract. We argue that the need for commentary in commonly used linear
calculi of natural deduction is connected to the “deletion” of illocutionary
expressions that express the role of propositions as reasons, assumptions,
or inferred propositions. We first analyze the formalization of an informal
proof in some common calculi which do not formalize natural language
illocutionary expressions, and show that in these calculi the formalizations
of the example proof rely on commentary devices that have no counterpart
in the original proof. We then present a linear natural deduction calculus
that makes use of formal illocutionary expressions in such a way that unique
readability for derivations is guaranteed  thus showing that formalizing
illocutionary expressions can eliminate the need for commentary.
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1. Aim, scope and outline

Natural deduction as developed by Gentzen and Jaśkowski was con-
nected with the aim of modelling actual (mathematical) reasoning more
closely (see [16, p. 5], [10, pp. 176, 183–184, 186, 188, 190], and [11,
pp. 499, 511–512]). Moreover, calculi of natural deduction have often
been associated with a guiding function for actual reasoning in other
domains as well.1 With respect to this guiding task and to the appli-
cation of calculi to (the formalizations of) natural language arguments,

1 We are here concerned with reasoning as an overt, linguistic activity. With
MacFarlane, we assume that “it is relatively uncontroversial that logic provides norms
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the naturalness of calculi is often seen as an important property which
may outweigh considerations of simplicity and elegance.2

Mostly, linear calculi of natural deduction seem to be viewed as (the
most) promising candidates for a natural regulation.3 Among these, one
can distinguish two main families, namely dependency calculi that follow
what Indrzejczak calls a “recorded assumption approach” and subproof
calculi that follow what he calls an “ordered assumption approach” ([15,

for inferring (in the narrow sense of drawing out consequences)” [20, p. 4]. We are
not concerned, however, with the role logic might play in inference and reasoning
when these are conceived as “psychological processes” [12, p. 171]. For the question
of the normativity of logic for the performance of certain speech acts see [26, 6]. As
‘calculus’ is used with some variance in the literature, a note on our terminology may
be in order. We use ‘calculus’ as follows: In a narrower sense, a calculus consists of a
(formal) language, a set of inference rules for this language and a possibly empty set of
axioms. In a wider sense, a calculus consists of a set of inference rules and (possibly)
axioms or axiom schemata which can be combined with languages of a certain type
to form a calculus in the narrower sense. Logistic systems in the sense of Church
[2, pp. 48–51] and logical calculi in the sense of Prawitz [24, p. 13] are calculi in the
narrower sense, while Prawitz’s systems of natural deduction [24, pp. 13, 23–24, 23:
n. 1] are calculi in the wider sense.

2 The demand for naturalness with respect to application oriented calculi is re-
flected in the choice of calculi in introductory textbooks. For example, in the preface
to the first edition of their textbook, Kalish and Montague claim for their calculus to
be “a closer approximation to everyday and mathematical reasoning than has previ-
ously been achieved by any formal system” [17, p. xv]. Link [19, p. 300] distinguishes
a calculus of natural deduction for “applications of logic, be they within the realm
of mathematics, of natural science or even of philosophical theories” with respect to
its naturalness: “the calculus of natural deduction formalizes in a certain sense the
natural course of argumentation in these applications [our translation].” Suppes opines
that his calculus “has been designed to correspond as closely as possible to the author’s
conception of the most natural techniques of informal proof” [30, p. iv]. Barwise and
Etchemendy justify the addition of a redundant repetition rule by pointing out that
its application “will make some proofs look more natural” [1, p. 56]. The demand of
naturalness also arises in the project of proof theory, insofar as one considers proof
theory, with Gentzen, as a formal theory of the actual proofs constructed by mathe-
maticians [11, p. 499].

3 Gentzen regards the tree format as a deviation with regard to actual, linear
reasoning ([10, p. 184]; see also [15, pp. 38–39]). That linear calculi are considered to
be more natural can be seen from the fact that although calculi of natural deduction
are a standard for introductory textbooks (see [22, p. 1], [23, p. 105]), tree calculi
of natural deduction are rarely ever used (see [22, p. 8] and [23, p. 113]). Prawitz
observes: “If one replaces the tree-form in Gentzen’s system by a linear arrangement
[. . . ], one seems indeed to have an eminently useful system also from a pedagogical
point of view” [24, p. 105].
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p. 44], see also [14]). In dependency calculi, formulas in a derivation
depend on certain (sets of) assumptions and inferences are legitimate
with respect to the assumptions on which a formula depends  regard-
less of their order. By contrast, the discharge of an assumption in a
derivation in a subproof calculus requires the construction of an appropri-
ate subproof which starts with this assumption and contains no further
undischarged assumptions.4 Virtually all commonly used linear calculi of
natural deduction  whether they are subproof or dependency calculi 
rely on commentary devices to indicate the scope of assumptions. Such
commentary devices may have counterparts in natural language proofs,
but there are easily understood informal proofs that do not need them.
In usual linear calculi of natural deduction, however, commentary devices
have to be employed if one wants to determine a specific reading of a
derivation.

We hold that this need for commentary in commonly used calculi is
connected to the “deletion” of illocutionary expressions, i.e., expressions
that indicate the role of propositions as reasons, assumptions or inferred
propositions. To support our thesis, we will argue for two sub-theses:

(i) Formalizations of certain (relatively) “illocutionarily explicit” and
easy to understand informal proofs in typical and widely-used calculi
from both families have to employ commentary devices which have
no direct natural language counterpart in such proofs.

(ii) One can construct linear calculi of natural deduction in which illo-
cutionary expressions are formalized and in which there is unique
readability for derivations and thus no need to make use of com-
mentary devices.

The first part of our paper is devoted to the first sub-thesis. We will first
present an informal proof and identify the speech acts that are being
performed by uttering the derivation (2). Subsequently we will discuss
formalizations of the proof in two dependency calculi (in a sequent and
a quasi-sequent variation) and in two Jaśkowskian subproof calculi (in

4 For the distinction between what we call dependency calculi and subproof
calculi see also [24, pp. 101–102] and [15, pp. 40–45]. A review of different variants
can be found in [22, 23]. Indrzejczak mentions mixed forms of calculi [15, pp. 44–45].
The historical origin of the dependency calculi seems to be [11], while the subproof
calculi can be traced back to [16]. Examples for dependency calculi are presented in
[30] and [18]. Typical subproof calculi are the Fitch calculi, tracing back to [8], and
the Kalish-Montague calculus [17].
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a box and a numeral-string variant).5 It will emerge that derivations
in these calculi only partially formalize the expressions of the original
proof, more precisely, only the propositions receive a formalization while
the illocutionary expressions are deleted. As we will argue in the fol-
lowing sections, it is precisely because of this deletion of illocutionary
expressions that the formalizations have to rely on additional commen-
tary elements that have no counterpart in the original proof. We will
also point out that the need for commentary elements may introduce
some measure of ambiguity (3). In the second part of the paper, we
will turn to the second sub-thesis. We combine Jaśkowski’s subproof
approach with the speech-act theoretic approach to calculi developed by
Hinst and Siegwart [13, 21, 27, 28]. Following Hinst and Siegwart, we
introduce illocutionary operators which correspond to the illocutionary
expressions used in the original proof. We will argue that a subproof
calculus whose language contains such illocutionary operators allows a
natural formalization that closely mirrors the original proof and does
not rely on any commentary (4). Then, we give a short presentation of
this calculus. The use of illocutionary operators will allow us to define
derivations in such a way that the scope and discharge of assumptions
can be “read off” a given derivation  there being no need for boxes,
numeral strings or other “bookkeeping devices” [15, p. 40] (5).

Our approach assumes a speech-act theoretic perspective according
to which informal proofs are made up of (possibly elliptical) sentences
which are used to perform speech acts, and not merely of propositions
which have to be arranged in some way, so that illocutionary expressions
are part of the proof and not merely another form of commentary. In
the last section, we will submit that, from such a perspective, a calculus
that allows the formalization of proofs as sentence sequences for which
unique readability with respect to the type of sentences and the discharge
of assumptions is given seems more natural than the formalization in
calculi which rely on commentary devices. Commentary is often useful,
and nothing speaks against employing commentary devices in order to
make formal proofs easier to read. However, if commentary devices have
to be employed in order to determine a certain reading of a derivation,
this may be seen as problematic not just from a speech-act-theoretic
perspective (6).

5 Our talk of quasi-sequents follows Indrzejczak, who speaks of “Suppes’ quasi-
sequents” [15, p. 45].
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2. The example proof

In a first step we present and explain an example derivation, a simple
arithmetic proof:

2.1. John’s proof

First it holds that 0 is not identical with 0+1. Now, assume k is not
identical with k+1. Suppose k+1 was identical with (k+1)+1. It holds
for all i, j that if i+1 = j+1, then i = j. Hence k would be identical with
k+1. On the other hand, we have that k is not identical with k+1. So, k+1
can’t be identical with (k+1)+1. Thus we have that if k is not identical
with k+1, then also k+1 is not identical with (k+1)+1. Obviously this
then holds for all k. But we know: If 0 is not identical with 0+1 and if
furthermore it is true for all k that given k is not identical with k+1, then
also k+1 is not identical with (k+1)+1, then for all k: k is not identical
with k+1. Therefore, it holds for all k that k is not identical with k+1.

Given a suitable context, it seems fair to go on the assumption that
some author, say John, would be carrying out a proof by uttering above
text. Let us assume such a context of utterance for what follows. First
of all, we note that the text has a linear structure in the sense that
the natural language sentences it consists of are ordered in succession.
For reasons of clarity we can emphasize this feature by numbering the
sentences and arranging them vertically according to their order:

2.2. John’s proof in vertical form

0 First it holds that 0 is not identical with 0+1.

1 Now, assume k is not identical with k+1.

2 Suppose k+1 was identical with (k+1)+1.

3 It holds for all i, j that if i+1 = j+1, then i = j.

4 Hence k would be identical with k+1.

5 On the other hand, we have that k is not identical with k+1.

6 So, k+1 can’t be identical with (k+1)+1.

7 Thus we have that if k is not identical with k+1, then also k+1 is

not identical with (k+1)+1.

8 Obviously this then holds for all k.

9 But we know: If 0 is not identical with 0+1 and if furthermore it

is true for all k that given k is not identical with k+1, then also

k+1 is not identical with (k+1)+1, then for all k: k is not

identical with k+1.

10 Therefore, it holds for all k that k is not identical with k+1.
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What is John doing when he produces his proof? One possible an-
swer: He utters sentences and thereby performs certain speech acts,
namely assumptions, inferences and adductions of reasons. In the fol-
lowing presentation, the proof is commented on accordingly (ADD –
adduction, ASS – assumption, INF – inference):

2.3. John’s proof in vertical form with commentary

0 First it holds that 0 is not identical with 0+1. (ADD)

1 Now, assume k is not identical with k+1. (ASS)

2 Suppose k+1 was identical with (k+1)+1. (ASS)

3 It holds for all i, j that if i+1 = j+1, then i = j. (ADD)

4 Hence k would be identical with k+1. (INF)

5 On the other hand, we have that k is not identical with

k+1.

(INF)

6 So, k+1 can’t be identical with (k+1)+1. (INF)

7 Thus we have that if k is not identical with k+1, then also

k+1 is not identical with (k+1)+1.

(INF)

8 Obviously this then holds for all k. (INF)

9 But we know: If 0 is not identical with 0+1 and if

furthermore it is true for all k that given k is not identical

with k+1, then also k+1 is not identical with (k+1)+1,

then for all k: k is not identical with k+1.

(ADD)

10 Therefore, it holds for all k that k is not identical with k+1. (INF)

John commences his proof by adducing a reason  more specifically
a consequence of a PA (Peano arithmetic) axiom  namely that 0 is not
identical to 0+1.6 He adduces this reason by uttering the sentence ‘First
it holds that 0 is not identical with 0+1’. In lines 3 and 9 John adduces
additional reasons (this time PA axioms) by uttering suitable sentences.
In lines 1 and 2 John assumes propositions by uttering sentences that
start with ‘Now, assume’ and ‘Suppose’ respectively. In lines 4 through 8
and in line 10 John performs inferences, which are legitimated by speech
acts he made beforehand. He performs these inferences by uttering in-
ference sentences marked by expressions such as ‘hence’, ‘so’, ‘thus’ and
‘therefore’. In line 4, for example, John infers from the propositions in
lines 2 and 3 that k is identical with k+1. He does this by uttering
the sentence ‘Hence k would be identical with k+1’. To give another
example: In line 6 John utters the sentence ‘So, k+1 can’t be identical

6 For a first-order version of the axioms of PA see, for example, [7, pp. 173–174].
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with (k+1)+1’ and thus infers the negation of a proposition which he
assumed earlier (in line 2) and which he led to a contradiction (in lines
4 and 5). This step discharges the assumption made in line 2, while the
next inference discharges the assumption made in line 1.

To put it briefly: Propositions are adduced, assumed and inferred.
Which of these three acts is performed by the utterance of a sentence is
(in this case) clearly shown by illocutionary expressions (‘it holds that’,
‘assume’, ‘hence’ etc.). Given these expressions and the order in which
the sentences are uttered, one can also grasp the relationship between
the adductions, assumptions and inferences performed by John. This
holds in general for successful natural language derivations: At least in
the context of utterance and for direct addressees, the speech acts and
their relationships are identifiable. Obviously this is neither true in gen-
eral for all kinds of verbal behavior nor for all contexts or all recipients
of a sequence of speech acts. As is well known, natural languages are
limited with regard to the precision and context-independency that can
be achieved. This is one of the reasons why one makes use of formal
languages.7 We neither claim that John’s proof does not pose inter-
pretative problems that would not arise for a formal proof, for example
with regard to the propositional side, nor do we want to present John’s
proof as a particularly representative specimen of informal proofs. It is
simply taken as a representative for natural language proofs in which the
speech acts and their relationships are easily identifiable.8 How could
John’s proof be represented formally?

3. Commentary in some typical linear calculi

of natural deduction

We will now formalize the propositions of the sentences in John’s proof.
Note that we use ‘proposition’ in a somewhat unusual way, namely to
refer to the expressions that are assumed, adduced, inferred  or uttered
with any other kind of illocutionary force. The results of the formal-
ization are formulas of a first-order language (of arithmetic). We would

7 As already pointed out by Frege (see, for example, [9, p. iv]).
8 Concerning the view of deductive reasoning as an activity that consists in the

performance of certain speech acts, we follow Hinst [13]; Meggle and Siegwart [21],
and Siegwart [27, 28]. Dutilh Novaes [6] also provides an account of (the dialogical
origins of) deduction that locates it in the sphere of speech acts.



170 Moritz Cordes and Friedrich Reinmuth

ask the reader to regard the following formalization of the propositions,
which will be used in all following sections, as unproblematic:9

3.1. Formalization of the propositions in John’s proof

0 ¬0 = 0 + 1

1 ¬x = x + 1

2 x + 1 = (x + 1) + 1

3 ∀x∀y(x + 1 = y + 1 → x = y)

4 x = x + 1

5 ¬x = x + 1

6 ¬x + 1 = (x + 1) + 1

7 ¬x = x + 1 → ¬x + 1 = (x + 1) + 1

8 ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1)

9 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1)

→ ∀x¬x = x + 1

10 ∀x¬x = x + 1

In this simple sequence of formulas, the role of the propositions is
not immediately identifiable anymore. In the case of Gentzen’s 1936 cal-
culus, derivations are sequences of sequents and derivations in the other
calculi considered in the following can be formally defined as structures
that are not merely sequences of formulas but, for example, sequences
of ordered pairs of sets of formulas and formulas (dependency calculi) or
sequences of formulas and subproofs (subproof calculi). However, as will
be illustrated in the following, within the presentations of derivations in
these calculi commentary elements which indicate dependencies or sub-
proofs can be identified. One question is if these commentary devices are
considered as integral parts of derivations in the calculi or as inessential
metalinguistic addenda. Concerning this question, one can note that in
the case of Gentzen’s sequent format and Jaśkowski’s (original) numeral-
string format, the commentary devices form part of the proof, while in
Suppes’ quasi-sequent format they do not. Another question, and the
one we want to focus on, is which status these commentary devices have
with respect to the original proof: Which role do they play in formal-
izations of the original proof? Here, one can note in advance that only
the formalizations of the propositions as listed above are direct counter-
parts of expressions occurring in John’s proof. We will argue that the
commentary devices employed by the different calculi  independent of

9 Note that with the exception of the identity predicate all logical operators
apply to formulas only.
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their status within the calculi  constitute an “essentially metalinguistic”
comment on a propositionally reduced version of John’s proof.

What is given in John’s proof is a sequence of sentences in which the
role of the propositions is expressed by illocutionary expressions. The
order of these sentences allows one to identify the scopes of assumptions
and their discharge. However, with respect to the calculi considered in
the following, only the propositions receive a direct formalization, while
the role of the propositions, their status as assumed, inferred, or adduced
propositions, and the scope of assumptions and their discharge are in-
dicated by commentary devices. These commentary devices consist of
a rule commentary which records if a proposition is assumed, adduced
or inferred in accordance with some rule and “bookkeeping devices for
separating the parts of proof which are in the scope of discharged assump-
tion” [15, p. 40]. The rule commentaries are not essential with regard
to the question of whether or not a sequence is a derivation of a certain
proposition from a certain set of propositions, though they may not just
be omitted if one wants to determine if, for example, a proposition is
used as reason or if it is inferred. The “bookkeeping devices”, on the
other hand, are essential and will constitute the focus of our analysis. In
the following, when we speak of commentary (devices), we refer to this
essential part of the overall commentary.

If these commentary devices are considered as external to the formal-
ized proof (e.g. Suppes), the formalized proof will just be a sequence of
propositions such as the one above (3.1). If one wants to assess whether
such a sequence of formulas is a proof or non-proof, one has to try
whether it is possible to ascribe roles to the propositions and scopes
to the assumptions in such a way that every line of the sequence is in
accordance with the rules of the calculus. This “trying out” amounts
essentially to finding some commentary that makes clear which formu-
las are assumed, which formulas are adduced and which formulas are
inferred, and also indicates the scope of those formulas that are marked
as assumptions by the commentary, and according to which every line
of the sequence is in accordance with the rules of the calculus.10 If, on

10 Of course, the proof-predicate is still decidable (with respect to a decidable set
of axioms) if one treats derivations as sequences of formulas: If there is a commentary
according to which a sequence of formulas is a proof, then it is a proof. However, our
claim is simply that determining proofhood requires one to check whether there exists
a suitable commentary, a commentary which cannot simply be read off the sequence
of formulas. This raises problems with respect to the formalization of derivations and
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the other hand, the commentary devices are considered as an integral
part of the formalized proof (e.g. Gentzen), the process of “trying out”
has to occur as part of the formalization and may require substantial
interpretive efforts.

In the following, these remarks will be substantiated by an analy-
sis of formalizations of John’s proof in different types of linear calculi
of natural deduction. Note that we use streamlined classical versions
of these calculi, in particular with regard to the use of parameters in-
stead of free variables,11 the rules for negation and the quantifier rules,
and the distinction between assumed and adduced propositions. This
streamlining facilitates exposition and comparison without having any
substantial impact on the relevant properties of the calculi under con-
sideration. In particular, we will always suppose that the operators for
conditional, conjunction, disjunction, biconditional, negation, the exis-
tential and universal quantifier and the identity predicate are the only
logical operators and that each of these is regulated by an introduction
and an elimination rule.

First we will consider dependency calculi (↑1), which can be further
divided into sequent and quasi-sequent variants. Gentzen’s calculus of
natural deduction in sequent format serves as a typical example for the
first group.12 The rightmost column contains a rule commentary that
names the rules and marks the adduction of reasons:

3.2. John’s proof: Gentzen(1936)-style

0 ⇒ ¬0 = 0 + 1 (ADD)

1 ¬x = x + 1 ⇒ ¬x = x + 1 (ASS)

failed proof attempts: If we want to formalize a derivation from propositions which
are also axioms of the system at hand or a proof attempt which fails because an axiom
is assumed and this assumption is not discharged, the formalization can also only be
identified as a derivation or a non-proof relative to a commentary.

11 As parameters we use ‘x’, ‘y’, ‘z’, . . . , while ‘x’, ‘y’, ‘z’, . . . are used as
variables. Closed terms and formulas are terms and formulas, respectively, in which
no variables occur free (but which may contain parameters). A, B, G, D, . . . are used
as metavariables for formulas, j, j*, j’, . . . for terms, z, x, w, . . . for variables, and b,b*, b’, . . . for parameters. ‘[.., .., ..]’ is used as a metalinguistic substitution operator,
where [j, x, D] designates the result of substituting the term j for the variable x in
the formula D. On the formal side, propositions are always closed formulas.

12 Gentzen [11] develops this calculus for the formalization of mathematical
proofs. In order to facilitate the exposition and comparison of different calculi, the
induction rule (see [11, p. 515]) is eliminated and the relevant instance of the induction
schema is adduced in line 10.
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2 x + 1 = (x + 1) + 1 ⇒ x + 1 = (x + 1) + 1 (ASS)

3 ⇒ ∀x∀y(x + 1 = y + 1 → x = y) (ADD)

4 ⇒ ∀y(x + 1 = y + 1 → x = y) (UE; 3)

5 ⇒ x + 1 = (x + 1) + 1 → x = x + 1 (UE; 4)

6 x + 1 = (x + 1) + 1 ⇒ x = x + 1 (CdE; 2, 5)

7 ¬x = x + 1 ⇒ ¬x + 1 = (x + 1) + 1 (NI; 1, 6)

8 ⇒ ¬x = x + 1 → ¬x + 1 = (x + 1) + 1 (CdI; 7)

9 ⇒ ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1) (UI; 8)

10 ⇒ ¬0 = 0+1∧∀x(¬x = x+1 → ¬x+1 = (x+1)+1) (ADD)

→ ∀x¬x = x + 1

11 ⇒ ¬0 = 0+1∧∀x(¬x = x+1 → ¬x+1 = (x+1)+1) (CI; 0, 9)

12 ⇒ ∀x¬x = x + 1 (CdE; 10, 11)

Assumptions correspond to “logische Grundsequenzen” (“logical ba-
sic sequents”) of the form pD ⇒ Dq and adductions of axioms (and here:
of reasons in general) to “mathematische Grundsequenzen” (“mathemat-
ical basic sequents”) of the form p⇒ Dq [11, p. 513]. The adductions
in lines 0, 3, and 10 are accordingly rendered as sequents with empty
antecedents, while the assumptions in lines 1 and 2 are represented by
sequents in which the assumed formula is both the antecedent and the
succedent. Inferences normally inherit the formulas to the left of ‘⇒’
from their premise lines (for example in line 6). Exempt are inferences
by negation introduction (NI), conditional introduction (CdI) and exis-
tential elimination (EE), where the discharged assumption is eliminated
from the formulas that appear to the left of ‘⇒’ (e.g. in lines 7 and 8).

In this calculus, derivations are sequences of sequents. Although the
formalization of the propositions in John’s proof yields the succedents of
these sequents (↑3.1), the sequents as a whole have no direct counterpart.
The interpretation intended by Gentzen insofar as 3.2 is regarded as a
formalization of 2.1 is that the propositions to the right of ‘⇒’ depend on
the propositions to the left of ‘⇒’ [11, pp. 511–513]. Gentzen holds that
(the formalizations of) the propositions on which (the formalization of)
a proposition depends should be recorded as antecedent formulas of a se-
quent whose succedent formula is (the formalization of) this proposition
[11, p. 512]. With respect to the propositions that are actually assumed,
adduced and inferred in a proof, the sequent format thus serves to keep
record of the assumptions on which these propositions depend. The
sequent format thus serves to provide a dependency commentary for the
formulas that correspond directly to the propositions as they are used in
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a proof. The requirement that the propositions on which a proposition
depends at a certain position in a proof have to be recorded forces one
to deliberate on dependency relations between propositions in order to
determine the antecedents of the sequents even if one formalizes simple
and clearly structured proofs.

Insofar as only the succedents of the sequents have direct counter-
parts in the natural language proof, quasi-sequent variants in the style
of Suppes [30] might seem closer to natural language proofs, because the
antecedents of sequents are “moved” to a metalinguistic commentary.13

Under this approach, dependencies are recorded by sets of line numbers
in a separate column:

3.3. John’ s proof: Suppes-style

∅ 0 ¬0 = 0 + 1 (ADD)

{1} 1 ¬x = x + 1 (ASS)

{2} 2 x + 1 = (x + 1) + 1 (ASS)

∅ 3 ∀x∀y(x + 1 = y + 1 → x = y) (ADD)

∅ 4 ∀y(x + 1 = y + 1 → x = y) (UE; 3)

∅ 5 x + 1 = (x + 1) + 1 → x = x + 1 (UE; 4)

{2} 6 x = x + 1 (CdE; 2, 5)

{1} 7 ¬x + 1 = (x + 1) + 1 (NI; 1, 6)

∅ 8 ¬x = x + 1 → ¬x + 1 = (x + 1) + 1 (CdI; 7)

∅ 9 ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1) (UI; 8)

∅ 10 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1) → ∀x¬x = x + 1

(ADD)

∅ 11 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1)

(CI; 0, 9)

∅ 12 ∀x¬x = x + 1 (CdE; 10, 11)

The entries in the leftmost column record the set of propositions on
which the proposition in a given line depends, where line numbers point
to the lines in which the assumptions (if any) were made. Analogously
to Gentzen’s format, adduced propositions depend on the empty set,
while assumed propositions depend on their unit set.14 Accordingly, the
entries for lines 0, 3 and 10 show the empty set, while the entries for

13 On the relationship between Gentzen’s sequent format and its further devel-
opments in the style of Suppes see [15, pp. 43–45] and [24, pp. 101–102].

14 As remarked above, we work with streamlined versions of the calculi, where
adductions are distinguished from assumptions. This is not the case for Suppes’s and
(with some qualification) Jaśkowski’s original calculi.



Commentary and illocutionary expressions . . . 175

the assumptions in lines 1 and 2 contain the unit set of the respective
line numbers. The propositions inferred in lines 6 and 7 depend on the
propositions assumed in lines 2 and 1 respectively, which is recorded in
the respective entries.

Note that the dependency commentary in the left column has no
direct counterpart in John’s proof but is added in its formalization. So,
as in Gentzen’s case, formalizing a proof requires one to find a fitting
dependency commentary. As remarked above, in contrast to Gentzen’s
case, Suppes’ dependency commentary is not normally viewed as part of
the object language, but as metalinguistic like the rule commentary on
the right. However, if one omits the commentary, this results in a simple
sequence of propositions in which, as in 3.1, the role of the respective
propositions is not uniquely determined. Sequences of propositions can
be commented on in different ways in the Suppes-variant of the quasi-
sequent format, so that, for example, one and the same sequence of
propositions can be commented on as a proof / derivation (from a set of
formulas) or as a non-proof / non-derivation (from this set of formulas).
Thus the sequence of formulas in the Suppes formalization of John’s
proof can be “transformed” into a derivation of the last formula from
the set of propositions adduced as reasons by John. Concerning this
problem, one might also look at the following, very short, example proof
(or non-proof):

3.4. Proof and non-proof with identical sequence of formulas

proof non-proof
∅ 0 x = x (II) {0} 0 x = x (ASS)

∅ 1 ∀x(x = x) (UI) {0} 1 ∀x(x = x) (UI?)

Comment: In the non-proof, the “UI” is not correct, since the param-
eter of the UI must not occur in any assumption on which the premise
of the UI depends. Yet even if the inference were legitimate, the left
sequence would be a derivation from the empty set, and thus a proof,
while the sequence to the right would be one in which the formula in
the last line depended on a non-empty set, and thus not a proof. Thus,
in Suppes approach, the sequences that form the object-language core
of derivations, i.e., sequences of propositions without the dependency
commentary, are ambiguous and in need of interpretation.15

15 Of course, the provisions of n. 10 still hold.
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An alternative to the dependency calculi is provided by the subproof
calculi, which go back to Jaśkowski. In such calculi certain (segments
of) sequences are characterized as subproofs whose closure discharges
the assumption they start with. What matters is not whether or not a
proposition depends on (a set of) other propositions but whether or not it
occurs at a certain position in a proof with a certain structure. Jaśkowski
[16] proposed two variants: subproofs are either demarcated by boxes (or
other graphic means) or by strings of numerals. A formalization of John’s
proof according to the first method would look something like this:

3.5. John’s proof: Jaśkowski box style

0 ¬0 = 0 + 1 (ADD)

1 ¬x = x + 1 (ASS)

2 x + 1 = (x + 1) + 1 (ASS)

3 ∀x∀y(x + 1 = y + 1 → x = y) (ADD)

4 ∀y(x + 1 = y + 1 → x = y) (UE; 3)

5 x + 1 = (x + 1) + 1 → x = x + 1 (UE; 4)

6 x = x + 1 (CdE; 2, 5)

7 ¬x = x + 1 (R; 1)

8 ¬x + 1 = (x + 1) + 1 (NI; 2-7)

9 ¬x = x + 1 → ¬x + 1 = (x + 1) + 1 (CdI; 1-8)

10 ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1) (UI; 9)

11 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1)

(ADD)

→ ∀x¬x = x + 1

12 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1)

(CI; 0, 10)

13 ∀x¬x = x + 1 (CdE; 11, 12)

In line 2, an assumption is made, which is indicated by the fact that
the proposition appears at the beginning of a box. The proposition
assumed in line 2 is then led to a contradiction. This legitimates the
inference of the negation of the assumed proposition in line 8, which
discharges the assumption and closes the subproof, which is indicated
by closing the box. Similarly, the subproof that starts with the assump-
tion in line 1 is closed by the inference of the conditional in line 9,
which is legitimate, because the subproof led from the assumption of the
conditional’s antecedent to the inference of its consequent in line 8, the
last line of the subproof. The boxes serve to demarcate the subproofs
associated with assumptions: The assumption that starts a subproof and
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the propositions that are inferred from this assumption are only available
as premises in this subproof and in embedded subproofs. This ensures
that assumptions and propositions that are inferred from them cannot be
used as premises once the respective assumption has been discharged.16

The boxes amount to start and end markers for subproofs and thereby
serve as commentary devices to separate these subproofs. Like the de-
pendency commentary, boxes have to be added in the formalization. In
contrast to the dependency commentary, however, the boxes serve to
delineate structures, namely subproofs that can also be identified on
the surface of natural language derivations such as the example proof 
only that they are not necessarily commented on there. The dependency
commentary, by contrast, states that certain (sets of) formulas stand in a
certain relation to certain formulas, where this dependency relation is of-
ten a subclass of the consequence relation for the calculus in question.17

However, whether a proposition stands in the dependency relation to
itself or to other propositions found in a natural language derivation can
normally not be determined by just inspecting the surface of a natu-
ral language derivation but demands further interpretative efforts which
require, amongst other things, knowledge of the respective dependency
relation. Thus, the subproof commentary by boxes or by numeral-strings
(see below), seems less external to John’s original proof than the depen-
dency commentary. On the other hand, John does neither use start and
end markers for subproofs nor a numeral system to keep track of proof
structure. Ordinary language expressions that express illocutionary force
can, by contrast, easily be identified and subproofs in the example proof
can simply be identified by inspecting the sentences and their order.

The status of the boxes with respect to their object-linguistic or met-
alinguistic nature is left open by Jaśkowski.18 If one considers it as a
metalinguistic commentary that consists in “drawing boxes or rectangles

16 This function is also fulfilled by boxes or other graphical means when they
do not have to start with an assumption as in Jaśkowski’s calculus or the variants of
it tracing back to Fitch [8], but are only applied once a subproof is closed as in the
Kalish-Montague calculus [17].

17 The “metalogical nature” often attributed to sequent calculi (see e.g. [24, p. 90]
seems also to apply to natural deduction calculi in sequent and quasi-sequent format.
Thus Suppes writes: “The intuitive significance of the numerals at the left should be
emphasized: each line is a logical consequence of the set of premises corresponding to
the numerals at the left” [30, p. 27].

18 In formal definitions of derivations in the box format, the boxes may be “rep-
resented” by special expressions (e.g. in [15, pp. 50–51]). However, this does not settle
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around portions of a proof” (see [22, p. 3] and [23, p. 108]), where the
proof is just the sequence of formulas,19 one again encounters the prob-
lem of ambiguity that is faced by Suppes’ metalinguistic dependency
commentary. Obviously a given sequence of formulas can then be boxed
in different ways and thus there exists again the possibility of boxing
one and the same sequence of formulas in different ways, such that, for
example, it may be commented on as a proof / derivation of a formula
(from a certain set of propositions) or as a non-proof / non-derivation
of a formula (from a certain set of propositions). For example, if one
lets the outer box in the box formalization of John’s proof end two lines
later, a non-proof results, because the inference in line 9 then becomes
incorrect.20

While the status of the boxes with respect to their object-linguistic
or metalinguistic nature is left open by Jaśkowski, he clearly considers
the numeral-strings of his alternative format as part of the “significant
expressions” of his system. Jaśkowski uses ‘S’ to mark assumptions and
calls concatenations of numeral strings, (and possibly ‘S’) and formulas
“new expressions which must be considered as significant ones” [16, p. 7].
This suggests that numeral strings (and ‘S’) are supposed to belong to
the object language. Jaśkowski’s use of ‘S’ can be seen as constituting
the first use of an assumption operator in a formal system and thus
provides a starting point for the approach presented below in sections
4 and 5. However, while such an assumption operator has a natural
language counterpart, there is no natural language counterpart to the
numeral strings.

Jaśkowski’s numeral method allows one to split subproofs and makes
a rule of repetition superfluous [16, p. 8]. Thus, for example, the mem-
bers of a contradiction that legitimate an NI do not have to appear under

the question of whether or not these special metalinguistic expressions refer to object
language expressions.

19 With respect to the box variant, it seems unclear whether Pelletier considers
the proof to consist just in the sequence of formulas.

20 As remarked above, we here suppose calculi with primitive rules, i.e., one
introduction and elimination rule for each logical operator. In the case at hand, we
suppose that a conditional introduction has to be legitimated by a subproof that
leads from the assumption of the conditional’s antecedent to its consequent. If one
supposes a more liberal calculus in which one could infer a conditional simply from its
consequent, not the CdI in line 9, but the UI in line 10 would be incorrect (because
the parameter of the supposed UI would still be part of the undischarged assumption
in line 1).
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the assumption that is to be negated. Numerals show in which subproof
a line is embedded. A formalization could look something like this:21

3.6. John’s proof: Jaśkowski numeral-string style

0 ¬0 = 0 + 1 (ADD)

1 1 S ¬x = x + 1 (ASS)

2 1, 1

S

x + 1 = (x + 1) + 1 (ASS)

3 ∀x∀y(x + 1 = y + 1 → x = y) (ADD)

4 ∀y(x + 1 = y + 1 → x = y) (UE; 3)

5 x + 1 = (x + 1) + 1 → x = x + 1 (UE; 4)

6 1, 1 x = x + 1 (CdE; 2, 5)

7 1 ¬x + 1 = (x + 1) + 1 (NI; 1, 2, 6)

8 ¬x = x + 1 → ¬x + 1 = (x + 1) + 1 (CdI; 1, 7)

9 ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1) (UI; 8)

10 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1) → ∀x¬x = x + 1

(ADD)

11 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1)

(CI; 0, 9)

12 ∀x¬x = x + 1 (CdE; 10, 11)

As in the case of the box format, it holds that ambiguity is introduced
at the formal level if one treats Jaśkowski’s numeral strings and ‘S’ as a
metalinguistic “book-keeping annotation alongside the sequences of for-
mulas that constitutes a proof” (see [22, p. 3] and [23, p. 8]). If one then
omits the commentary (and thus the numeral strings), a simple sequence
of propositions results  as in the case of Suppes. As a consequence,
one and the same sequence of propositions can then be given numeral
commentaries that present it as a proof and numeral commentaries that
present it as a non-proof. Thus, for example, the following commentary
presents John’s proof as a non-proof:

3.7. John’s proof with “wrong” commentary

0 ¬0 = 0 + 1 (ADD)

1 1 S ¬x = x + 1 (ASS)

21 We loosely follow the presentation in Prawitz [24, pp. 99–101]. In particular,
we work with classical quantifier rules, while Jaśkowski’s original calculus only allows
the proof of propositions which are also valid in the empty domain, as terms have
to be “supposed” as well [24, pp. 99–101]. In his original system for quantifier logic,
Jaśkowski used ‘T’ “analogous to the symbol of supposition ‘S’” [16, p. 29] to mark
the “supposition” of terms.
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2 2 S x + 1 = (x + 1) + 1 (ASS)

3 ∀x∀y(x + 1 = y + 1 → x = y) (ADD)

4 ∀y(x + 1 = y + 1 → x = y) (UE; 3)

5 x + 1 = (x + 1) + 1 → x = x + 1 (UE; 4)

6 2 x = x + 1 (CdE; 2, 5)

7 1 ¬x + 1 = (x + 1) + 1 (NI; 1, 2, 6?)

8 ¬x = x + 1 → ¬x + 1 = (x + 1) + 1 (CdI; 1, 7)

9 ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1) (UI; 8)

10 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1) → ∀x¬x = x + 1

(ADD)

11 ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1)

(CI; 0, 9)

12 ∀x¬x = x + 1 (CdE; 10, 11)

One of the reasons why this presents John’s proof as a non-proof is
that the “NI” in line 7 is incorrect: NI requires that (i) the numeral
string of the line in which the negation is inferred consists exactly of
the numeral string of the line in which the proposition to be negated
has been assumed without the last member of that string, and that
(ii) the numeral string of the lines that contain the members of the
contradiction have to be initial segments of the numeral string of the
line in which the proposition to be negated has been assumed. Casually
put: Two subproofs have been inadmissibly mixed  at least according
to the commentary. Of course, one could always try to come up with an
alternative commentary, like the one in 3.6, according to which John’s
proof is presented as a proof.

4. Sequences of sentences without commentary

According to our analysis, the calculi discussed so far rely on commenting
devices which have no counterpart in John’s proof. Moreover, it seems as
if John’s proof would work quite well without a commentary. But why?
One possible answer: John does not have to provide a commentary for
his proof, because he does not simply utter a sequence of propositions,
but performs a sequence of speech acts  adductions, assumptions, and
inferences  by uttering a sequence of sentences.22 Sentences in this
sense are those expressions through whose utterances (in normal cir-

22 Here and in the following, we draw heavily on the work of Hinst and Siegwart
[13, 21, 27, 28].
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cumstances) speech acts are performed. More generally, putting forward
a natural language proof can be conceived as performing a sequence of
speech acts. Of course, not every natural language proof is illocutionar-
ily explicit to the degree that John’s proof is. But at least some natural
language proofs work without dependency or subproof commentaries be-
cause they are not sequences of propositions, but sequences of sentences
whose illocutionary status is clearly expressed.

Sentences can be assigned a standard format pX Gq, where X is a
performator, i.e., an atomic object-language illocutionary operator, andG is a proposition. The performators determine which speech act is
performed by the utterance of a sentence. So, for example, John uses
natural language performators such as ‘hence’, ‘thus’ and ‘therefore’ to
perform inferences. He uses ‘it holds’ and ‘we know’ to perform ad-
ductions and ‘assume’ and ‘suppose’ to perform assumptions. The list
of natural language performators may easily be extended. Note that 
similar to natural language expressions that would be assigned to other
atomic logical categories  natural language performators may consist
of more than one word. It seems rather natural to use performators for
different speech acts, and thus sentences, in a formal representation as
well. So, if one chooses ‘since’ as adduction performator, ‘suppose’
as assumption performator and ‘thus’ as inference performator and ifG is a proposition, then psince Gq is the adduction sentence for G, by
whose utterance G is adduced as a reason, psuppose Gq is the assump-
tion sentence for G, by whose utterance G is assumed, and pthus Gq is
the inference sentence for G, by whose utterance G is inferred.23 Thus
equipped, John’s proof can be formalized as a sequence of sentences as
follows:

4.1. John’s proof as a sentence sequence

0 since ¬0 = 0 + 1 (ADD)

1 suppose ¬x = x + 1 (ASS)

2 suppose x + 1 = (x + 1) + 1 (ASS)

3 since ∀x∀y(x + 1 = y + 1 → x = y) (ADD)

4 thus ∀y(x + 1 = y + 1 → x = y) (UE; 3)

5 thus x + 1 = (x + 1) + 1 → x = x + 1 (UE; 4)

23 The idea of formal, object language expressions which show the illocutionary
status of an utterance is not new. Frege’s judgment stroke [9] and Jaśkowski’s ‘S’-
operator [16] can be seen as precursors to an assertion and an assumption performator
respectively (see also [3]). However, the systematic integration of performators into
the vocabulary of a formal language is due to Hinst (e.g. [13]).
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6 thus x = x + 1 (CdE; 2, 5)

7 thus ¬x = x + 1 (R; 1)

8 thus ¬x + 1 = (x + 1) + 1 (NI; 2-7)

9 thus ¬x = x + 1 → ¬x + 1 = (x + 1) + 1 (CdI; 1-8)

10 thus ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1) (UI; 9)

11 since ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1) → ∀x¬x = x + 1

(ADD)

12 thus ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 =

(x + 1) + 1)

(CI; 0, 10)

13 thus ∀x¬x = x + 1 (CdE; 11, 12)

In line 0, the proof is opened by an adduction sentence. Through the
utterance of the adduction sentence ‘since ¬0 = 0+1’ the proposition
‘¬0 = 0+1’ is adduced as a reason. As one can easily read off the
object-language surface, more precisely the performators, propositions
are adduced in lines 3 and 11 as well. In lines 1 and 2, two propositions
are assumed by a written utterance of two assumption sentences. In
the remaining lines, successive inferences are performed by utterances of
inference sentences. So, for example, in line 6 the sentence ‘thus x =
x+1’ is uttered in accordance with CdE and thereby the proposition ‘x
= x+1’ is inferred. In line 7 the negation of this proposition is inferred
in accordance with the repetition rule. By thus inferring a proposition
and its negation, a contradiction has been inferred on the basis of the
assumption in line 2. This allows NI in line 8, whereby the assumed
proposition is negated. In this way, a reductio subproof is closed. The
last assumption and all following inferences up to and including the one
in line 7 are thereby made unavailable. The segment from line 2 through
line 7 corresponds to a subproof in a Jaśkowski box calculus. However,
in such a calculus, the subproof would have to be boxed to show which
lines are available and which are not (↑3.5).

Because the assumption in line 2 has been discharged, the proposition
in line 8 has now been reached on the basis of the assumption in line 1,
which is now the last available assumption. By CdI, this assumption is
discharged as well and the conditional ‘¬x = x+1 → ¬x+1 = (x+1)+1’
is inferred in line 9. This again closes a subproof, which is marked
by the outer box in the Jaśkowski box-style proof under 3.5. Because
all assumptions containing the parameter ‘x’ have been discharged, the
proposition in line 9 can serve as a premise for the UI carried out in line
10. The remaining part of the proof proceeds as outlined above.
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With the proof under 4.1, one has a purely object-language proof
which does not rely on any commentary: It is clearly identifiable as a
proof in which three reasons are adduced  just as John’s natural lan-
guage proof is recognizable as such by any competent recipient (of course,
in the case of the formalization, we can also show that it is such a proof).
The rule commentary facilitates the understanding, but is not necessary
to identify the proof. In particular, the rule commentary is not needed
to distinguish inferred and adduced propositions. That the structure of
John’s original natural language proof is preserved, is illustrated by the
following comparison:

4.2. John’s proof and its formalization as a sentence sequence

0 First it holds that 0 is not identical with 0+1.

since ¬0 = 0 + 1

1 Now, assume k is not identical with k+1.

suppose ¬x = x + 1

2 Suppose k+1 was identical with (k+1)+1.

suppose x + 1 = (x + 1) + 1

3 It holds for all i, j that if i+1 = j+1, then i = j.

since ∀x∀y(x + 1 = y + 1 → x = y)

4 Hence k would be identical with k+1.

thus ∀y(x + 1 = y + 1 → x = y)

thus x + 1 = (x + 1) + 1 → x = x + 1

thus x = x + 1

5 On the other hand we have that k is not identical with k+1.

thus ¬x = x + 1

6 So, k+1 can’t be identical with (k+1)+1.

thus ¬x + 1 = (x + 1) + 1

7 Thus we have that if k is not identical with k+1, then also

k+1 is not identical with (k+1)+1.

thus ¬x = x + 1 → ¬x + 1 = (x + 1) + 1

8 Obviously this then holds for all k.

thus ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1)

9 But we know: If 0 is not identical with 0+1 and if

furthermore it is true for all k that given k is not identical

with k+1, then also k+1 is not identical with (k+1)+1,

then for all k: k is not identical with k+1.

since ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1)

→ ∀x¬x = x + 1
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10 Therefore it holds for all k that k is not identical with k+1.

thus ¬0 = 0 + 1 ∧ ∀x(¬x = x + 1 → ¬x + 1 = (x + 1) + 1)

thus ∀x¬x = x + 1

The calculus used here (↓5), regulates assumptions, adductions and
inferences in such a way that it is always defined which of the propo-
sitions reached before (if any) remain available as premises and which
propositions are made newly available by their assumption, adduction or
correct inference. Thus it can be shown that the formalization of John’s
proof under 4.1 is not, for example, a derivation from the assumptions in
lines 1 and 2, but a PA-derivation from the empty set, i.e., a PA-proof.
Which propositions are available in which lines of a given sentence se-
quence depends solely on this sentence sequence. For any given sentence
sequence there is thus just one correct commentary with respect to the
availability of propositions.

5. A speech act calculus

In this section, we provide some technical background to the preceding
section.24 We present a characterization of the derivation concept of
the speech act calculus we used to formalize John’s proof. This calculus
is a subproof calculus. However, subproofs do not have to be demar-
cated by commentary devices but can be read off a given derivation,
as illustrated in Section 4. The following inductive definition defines
under what circumstances H is a derivation of length k with the set X of
available sentence lines and the set Y of available assumption lines and
the set Z of adduction lines. A derivation will be a sentence sequence of
some finite length k, i.e., a function on the natural numbers i < k which
assigns to each i < k a sentence, i.e., an expression of the form pX Gq,
where X is a performator and G is a proposition (↑4). The proposition of
the sentence in the last line of a non-empty sentence sequence H will be
called the conclusion of H. In preparation, we define the extension of a
sentence sequence H of length k by a sentence S to be H ∪ {(k, S)}. H∗

is an extension of the sentence sequence H iff H∗ is a sentence sequence
and H is an initial segment of H∗.

The rule-compliant extensions of sentence sequences and the corre-
sponding adjustments in the availability sets will be characterized simul-

24 For notation and terminology, see also n. 11.
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taneously.25 We will set the empty sequence (i.e. ∅) as a base, for which
the set X of available sentence lines and the set Y of available assump-
tion lines and the set Z of adduction lines are all empty (clause (i)).
The inductive clauses then specify how a given derivation (so initially
the empty one) H of length k with the set X of available sentence lines
and the set Y of available assumption lines and the set Z of adduction
lines may be extended. This can be achieved by extending H by an ad-
duction sentence for a parameter-free proposition G (clause (ii-i)). Such
an extension will result in a derivation H∗ of the form

H

k since G
Here, H appears as an initial segment of H∗. H∗ will be of length k+1
and will have the set X ∪ {k} of available sentence lines, the set Y of
available assumption lines and the set Z ∪ {k} of adduction lines. Note
that the set of available assumption lines, the set of adduction lines, and
the set of available inference lines are always disjoint subsets of the set
of available sentence lines.

An extension of H may also be achieved by extending H by an as-
sumption sentence for a proposition G (clause (ii-ii)). Such an extension
will result in a derivation H• of the form

H

k suppose G
H• will be of length k+1 and will have the set X ∪ {k} of available
sentence lines, the set Y ∪ {k} of available assumption lines and the set
Z of adduction lines.

Under certain circumstances, H may also be extended by an inference
sentence. So for example, if H is of the form

· · ·
max(Y ) suppose D
· · ·
k-1 thus G
25 This follows the approach in [5], where a definition for derivations without

adduction lines is given. A more precise development of this kind of calculus can be
found in [4], where we followed the different and somehow more unwieldy approach of
defining certain segments in sequences which correspond to closed subproofs (including
the closing inference). For a presentation of the speech act calculus suitable for
introductory logic courses taught in philosophy departments see [29, chap. 4].
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where Y , the set of available assumption lines, is not empty, and D
is an available assumption which is not followed by another available
assumption, i.e., D is the assumption in the line max(Y ) of H, where
max(Y ) is the maximal member of Y , then one may extend H by an
inference of pD → Gq to a derivation H◦ of the form

· · ·
max(Y ) suppose D
· · ·
k-1 thus G
k thus D → G

H◦ will be a derivation of length k+1 (clause (ii-iii)). The set of available
assumption lines of H◦ will be Y \ max(Y ). So, the assumption will be
discharged by this conditional introduction and the subproof from line
max(Y ) to line k-1 will be closed. Accordingly, inference lines between
max(Y ) and k-1, including the latter, will also become unavailable. Ad-
duction lines, however, remain available. Also, we will have a new avail-
able line, namely k. So, the set of available sentence lines of H◦ will be
(X \ ({j | max(Y ) ≤ j ≤ k − 1} \ Z)) ∪ {k}, while the set of adduction
lines of H◦ will be just Z. The two other discharging inferences, nega-
tion introduction and existential quantifier elimination, work similarly
(clauses (ii-iv) and (ii-v)). In short: With each discharging inference
the subproof that legitimizes the inference is closed and all lines in this
subproof, with the exception of adduction lines, become unavailable.

Of course, H may under the right circumstances also be extended by
a non-discharging inference. So, for example, if there is an i ∈ X , i.e., if
there is an available line in H, whose sentence has the proposition pD ∧Bq or the proposition pB ∧ Dq, H may be extended by an inference of B.
Now, such an inference will always be legitimate, but it may not always
be treated as a simple, non-discharging conjunction elimination. For
example, it could coincide with a discharging conditional introduction.
In order to remove any ambiguity, such cases will always be treated as
discharging inferences. In order to achieve this, the clauses for the non-
discharging inferences (clauses (ii-vi)-a) through (ii-vi)-n)) are under an
exclusion clause, which demands that none of the conditions for a dis-
charging inference is met, i.e., that the same inference is not also covered
by conditional introduction, negation introduction, or existential quan-
tifier elimination. If this clause is not fulfilled, the inference will still be
legitimate, but the available (assumption) lines will change in accordance
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with the clauses for the discharging inferences. If the exclusion clause
is fulfilled, the set of available sentence lines will also be extended by
k, while the set of available assumption lines and, of course, the set of
adduction lines, remain unchanged. Now for the formal definition:

(i) (Base clause) The empty sequence is a derivation of length 0 with the set
∅ of available sentence lines and set ∅ of available assumption lines and
the set ∅ of adduction lines; and

(ii) (Inductive Clause) If H is a derivation of length k with the set X of

available sentence lines and the set Y of available assumption lines and

the set Z of adduction lines, then:
(ii-i) (Adduction clause) If G is a parameter-free proposition, then the

extension of H by psince Gq is a derivation of length k+1 with the
set X ∪ {k} of available sentence lines and the set Y of available
assumption lines and the set Z ∪ {k} of adduction lines; and

(ii-ii) (Assumption clause) If G is a proposition, then the extension of H
by psuppose Gq is a derivation of length k+1 with the set X∪{k} of
available sentence lines and the set Y ∪ {k} of available assumption
lines and the set Z of adduction lines; and

(ii-iii) (CdI clause) If Y 6= ∅ and D is the proposition of the sentence in
line max(Y ) of H and G is the conclusion of H, then the extension
of H by pthus D → Gq is a derivation of length k+1 with the
set (X \ ({j | max(Y ) ≤ j ≤ k − 1} \ Z))∪{k} of available sentence
lines and the set Y \ max(Y ) of available assumption lines and the
set Z of adduction lines; and

(ii-iv) (NI clause) If Y 6= ∅ and i ∈ X and max(Y ) ≤ i and D is the propo-
sition of the sentence in line max(Y ) of H and G is the proposition of
the sentence in line i of H and p¬Γq is the conclusion of H or p¬Γq
is the proposition of the sentence in line i of H and G is the conclu-
sion of H, then the extension of H by pthus ¬Dq is a derivation of
length k+1 with the set (X \ ({j | max(Y ) ≤ j ≤ k − 1} \ Z))∪{k}
of available sentence lines and the set Y \ max(Y ) of available as-
sumption lines and the set Z of adduction lines; and

(ii-v) (EE clause) If Y 6= ∅ and i ∈ X and max(Y ) = i + 1 and G
is the conclusion of H and D is a formula and b is a parameter
which neither appears in any line m of H with m ≤ i nor in G and
p∃x∆q is the proposition of the sentence in line i of H and [b,x,D]
is the proposition of the sentence in line max(Y ) of H, then the
extension of H by pthus Γq is a derivation of length k+1 with the
set (X \ ({j | max(Y ) ≤ j ≤ k − 1} \ Z))∪{k} of available sentence
lines and the set Y \ max(Y ) of available assumption lines and the
set Z of adduction lines; and
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(ii-vi) (Clauses for non-discharging inferences) If Y = ∅ or [Y 6= ∅ and

[B is not the conditional of the proposition of the sentence in line

max(Y ) of H and the conclusion of H] and [[there is no i ∈ X

with max(Y ) ≤ i and no G such that G is the proposition of the

sentence in line i of H and p¬Γq is the conclusion of H or p¬Γq is

the proposition of the sentence in line i of H and G is the conclusion

of H] or [B is not the negation of the proposition of the sentence

in line max(Y ) of H]] and [[there is no i ∈ X with max(Y ) = i + 1

and a formula D and a parameter b which appears neither in any

line m of H with m ≤ i nor in the conclusion of H such that p∃x∆q

is the proposition of the sentence in line i of H and [b,x,D] is the

proposition of the sentence in line max(Y ) of H] or [B is not the

conclusion of H]]], and
a) (CdE clause) If i, j ∈ X and D is the proposition of the sen-

tence in line i of H and p∆ → Bq is the proposition of the
sentence in line j of H; or

b) (CI clause) If i, j ∈ X and D is the proposition of the sentence
in line i of H and G is the proposition of the sentence in line j

of H and B is identical with pD ∧ Gq; or
c) (CE clause) If i ∈ X and the sentence in line i of H is identical

with pD ∧ Bq or with pB ∧ Dq; or
d) (BI clause) If i, j ∈ X and pD → Gq is the proposition of the

sentence in line i of H and pG → Dq is the proposition of the
sentence in line j of H and B is identical with pD ↔ Gq; or

e) (BE clause) If i, j ∈ X and D is the proposition of the sentence
in line i of H and pD ↔ Bq or pB ↔ Dq is the proposition of
the sentence in line j of H; or

f) (DI clause) If i ∈ X and D is the proposition of the sentence
in line i of H and G is a proposition and B is identical with
pD ∨ Gq or with pG ∨Dq; or

g) (DE clause) If i, j, l ∈ X and pD∨Gq is the proposition of the
sentence in line i of H and pD → Bq is the proposition of the
sentence in line j of H and pG → Bq is the proposition of the
sentence in line l of H; or

h) (NE clause) If i ∈ X and p¬¬Bq is the proposition of the
sentence in line i of H; or

i) (UI clause) If i ∈ X and D is a formula and x is a variable andb is a parameter which appears neither in any line l of H with
l ∈ Y nor in D and [b,x,D] is the proposition of the sentence
in line i of H and B is identical with p∀x∆q; or
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j) (UE clause) If i ∈ X and j is a closed term and p∀x∆q is the
proposition in line i of H and B is identical with [j,x,D]; or

k) (EI clause) If i ∈ X and D is a formula and x is a variable andj is closed term and [j,x,D] is the proposition of the sentence
in line i of H and B is identical with p∃x∆q; or

l) (II clause) If j is a closed term and B is identical with pj = jq;
or

m) (IE clause) If i, j ∈ X and D is a formula and x is a variable
and j0, j1 are closed terms and pj0 = j1q is the proposition
of the sentence in line i of H and [j0, x, D] is the proposition
of the sentence in line j of H and B is identical with [j1, x, D];
or

n) (R clause) If i ∈ X and B is the proposition of the sentence in
line i of H;

then the extension of H by pthus Bq is a derivation of length k+1
with the set X ∪ {k} of available sentence lines and the set Y of
available assumption lines and the set Z of adduction lines; and

(iii) (Closure clause) Else no H is a derivation of length k with the set X of

available sentence lines and the set Y of available assumption lines and

the set Z of adduction lines for any k, X, Y, Z.

To (partly) repeat; Clause (i), the base clause, stipulates that the
empty set is a derivation. In clause (ii), which contains the inductive
clauses, the rule-compliant extensions of a given derivation by a sentence
that result in a change of the set of available assumption lines or the
set of adduction lines are treated first: Extensions by (ii-i) and (ii-ii)
make a reason ((ii-i)) or an assumption ((ii-ii)) available; extensions by
(ii-iii) through (ii-v) result in the discharge of an assumption and close
the respective subproofs. The first part of (ii-vi) excludes extensions
by CdI, NI, and EE. The sub-clauses a) through n) then list all other
rule-compliant extensions by an inference sentence. These extensions
are allowed even if the exclusion condition is not satisfied. But if this is
the case, the respective extension is also an extension by (ii-iii), (ii-iv)
or (ii-v) and the set of available sentence lines and the set of available
assumption lines change accordingly.

Now we define: H is a T -derivation of G from M iff T is a set of
propositions and there are k 6= 0 and X, Y, Z such that H is a derivation
of length k with the set X of available sentence lines and the set Y of
available assumption lines and the set Z of adduction lines and M = {D
| there is an i ∈ Y and D is the proposition of the sentence in line i of H}
and {D | there is an i ∈ Z and D is the proposition of the sentence in line
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i of H} ⊆ T and G is the conclusion of H. With these definitions we have
unique readability for derivations: If H is a T -derivation of G from M for
any T , G, M , then, as usual, the conclusion of H is uniquely determined,
but, in addition, the set of available sentence lines, the set of available
assumption lines, and the set of adduction lines are uniquely determined
as well.26 Thus, it is always uniquely determined for any derivation which
propositions are available and which of those are available as assumed
or adduced or inferred propositions.27

Moreover, we define: H is a T -proof for G iff H is a T -derivation ofG from ∅. H is a (purely logical) derivation of G from M iff H is an ∅-
derivation of G from M ; and H is a (purely logical) proof for G iff H is an
∅-proof for G. The general unique readability for derivations also applies
to these special cases: For example, for any derivation it is uniquely
determined, for any given (decidable) T , whether or not it is a T -proof
for its conclusion. Deductive consequence relations can be defined in the
usual way.28

It is important to see that the preceding definitions and results rely
on the full illocutionary explicitness of sentence sequences in the speech
act calculus. Each sentence is uniquely determined as an assumption,
inference or adduction sentence for a certain proposition. This makes
it possible to implement Jaśkowski’s subproof approach in such a way
that for any given derivation subproofs are uniquely determined. On

26 This is shown by induction on the length of derivations.
27 Consider 4.1 as an example: Applying the inductive definition several times,

it can be shown that the sequence consisting of lines 0 to 7 is a derivation of length
8 with the set {0, 1, 2, 3, 4, 5, 6, 7} of available sentence lines and the set {1, 2} of
available assumption lines and the set {0, 3} of adduction lines. Thus it is a PA-
derivation of ‘¬x = x + 1’ from {‘¬x = x + 1’, ‘x + 1 = (x + 1) + 1’}. The way
the inductive definition works can be illustrated a bit more detailed: Building on the
preceding results clause (ii-iv) guarantees that the sequence consisting of lines 0 to 8
is a derivation of length 9 with the set {0, 1, 2, 3, 8} of available sentence lines and the
set {1} of available assumption lines and the set {0, 3} of adduction lines. Thus it is
a PA-derivation of ‘¬x + 1 = (x + 1) + 1’ from {‘¬x = x + 1’}. All this is determined
without recurring to the rule commentary. Proceeding this way, one vindicates the
earlier claim that the full sentence sequence under 4.1 (which does not include the
rule commentary to the right) is a PA-derivation of ‘∀x¬x = x + 1’ from ∅.

28 G is a deductive consequence of M (short: M ⊢ G) iff M is a set of propositions
and there is a derivation H of G from some N ⊆ M . G is a deductive consequence of

M under T (short: M ⊢T G) iff M is a set of propositions and there is an H such
that H is a T -derivation of G from some N ⊆ M . We then have for parameter-free T :
M ⊢T G iff M ∪ T ⊢ G.



Commentary and illocutionary expressions . . . 191

the other hand, the potential of the performators is only fully exploited
under the subproof approach. The use of performators alone does not
guarantee unique readability: The dependency approach still requires
a record of the premises used for inferences. Thus, the quasi-sequent
calculi developed by Hinst (e.g. [13]) and Siegwart (e.g. [27]) rely on a
commentary apparatus to keep track of assumptions. In contrast, under
the subproof approach, the order of sentences and subproofs determines
availability. It is only by combining the Hinst-Siegwart-approach with
that of Jaśkowski that the need for “bookkeeping” is eliminated.

6. Speech acts and commentary

In the speech act calculus, derivations are sequences of object-language
expressions, namely sentences. The purely object-language nature of
derivations alone, however, does not guarantee that the formalization
of John’s proof does not contain added commentary devices for “book-
keeping”. The calculi discussed in Section 3 can also be characterized
formally in such a way that no metalinguistic (or graphical) devices are
needed and indeed some of them are so characterized. This basically
requires that object languages are extended by new expressions and
derivations are defined not as sequences of formulas, but as sequences of
more complex entities. Thus, in Gentzen’s sequent calculus, derivations
are sequences of object-language sequents, with ‘⇒’ as an (auxiliary)
object-language symbol (see [10, pp. 179–180], [11, pp. 512–513], and
[24, p. 88]).

Obviously, our approach also follows this strategy: the usual formal
languages are extended by expressions of a new atomic category (perfor-
mators) and derivations are then not defined as sequences of formulas
but of sentences, i.e., of expressions which consist of an expression from
the new category followed by a formula. However, the analysis of the
calculi in Section 3 does not essentially depend on whether or not the
commentary devices are incorporated into the object language: deriva-
tions in the resulting calculi (would) still contain expressions which  in
contrast to the performators used in the speech act calculus  have no
counterpart in John’s proof.

With the provisions made in the preceding paragraph one may say
that the calculi considered in Section 3 rely on commentary where John’s
proof does not while discarding illocutionary expressions present in the
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original proof. Under the speech-act theoretic perspective adopted in
Section 4, John performs a sequence of speech acts when he puts for-
ward his proof, where each speech act consists in his utterance of one
of the sentences of the proof. According to this view, the illocutionary
expressions are not commentary on a sequence of propositions but an es-
sential part of the sentences that constitute the proof. For someone who
shares this perspective, the formal performators thus represent not some
commentary devices but essential constituents of the sentences that make
up the original proof. In this respect then, the formalization of John’s
proof in the speech act calculus is more natural than its formalizations in
the other calculi. Moreover, from such a speech-act theoretic perspective,
putting forward a natural language proof always consists in performing a
sequence of speech acts. Accordingly, under such a perspective, informal
proofs (and attempted proofs) are conceived of as sequences of  possibly
elliptical  sentences. Adding illocutionary operators to a formalization
of a proof in which the illocutionary status is not as clearly marked as in
John’s proof will then be an interpretative exercise that aims at making
something explicit that is needed for a full understanding of the proof
in any case, namely the illocutionary status of the sentences it consists
of. For someone who is not opposed to such a perspective, the speech
act calculus offers a format for a natural and uniform formalization of
(attempted) natural language proofs.29

Of course, natural language derivations often contain commenting
devices that resemble those used in the dependency and subproof calculi
from Section 3. However, such derivations can also be formalized as
sequences of sentences in the speech act calculus. Under the assumption
that utterances of proofs consist in the performance of certain sequences
of speech acts, the general naturalness of the speech act calculus lies
in the fact that natural language derivations that contain metalinguistic
phrases as well as those that do not can be uniformly formalized without
additional commentary devices. This is not true of the calculi presented
in Section 3. In the speech act calculus, subproof structures and available
assumptions in derivations are uniquely determined by the sequences of
object language sentences.30

29 Of course, calculi of this type can be constructed not only for classical reg-
ulations of inference but also for alternative ones. An extension to classical second-
order logic with a definite and an indefinite description operator and a “thinkability”
operator can be found in [25, Appendix II.ii].

30 Moreover, the speech act calculus may be used to represent failed proof at-
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We acknowledge that metalinguistic commentaries that indicate, for
example, the scope of assumptions or the rules applied in an inference,
can be very helpful. We do not want to suggest that there is something
inherently wrong with them as long as they are not obligatory. But
even independently from a speech act theoretic point of view, obligatory
metalinguistic commentaries are problematic if one wants “to express
proofs [. . . ] in a fully formalized object language” [2, p. 53: n. 121] and
holds with Church that

as long as any part of the proof remains in an unformalized meta-
language the logical analysis must be held to be incomplete. [. . . ]
Though we use a meta-language to set up the object language, we re-
quire that, once set up, the object language shall be an independent lan-
guage capable, without continuous support and supplementation from
the meta-language, of expressing those things for which it was designed.

[2, p. 53: n. 121]

Church’s demand  which is easily fulfilled for axiomatic calculi  can
also be fulfilled for linear calculi of natural deduction. The speech act
calculus shows that it is possible to do this in a natural way  by incor-
porating illocutionary expressions into our formal languages.
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tempts. Here, it seems to fare definitely better than the other approaches, since a
failed proof attempt can be represented as such by its formalization, without relying
on any additional commentary. In contrast, formalizations of failed proof attempts in
the calculi from Section 3 can sometimes also be commented on as a proof; in such
cases, the formalization without the commentary does not unambiguously represent
the fact that it is a formalization of a failed proof attempt and not of a proof.
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