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THE JouRNAL OF SYMBouc Looic 
Volume 37, Number 4, Dec. 1972 

COMPLETENESS OF AN ANCIENT LOGIC 

JOHN CORCORAN 

In previous articles ([4], [5]) it has been shown that the deductive system devel- 
oped by Aristotle in his "second logic" (cf. Bochenski [2, p. 43]) is a natural 
deduction system and not an axiomatic system as previously had been thought [6]. 
It was also pointed out that Aristotle's logic is self-sufficient in two senses: First, 
that it presupposed no other logical concepts, not even those of propositional 
logic; second, that it is (strongly) complete in the sense that every valid argument 
formable in the language of the system is demonstrable by means of a formal 
deduction in the system. Review of the system makes the first point obvious. The 
purpose of the present article is to prove the second. Strong completeness is demon- 
strated for the Aristotelian system. 

?1. The language. The logic in question was developed by Aristotle as an under- 
lying logic (in the sense of Church [3, p. 317]) for an axiomatized science. Because 
the question of whether Aristotle recognized the possibility of a science with an 
infinite vocabulary of nonlogical constants is irrelevant to present concerns, we 
simply assume a set V containing at least two characters to play the role of the 
vocabulary of "categorical terms." For logical constants we take four characters, 
A, N, S, and $ (not in V). The language L contains all strings consisting in a logical 
constant followed by two distinct nonlogical constants in V. Members of L are 
called sentences. If x and y are in V and X and Y are "corresponding" categorical 
terms (e.g., man, animal) the following are heuristic correspondence results: Axy 
(All X's are Y's), Nxy (No X's are Y's), Sxy (Some X's are Y's), $xy (Some X's 
are not Y's). 

The fact that each sentence contains two distinct nonlogical constants reflects a 
systematic avoidance by Aristotle of "sentences" such as Axx and Sxx. Extension 
of the language to accommodate such sentences would have rather trivial mathe- 
matical consequences but would entail rather more deviation from the Aristotelian 
text than the present framework requires. 

In terms of the grammar of L we make two further definitions which make con- 
tact with traditional terminology and which are useful below. An argument is an 
ordered pair (P, d) where P is a set of sentences (called the premises) and d is a 
single sentence (called the conclusion). Axy and Nxy are defined to be contradic- 
tories of Sxy and Sxy respectively (and vice versa) and C(d) indicates the con- 
tradictory of d. 

?2. The semantics. The semantic system S is defined as follows. An inter- 
pretation i of L is a function defined on V and having as values nonempty sets (cf. 
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?5 below). In order to characterize the association of truth-values with sentences 
under an interpretation i we extend the domain of definition of i to include all of L 
so that sentences in L get their expected truth values. Explicitly, iAxy = t if ix is 
included in iy and iAxy = f otherwise; iNxy = t if ix is disjoint with iy and 
iNxy = f otherwise; similarly for iSxy and i~xy. 

As usual, if id = t for some sentence d then i is said to be a true interpretation of 
d and if i is a true interpretation of every sentence in a set P then i is a true interpre- 
tation of P. The term "false interpretation" is not used. A sentence d is said to be a 
logical consequence of a set P of sentences if every true interpretation of P is a true 
interpretation of d. To indicate that this relation holds we write P 1 d. It is also con- 
venient to make further contact with "traditional" terminology by defining an 
argument (P, d) to be valid when P 1 d, otherwise invalid. P + Q is the union of P 
and Q and we always drop the brackets in the notation for unit sets. 

The following obvious facts concerning the semantics will play a role in develop- 
ments below. 

2.1. Semantic principles. Let x, y and z be different members of V. Let P be a 
set of sentences and let d and e be sentences. 

Law of Contradiction. For all i, id # iC(d). 
Conversion Laws. (Cl) Nxy I Nyx, (C2) Axy 0 Syx, (C3) Sxy I Syx. 
Laws of Perfect Syllogisms. (PSI) Azy + Axz I Axy, (PS2) Nzy + Axz I Nxy, 

(PS3) Azy + Sxz 0 Sxy, (PS4) Nzy + Sxz I $xy. 
Reductio Law. P 1 d if P + C(d) f e and P + C(d) 0 C(e). 

?3. Aristotle's deductive system. The system of deductions treated in Aristotle's 
second logic seems to be a natural deductive system (i.e., has several rules but no 
axioms) which consists in two distinct classes of deductions-the direct deductions 
and the indirect deductions. Generally speaking, a direct deduction is a finite list 
beginning with the premises, after which each new line is obtained by applying a 
rule to previous lines and, of course, ending with the conclusion. An indirect 
deduction, on the other hand, does not contain its conclusion but rather it is, in 
effect, a direct deduction containing the contradictory of the conclusion as an 
added assumption and having a pair of contradictories for its last two lines. For 
Aristotle, an indirect proof of a conclusion from premises was obtained by deducing 
contradictory sentences from the premises together with the contradictory of the 
conclusion (for detailed scholarship see [5]). 

We proceed with an exact definition of the system D of deductions. First, restate 
the laws of conversion and perfect syllogisms as rules of inference. Use the terms 
'a D-conversion of a sentence' to indicate the result of applying one of the three 
conversion rules to it. Use the terms 'D-inference from two sentences' to indicate 
the result of applying one of the perfect syllogism rules to the two sentences. 

A direct deduction in D of d from P is defined to be a finite list of sentences 
ending with d, beginning with all or some of the sentences in P and such that each 
subsequent line (after those in P) is either (a) a repetition of a previous line, (b) a 
D-conversion of a previous line or (c) a D-inference from two previous lines. 

An indirect deduction in D of from P is defined to be a finite list of sentences 
ending in a pair of contradictions [e and C(e)], beginning with a list of all or some of 
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the sentences in P followed by the contradictory of d, and such that each subsequent 
additional line (after the contradictory of d) is either (a) a repetition of a previous 
line, (b) a D-conversion of a previous line or (c) a D-inference from two previous 
lines. 

All examples of deductions will be annotated according to the following scheme. 
(1) Premises will be prefixed by '+' so that '+ Axy' can be read "assume Axy as 

a premise." 
(2) After the premises are put down, we interject the conclusion prefixed by'?' so 

that '?Axy' can be read "we want to show why Axy follows." 
(3) The hypothesis of an indirect (reductio) deduction is prefixed by 'h' so that 

'hAxy' can be read "suppose Axy for purposes of reasoning." 
(4) A line entered by repetition is prefixed by 'a' so that 'aAxy' can be read "we 

have already accepted Axy." 
(5) Lines entered by conversion and syllogistic inference are prefixed by 'c' and 

's' respectively. 
(6) Finally, the last line of an indirect deduction has 'B' prefixed to its other 

annotation so that 'BaAxy' can be read "but we have already accepted Axy,"9 
etc. We define an annotated deduction in D to be a deduction in D annotated accord- 
ing to the above scheme. 

Examples. 
(1) Let M be predicated of no N 

and of all X. 
(conclusion omitted in text) 

Then, since the negative premise converts, N belongs to no M. 
But it was supposed that M belongs to all X. 

Therefore N will belong to no X. 
+Nnm 
+Axm 
(?Nxn) 
cNmn 
aAxm 
sNxn 

(2) Again, if M belongs to all N 
and to no X, 

X will belong to no N. 
For if M belongs to no X, 

X belongs to no M. 
But M belonged to all N. 

Therefore, X will belong to no N. 
+Anm 
+Nxm 

?Nnx 
aNxm 
cNmx 
aAnm 
sNnx 
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To exemplify an indirect deduction we do the same for [1, 28b, 18]. 

(3) For if R belongs to all S, 
but P does not belong to some S, 

it is necessary that P does not belong to some R. 
For if P belongs to all R, 

and R belongs to all S, 
then P will belong to all S; 

but we assumed that it did not. 
+Asr 
+ $sp 
?$rp 
hArp 
aAsr 
sAsp 

BaSsp 

We give three examples above; two of direct deductions and one of an indirect 
deduction. The others raise no problems. First we reproduce two of Aristotle's 
deductions ([1, 27a, 5-15]; [7, p. 34D, each followed by the corresponding anno- 
tated deductions in D. 

Readers can verify (by "translating" Aristotle's proofs of the syllogisms he 
proved, using ingenuity in the other cases) that all valid arguments in any of the four 
traditional figures are deducible in D. 

3.1. The reduced deductive system. The system D above, in all essential respects 
due to Aristotle, is unusual from a modern point of view because it lacks a reduction 
rule and instead has a special class of deductions, viz. the indirect deductions. The 
essential points are two: First, the conclusion of an indirect deduction does not 
occur as a subsequently usable line in the indirect deduction; and (consequently) 
second, there are no deductions employing a nested (or even iterated) reductio 
strategy. One key point in the proof of strong completeness shows in effect that 
multiple reductio strategies are not necessary. This is Lemma M2 below. Because 
of its logical form, it is not surprising that it is easier to prove Lemma M2 for a 
weaker system than it is for D itself. The weaker system RD is obtained from D 
by deleting the rules corresponding to C3, PS3 and PS4. Aristotle himself had con- 
sidered a system very close to RD and had observed (but not proved, evidently) that 
it was equivalent to D [5, ?4.2.1]. 

P F d means that there is a deduction in RD of d from P. The balance of the paper 
proves that if P 0 d then P F d. 

3.2. Some properties of the deductive system RD. The first thing to notice is that 
the property of being a deduction is unaffected by permutation of premises. Next 
notice that the operands of all of the rules (except repetition) are "universal" 
sentences (Axy or Nxy) so that once a "particular" sentence (Sxy or Sxy) gets into 
a deduction thereafter it can only be repeated. In particular, one may delete from 
a direct deduction all occurrences of all particular sentences (except the conclusion 
if it is particular) and obtain thereby another direct deduction of the same con- 
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clusion from the same premises always (and in case a premise was particular, 
from a smaller set of premises). Consideration of the implications of having a 
particular sentence as the hypothesis of an indirect proof leads to Lemma Ml. 

LEMMA Ml. Let e be universal and let P be an indirect deduction of e from S + d. 
Then either there is an indirect deduction of C(d) from S or else there is a direct 
deduction of e from S + d. 

Assume the hypothesis. Without loss assume that in P the premises from S come 
first, then d, then C(e), then the intermediate lines, finallyf and C(f). Since e is 
universal C(e) is particular. If C(e) is neitherf nor C(f), then every occurrence of 
C(e) can be deleted producing a direct deduction from S + d which ends with f 
and C(f). But this is an indirect deduction of C(d) from S. Now suppose that C(e) 
is eitherf or C(f). In this case P ends with e and C(e), perhaps not in that order. 
In any case every occurrence of C(e) can be deleted, producing a direct deduction 
of e from S + d. Q.E.D. 

LEMMA M2. If S + d F e and S + d F C(e) then S F C(d). 
Assume the hypothesis and let P and PC be deductions of e and C(e), respectively, 

both from S + d. Without loss of generality, assume that d is the last premise in 
both and that both contain the same sentences from S. There are three cases 
according as both, only one, or neither of P and PC are direct. The first two cases 
are obvious and the third uses Lemma Ml. Q.E.D. 

A set of sentences is inconsistent if there are two deductions having all premises in 
the set and having contradictory conclusions. Otherwise, a set is consistent. A con- 
sistent set having no consistent supersets is maximally consistent. These definitions 
yield Lemma A using the previous lemma. 

LEMMA A. Let S be maximally consistent. Then the following hold: 
(0) d ES Siff S F d; 
(1) exactly one of Axy, Sxy E S; 
(2) exactly one of Sxy, Nxy E S; 
(3) at least one of Sxy, $xy E S; 
(4) at most one of Axy, Nxy e S. 

?4. The completeness proof. By a variant of a familiar argument, completeness 
is proved once we see how to construct a true interpretation for an arbitrary 
maximally consistent set. 

There is a rather "natural" class of interpretations, constructible using subsets of 
V as follows. Let U be any class of subsets of V. For each such U there is a unique 
naturalfunction f from V into the power set of U such that, for each x in V,fx is the 
class of sets in U containing x. The idea, of course, is that U is the "universe of 
discourse" whose "objects" are subsets of V and that the property associated with 
the "term" x is the property of having x as a member. In case U contains, for each 
x in V, at least one set containing x then the natural function f is actually an inter- 
pretation. We call such interpretations natural. 

Under a natural interpretation a universal sentence (Axy or Nxy) says that certain 
objects are not in U. In particular, Axy says that all objects containing x but lackingy 
are excluded from U and Nxy says that all objects containing both x and y are excluded 
from U. It will be shown that if one starts with PV, the power set of V, and then, for 
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a given maximally consistent S, one deletes from PVexactly those objects "excluded 
by" universal sentences in S, the result is a set whose natural function f is a true 
interpretation of S. Let the result of deleting from PV the objects excluded by S be 
called U(S). In particular we have the following theorem which is immediate from 
the Lemma B (stated just after). 

THEOREM. If S is maximally consistent then the naturalfunction based on U(S) 
is a true interpretation of S. 

LEMMA B. Let S be maximally consistent. Then the following hold: 
(0) for each x in V, U(S) contains at least one set containing x (i.e., the natural 

function is an interpretation); 
(1) Axy e S if U(S) contains no sets containing x but lacking y; 
(2) Nxy e S if U(S) contains no sets containing x and y; 
(3) Sxy E S if U(S) contains a set containing x and y; 
(4) $xy E S iff U(S) contains a set containing x but lacking y. 

The lemma is established as follows. Clause (0) is proved below and similar 
reasoning shows the 'if' parts of clauses (1) and (2). The 'only if' parts of (1) and 
(2) are by definition of U(S). Clauses (3) and (4) follow from the previous clauses 
by Lemma A. 

In order to express proofs of the clauses succinctly, some notation is needed. For 
x in V, [x] is any subset of V containing x. For x, y in V, [xy] is any subset of V con- 
taining both x and y while [xA] is any subset of V containing x but lacking y. If Y is 
a subset of V then x + Y is the union of unit set x and Y. 

Notice that a positive sentence, Axy, cannot exclude V and that a negative sen- 
tence, Nxy, cannot exclude a unit set. Another useful fact is that any set containing 
all sentences Axy, for y in a set Y, and any sentence Nuv, u and v in x + Y, is incon- 
sistent. 

To see clause (0) let S be maximally consistent and suppose that x is in V but that 
no [x] is in U(S). Thus {x} is not in U(S). Since {x} is excluded only by sentences 
Axy, for some y, S must contain such a sentence. Let Axy' be one such sentence and 
let Ybe the set of y in V for which Axy is in S. x + Y must be all of V. [Otherwise 
since x + Y is excluded and consistency precludes any Nuv (u, v in x + Y) from 
being in S we must have Ayz in S for y in Y and z not in x + Y. But since Axy and 
Ayz are both in S, maximality requires that Axz is in S. So z is in Y. A contradic- 
tion.] Thus S contains all sentences Axy (y in V and distinct from x). Since V itself 
is excluded and since V cannot be excluded by any sentence Auv, S must contain a 
sentence Nuv. This contradicts consistency. Q.E.D. 

?5. Comments and corollaries. It is interesting to notice that Aristotle himself 
had given some thought to the problem of proving strong completeness of his own 
system [1, Book I, Chapter 23]. There is no question that he thought that he had 
shown the deductive equivalence of the system D to the reduced system RD and 
that he used the reduction in his deliberation concerning strong completeness of D. 
Unfortunately, he does not seem to have been clear enough about his own seman- 
tics to formulate the problem precisely and it is certain that he had not demon- 
strated the result. 

The fact that Aristotle's metaphysics required that each universal term hold of at 
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least one particular provides the motivation for assigning nonempty sets to "terms" 
in addition to providing the key to a theoretical account of why Aristotle's logic had 
"existential import." Incidentally, in view of the above systematic account, it 
seems wrong to attribute "existential import" to sentences-the existential import 
clearly belongs to "terms" relative to the semantics. 

Note that there are no logical truths in the above system; i.e., that for all c, if P 
is empty then c is not a logical consequence of P. Aristotle systematically avoided 
sentences having two occurrences of a single term. This may explain why there is no 
doctrine of logical truth in the Aristotelian corpus. 

The referee pointed out that decision procedures for monadic logic are easily 
adapted for this system. 

Acknowledgements. A paper containing the same result for a stronger system 
was presented in June 1971 to the Mathematics Department of Laval University, 
Quebec, Canada. Peter Malcolmson (Department of Mathematics, University of 
California, Berkeley) discovered and proved Lemmas MI and M2, making it 
possible to obtain the present result. 

ADDED IN PROOF. In February of 1972 it came to my attention that Timothy 
Smiley (Clare College, Cambridge) had developed an "interpretation" of 
Aristotle's logic which agrees in all substantial points with mine. In addition, 
he had demonstrated strong completeness for his system (which is slightly stronger 
than mine) and he had obtained certain other results which go beyond the present 
study. His results were then to be published in Journal of Philosophical Logic. 
Needless to say, prior to February 1972 Smiley and I had worked in complete in- 
dependence of each other. 
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