Skip to main content
Log in

Quantum Mechanics: Ontology Without Individuals

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The purpose of the present paper is to consider the traditional interpretive problems of quantum mechanics from the viewpoint of a modal ontology of properties. In particular, we will try to delineate a quantum ontology that (i) is modal, because describes the structure of the realm of possibility, and (ii) lacks the ontological category of individual. The final goal is to supply an adequate account of quantum non-individuality on the basis of this ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Although van Fraassen does not endorse scientific realism (from his “constructive empiricism”, the aim of science is only empirical adequacy), he admits that a meaningful account of reality is necessary for a scientific theory to be intelligible.

  2. According to the algebraic formalism of quantum mechanics, given a *-algebra \(\mathcal {A}\) of operators, (i) the set of the self-adjoint elements of \( \mathcal {A}\) is the space \(\mathcal {O}\), whose elements represent observables, \(O\in \mathcal {O}\) , and (ii) states are represented by functionals on \(\mathcal {O}\), that is, by elements of the dual space \( \mathcal {O}^{\prime }\), \(\rho \in \mathcal {O}^{\prime }\). In the case of a C*-algebra of operators, it can be represented by a Hilbert space \(\mathcal {H }\) (GNS theorem) and \(\mathcal {O}=\mathcal {O}^{\prime }\); therefore, both \( \mathcal {O}\) and \(\mathcal {O}^{\prime }\) are represented by \(\mathcal { H\otimes H}\).

  3. Mathematically, a quantum system \(\mathcal {S}^{1}\) is represented by the set of operators \(\mathcal {O}^{1}\), or by the Hilbert space \(\mathcal {H}^{1}\) if \(\mathcal {O}^{1}=\mathcal {H}^{1}\otimes \mathcal {H}^{1}\).

  4. In the case of working with C*-algebras of operators, \(\mathcal {O}^{1}\) and \( \mathcal {O}^{2}\) are represented by \(\mathcal {H}^{1}\otimes \) \(\mathcal {H} ^{1}\) and \(\mathcal {H}^{2}\otimes \) \(\mathcal {H}^{2}\) respectively. Therefore, \(\mathcal {O}^{c}=\mathcal {O}^{1}\otimes \mathcal {O}^{2}=\mathcal {H }^{1}\otimes \) \(\mathcal {H}^{1}\otimes \) \(\mathcal {H}^{2}\otimes \) \(\mathcal { H}^{2}\).

References

  1. Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lombardi, O., Castagnino, M., Ardenghi, J.S.: The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ardenghi, J.S., Lombardi, O.: The modal-Hamiltonian interpretation of quantum mechanics as a kind of ‘atomic’ interpretation. Phys. Res. Int. 2011, 379–604 (2011)

    Article  Google Scholar 

  4. da Costa, N., Lombardi, O., Lastiri, M.: A modal ontology of properties for quantum mechanics. Synthese 190, 3671–3693 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dieks, D., Vermaas, P. (eds.): The Modal Interpretation of Quantum Mechanics. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  6. Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2012 Edition). http://plato.stanford.edu (2012)

  7. van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, pp. 303–366. University of Pittsburgh Press, Pittsburgh (1972)

    Google Scholar 

  8. van Fraassen, B.C.: The Einstein–Podolsky–Rosen paradox. Synthese 29, 291–309 (1974)

    Article  Google Scholar 

  9. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  10. Suárez, M.: Quantum selections, propensities and the problem of measurement. Br. J. Philos. Sci. 55, 219–255 (2004)

    Article  MATH  Google Scholar 

  11. Suárez, M. (ed.): Probabilities, Causes, and Propensities in Physics (Synthese Library). Springer, Dordrecht (2011)

    Google Scholar 

  12. Teller, P.: Quantum mechanics and haecceities. In: Castellani, E. (ed.) Interpreting Bodies: Classical and Quantum Objects in Modern Physics, pp. 114–141. Princeton University Press, Princeton (1998)

    Google Scholar 

  13. Maudlin, T.: Part and whole in quantum mechanics. In: Castellani, E. (ed.) Interpreting Bodies: Classical and Quantum Objects in Modern Physics, pp. 46–60. Princeton University Press, Princeton (1998)

    Google Scholar 

  14. French, S., Krause, D.: Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  15. van Cleve, J.: Three versions of the bundle theory. Philos. Stud. 47, 95–107 (1985)

    Article  Google Scholar 

  16. Loux, M.: Metaphysics: A Contemporary Introduction. Routledge, London (1998)

    Book  Google Scholar 

  17. Benacerraf, P.: What numbers could not be? Philos. Rev. 74, 47–73 (1965)

    Article  MathSciNet  Google Scholar 

  18. Shapiro, S.: Philosophy of Mathematics: Structure and Ontology. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  19. Keränen, J.: The identity problem for realist structuralism. Philos. Math. 9, 308–330 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Narvaja, M., Córdoba, M., Lombardi, O.: Different domains, the same problems. In: Pintuck, S., Reynolds, C. (eds.) Philosophy of Science, pp. 67–87. Nova Science Publishers, New York (2012)

    Google Scholar 

  21. Sebastião e Silva, J.: Sugli automorfismi di un sistema matematico qualunque. Comment. Pontif. Acad. Sci. IX, 91–116 (1945)

    Google Scholar 

  22. Da Costa, N., Rodrigues, A.: Definability and invariance. Studia Logica 86, 1–30 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krause, D., Coelho, A.M.N.: Identity, indiscernibility, and philosophical claims. Axiomathes 15, 191–210 (2005)

    Article  Google Scholar 

  24. Saunders, S.: Physics and Leibniz’s principles. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 289–307. Cambridge University Press, Cambridge (2003)

    Chapter  Google Scholar 

  25. Muller, F.A., Saunders, S.: Discerning fermions. Br. J. Philos. Sci. 59, 499–548 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Muller, F.A., Seevinck, M.: Discerning elementary particles. Philos. Sci. 76, 179–200 (2009)

    Article  MathSciNet  Google Scholar 

  27. Dieks, D., Versteegh, M.: Identical quantum particles and weak discernibility. Found. Phys. 38, 923–934 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Castagnino, M., Lombardi, O., Lara, L.: The global arrow of time as a geometrical property of the universe. Found. Phys. 33, 877–912 (2003)

    Article  MathSciNet  Google Scholar 

  29. Castagnino, M., Lombardi, O.: The global non-entropic arrow of time: from global geometrical asymmetry to local energy flow. Synthese 169, 1–25 (2009)

    Article  MATH  Google Scholar 

  30. Dieks, D., Lubberdink, A.: How classical particles emerge from the quantum world. Found. Phys. 41, 1051–1064 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Da Costa, N., Krause, D.: Schrödinger logics. Studia Logica 53, 533–550 (1994)

    Google Scholar 

  32. Da Costa, N., Krause, D.: An intensional Schrödinger logic. Notre Dame J. Form. Logic 38, 179–194 (1997)

    Article  MATH  Google Scholar 

  33. Da Costa, N., Krause, D.: Set-theoretical models for quantum systems. In: dalla Chiara, M.L., Giuntini, M.L., Laudisa, F. (eds.) Language, Quantum, Music, pp. 114–141. Kluwer, Dordrecht (1999)

    Google Scholar 

  34. Krause, D.: On a quasi-set theory. Notre Dame J. Form. Logic 33, 402–411 (1992)

    Article  MATH  Google Scholar 

  35. da Costa, N., French, S., Krause, D.: The Schrödinger problem. In: Bitbol, M., Darrigol, O. (eds.) Erwin Schrödinger: Philosophy and the Birth of Quantum Mechanics, pp. 445–460. Editions Frontiè res, Paris (1992)

    Google Scholar 

  36. dalla Chiara, M.L., Toraldo di Francia, G.: Individuals, kinds and names in physics. In: Corsi, G., dalla Chiara, M.L., Ghirardi, G.C. (eds.) Bridging the Gap: Philosophy, Mathematics and Physics, pp. 261–283. Kluwer, Dordrecht (1993)

  37. dalla Chiara, M.L., Toraldo di Francia, G.: Identity questions from quantum theory. In: Gavroglu, K., Stachel, J., Wartofski, M.W. (eds.) Physics, Philosophy and the Scientific Community, pp. 39–46. Kluwer, Dordrecht (1995)

  38. Worrall, J.: Structural realism: the best of both worlds? Dialectica 43, 99–124 (1989)

    Article  Google Scholar 

  39. Ladyman, J.: What is structural realism? Stud. Hist. Philos. Sci. 29, 409–424 (1998)

    Article  Google Scholar 

  40. French, S., Ladyman, J.: Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese 136, 31–56 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. French, S.: Structure as a weapon of the realist. Proc. Aristot. Soc. 106, 167–185 (2006)

    Article  Google Scholar 

  42. French, S., Ladyman, J.: In defence of ontic structural realism. In: Bokulich, A., Bokulich, P. (eds.) Scientific Structuralism. Boston Studies in the Philosophy and History of Science, pp. 25–42. Springer, Dordrecht (2011)

    Google Scholar 

  43. French, S., Ladyman, J.: The dissolution of objects: a reply to Cao. Synthese 136, 73–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors want to thank Décio Krause for his organization of the Workshop “Logical Quantum Structures” in the context of the 4th World Congress and School on Universal Logic, and also the attendants to the workshop for their constructive comments to the oral version of this work. This paper was partially supported by grants of the Buenos Aires University (UBA), the National Research Council (CONICET) and the National Research Agency (FONCYT) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, N., Lombardi, O. Quantum Mechanics: Ontology Without Individuals. Found Phys 44, 1246–1257 (2014). https://doi.org/10.1007/s10701-014-9793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9793-1

Keywords

Navigation