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THE NATURE OF A CORRECT

THEORY OF PROOF AND ITS VALUE

JOHN CORCORAN

There are few employments of life in which it is not sometimes
advantageous to pause for a short time, and reflect upon the nature
of the end proposed. --Boole

This is the second of a series of three articles dealing with application
of linguistics and logic to the study of mathematical reasoning, espec-
ially in the setting of a concern for improvement of mathematical educa-
tion. The present article presupposes the previous one, Herein we
develop our ideas of the purposes of a theory of proof and the criterion
of success to be applied to such theories. In addition we speculate at
length concerning the specific kinds of uses to which a successful theory
of proof may be put vis-a-vis improvement of various aspects of mathema-
tical education. The final article will deal with the construction of
such a theory.

1. PROOFS AND RULES OF INFERENCE

As we have been using the word above, a proof is an articulation of
deductive reasoning from premises to conclusion. Thus, when a mathemati-
cian writes a proof he is primarily interested in communicating his
reasoning to others, He is explaining to others his reasoning that if
the premises are true, the conclusion must also be true. Secondarily,

he is recording a mental process/event--viz., the particular process of
reasoning from those particular premises to that particular conclusion
during a particular time interval.

Regularity in Proofs. If we consider proofs that we have written or if
we survey the proofs found in the literature of mathematics we find many
repetitions of simple patterns. This is a clue to the fact that the
writing of proofs is a rule-governed activity. However, if we recall
our experiences we will notice that in writing proofs we do not think of
ourselves as following rules. It is only after the fact that we see the
patterns and postulate the existence of the rules to account for the
regularity. This situation is analogous to the situation involving
writing of sentences. After seeing many examples of sentences, we notice
repeating patterns and postulate the existence of rules to account for

16The nature of rule-governed activity is treated in several articles
in this book.
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196 Corcoran

the regularity. Sentences are constructed according to rules but we are
not coniﬁ}ous of following rules in writing sentences. The same with
proofs.

When you write a proof you are generally doing (or redoing) the reasoning
that you are expressing in the proof. Moreover, when you are reasoning
in a particular branch of mathematics (e.g., geometry or arithmetic) you
are generally thinking about the subject matter of that branch--although,
as Hilbert, Boole and others point out, if your reasoning is correct, the
subject matter is irrelevantlgnd the reasoning would apply equally well
to any other subject matter. The point that I am making is that when
you are writing a proof you are too busy to think of any rules even if
you knew which ones to think of. This is exactly analogous to speech:
when you utter a sentence you are generally thinking about what the. sen-
tence is about and thus are too busy to bother with rules. Indeed, for
example, as you begin to learn a foreign language in a classroom situation,
as long as you have to think of the rules you generally make rather dull
conversation because you are too busy to give much thought to what you
are talking about. Thus, carrying this over to reasoning, if you knew
the rules explicitly and actually thought of them while you reasoned you
would likely not get very far in your mathematics.

Rules of Inference. Let us use the term '"rule of inference' to refer to
the rules according to which proofs are constructed. The rules of infer-
ence are rules for constructing proofs in the same way that the rules in
a sentential grammar are rules for constructing sentences. Because of
our hypothesis that the discourse level, which includes the proofs, must
have kernel/compound structure there will be two types of rules: initial
string rules asserting that certain strings are proofs ab initio and
production rules which build up compound proofs from simpler ones. As a
result of my own experience in formulation of rules of inference it seems
that each production rule can be written in the following form: if such-
and-such is a proof then the result of adding so-and-so to the end of it

17The question of the reality of rules of either sort is in many
respects analogous to the question of the reality of language structure
briefly mentioned above in Section 3 of the first article in this series.

1 he formal nature of reasoning was clearly presuppcsed if not ex-
plicitly recognized even by Aristotle. This is shown in my as yet unpub-
lished article "A Mathematical Model of Aristotle's Syllogistic.' It was
explicitly recognized probably as early as 1851 by Boole (pp. 235ff).
Hilbert's remarks quoted by Reid (pp. 57ff) show that he also was well
aware of this fact very early in his career. However, despite the long
history of this idea and despite widely published warnings by prominent
mathematicians concerning misconstruals (e.g.,Poincaré, pp. 5ff) it has
nevertheless been taken to imply that reasoning itself consists in a
mindless application of computatiornal techniques. The important point to
realize in connection with present purposes is that although subject mat-
ter or content is irrelevant to soundness of reasoning in the sense that
sound reasoning about one subject when reinterpreted correctly is equally
sound when applied to anotheryit is still the case that reasoning divor-
ced from all subject matter rarely, if ever, occurs in practice. Even
Hilbert's heralded formal treatment of geometry was, by Hilbert's own
admission (p. 3), a codification of the fundairental facts of our spatial
intuition. Indeed, were Hilbert's proofs not understood in this way
they would scarcely be understandable.




The Nature of a Correct Theory of Proof and Its Value 197

is also a proof.19 This implies that each production-type rule of infer-
ence has the effect of lengthening an already existent proof.

Since proofs frequently begin with assumptions laid down without proof,

we may suppose that one initial string rule says that any finite list of
sentences may be written down to start a proof provided that each such
sentence is clearly marked as an assumption. Thus we might state the
premise rule as follows: any finite list of sentences of the form 'Assume
p'(for p a sencence)is a proof. Examples of production-type rules of
inference are easy to think of. The rule of detachment (or modus ponens)
can be stated: Any proof containing both p and 'if p then q' may be len-
gthened by adding q onto the end. Many other rules will come to mind.

Knowledge of Rules of Inference. It is important to distinguish a stronger
and a weaker sense in which one may know a rule of inference. Let us say
that a person has weak knowledge of a rule of inference if he reasons in
accord with that rule. Thus weak knowledge of a rule of inference is a
non-self-conscious kind of knowledge. All mathematicians and most people,
I imagine, have weak knowledge of quite a few rules of inference although
few people are self-conscious about the rules according to which they
reason. On the other hand, let us say that a person has strong knowledge
of a rule of inference if he can explain the details of the rule, point-
out places where it is used, etc. Strong knowledge of a rule of inference
is a very self-conscious kind of knowledge. Mathematicians generally

have weak knowledge of many rules of inference and strong knowledge of
very few. A logician who is poor at reasoning may have strong knowledge
of many rules of inference and weak knowledge of very few, although most
logicians, it seems, have weak knowledge and strong knowledge of many
rules of inference.

The same distinction carries over to knowledge of rules of sentence con-
struction. All speakers of English have weak knowledge of many senten-
tial rules whereas only linguists can be expected to have strong knowledge
of more than a few such rules. Linguists make it their business to have
strong knowledge of rules of sentence construction whereas other speakers
are content to be able to use the rules, i.e., to have weak knowledge of
the rules.

Naturally, it is not to be expected that everyone has even weak knowledge
of all rules of inference. Certainly the high school freshman could not
be expected to know all of the rules of inference used by the professicnal
mathematician. In a sense, knowing a rule of inference involves an under-
standing of a type of logical connection. Of course, as people acquainted
with mathematical education, we have all had the discouraging experience
of seeing a student mimic a teacher's pattern of reasoning without under-
standing it. In such cases, I believe, we will always be able to ascer-
tain that the studeat has not learnecd the rule, but only the superficial
aspects of a few applications of it. Nevertheless, I wust acknowledge

the theoretical possibility of a student who knows how to use an impres-
sibly large class of rules without understanding any of them. Such a
student could verify a cerrect proof of a conclusion frow some assumptions

l%br purcly heuristic reasons we are uwsing the term "iroof' in such
a way that a partial proof (initial segment) is counted as a proof. Thus,
a finished proof will be a ''proof" which satisfies certain additional
conditions. This issue will be decalt with in the third article.
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without believing that the conclusion actually followed from them--i.e.,
he would not be willing to risk anything to defend the thesis that,if the
assumptions were true,then the conclusion would necessarily also be true.
(Cf. fn.20below.)

Even though a given person may not know all of the rules of inference (as
the skills of mathematical reasoning evolve new rules may come into use),
it is most likely the case that most normal high school freshmen know
several of the simpler rules. DMoreover, it is my view that some of the
more complex rules are learned by developing skill in the use of the simp-
ler rules and, then, seeing how steps may be skipped. This is certainly
not to suggest the obviously wrong conclusion that 'quantum jumps'' do not
occur. For example, it was probably not until the late 19th century

that mathematicians began using the choice rule _infer (Ef)(x)Rxf(x) from
(x)(Ey)Rxy] and it is difficult to see how this rule could be broken down
into a deduction using significantly simpler rules. Indeed, "quantum
jumps' must have occurred--otherwise we would have no rules at all.

|

The opinion concerning acquisition of knowledge of some of the more com-
plex rules means that after a student has gone through a certain fixed
pattern of detailed reasoning several times he may develop a feel for the
upshot of the pattern and begin to omit the details in future proofs--
thus, in effect, gaining weak knowledge of a more complex rule. tlie may
imagine that the professional mathematician, after years of experience
in deductive reasoning, has developed weak knowledge of very complex
rules well beyond the comprehension of beginning students. From this
point of view, it is natural to expect that as mathematical reasoning
becomes increasingly sophisticated, more and more complex rules of in-
ference will cvolve.

If we wish we may even speculate that the mathematics student has two
kinds of ‘''vocabularies' of rules--an active vocabulary that he can
actually use in doing proofs and a passive vocabulary of rules which he
can "follow" but not use. This sort of hypothesis may partially account
for inability of students to recreate reasoning that they have followed
in class.

Correctness of Rules of Inference. We¢ may wonder about correctness and
incorrectness of rules of inference--is it conceivable that a small
group of persons or even a whole society writes proofs according to in-
correct rules? Indeed, suppose that everyone wrote proofs according to
a certain rule, would not the universal acceptance of a rule make it
correct? On a certain level, these are very easy questions once we
recall that a proof is designed to show that a certain conclusion f{ollaous
from certain premises. If a conclusion follows from some premises then
it is impossible that the premises are true and the conclusion false.
Thus if a system of rules could be used to prove a false sentence f{rom
a set of true sentences then certainly at least one of the rules is in-
correct or, in the terminology of logic, unsound. Thus, it is possible
that a small group or ever a whole society writes proofs according to
incorrect rules. (It is possible but I have never seen it happen--al-
though 1 have seen pecple make mistakes in proofs.) Moreover, concern-
ing this second question we can say tnat ¢ unlversal acceptance of a
rule of inference would not make it sound.

201¢ is instructive as well as amusing to imagine a “country' in
which the system of reasoning devised by Copi (1954) were adopted as
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The Nature of a Correct Theory of Proof and Its Value 199

Incidentally, it follows from what has been sald above that if a certain
society writes proofs incorrectly then possibly someone could discover
that fact--however, if a society writes proofs correctly then there seems
to be no way of finding out for sure that it does.

Parenthetically, I might add here that if I were an Intuitionist, I would
have said that I had seen examples of the use of unsound rules. The
Intuitionist, e.g. Heyting (1956), would say that most mathematicians use
unsound rules and that much of the literature of mathematics contains in-
correct proofs. In particular, Intuitionists regard one of the forms of
indirect proof as unsound. Let us consider this in a little more detail.
The kind of indirect (or reductio ad absurdum) reasoning involved in the
standard proof of the irrationality of V2 from the axioms of arithmetic
proceeds, after the (tacit) assumption of the axioms, by assuminnghat
V2 = n/m for some integers n and m and deducing a contradiction. This
sort of reasoning is regarded as sound by the Intuitionists because what
the Intuitionist means by "not p' is that the assumption of p leads to a
contradiction. However the Intuitionist does not regard as sound the
other reductio rule which allows one to prove p from some assumptions by
assuming 'mot - p" and deriving a contradiction. For him this would only
prove "not-not-p'" from original assumptions. '"Not-not-p' means that it
is absurd to assume that p is absurd and, for the Intuitionist, this does
not in turn mean that p itself is true. This view leads to the rejectien
of one rule of double negation (any proof containing '"not-not-p" may be
lengthened by adding p)’and to the rejection of the rule of excluded
middle (any proof may be lengthened by adding 'p or not-p").

2. THEORIES OF PROOF

By a theory of proof for English, say, I mean a discourse grammar (1)
which is intended to describe some or all of the proofs expressible in
*English and (2) whose rules are intended to be rules of inference known
y persons who express their reasoning in English. If we are given such
a theory, we may want to inquire concerning its correctness and its com-
prehensiveness. It would be natural to call it correct if each of its
rules were used by some speakers of English. (There are, of course,
other possibilities but this one will suffice in this context.) Further-
more, it would be natural to call it comprehensive if every rule used by
Jany speaker of English were included among its rules. Of course, the
correctness and the comprehensiveness of a given theory of proof would
be relative to a given time in order to leave open both the possibility
of "old" rules being abandoned and also the possibility of "new' rules

1E“azbeing "devised."
~

<The hope of ever getting a correct and comprehensive theory of proof is
“dim. But it is certainly possible to contribute toward such a theory.

—gThis would be done first by considering one's own reasoning and trying to

Yformulate the rules implicit therein. The next step would be to survey
a?he mathematical literature in an attempt to find correct proofs that
are not constructible by means of one's own rules and which, therefore,

P}may ve presumed to be constructed according to "new' rules. Afcer some
» “*of these were formulated the continuation of the project would involve

2

<=/ : . . .
"arguments' whose respective conclusions are deducible from their respec-

"official reasoning." Parry (1965) has discovered several invalid

tive premise sets in Copi's system.
21lCauman (1966) gives an interesting discussion of this proof.

Qb




200 Corcoran

getting other workers to formulate their own rules and to help in the
survey of the literature. It is hard to imagine how one could ever deter-
mine whether a particular theory were comprehensive and, of course, if a
theory were comprehensive relative to a fixed time it may very well not

be comprehensive relative to a later time.

To many readers,the above will sound at least utopian if not far-fetched.
It may very well be utopian but, given the Chomsky-Harris idea of trying
to develop a sentential grammar of English, the above can easily be seen
as an application of the same core idea to a part of the totality of
English discourses. Thus, the idea of a comprehensive discourse grammar
for all of English is even more utopian. Now, as for being far-fetched,
I would simply reply that it is no more far-fetched than the ideal of a
comprehensive sentential grammar of Englishjand a considerable hody of
researchers are developing this today.

As soon as one seriously considers the project of working toward a cor-
rect and comprehensive theory of proof in English, he is quickly faced
with a crucial consideration. Since a discourse grammar takes as a start-
ing point a sentential grammar, and since a sentential grammar for Eng-
lish does not exist in anything like a complete form, it becomes clear
that the project cannot be begun in a systematic fashion. This objection
is well-taken but fortunately a reasonable substitute for a sentential
grammar is available at least for the part of English used in mathemati-
cal proofs. As a result of centuries of logical analysis of mathematical
discourse we now have formally defined symbolic languages which are suf-
ficiently rich so that all of mathematical discourse can be symbolically
stated 2 Thus, we may choose a formal language into which to translate
proofs and use the grammar of this formal language as the seatential
grammar needed for the theory of proof. Taking this path our resultant
theory of proof will necessarily be an idealization of an actual theory
of proof in the same sense that, say, a formal language for arithmetic

is an idealization of the part of English used in discourse about arith-
metic. If it so happened that a group of wmathematicians actually used

a formal language in their investigations and they wrote their proofs in
the formal language then we could investigate the body of proofs as such
without translating and without regarding ourselves as developing an
idealization. (Cf. Church (1956), pp. 2, 3, 47, fn., 108).

22¢urrent symbolic languages can express all mathematical statements
only in the sense that to each mathematical statement there corrcsponds
a symbolic sentence having the same truth conditions. This is not to
say that for every mathematical statement there corresponds an equivalent
symbolic sentence which makes the same statement in _the same way. For
example, '"No even number is odd" would be glossed as '~E§x(£z&0x)' Le-
cause in none of the current Janguages do we find a 'nmothing quantifier."
Moreover, rhe phrase 'a, b, and ¢ are distinct objects, which ¢ccurs re-

peatedly in mathematics,must be glossed in current languages by s tortured
coustruction involving a conjunction of three inequalities. Problems of
this snrt, once noticed, are casily solved. Indeed, Lewis and L

(pp. 3061f, 335ff) have solved the above two problems. lowever,
problems must be solved before a comprehensive theory of prooi can be
constructed. The reason is that the variety of regular reasoning pessible
in a language depends on the linguistic devices available.
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The Nature of a Correct Theory of Proof and Its Value 201

Moreover, the use of the symbolic language may in the end be seen as a
distinct advantage as it may enable the theory to tranésend English and
provide a theory of proof for other languages as well. However, one
should not overlook the possibility that the idiosyncrasies of the various
languages will also make themselves known on the discourse level and, in
particular, in the proofs expressible in the various languages. This is
not to suggest that a conclusion may be provable from certain premises

in one language but not in another, though this may be true. Our sugges-
tion was that even if exactly the "same' conclusions are provable from
the "same” premises in two different languages it may turn out that there
are means of doing it in one language not available to the other. DBoth
of these hypotheses are likely--and perhaps interesting to investigate.

3. THE VALUE OF A THEORY OF PROOF

Before we can consider the possible value of a theory of proof, we should
try to determine specifications for a theory which could actually be
developed. Otherwise, our speculations would be too hypothetical to be
very interesting,.

In the first place we postulate the existence of a managably small set of
simple rules of inference which must be known in order, for cxample, to
be able to prove the main theorems of plane geometry and arithmetic. It
is immaterial whether these rules, which we will call the basic rules,
arc redundant. [A set of, say, three rules is redundant if everything
that can be proved using all three can also be proved using only two.]

Ve can easily imagine that the basic rules can be discovered. It is my
opinion that the basic rules could be discovered and formulated within

a short time by several logicians working with several high school math-
cmatics teachers--provided that the mathematics teachers (1) had been

in the habit of making up new proofs and encouraging their students to
make up new proofs and (2) had heen developing geometry in different ways
from year to year. In other words, the mathematics teachers working on
the project must have some wide experience to refer to in these matters.
“hat T have in mind as a model is the situation wherein several linguists
work with several native informants in developing a sentential prammar of
an exotic language.

In order to discuss the value (utility) of a theory of proof ihen let us
imagine that we have the basic rules neatly formulated. Now, when we
are asking about the value of this theory of proof what we are really
concerned with is the pessible ansvers to the following question: how
could a mathematical educator use this theory to improve mathematical
ceducation?

e of regarding symbelic languages as idealizations o: nacural
languages scme linguists and legicians prefer to dictingaish "

cal ferm'" of a sentence from its |
volization of a sentern

e jopi-
srammatical form' and to resard s
TG express its legrical
his point of view a discourse tased on a syubolic lan
vould generate the logsical forms of discourses (or discourse PL B Iruc-
tures). Grammatical forms or surface structures of sentences and dis-
courses are thought of as obtained from their logical forms or deep struc-
tures by means of encoding functions called trancformations (el

Keenan, 1969).

s an




202 Corcoran

A theory of proof which included the basic rules would provide strong
(self-conscious) knowledge of the rules of inference commonly used in
elementary mathematics. It seems to me that there arc four areas within
mathematical education in which such knowledge would be of use, viz.yin
teaching, in testing and guidance counseling, in curriculum design,and
in attempts to understand the psychology of mathematical learning.

Teachinp. One important part of a mathematical education is learning to
reason deductively and developing skill at it. There may be much more to
learning to reason than merely acquiring knowledge and skill in the use of
the rules--but certainly these are part of it. Imagine a teacher who has .
knowledge of the rules in both the weak and the strong senses, i.e., he 3
not only knew how to use them, but he also could refer to them explicitly,
formulare them, etc. Such a teacher would be in a very advantageous

position vis-a-vis trying to teach mathematical reasoning. Firstly, he :
would be better able to detect ignorance of specific rules. Now, when a 3
teacher sces a student having difficulty with a proof he is left to his

own ad hoc devices concerning diagnosis of the difficulty. Secondly, he

would be able to be much more clear in his own writing of proofs because

he could be self-consciously critical of his own proofs. Thirdly, he

would have a guide in choosing exercises and examples. When the class is
having difficulty seeing a proof which involved a complicated application

of a rule, the teacher would be able to choose another theorem whica in-

volves a simpler application of the same rule, and then, in presenting

it to the class he could point out that the reasoning in the complicated

case is similar to the reasoning in the simple case. All three of these
points hinge on the advantage that an articulate teacher has over one

who is merely expert in the subject matter. Consider, for example, tie
excellent tennis player who is not articulate about what is involved in
playing tennis. 1In trying to teach a beginner to play tennis, the expert
nlayer is reduced to showing. If he sces the student doing something

wrong he cannot say exactly what is wrong. Even in showing the student

what the motions are like, the teacher will not know what to exaggerate

and he will not be able to distinguish his own idiosyncrasies from what

is essential about tennis. Finally, he will be poor at developing drills,
etc,

Testing and Guidance Counseling. It scems to me that a student's ability
in deductive reasoning is an important index of his mathematical aptitude,
his ability to learn mathematice. This means that a student who is skill-
ed in understanding and producing mathematical proofs will be muech more
likely to benefit from mathematics courses than one who does not have

such skills, It is ebvious that a man who has a characterization of what
he wvants to test is in a better position to design a test than a man who
does not have such a characterization. A theory of proof is a characteri-
zation of the abstract structure underlying reasoning ability and it should
provide a very useful framework for designing tests of reasoning abilicy.
At the very least a theory of proof would provide a better knowledpe of
what i5 being measured in tests of reasoning ability and, thercfore, also
in mathematical aprirude tests.

In order to =2t an idea of how such testy may be helpful in guidance
counsaling ve must speculate concerning the kinds of things that wmight be
discovered by use of the tests. For example, one night be able to show
experimentally that unless a student had acquived weak knowledge of the
vasic rules by a certain age the chances of his ever being competent in
mathematics are very slim. This would erable counselors to advise stu-
dents concerninyg careers in mathematics and related areas. Moreover, it
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is not unreasonable to Suppose that normal mathematical development could
be characterized in terms of the number and kind of rules learned at
various ages (or at various testable stages). This would permit objective
identification of unusually able and unusually backward students,again
leading to more efficient and more scientific counseling. The profession-
al mathematical educator can certainly conceive of other applications in
this vein,

Curriculum Design. One of the aims of curriculum design is to trace a
sequence of topics in mathematics which parallels the optimal development
of the student's interests and abilities, The reason for this is the
desire to give the student the maximum benefit from his formal educational
experience. The idea is that the student is best educated by presenting

to him at each stage in his education those concepts and proofs which he

is best able to respond to. It is absurd either to present things which
are too rrivial or to present things that are beyond the student's ability.

ious ages would provide a valuable framework for use in the design of an
efficient curriculum. It would at least permit the knowledge of what
would be very difficult and what would be very easy, as far as reasoning
is concerned, and this, in turn, would permit more rational choices among
alternative theorems to be presented or between alternative developments
of a particular topic.

of drills and so on.

Finally, we return to the hypothesis of active and passive vocabularies
of rules. The truth of this hypothesis would lend additional justifica-

tion) to the effect that there should be two separat2 but parallel math-
ematics programs--one aimed at developing skill and concrete experience
in creating theorems and proofs, the other aimed at acquainting the
student with the body of existent mathematical knowledge. Naturally, a
theory of the active vocabulary would be applied in the former, whereas
the latter would use the passive theory.

Psychology. t is already clear enough that a theory of proof would
provide a fruitful source of ideas for hypotheses and experiments in the
poychology of mathematical learning. Moreover, one might wish to con-
sider a more comprehensive theory of proof as an idealized description
of the more-or-less behavioral aspects of the bsychological processes of
reasoning. We have already pointed out that the written (or spoken)
proof is cur only access to another person's reasoning processes. The
written proof is a permanent record of the reasoning and, moreover, it
is a "trace" of the behavioral aspect of the reasoning. The rules of
inference in accordance with which the proofs are written are thus more-

L¥—
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or-less behavioral 'norms.' Civen all this, it is easy to speculate that
a theory of proof could lead to a psychological theory of deductive rea-
soning--perhaps analogous to the way that Kepler's Laws describing the
orbits of planets lead to a kinetic theory explaining the orbits in

terms of the effects of forces.

Finally, on the subject of applications of a theory of proof, I would

like to suggest that the quality of writing of mathematics texts could

be greatly improved if the writers would take the trouble to learn the
rules of inference used by their prospective audiences. A mature mathe-
matician must learn how to reason in a fashion understandable to a fresh-
man if he wants freshmen to learn the mathematics (and not just memorize).
Frequently, the mature mathematician encounters (in teaching) theorems
which he sees 'immediately' and he finds himself at a loss as to what to
say to prove them. If he knew the rules of inference used by his class
then he would know exactly what to say. If mathematics texts (and mathe-
matics teaching) are improved in this way then one can expect that capable
but non-genius students will be more able both to appreciate the beauty
of mathematics and also to keep from ''getting turned-off by the chicken
scratching.' Quite possibly all this could lead to the kind of improve-
ment in the field of mathematics that we have seen after the rediscovery
of the axiomatic method. In the axiomatic method we find the ideal of

the deductive/definitional organization of branches of mathematics: a
theory of proof provides a partial answer to the question of what deduc-
tion is.

Following all of these hopeful speculations I want to emphasize two nega-
tive points. In the first place, none of the above applications will be
easily or mechanically achieved despite the fact that much of the ground-
work is done. A tremendous amount of very detailed creative thought,
dialogue and experimentation is needed. There is even cause to wonder
whether there is a natural place to begin. And, there are pitfalls,

one of which is the gap between the precision and simplicity of the
symbolic languages, on the one hand, and the vagueness, ambiguity and
complexity of natural language on the other. Anyone seriously desiring
to pursue any of the above applications must become extremely sensitive
to the nuances of normal English--and very few mathematicians have the
patience for this. A pilot experiment in deductive reasoning recently
conducted in a Philadelphia school ended distressingly because the sub-
jects were diverted by too many linguistic red herrings in the test gues-
tions. Something can be perfectly clear in the symbolic language and
perfectly confusing when translated mechanically into English.

Paradoxically, the second negative peint issues from the exhilaracing
feeling of power and selr-confidence that a mathematically competent
person derives f{rom learning to be articulate about what he is pvod at,
i.e., from learning a clearly presented and apparentcly comprehensive
theory of proof{. Such a person naturally wants to teach the theory to
his students--but if the students are not yet good at reascning the

i

cannol appreciate the significance of what they are learning. 1y may
learn the rules aud they may learrn hou to follow ihe rules. The disaster
is that they come to believe chat mathematical reasoning is nolhing bt
following rules. As we pointed out in the beginning of this ar:ticle,

if a person has his mind occupied with the rules ther the chances are
slim tiat he will have any attention left for the subject matter or for
the deeper parts of reasoning. If a persoun learns the rules as exter-
nal rules (as prescriptions) and not as descriptions of what he already
does (or would do naturally),the result is stultifying. If pressure is
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Put on a student to accept a rule self-consciously before he knows the
rule non-self-consciously i.e., if a rule is imposed on a SCudencl he
will either rebel or lose his intellectual integrity,or adopt the view
that it's all a silly game. Another equally undesirable but less disas-
trous effect of teaching an uncomprehensive theory of proof even to
students who can appreciate it derives from the fact that they may reason
according to rules not in the theory. 1In this case, the students will
tend not to use the rules absent from this theory thus weakening their
powers of reasoning. The upshot is that they will be poorerZ%F reasoning
after learning the theory than they were before learning it.

ehpr. Albert Hammond, late profcssor of philosophy at Jonns Hopkins
University, rcported to the author in a personal communication the re-
sults of tests administered tc logic students before and after his course.
The tests involved making elementary inferences from material presented
in the form of imaginary newspaper articles and narrations of fictional
events. iHis report was to the effect that almost every subject was sig-
nificantly worse at elementary reasoning after the course.
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