
doi: 10.5007/1808-1711.2011v15n3p453

GÖDEL’S INCOMPLETENESS THEOREMS AND PHYSICS
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Abstract. This paper is a summary of a lecture in which I presented some remarks on
Gödel’s incompleteness theorems and their meaning for the foundations of physics. The
entire lecture will appear elsewhere.
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I

The usual version of a mathematical formalism requires that it is recursive. In
particular, the axioms, logical and specific, have to compose a recursive set, and the
rules of inference must be constructive or, better, recursive.

A formalism constitutes essentially an algorithm or a Turing machine. It involves
logic and specific axioms, being, so to say, an inference device; its proofs and syntac-
tic procedures are all recursively decidable, in the sense that we are able to verify if
they satisfy the conditions of their (in general) inductive definitions.

Gödel’s fundamental idea was to view a (mathematical) formalism as part of
arithmetic via the process of arithmetization, and then to take advantage of this
move. His first incompleteness theorem says, in outline, that a consistent formalism
containing elementary arithmetic is always incomplete: there are sentences S such
that neither S nor ¬S (the negation of S) are provable in the formalism. His second
theorem, that can be proved as a corollary to the first, asserts that a consistent
formalism, F , encompassing arithmetic, cannot prove certain arithmetic sentence
that constructively expresses the consistency of F .

In consequence, all classical, strong and consistent mathematical theories are
incomplete. As a Gödel says,

The human mind is incapable of formulating (or mechanizing) all its mathe-
matical intuitions, i.e., if it has succeeded in formulating some of them, this
very fact yields new intuitive knowledge, e.g., the consistency of this formal-
ism. This fact may be called the “incompletability” of mathematics. On the
other hand, on the basis of what has been proved so far, it remains possi-
ble that there may exist (and even be empirically discoverable) a theorem-
proving machine which in fact is equivalent to mathematical intuition, but
cannot be proved to be so, nor even be proved to yield only correct theorems
of finitary number theory. (1954, p. 324.)
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Anyhow, for Gödel we are able to discover new mathematical truths and intu-
itively establish them. We are able, in reality, to get to know new reasonable axioms
and to continue more or less systematically the search for truth. He wrote that,

Despite their remoteness from sense experience, we do have something like
a perception of the objects of set theory, as is seen from the fact that the
axioms force themselves upon us as being true. I don’t see any reason why
we should have less confidence in this kind of perception, i.e., in mathemat-
ical intuition, than in sense perception. . . The set theoretical paradoxes are
hardly any more troublesome for mathematics than deception of the senses
are for physics . . . Evidently, the ‘given’ underlying mathematics is closely
related to the abstract elements contained in our empirical ideas. It by no
means follows, however, that the data of this second kind, because they can-
not be associated with actions of certain things upon our sense organs, are
something purely subjective, as Kant asserted. Rather, they, too, may repre-
sent an aspect of objective reality, but, as opposed to the sensations, their
presence in us may be due to another kind of relationship between ourselves
and reality. (1964, p. 272)

So, one could argue that, in the spirit of Gödel’s stance, it would be acceptable to
extend the notion of mathematical formalism, eliminating some of its (constructive)
restrictions. For example, non-constructive rules of inference that, if intuitively valid,
could be acceptable.

Let us consider some examples of the use of non-constructive rules of inference.
If we add to Peano arithmetic (see Church 1956, Kleene 1952, Shoenfield 1967)

the ω-rule

A(0), A(1), A(2), . . .
∀xA(x)

where A(x) is a formula and x a variable, then the new formal system PA∗ is syn-
tactically complete: any sentence (closed formula) S of PA or its negation, ¬S, is
provable in PA∗. This extended formalism has, as its theorems, all true sentences of
PA, that is, sentences that are true of the standard model of PA and only them.

Both incompleteness theorems do not apply to PA∗. Although PA∗ has an intuitive
appeal, its notion of proof is not decidable (proofs may be of infinite length). Since
the first incompleteness theorem is not valid for PA∗, its concept of proof cannot be
constructive (recursive).

Notwithstanding, PA∗ possesses an intuitive interpretation and deserves to be
included in the class of (extended) mathematical formalisms.

The preceding situation can be generalized (cf. da Costa 1974).
L is a first-order language containing a family of distinct terms (t i)i∈α), where

α is an ordinal greater than 0, and Γ denotes a set of sentences of L (in particular,
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it may be a theory). An α-model of Γ is a model in the ordinary meaning, such that
every element of it is denoted by at least one term t i , i ∈ α. Given a sentence F
of L , F is said to be a semantic α-consequence of Γ if and only if it is true in any
α-model of Γ.

Cα (C=α ) designates a first-order predicate calculus (with equality) having the
following primitive symbols: 1) Connectives: ∨ (or) and ¬ (not); 2) The universal
quantifier: ∀ (for all); 3) Individual variables: a denumerably infinite set of individ-
ual variables; 4) Individual constants: a family (ci)i∈α of (distinct) constants, where
α is an ordinal greater than 0; 5) Predicate symbols: a family (R j) j∈β of (distinct)
predicate symbols, where β is an ordinal greater than 0 (for every j ∈ β , R j has a
finite rank; in the case of C=α , one of the predicate symbols is the symbol of equal-
ity); 6) Auxiliary symbols: parentheses and comma. The concepts of formula, of free
variable, sentence, etc., are introduced as usual. The connectives → (implication),
∧ (and) and ↔ (equivalence), as well as the existential quantifier (∃) are defined
in the standard way. The common metalinguistic conventions and notations are not
made explicit.

The postulates (axiom schemes and rules of inference) of Cα (C=α ) are the or-
dinary ones, and the notions of deduction, theorem . . . are those of da Costa 1974
with clear adaptations. If Γ is a set of formulas and F is a formula, F is said to be a
syntactic consequence of Γ if Γ ` F in Cα (C=α ); as usual, ` F means ; ` F .

If the family (ci)i∈α above is replaced by (t i)i∈α, then the concepts of an α-model,
semantic α-consequence, etc., are immediately defined. When F is a formula and Γ
is a set of formulas, we write Γ |=α F if every α-model that satisfies the formulas of
Γ also satisfies F .

We denote by C∗α (C
=∗
α ) the calculus Cα (C=α ) to which rule α is added. Then, it

is easy to define deduction, proof and other familiar concepts for the new calculus
obtained.

One has, for example (see da Costa 1974):

Theorem 1. In C∗α (C
=∗
α ), whenever Σ `α H, we also have Σ |=α H.

Theorem 2. Suppose α≤ω. Then, `α H in C∗α (C
=∗
α )⇔` H in C=α (C

=
α ).

Theorem 3. Suppose that either α = ℵ0 and β = ℵ0 or o < α < ω; if Γ ∪ {F} is a
set of sentences of C∗α (C

=∗
α ) and Γ |=α F, then Γ `α F in C∗α (C

=∗
α ), that is to say, C∗α

(C=∗α ) is α-complete.

The second theorem expresses the α-completeness of the logics C∗α and C=∗α .
(The preceding ideas and results lead us to a generalization of the so-called ω-

logic, i.e., to the construction of α-logic, where α is an ordinal greater than ω (see
da Costa & Pinter 1976).
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It also known that rule α, adjoined to second-order logic or to higher-order log-
ics, does not guarantee α-completeness (see Shoenfield 1967).

Anyhow, with the help of very strong rules of inference, α-completeness is se-
cured (see da Costa 1974).

Another kind of extended formalism, in fact a very abstract variety of formalism,
is concerned with languages with formulas of infinite length. Among the large col-
lection of results in this domain, I shall present only one. In order to motivate it, I
quote a passage of Hodges (1997, p. 93):

The twenty-three year old Felix Klein in his famous Erlanger Programm
(1872) proposed to classify geometries by their automorphisms. He hit on
something fundamental here, in a sense, structure is whatever is preserved by
automorphisms. One consequence — if slogans can have consequences —
is that a model-theoretic structure implicity carries with it all the features
which are set-theoretically definable in terms of it, since these features are
preserved under all automorphisms of the structure.

There is a trivial model-theoretic slogan: structure is whatever is defin-
able. Surprisingly, this slogan points in the same direction as the previous
one. For example, if we have a field K , we can define the projective plane
over K . But precisely because the projective plane is definable from K , any
automorphism of K will induce an automorphism of the plane too. Either
way, the plane comes with the field; in some abstract sense it is the field,
but looked at from an unusual point of view.

In infinitary languages, formulas may have infinite length. Conjunction, disjunc-
tion and blocks of consecutive quantifiers may be infinite. There exists infinitary lan-
guages with special particularities, for example, the lengths of formulas are strictly
less than a fixed cardinal and the sequence of consecutive quantifiers in any formula
are finite. All these infinitary languages possess semantics analogous to the set-
theoretic semantics of the classical first-order logic. It is possible to define concepts
like truth of a sentence, semantic consequence, etc.

Given a mathematical structure of any order whatever (group, ring, topological
space, differentiable manifold, etc.), it is associated with its group of automorphisms,
that is, the bijections of its basic domain which, in a certain sense, leave its primitive
relations invariant.

Then, the connection between definability and invariance, referred to in the
above passage of Hodges (1997), takes the following formulation:

Theorem 4. A relation (0-adic, monadic, binary, ternary, . . . ) is invariant under the
group of automorphisms of a structure S if, and only if, the relation is definable on the
basis of the primitive terms of S in a convenient infinitary language (S is a structure of
any order whatever).
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The topic of definability and invariance is studied in da Costa & Rodrigues 2007;
the preceding theorem constitutes a reformulation of a result of the Portuguese
mathematician José Sebastião e Silva.

The common languages, for example first-order languages, are normally frag-
ments of infinitary languages. Moreover, there exist infinitary logics based on such
infinitary languages, so that there are also theories or “abstract formalisms” whose
underlying logics are infinitary. Clearly, Gödel’s incompleteness theorems are not
applicable to such theories or abstract formalisms.

An interesting point is that all results mentioned can be treated inside set theory
(for example, in Z F with choice). In particular, this is clearly true of the traditional
(recursive) formalisms. However, the last formalisms have an informal version, via
constructions, similar to those of the intuitionism à la Brouwer, what does not hap-
pen with the extended, abstract ones. Traditional formalisms so conceived deserve
to be called “concrete” formalisms.

It seems that an extension of the traditional conception of a mathematical for-
malism, as it was sketched above, fits in very well with the philosophical views of
Gödel. Moreover, Gödel’s proof of the consistency of Peano arithmetic by means of
abstract functionals, his proof of the semantic completeness of the first-order pred-
icate calculus and his investigations of intuitionistic logic and arithmetic not only
corroborate the deepness of his ideas, but show that they are wide and cope with
most of the fundamental questions of mathematics.

For him, the traditional, strict formalisms are effective tools to systematize parts
of the mathematical knowledge. However, extended formalisms are acceptable,
since they are, in fact, kinds of structures. The engineering of building concrete for-
malisms or axiomatic systems does not encompass all mathematics; this discipline
involves more than that, comprising an abstract level. Maybe, even if this assertion
is opposed to Gödel’s stance, the abstract level reduces to inter-connections between
systems of abstract relations and extended formalisms. This way, the intuition un-
derlying abstract mathematics would be formal, not material.

II

Extant physics does not exist without mathematics. So, what are the conse-
quences of Gödel’s incompleteness theorems for the foundations of physics?

Clearly, Peano arithmetic can be viewed as a physical theory; it copes with whole
numbers, conceived as concrete physical objects, and afterwards considers abstract
objects, extending its initial goal via idealization and generalization. Since Peano
arithmetic is not complete (supposed consistent), it follows that there exists an in-
complete physical theory. Moreover, since Peano arithmetic is contained in prac-
tically every mathematically strong physical theory, no such theory is complete if
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consistent. Therefore, physics is incomplete or inconsistent (and, hence, in the last
hypothesis, logically trivial). Worse, any physical, strong theory is incompletable in
principle. In particular, some ambitions of string theory are impossible.

In addition, there is no way to prove the consistency of a mathematically strong
physical theory using constructive methods in the sense of Gödel. As André Weil
would say, God does exist because physics seems to be consistent, but the Devil also
exists, because we are unable to prove it.

Anyhow, we way believe, mathematics based on non-constructive axiomatization
(formalisms) is not subject to Gödel’s restrictions. Perhaps, there could be complete
physical theories established with the help of infinitary methods. As we mentioned
above, PA∗ is a theory of this kind. But the main point is to know if with strong
infinitary rules one would be able to obtain a reasonable, consistent and complete,
physical theory. This constitutes an open problem. Moreover, in this case a proof of
consistency would lose any strong and intuitive meaning.

III

The gist of Gödel’s researches on the foundations of general relativity is well
described by S. W. Hawking, who wrote the following (Hawking 1990, pp. 189–90):

Gödel showed that it was possible to have solutions of the Einstein field
equations in which the galaxies were rotating with respect to the local in-
ertial frame. He therefore demonstrated that general relativity does not
incorporate Mach’s principle. Whether or not this is an argument against
general relativity depends on your philosophical viewpoint, but most physi-
cists nowadays would not accept Mach’s principle, because they feel that it
makes an untenable distinction between the geometry of space-time, which
represents the gravitational and inertial field, and other forms of fields and
matter.
[In one paper (1949)] Gödel presented a rotating solution that was not

expanding but was the same at all points of space and time. This solution
was the first to be discovered that had the curious property that in it was
possible to travel into the past. This leads to paradoxes such as “What hap-
pens is you go back and kill your father when he was a baby”? It is generally
agreed that this cannot happen in a solution that represents our universe,
but Gödel was the first to show that it was not forbidden by the Einstein
equations. His solution generated a lot of discussion of the relation between
general relativity and the concept of causality.
[In another paper (1952)] describes more reasonable rotating cosmo-

logical models that are expanding and that do not have the possibility of
travel into the past. These models could well be a reasonable description of
the universe that we observe, although observations of the isotropy of the
microwave background indicate that the rate of rotation must be very low.
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Perhaps an open minded person like Gödel, who elaborated models of general
relativity as those described by Hawking, wouldn’t, a priori, condemn the introduc-
tion of infinitary logical tools in physics . . .
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Resumo. Este artigo é o resumo de uma conferência na qual apresentei algumas observa-
ções sobre os teoremas de incompletude de Gödel e seu significado para os fundamentos da
física. A conferência inteira será publicada em outro lugar.
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