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Gregory E. Cox

A DYNAMIC APPROACH TO RECOGNITION MEMORY

We argue that taking a dynamic approach to the understanding of memory will lead to
advances that are not possible via other routes. To that end, we present a model of
recognition memory that specifies how memory retrieval and recognition decisions jointly
evolve over time and show that it is able to jointly predict accuracy, response time, and
speed-accuracy trade-off functions. The model affords insights into the effects of study
time, list length, and instructions. The model leads to a novel qualitative and quantitative
test of the source of word frequency effects in recognition, showing that the relatively high
distinctiveness of the features of low frequency words provide the best account. We also
show how the dynamic model can be extended to account for paradigms like associative
recognition and list discrimination, leading to another novel test of the presence of
recall-like processes. Associative recognition, list discrimination, recognition of similar
foils, and source exclusion are all better explained by the formation of a compound cue

rather than recall, although source memory is found to be better modeled by a recall

process.
Richard M. Shiffrin, PhD Michael N. Jones, PhD
Jerome Busemeyer, PhD Robert M. Nosofsky, PhD
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Chapter 1

Introduction

Recognition is a critical function performed by the memory system, and must therefore
form part of the bedrock upon which any theory of memory can be constructed. When en-
gaging in a recognition task, a participant must decide whether a given test item was or was
not present in a particular study context. Recognition judgments thus indicate the ability
of a participant to discriminate between experienced and unexperienced events, where an
“event” is defined by the conjunction of an item and context. By characterizing the situa-
tions in which studied items can be correctly detected and unstudied items can be correctly
rejected, we gain understanding of how memory is organized. We also learn about how the
test situation is used to probe memory to collect evidence for recognition decisions.
Evidence from various recognition paradigms has supported the development of a va-
riety of theories of memory (e.g., Atkinson & Juola, 1974; Metcalfe Eich, 1982; Murdock,
1982; Gillund & Shiffrin, 1984; Hintzman, 1988; Shiffrin & Steyvers, 1997; McClelland
& Chappell, 1998; Dennis & Humphreys, 2001). These theories are concerned primarily
with recognition accuracy and confidence ratings and can be viewed as extensions of a sig-
nal detection approach to recognition (Green & Swets, 1966). According to this approach,
experiencing an item in a particular context leads to a value of “familiarity” or memory

strength. This value is a random sample from some distribution of familiarity values, and



accurate recognition consists in being able to tell whether any given sample came from
the distribution associated with “old” items versus the distribution associated with “new”
items. Some memory theories, such as dual process theory (e.g., Reder et al., 2000; Yoneli-
nas, 1994), augment this familiarity-based process with a recall process such that, if recall
is successful, recognition performance is perfect. The memory theories cited above specify
how the distributions of “old” and “new” memory strength vary with experimental condi-
tions and, in some cases, specify the likelihood that recall contributes to the recognition
judgment. Many of these memory theories have been reviewed from a variety of perspec-
tives (e.g., Clark & Gronlund, 1996; Diana, Reder, Arndt, & Park, 2006; Malmberg, 2008;
Kahana, 2012), but it behooves us to review some of the principles behind many of these

models.

1.1 Models of memory

Although many memory theories pertain to tasks other than recognition (e.g., recall, judg-
ments of learning, judgments of recency, judgments of frequency, etc.), we will focus on
aspects of memory models that enable them to perform a recognition task; many of the
mechanisms and representational structures assumed by these models are shared across
tasks in any case. As mentioned above, these theories, when applied to recognition, aim
to predict the probability that a particular item will be judged as having been seen in a

particular context, thus turning recognition into a form of signal detection in noise.

1.1.1 Separate and composite representations

One key distinction among most theories of memory is the representational structure of

memory itself. Separate-trace or exemplar theories (e.g., Gillund & Shiffrin, 1984; Hintz-



man, 1988; Shiffrin & Steyvers, 1997; McClelland & Chappell, 1998) postulate that a
distinct memory element is created each time an event is experienced. These memory
elements—we will adopt the term “memory trace”—contain information about both the
content of the event (e.g., the identity of a word on a study list) and the context in which
the event occurred (where “context” can be defined at various levels, e.g., the time and lo-
cation of the event, encoding task, and/or other nearby items or events; see Klein, Shiffrin,
& Criss, 2007). To determine whether a given test item was or was not seen in a particular
study context, a participant forms a “memory probe” consisting of some combination of the
test item and the study context. This probe is compared to each of the memory traces. This
comparison can take many forms, including a dot product (Hintzman, 1988) or likelihood
ratio (Shiffrin & Steyvers, 1997; McClelland & Chappell, 1998); in any case, the compar-
ison results in a single value reflecting the degree to which each memory trace is similar
to the memory probe. This comparison is often assumed to take place in parallel across
all memory traces (Gillund & Shiffrin, 1984; Hintzman, 1988; Shiffrin & Steyvers, 1997,
McClelland & Chappell, 1998), but may take place over the course of a serial search among
the various memory traces (Sternberg, 1966) or via a combination of parallel matching and
serial search (Atkinson & Juola, 1974). Finally, these various match values are treated as
evidence for whether the test item was or was not experienced in the target study context:
In parallel matching models, one takes the mean (Hintzman, 1988; Shiffrin & Steyvers,
1997), maximum (McClelland & Chappell, 1998), or sum (Nosofsky, Little, Donkin, &
Fific, 2011) of these match values and judge the item “old” if this is above a criterion
value, and “new” otherwise. In serial search models, one continues making comparisons
until either a match is found that is sufficiently high at which point an “old” response is

given or until all comparisons have been made without finding a sufficiently high match,



at which point one responds “new” (Sternberg, 1966). Finally, it is possible to combine
both approaches, where an initial parallel match results in an “old” response with a suffi-
ciently high value, a “new” response with a sufficiently low value, or a serial search after
an intermediate value (Atkinson & Juola, 1974).

Single-store or composite-trace models of memory (e.g., Murdock, 1982; Metcalfe
Eich, 1982) assume that each experienced event is added to a single memory represen-
tation that is analogous to a “prototype” or “average” over a set of events. These mod-
els are sometimes termed “holographic” (Plate, 2003), in the sense that a single storage
medium (usually represented as a vector) is used to store many separate elements. And,
just as in light holography, although it is impossible to perfectly retrieve a single event
from a composite trace, it is possible to do so approximately via a convolution operation
(essentially “viewing” the memory from a different “angle”; see Murdock, 1982; Plate,
2003, for details). Modeling recognition is straightforward with a composite trace, since
all representations are assumed to be of the same dimensionality. The test item/context is,
again, represented as a memory probe, and the inner product between the memory probe
and the single composite memory trace results in a scalar match value. If this value is above
a criterion, the test item is judged “old”, otherwise it is considered “new”.

Composite trace models of memory are, generally, more limited than separate-trace
models because the greater flexibility afforded by storage of separate traces allows separate-
trace models to mimic the behavior of composite models (Nosofsky, 1988; Kwantes, 2005).
Composite trace models also have trouble predicting the list strength effect, in which
strengthening of some items at study via increased study time, repetition, or deeper en-
coding does not harm memory for the non-strengthened items; a composite trace model

would tend to incorrectly predict that strengthening would “wash out” the influence of



weaker items (Ratcliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, & Clark, 1990). Con-
versely, given a sufficiently large representation, composite trace models can approximate
the behavior of separate trace models; essentially, with a large enough composite vector,
representations of individual memories become sparse enough to easily tell apart (Plate,
2003). There is also no reason to believe that composite- and separate-trace representa-
tions are mutually exclusive: Simultaneous storage of a sparse, distinct event trace along
with addition to a growing composite trace underlies a variety of theories of the distinction
between episodic and semantic memory (Nelson & Shiffrin, 2013), and is supported by
differences in representation and function found between medial temporal lobes and neo-
cortex (McClelland, McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003; Kumaran

& McClelland, 2012).

1.1.2 Item and context noise

A second critical distinction among models of memory is the chief source of noise in the
recognition process. Even a completely novel item will generally produce some degree
of familiarity, and rarely will two presentations of the same item lead to exactly the same
performance. Most of the separate-trace models reviewed above assume that the chief
source of noise is other items experienced within the target study context. That is, context
cues alone are generally sufficient to “narrow down” the set of memory traces that are
relevant for the decision, such that the memory probe is compared only with traces stored
in the target context (Gillund & Shiffrin, 1984; Hintzman, 1988; Shiffrin & Steyvers, 1997;
McClelland & Chappell, 1998) and noise results from the fact that different item can still
partially match (a novel item might partially match one or more study items, while a studied

item might also match some of the other studied item traces). The same is true for the



TODAM (Murdock, 1982) and CHARM (Metcalfe Eich, 1982) models, which employ
a composite-trace representation. In the case of composite traces, the question is what
events are added into the composite trace; in these models, only those events from the
target study context are directly added (although background noise added to the composite
trace might be considered to represent events from other irrelevant contexts). By assuming
item noise resulting from comparison between the test item and the traces formed during
the target study context, such models offer a natural account for both length effects (more
studied items in the same contexts leads to more chances for a partial match by chance) and
similarity effects (a foil that is similar to a studied item is more likely to be called “old”
than a random foil). A pure item noise model, however, does not offer an account for how
experience from pre-experimental contexts can influence recognition performance.

At the other extreme are models that assume that items can be perfectly identified, but
that confusion between different contexts is the main source of noise in recognition. For
instance, BCDMEM (Dennis & Humphreys, 2001) assumes that every item is associated
with a noisy distributed context representation, and study of an item results in the addition
of some study context features to the item’s context representation (in this way, BCDMEM
can be viewed as a type of composite-trace theory). At test, every item is perfectly iden-
tified such that only the context features associated with the item can serve as a source of
noise. Only if the associated context is sufficiently similar to the target study context is
the item called “old”. Context noise offers a direct account of word frequency effects in
recognition—items that occur more often in life are also more likely to have been asso-
ciated with contexts that match the study context by chance. They also explain the null
list strength effect, since strengthening an item has no effect on the item-context associ-

ations formed between other weaker items. However, context noise models must assume



other mechanisms in order to account for length effects (Dennis & Humphreys, 2001) or
similarity effects (Dennis & Chapman, 2010).

Of course, these two sources of noise are not mutually exclusive (Criss & Shiffrin,
2004a). A variety of context-noise models assume that the context is, itself, partially de-
termined by the studied items, thus allowing these models to mimic item-noise effects
(Howard & Kahana, 2002; Dennis & Chapman, 2010). It is also straightforward to include
pre-experimental memory traces in a separate-trace model such that context cues alone are
no longer sufficient to isolate the memory traces relevant for the recognition task, an ap-
proach we will take in the model we present here. Finally, prior experience can influence
how items are encoded (Nelson & Shiffrin, 2013), thus allowing for a certain type of long-
term context noise. We defer fuller discussion of these issues until after we present our

model.

1.2 Theories of response dynamics

Just as many theories of memory can be considered extensions of signal detection theory,
a variety of models of response time represent dynamic versions of signal detection. As
in signal detection, a decision-maker is tasked with making a binary decision (e.g., “old”
vs. “new” in recognition) on the basis of incoming evidence (e.g., familiarity). However,
instead of taking a single sample from a noisy distribution of evidence, models of response
dynamics assume that many samples are taken and that these are accumulated over time un-
til the decision-maker is sufficiently certain about which distribution the evidence is coming
from. The evidence distributions are, as in signal detection theory, typically characterized
as Gaussian, with a particular mean and variance. In statistical decision theory, this sequen-

tial sampling process is known as the sequential probability ratio test (SPRT; Wald, 1945,
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1947), and was later explored as a description of human decision making behavior (Stone,
1960; Edwards, 1965). More generally, the SPRT is a kind of random walk, where each
sample provides evidence for or against each of two options; this evidence is formalized as
a likelihood ratio and, assuming evidence samples are independent, these ratios are multi-
plied (equivalently, the log-likelihood ratios are summed) until the accumulated likelihood
for one option is sufficiently greater than the likelihood for the other.

Random walk models have also been used as models of human decision making (e.g.,
Link, 1975; Link & Heath, 1975), but none more so than the diffusion model proposed by
Ratcliff (1978). A continuous-time version of a random walk, the key insight in Ratcliff’s
approach was that the mean of the evidence distribution from which samples are drawn—
called the “drift rate”—could change from trial to trial. In particular, the distributions from
which the drift rate in the diffusion process are drawn on each trial are, just as in most
applications of signal detection theory, Gaussian distributions with particular means and
variances. By allowing for trial-to-trial variability in drift rate, Ratcliff’s diffusion model
alleviates various problems faced by other random walk models, in particular, the often-
incorrect prediction that responses of a particular type (e.g., an “old” or “new” response)
have the same reaction time distributions regardless of whether the response was correct
or not (Swensson & Green, 1977). Especially when the decision-maker’s initial bias and
motor execution/stimulus encoding time are also allowed to vary between trials, a diffusion
model of this kind provides an excellent fit to two-choice response times in a variety of
paradigms (Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004). In addition, the accumu-
lation of evidence samples to one of two fixed decision criteria is “optimal” in the sense
of achieving a desired accuracy level in minimal time, suggesting that, to the extent that

humans have evolved or learned to make decisions optimally, a diffusion process should



characterize their decision-making behavior (Bogacz, Brown, Moehlis, Holmes, & Cohen,
20006).

Recently, it has been found that a very different type of model also fits data well and
leads to similar conclusions about the underlying decision evidence: a ballistic accumulator
model (S. Brown & Heathcote, 2005, 2008; Donkin, Brown, Heathcote, & Wagenmakers,
2011). Unlike random walk models, accumulator models do not necessarily assume that
evidence in favor of one response is evidence against the other. Instead, a decision maker
accumulates evidence in favor of each response and makes a decision as soon as one of the
response accumulators reaches a criterial value. Although accumulator models have a long
history in psychology (LaBerge, 1962; Vickers, 1970; Pike, 1973; Townsend & Ashby,
1983; Smith & Vickers, 1988; Smith & Van Zandt, 2000)—including in the study of recog-
nition memory (Van Zandt, 2000)—they typically assume that the evidence accumulated
within a trial is noisy. A ballistic accumulator model assumes no noise within a trial—
hence the term “ballistic”. The model is nonetheless able to predict choice probabilities
and response times quite well by allowing the drift rate and initial bias to vary randomly
(according to particular distributions) between trials, although ballistic accumulator mod-
els are, by nature, unable to address situations in which the decision evidence changes over
time (e.g., Tsetsos, Usher, & McClelland, 2011; Teodorescu & Usher, 2013); such situ-
ations provide evidence that competition between choice options—an integral feature of
random walks—is necessary to explain observed decision behavior. While the assumption
of non-interacting accumulators may not suffice to describe human decision making mecha-
nisms, a model of evidence accumulation that assumes that noise only arises from the stim-
ulus itself—i.e., not from the random perturbations assumed in a diffusion model—does

a good job of explaining perceptual decision making in both humans and rats (Brunton,



Botvinick, & Brody, 2013). Thus, the use of random perturbations in the diffusion model
and of trial-to-trial stochastic drift rates in the linear ballistic model may simply be statisti-
cal descriptions of stimulus-driven noise, rather than inherent properties of decision making
mechanisms.

While it may be difficult behaviorally to distinguish between a random walk model like
Ratcliff’s diffusion model and a ballistic accumulator model (especially if one allows the
form of the evidence distributions to vary; M. Jones & Dzhafarov, 2014), there is some
neural evidence for the kind of noisy accumulation to a criterion posited by random walk
models. In perceptual decision making in primates, a variety of cortical areas appear to
be involved in integrating information over time, akin to the integration of information in
a random walk or diffusion. These include “build-up” neurons in the superior colliculus
(Munoz, Dorris, Paré, & Everling, 2000) that control saccades, and neurons in the frontal
eye fields (Gold & Shadlen, 2000) and lateral intraparietal area (LIP; Roitman & Shadlen,
2002) that appear to integrate information from area MT to determine the dominant direc-
tion of random dot motion. Although neurons in LIP exhibit stimulus-driven changes in
firing rate up to 800 ms after stimulus onset, the ability of a new stimulus to perturb the
activity of these neurons diminishes over time (Huk & Shadlen, 2005). This is consistent
with a neuron that integrates information in a linear fashion up to a boundary, at which point
integration ceases (Kiani, Hanks, & Shadlen, 2008). Ditterich (2006), however, found that
linear integration, even with trial-to-trial variability in drift rates, did not account for the
behavioral data of monkeys in a motion-discrimination task: Observed RT distributions
were not as skewed as those predicted by the diffusion model. Instead of linear integration
to a boundary, LIP neurons appeared to implement a time-varying gain function on the in-

put, such that later inputs have more influence than earlier inputs, consistent with either a
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“leakage” of early information (e.g., Busemeyer & Townsend, 1993; Usher & McClelland,
2001) or an “urgency” signal that ramps up the gain on evidence over time (Cisek, Puskas,

& El-Murr, 2009).

1.3 Overview

Despite the many parallel advances in the understanding of memory and of response dy-
namics, theorists have only rarely attempted to link the two, despite a wealth of evidence
in this domain. Detailed analyses of response time distributions (e.g., Sternberg, 1969;
Ratcliff & Murdock, 1976) lead to the development of the diffusion model (Ratcliff, 1978),
originally a model of recognition, which has since developed into a general model of de-
cision making. Yet while this theory and the subsequent decision model of Hockley and
Murdock (1987) were able to predict many patterns of observed data, these models re-
main agnostic about two key components of the recognition process: 1) The source of the
memory evidence on which decisions are based; and 2) how this evidence itself evolves
over time. To address the first point, it would be possible, as suggested by Hockley and
Murdock (1987), to use one of the static memory models discussed above to generate ev-
idence distributions that are then fed into a second decision stage. One prominent model
of both categorization and recognition, the Exemplar-Based Random Walk (Nosofsky &
Palmeri, 1997; Nosofsky et al., 2011), results in a model of this form, where the Gener-
alized Context Model (Nosofsky, 1986) defines a distribution of evidence values in terms
of the probability of retrieving particular exemplars in response to a probe; this sequence
of retrieval events is then used to drive either a random walk (e.g., Nosofsky et al., 2011;
Nosofsky, Cox, Cao, & Shiffrin, 2014) or a set of linear ballistic accumulators (Donkin &

Nosofsky, 2012b; Nosofsky, Cao, Cox, & Shiffrin, 2014), closely matching both accuracy
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and response time distributions.

As to the second point, researchers have traditionally investigated the evolution of mem-
ory evidence over time using speed-accuracy trade-off procedures. These employ signals
that interrupt processing at various times to assess how decision evidence evolves. Ev-
idence from these paradigms has supported the development of models in which infor-
mation about the test stimulus grows over time (Brockdorff & Lamberts, 2000; Cohen &
Nosofsky, 2003), although such models have proven difficult to extend to free response
paradigms (Lamberts, Brockdorff, & Heit, 2003), impeding their wider acceptance.

The purpose of this research is to develop a dynamic approach to recognition memory
that explicitly models the structure of memory as well as how retrieval evolves over time.
This approach codifies a variety of principles within a quantitative model that closely fits
both speed-accuracy trade-off data as well as accuracy and response time distributions. By
taking a dynamic approach, we then investigate various phenomena in memory that are dif-
ficult to adjudicate when considering accuracy alone, affording insight into both decision
processes and retrieval. Model fits to free-response data from several experiments (Nobel
& Shiffrin, 2001; Starns, Ratcliff, & McKoon, 2012; Rae, Heathcote, Donkin, Averell,
& Brown, 2014) illustrate how the joint evolution of retrieval and decision are affected by
both study manipulations (study time, list length) and instructions (bias and speed vs. accu-
racy emphasis). They also provide evidence that word frequency effects in recognition are
mediated by semantic knowledge rather than interference from specific prior episodes, an
inference that would be impossible by considering accuracy alone. We then show how the
dynamic model can be extended to account for paradigms like associative recognition and
list discrimination in which secondary recall-like processes have been implicated. Echoing

Brockdorff and Lamberts (2000), we show that in many cases, such paradigms are bet-

12



ter accounted for by a model in which different information is used to prompt retrieval at
different times, with only source memory providing evidence for the operation of recall.
This inference is, again, only possible by taking a dynamic approach: When the relevant
target item is made stronger (e.g., by repetition or increased study time), a recall model
would predict that this trace would be retrieved faster and would thus enable a faster rise
to asymptotic performance. Only source judgments (Hintzman & Caulton, 1997) show
this pattern, suggesting that recall is not necessary to explain associative recognition, list
discrimination, or the rejection of highly similar foils and that such situations are better
described by a model in which different information enters the memory probe at different

times.
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Chapter 2

A Dynamic Model for Recognition Memory

The dynamic approach to recognition memory that we adopt (introduced in Cox & Shiffrin,
2012) has its roots in a variety of modern approaches to the dynamics of decision making
(Ratcliff, 1978; S. Brown & Heathcote, 2008) and categorization (Nosofsky & Palmeri,
1997; Lamberts, 2000), and reflects a recent trend toward developing models of the time-
course of recognition memory (Brockdorft & Lamberts, 2000; Nosofsky et al., 2011). A
central assumption that we share with all of these models is that information accumu-
lates over time. While often taken for granted, this assumption is not shared by, say, the
recognition model of (Hockley & Murdock, 1987), in which memory evidence is sampled
repeatedly but is not accumulated over time, entailing the assumption of separate fast guess-
ing processes or differences in encoding to explain speed-accuracy trade-offs (Gronlund &
Ratcliff, 1991; Hockley & Murdock, 1992). What we do here is lay out a framework that
describes the information used for recognition, and how it is accumulated over time to
make a decision. This framework is formalized within a mathematical model that can then
be used to quantitatively test claims of theoretical interest, which we proceed to do in sub-
sequent sections. We adopted this particular formalization because we wished to represent
these theoretical claims in the clearest way possible in order to show how the proposed

mechanisms lead to particular predictions. Alternative formalizations are certainly possi-
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ble without changing the core of our dynamic approach. Some alternatives might lead to
better quantitative fits, but may not aid understanding of the principles and mechanisms
needed to produce those fits. Nonetheless, several variations on our current formal model
are suggested throughout this section and in the discussion as targets of future work.

The process leading to a recognition decision is based not on a constant rate of evi-
dence accumulation, but a time-varying interaction of retrieval of features from knowledge,
growth of an episodic memory probe, retrieval that varies as the probe varies, and evidence
accumulation that varies with what is retrieved. When a test stimulus is presented, its phys-
ical form plus context are used to access knowledge (for a word, this would be a lexical
trace in semantic memory). Features—extracted both from perception and knowledge—
gradually over time and join the features of the current context to form an accumulating
probe in short-term memory. At each epoch of time, the probe is compared in parallel to
traces in episodic memory, producing similarity-based activations of each trace character-
ized as likelihood ratios. The average likelihood ratio at time ¢ is termed the familiarity
at time . Familiarity changes over time as the probe changes; successive changes in fa-
miliarity are accumulated as time passes, with a response occurring when the accumulated
change reaches an “old” or “new” boundary.

Note that the probe of memory begins with context features only, before any features
are extracted from the test item. Although context might not change radically from one
test trial to another following a single list, it certainly would change enormously between
retrieval situations in everyday life. We therefore assume the recognition system has been
constructed to adjust for such changes, and uses the starting familiarity value—based on
context—as a reference point. That is why we assume that the decision is based on accu-

mulating changes in familiarity from an initial value.
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Most of the traces in memory will tend to match the probe very poorly, of course, so
only those traces whose likelihood exceeds a threshold value are considered “activated”
at any one time and participate in the average that produces familiarity at that time. The
traces that do participate are of three main types: 1) A list trace that had been produced by
the target (if a target is tested)—this trace tends to match well in both content and context;
2) list traces that do not match the test item—these traces tend to match in context but not
content; 3) traces of the test item from events prior to the current list, in the experiment or
in life—these traces tend to match in content but not context.

The test stimulus is represented as a “probe”, which consists of a set of features held in
short-term memory. The probe is compared, in parallel, to all the traces stored in memory;
each probe/trace comparison results in a likelihood value that represents the probability
that the features stored in the probe and the features stored in the trace encode the same
event; likelihood is, then, a measure of probe/trace similarity. Most of the traces in memory
will tend to match the probe very poorly, of course, so only those traces whose likelihood
exceeds a threshold value are considered “activated” at any one time. Familiarity is the
average likelihood ratio over these activated traces, reflecting a sense of global match be-
tween current experience (the test stimulus) and the contents of memory (the set of activated
traces).

Familiarity changes over time as the probe changes. Before any stimulus is presented,
only context features are available and, thus, the probe only contains context features. Once
a test stimulus appears, content features begin to accrue in the probe. If a new feature in-
creases familiarity (i.e., it tends to increase the match between the probe and the set of
active traces), this is evidence that the test stimulus is “old” (it was present in recent expe-

rience on the study list). Conversely, if a new feature decreases familiarity, this is evidence

16



/{ Physical features ] Context
! [ Semantic memory ]‘

\
\
\

\ Content

0 1 0 0 0

s
-
-
e
-
o

Y1010 0] 1]1

Probability of
storage u

STM | 1 0 1 1 0 1 0 0 0

Probability of correct encoding ¢

Episodic trace | 0 | 0 1110|1100

Figure 2.1: Schematic depiction of the formation of an episodic memory trace. See text for detail.

that the test stimulus is “new”. Thus, we presume that an old/new recognition decision
is made on the basis of accumulated changes in familiarity from a starting point. When
these accumulated changes reach one of two time-varying thresholds—an upper one for
“old” and a lower one for “new”—the corresponding response is made. The time taken
to reach one of those thresholds is related to the response time. We now describe a quan-
titative model that embodies these ideas. For reference, the parameters of our model are

summarized in Table 2.1 while other model notation is summarized in Table 2.2.

2.1 Structure of memory traces

Studying a list of items leads to the formation of a set of traces in memory. One trace
1s formed for each studied item. Each trace consists of a set of features, some of which

represent the content of the studied item, and others of which represent the context in
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Table 2.1: A summary of the parameters of the model of recognition dynamics.

Parameter Description

u Probability of storing a content feature in a memory trace at study.

cs Probability of encoding a feature correctly in a memory trace at study.

cT Probability of encoding a feature correctly in the memory probe at test.
Usually assumed to be 1.

g Probability of a feature in the probe and a memory trace having match-
ing values by chance. Usually assumed to be %

Nc Number of content features. Arbitrarily set to 30 unless otherwise
noted.

Ny Number of context features. Arbitrarily set to 30 unless otherwise
noted.

N¢ Participant’s estimate of the number of content features needing to be
sampled. Usually assumed equal to N¢ unless otherwise noted.

Ap Initial separation between “old” and “new” response boundaries in free
response.

b Response bias; b > % reflects a bias to say “old” while b < % reflects a
bias to say “new”.

0 Response criterion for response signal tasks.

Tr Residual time attributable to stimulus detection and response execu-
tion.

fo Time at which feature sampling begins (usually a component of 7).

p Amount of real-time (seconds or milliseconds) for each time-step in

the model.
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Table 2.2: Notational reference.

Notation Description

Ai(t) Likelihood ratio for trace i at time ¢, denoting the relative probability
that the probe and trace i encode the same event versus the probability
that they encode different events, given by Equation 2.6.

o(1) Familiarity at time ¢, defined as the logarithm of the average of all

Bo(t),BN(t)

likelihood ratios A;(¢) that are greater than one, given by Equation 2.8.

Accumulated change in familiarity from starting time #y, given by

Equation 2.9. This is the evidence used for recognition decisions.

True probability that all content features have been sampled into the

probe by time ¢, given by Equation 2.1.

Participant’s estimated probability that all desired content features have
been sampled into the probe by time ¢, given by Equation 2.10. May
differ from v(¢) if participants are willing to commit to a decision with

greater or fewer sampled features.

In free-response, the “old” and “new” decision boundaries, given by
Equation 2.12. When x(¢) crosses one of these boundaries, the corre-

sponding decision is made.
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which the item was studied. We presume that the number of such features that can be
encoded in a brief time (most study times are no longer than a few seconds) is limited,
with a maximum of Nx context features and N¢ content features, although these limits
may differ depending on condition. Here, we use “context” to mean the general situation
in which an event occurs, rather than the other items that are presented nearby in time
(cf., Howard & Kahana, 2002; Klein et al., 2007). Thus, context features pertain to the
time, location, and internal state of the participant at the time of study. These features are
presumed to be ambient in the environment and are thus able to be encoded rapidly (indeed,
additional context does not seem to be stored after about 1 second; Malmberg & Shiffrin,
2005). Content features, on the other hand, pertain to the semantic and perceptual aspects
of the studied item, and the degree to which they are stored in the trace depends strongly
on the amount of time available for study. For a word, such features would include the
word’s meaning as well as its phonological and orthographic characteristics. For an image,
content features might be primarily perceptual, but also include semantic features to the
extent that the image contains known objects or scenarios. Critically, then, some content
features might come directly from the percept of the studied item (e.g., the font in which
a word is printed), but many will come from the participant’s own semantic memory (e.g.,
the meaning of a word). Thus, how a study item is encoded—which features are used and
what their values are—depends on the participant’s prior knowledge stored in semantic
memory. Access to semantic memory depends not only on the physical features of the
stimulus, such as the letters of a word, but can also affected by context, as has been found
in studies of lexical decision and naming (Wagenmakers et al., 2004). Finally, although we
do not model it here, just as semantic memory is used to determine the features encoded in

an episodic trace, the episode augments the knowledge stored in semantic memory (Nelson
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& Shiffrin, 2013). This process of forming a memory trace that stores both content and
context features is depicted schematically in Figure 2.1.

In a given study condition, an available content feature is stored in the memory trace
with probability u. Various factors can influence u, but it is especially susceptible to vari-
ations in study time or number of repetitions of the item (for simplicity, we model rep-
etition as strengthening an existing trace rather than forming a new trace; Shiffrin et al.,
1990)!. Factors that influence access to semantic memory—and therefore the availability
of knowledge-based features like word meaning—may also affect u, such as study modal-
ity, priming, or item type (e.g., pseudowords or random dot patterns are unlikely to have
any semantic features). For simplicity—and because we are generally agnostic about ex-
actly what these features represent—we assume that all features are binary-valued. If a
feature is stored in the trace, its value (e.g., “0” or “17) is stored correctly in the trace with
probability cs. Otherwise, the stored value is chosen at random according to the base-rate
probabilities for that feature, where g is the probability of storing “1” (typically g = %).
The base-rate information for a given feature is presumed to reside in semantic memory,

given that it represents information accrued over a long period of time.

It might be plausibly argued that, when an item is repeated, different features are used to encode it a
second time. If these new features joined those already encoded in prior presentations, this would effectively
increase the size of the memory trace beyond the limits of short-term memory. However, because those same
limits are imposed on the memory probe during recognition, such a “lengthening” of the trace has the same
effect as increasing u. At recognition, only N¢ content and Ny context features can be used in the first place,
so the match between the probe and a given trace depends only on those features, which may be just a subset
of those actually encoded in the trace. Thus, it is still reasonable, in this situation, to model repetition via the

u parameter.
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2.2 Feature sampling

When an item is presented at test, a similar encoding process is used to construct a memory
probe in short term memory. We assume that the same capacity limits that apply at study
also apply at test, with a maximum of Ny context and N¢ content features able to be held
in the probe. Before any test stimulus is presented, the probe contains only the Ny features
of the test context, which we typically assume to be identical to the target study context
(although we address list discrimination later, in which this is not necessarily the case).
Once a test item appears, the physical features of the test stimulus are used in conjunction
with context to access semantic memory. At this point, which we call time #y, content
features are available to enter the probe, but they do not do so all at once. Instead, they are
sampled over time from the pool of available features. At any given time after 7y, one of
the N¢ content features is chosen uniformly at random. If that feature does not yet have a
value in the probe, the test item’s value on that feature enters the probe. With probability
cr, the correct value enters the probe; otherwise, a value is chosen at random according
to the base-rate for that feature, as above. In most applications, we assume ¢y = 1. If a
feature already has a stored value, we assume that value is retained in the probe. Thus,
the probability of sampling a new value into the probe decreases over time, with the probe
eventually becoming saturated with features. The probability that the probe is complete at

time t 1S

b(r) = 1— (1—i)t. @.1)
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2.3 Familiarity

2.3.1 Comparison between probe and trace

At each time-step ¢, the probe consists of Ny context features along with whatever content
features have been sampled by that time. At each time-step, the probe is compared in
parallel to all of the traces in memory. The number of traces is quite large, so for practical
reasons we only explicitly model comparisons with the N traces formed during list study
(one per study item, unless there are spaced repetitions) as well as K traces of the test item
from prior life history. If the test item is a target, one list trace will tend to match in both
content and context. Otherwise, list traces will tend to match in context, but only randomly
in content. History traces, conversely, tend to match in content but not in context (here we
simplify and assume that context features are randomly sampled for each history trace).
The many other traces in memory tend not to match well in either content or context, so we
assume they are not activated and do not model them explicitly.

The comparison between the probe and a given trace i results in a likelihood ratio A;(z),
reflecting the relative probability that the probe and trace encode the same event (the same
item in the same context) or a different event. The likelihood ratio is computed by aligning
and comparing the features in the probe and trace. There are five possible outcomes of any

particular feature comparison:

0: No value is stored for this feature in either the probe or trace.

P: A value is stored in the probe, but not in the trace.

T: A value is stored in the trace, but not in the probe.

M: A value is stored in both the probe and the trace, and the values match.
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N: A value is stored in both the probe and the trace, but the values do not match.

An outcome of 0 does not provide any evidence about whether the probe and trace encode
the same or different events. Although it will not be relevant to the studies reviewed here,
we note that outcomes P and T can provide evidence that the probe and trace encode dif-
ferent events, as described by Cox and Shiffrin (2012). This occurs when trace encode
items that are not of the same type, for example, if the study list contains both words and
pictures. A word is likely to be encoded with different features (e.g., orthographic, phono-
logical) than a picture. If tested with a picture, the probe will tend to be encoded with
features that overlap with picture traces, but not with word traces, leading to a larger num-
ber of M and N outcomes with picture traces and P and T outcome with word traces. Thus,
outcomes P and T can be used to correctly reject a test item that comes from a different
class, in accord with findings that interference only manifests as a function of the number
of studied items of the same type as the test item (Criss & Shiffrin, 2004b).

Assuming the probe and trace both have a value encoded for a particular feature, the
probability of a feature match (M) between the probe and trace, given that they encode the

same item, is

pmis = cser +es(1 —er)g+ (1 —cs)erg+ (1 —cs)(1 —cr) [gz +(1 —g)z] , (2.2)
which simplifies to pys = cs + (1 —cs)g when cr = 1. The probability of a match if the
probe and trace encode different items is

Pmp = 8- (2.3)

where g is the probability of a match by chance. The probability of a mismatch (N) given

that probe and trace encode the same item is

pys=cs(l—cr)(1—g)+(I—cs)er(l—g)+2(1—cs)(1 —cr)g(l—g), (24
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which simplifies to py)s = (1 —cs)(1 — g) when c7 = 1. Finally, the probability of a mis-
match if the probe and trace encode different items is the probability of a mismatch by

chance

pnp=1-2¢. (2.5)
Because we assume independence between features, the likelihood ratio for the entire trace
is the product of the likelihood ratios of each feature. Letting Ny (7) and Ny(t) denote the

number of matching and mismatching features between the probe and trace i at time ¢ (and

ignoring for now the number of P and T features), we have

NM(I) NN(t)
Milt) = (%) (%) , (2.6)
Pm\D PN|D

1 —g NM(’)
Milt) = {1 +es (T)] [1— 50 2.7

which simplifies to

when ¢y = 1.

2.3.2 Activation and familiarity

Familiarity, denoted ¢(¢), is the logarithm of the average likelihood ratio among those traces
that are active at time #2. It can thus be considered a “log-odds™ that there exists a trace in
memory that encodes the same event as the probe. The notion that a trace must be “active”
to be considered arises from the fact that episodic memory undoubtedly contains a great
many traces which are not relevant to the current recognition situation. By imposing an

activation threshold, we ensure that memory is not overwhelmed with irrelevant traces. We

2 Although aggregation schemes other than the average are possible, like a sum or maximum, it is unlikely
that adopting these other formulations would substantially alter the model’s predictions (Shiffrin & Steyvers,

1998).
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propose a simple rule, that a trace is considered “active” if its likelihood ratio is greater
than one; this means that the trace matches sufficiently well in either content or context

features in order to be a plausible match to the test item. Familiarity can then be denoted

O(r) =log (Ai(2) : Ai(r) > 1). (2.8)

2.3.3 Familiarity over time

Initially, the probe only contains context features. Thus, at time #y, familiarity reflects the
match between the test context and the contents of memory. Traces of recent events—such
as study items, which tend to share test context features—will thus tend to be active at this
time. Familiarity changes after time #y as content features are sampled and join the probe.
On any one trial, familiarity will tend to be noisy, governed by the order and timing with
which features are sampled, as well as the various properties of the traces stored during
study. Each new feature sampled provides more statistical evidence about whether there is
a trace in memory that encodes the same event as the probe. Some historical traces—which
match in content but not in context—may become active as their matching content features
overcome their initially mismatching context features. On the other hand, non-matching list
traces—which match in context but not in content—will have likelihood ratios that tend to
decrease over time as the increasing number of mismatching content features lowers their
likelihood ratios. If, however, there is a matching target trace, its likelihood ratio will tend
to increase beyond the initial good match to context; this single trace that matches well on
both content and context will grow to dominate the average likelihood.

On average, familiarity increases for targets and decreases for foils, as shown in Figure
2.2. This change in familiarity over time is thus statistically diagnostic of whether an

item had been studied or not, and we presume this is the basis for a recognition decision.
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Figure 2.2: Examples of the evolution of familiarity over time. Solid lines depict mean familiarity
over time, shaded regions are the central 95% of familiarity values at each time, and dashed lines

show example familiarity trajectories from single trials.
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Specifically, recognition decisions are based on the accumulated change in familiarity from

the starting time #o, denoted x(z):

t—1
x(1) =Y 0(t+1)—(t) = 0(t) — 6(t0). (2.9)

=ty
By making recognition dependent on the change in familiarity over time, rather than on
an absolute level of familiarity, one does not need to assume differing criteria for experi-
mental conditions or stimulus classes which may differ in their absolute familiarity (Cox
& Shiffrin, 2012). One can also view x(¢) as conditionalizing familiarity ¢(¢) on an initial
value determined by context, ¢(fy). Because context features are persistent in the environ-
ment, rather than changing rapidly like content features, they provide a natural baseline
level of familiarity against which to judge any new information. Finally, using the accumu-
lated change in familiarity from a starting point emphasizes the important role played by
the features that initially occupy the probe. Although these will usually be content features,
other features might be present initially as a function of experimental manipulations like

priming; the effect of this will be explored later.

2.4 Predicting response-signal data

The response signal method (Reed, 1973, 1976) involves presenting a test stimulus for a
fixed amount of time before a signal—either visual or auditory—is given at which point
the participant must respond immediately with their current best guess about whether the
item is old or new. By varying the lag between stimulus onset and the response signal,
it is possible to estimate a speed-accuracy trade-off (SAT) curve which measures how the
probability of responding “old” to a test item changes as additional time is allowed to

process the stimulus. Although it is possible to make more complex assumptions about
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the cognitive processes that underlie SAT curves, for instance that they reflect a mixture of
ongoing and already-finished processes (Meyer, Irwin, Osman, & Kounios, 1988; Ratcliff,
1988), we adopt a much simpler assumption. As just described, we assume that features of
the test item begin to be sampled to join the context features already present in the probe
of memory, starting at time #y after stimulus onset. Each model time step is assumed to
take a constant amount of time p.> Participants accumulate changes in familiarity as just
described until a response signal occurs. At that point, a participant is predicted to make an
“old” response if the accumulated change in familiarity is above a threshold 0; otherwise,
the participant makes a “new” response. If a response signal occurs before f(, a participant

guesses “old” with probability

1
1 +exp(—0)’

in accord with the assumption that x(z) lies on a log-odds scale.

Although it may be possible for people to change their response criteria between differ-
ent response signal lags, this is rare (Hintzman, Caulton, & Curran, 1994) and only seems
to occur when experimental conditions require such adaptation, such as when the propor-
tion of targets varies across lags (Heit, Brockdorff, & Lamberts, 2003). More important for
our purposes, allowing for 6 to change while the accumulated change in familiarity is also
changing would seem to make the model unidentifiable. Thus, we assume 6 is constant
across time. Typical approaches to response signal data assume that the response time also
contributes to stimulus processing time, but we assume instead that only the time between
stimulus onset and response signal allows for sampling features from the stimulus and that
the response time reflects only the time for response selection and execution. Response

times are typically quite brief (200 ms) and, although they do tend to be longer at earlier

3This assumption is probably overly simplistic, but suffices to explain the data we consider here.

29



A) Collapsing boundaries B) Constant boundaries

S - 8 -
— Target
— Foil
o _| o
- —
. o - = ©
< <
o o
T T
o o
D T
T T T T T
0 50 100 150 200 0 50 100 150 200
Time steps Time steps

Figure 2.3: The model’s predicted distributions of familiarity over time for target and foil items, in
relation to an upper (“old”) and lower (“new”) response boundary. Solid colored lines depict mean
familiarity while colored regions show 95% confidence regions about the mean. A) In the standard
formulation of the model, boundaries collapse over time to ensure a response is made. B) An
equivalent formulation “stretches” familiarity differentially over time such that response boundaries

are constant.

lags, they are generally not affected by the identity of the stimulus, suggesting that little
additional processing of the stimulus itself could occur between the response signal and
the response itself. Although this is surely an oversimplification, we were able to obtain
good fits despite it. Moreover, because response times tend to vary between signal lags
only at the very earliest lags, they do not affect the qualitative form of either the observed

or predicted SAT curves.
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2.5 Predicting free-response data

When participants are allowed to make their response at any time, we assume that partici-
pants continue to accumulate changes in familiarity until either an upper or lower bound-
ary is reached. Reaching the upper boundary leads to an “old” response while reaching
the lower one leads to a “new” response. However, because familiarity eventually reaches
a stable asymptote as the probe becomes saturated with features, these boundaries cannot
be constant over time. If they were, it would lead to situations in which a decision was
never made if asymptotic familiarity lied between the two bounds. Thus, we assume that
the decision boundaries over time as a function of the expected completeness of the probe,

namely,

1 t
V() =1- (1 ——) , (2.10)

NG
which differs from the equation for the actual probe completeness, v(¢) in Equation 2.1,
only in that N might differ from the true value of Nc in situations like speeded responding,
when participants might be willing to commit to a response with fewer features than are
actually available (typically we assume N = N¢). The decision boundaries begin a certain
distance apart, Ao, at starting time 7. The distance between the “old” and “new” boundaries

at time 7, denoted A(r), diminishes over time:
A(t) = (1 —=v*(1)) Ao.

The parameter b, 0 < b < 1, reflects the degree of asymmetry between the two bounds,

such that the “old” and “new” boundaries at time ¢ are, respectively,

Bo(t) =(1—b)A() 2.11)

By (1) =—bA(1). (2.12)
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The initial “old” boundary is, then, (1 — b)Ay, the initial “new” boundary is —bAy, and the
boundaries collapse symmetrically toward a common asymptote, (% — b) Ag. If b= %, the
bounds are symmetrical, if b < % boundaries are “new’’-biased, and if b > % boundaries are
“old”-biased. The form of the boundary collapse is depicted in Figure 2.3A.

The number of time-steps needed to reach a boundary, ¢, determines the response time.
Just as in the response-signal paradigm, predicted response time RT is assumed to be a

linear function of model time-steps
RT =Tz +pt (2.13)

where T represents the residual time needed to detect the test stimulus and execute a motor
response and p is the amount of real time per model time-step. Note that T includes the
amount of time before stimulus sampling begins (#y), although this exact time cannot be
estimated in free response tasks. Although it would certainly be more realistic to allow Tg
(and #9) and p to be random variables that vary from trial to trial, it was not necessary to
obtain the good quantitative fits we report here, therefore we chose not to introduce this

additional complexity.

2.5.1 Collapsing boundary considerations

Collapsing decision bounds means that, as the probe accumulates more features, a par-
ticipant is willing to commit to a decision on the basis of weaker and weaker evidence.
Collapsing boundaries have been implicated in a variety of decision-making models (Bala-
krishnan & Macdonald, 2011; Busemeyer & Rapoport, 1988; Ditterich, 2006; Frazier &
Yu, 2008; Ratcliff & Frank, 2012; Zhang, Lee, Vandekerckhove, Maris, & Wagenmakers,

2014), including the recognition decision model of Hockley and Murdock (1987). Al-
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though the Hockley & Murdock model also assumed an exponential form for collapsing
boundaries, in our case, this assumption is justified as a function of our model’s feature
sampling mechanism, as outlined above. We also note the analogy between collapsing
bounds and a time-dependent “urgency signal” (Cisek et al., 2009). Urgency is reflected
in a time-dependent rise in firing rates of all lateral intraparietal neurons—whose firing
rates are typically associated with accumulated evidence (Roitman & Shadlen, 2002)—
regardless of which response the neuron is associated with. Studies finding an urgency
signal typically employ simple perceptual decisions, so it is not clear if exactly the same
mechanism should be implicated in memory retrieval, but it is certainly reasonable to ex-
pect that participants will not search memory indefinitely, and collapsing decision bound-
aries allow for a straightforward implementation of this notion.

It is, however, possible to consider our model as having fixed boundaries, but with an
accelerating growth of familiarity over time, as shown in Figure 2.3B. This equivalence
results from a simple warping of familiarity over time in order to “stretch” the values of
familiarity in order to keep the boundaries constant over time. Specifically, at each time

step, the current accumulated change in familiarity, x(z), is transformed according to

_(1_
Y= i*(xl;) s (30) 0

where v*(t) is the expected probe completeness at time ¢, given in Equation 2.10, Ag and b
are as defined above, and (% — b) Ay is the midpoint between the “old” and “new” bound-
aries. Similar translations between different process representations have been used to
deal with non-homogeneous processes in psychology and in the mathematical literature on
diffusion processes (e.g., Ricciardi, 1976; Heath, 1992; Smith, 2000). This kind of ac-

celeration toward a final response might result from the operation of self-excitation and/or
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competition between accumulators corresponding to “old” and “new” responses. In this
way, a response that had accumulated a large amount of evidence might be able to accel-
erate toward a boundary and possibly even suppress other responses that had only accu-
mulated weak evidence; this could occur even in the absence of new incoming evidence.
Such excitatory and inhibitory processes are embodied in various neural models of deci-
sion making, such as the leaky competing accumulator (Usher & McClelland, 2001), and
there is good evidence that response competition, beyond input competition, is necessary
to explain patterns of data in perceptual decision making (Teodorescu & Usher, 2013).
Although it would be possible to reformulate the model in the ways just described
without changing its predictions, we believe it is easier to interpret under the view that
familiarity asymptotes whilst decision boundaries collapse over time. Our model of famil-
iarity over time without any kind of warping closely matches the response curves obtained
using the speed-accuracy trade-off procedure, as will be shown throughout this article. It
is unclear to us, then, why response-signal experiments would not entail warping familiar-
ity over time but free-response instructions would; it seems more sensible to us to assume
that it is the decision bounds that change. If one still wanted to adopt constant boundaries
with warping evidence, it would still be possible to model SAT functions by assuming that
responses in the SAT paradigm are a mixture of guesses and already completed decisions
(i.e., those that have already reached one of the fixed decision bounds; Ratcliff, 1988).
Finally, as an aside, we consider the notion of “optimality” as it relates to decision
boundaries. In two-choice situations with stationary evidence distributions, it is optimal to
accumulate information until one of two fixed boundaries is reached (Wald, 1945, 1947,
Stone, 1960; Edwards, 1965; Bogacz et al., 2006). However, in situations where there

is a stochastic response deadline (Frazier & Yu, 2008) or one is limited by total time
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and not number of trials in a task, it is optimal to allow response boundaries to collapse,
reflecting the diminishing returns on collecting additional evidence (Thura, Beauregard-
-Racine, Fradet, & Cisek, 2012; Drugowitsch, Moreno-Bote, Churchland, Shadlen, &
Pouget, 2012). The memory evidence posited by our model can be seen as imposing a
kind of stochastic deadline, since no new information accrues once the probe is saturated
with features. It is possible to compute the optimal decision boundaries under the assump-
tion that evidence has a zero mean on average but reaches an asymptotic value according to
Equation 2.10 via dynamic programming (Bellman, 1952). The details of this computation
would take us too far afield; suffice it to say that although there is no closed-form expression
for these optimal boundaries, the numerical approximation obtained by dynamic program-
ming is approximated well by an exponential function, albeit one that tends to approach
asymptote more slowly than v*(¢) in the fits reported here (Equation 2.10). This suggests
that participants are either not allowing decision boundaries to collapse optimally, or are
optimizing something other than expected accuracy. In any event, our model fits observed
data considerably better with the form of boundary collapse outlined above than with one

derived from optimal control theory.
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Chapter 3

Validations and Insights

Our goals in this section are twofold: First, to demonstrate that the dynamic model for
recognition just described provides a good account of both free response and response
signal paradigms. Second, by fitting different versions of our model and comparing their
quantitative fits, we show how our dynamic model can shed light on memory phenomena
that are obscure when considering only recognition accuracy. To accomplish these goals,
we fit our model to three sets of free response data and two sets of response signal data
(additional response signal fits are presented in the next section). These datasets manipulate
a variety of factors and come from different participants in different labs at different times.
Thus, the ability of our model to fit all of these datasets is diagnostic of its ability to explain

recognition dynamics generally.

3.1 Fitting procedures

In order to efficiently fit our model to data, we developed a continuous approximation to the
model that enables much faster computation of the trajectories of familiarity over time and
the resulting predictions of joint RT and accuracy. The approximation, which allows us to
avoid tedious simulation, is described in detail in the Appendix. Suffice it to say, however,

that the approximation produces behavior that is nearly indistinguishable from simulations
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of the full model, given the same parameters.

3.1.1 Quantile maximum likelihood

To jointly fit accuracy and free response time distributions, we employ the quantile max-
imum likelihood procedure (QML; Heathcote, Brown, & Mewhort, 2002). In this proce-
dure, the .1, .3, .5, .7, and .9 RT quantiles are first computed for each participant in each
condition and then averaged to generate estimates of the group RT distribution (also re-
ferred to as “vincentizing”; Ratcliff, 1979). This gives, for each condition, a set of bins
representing the number of responses of each type (hit, miss, false alarm, correct rejection)
that fall within particular RT quantile ranges (0-0.1, 0.1-0.3, 0.3-0.5, 0.5-0.7, 0.7-0.9,
0.9-1). The model makes joint predictions not just of the probability of making a particu-
lar response, but also the probability that the response is made within each of the ranges,
making it straightforward to calculate the multinomial likelihood assigned by the model to
the vectors of observed counts (Ratcliff & Tuerlincx, 2002). Admittedly, Vincentizing on
its own is prone to inconsistency (Rouder & Speckman, 2004), but combined with QML
and a sufficient number of observations, the parameters obtained are still quite stable with-
out needing to re-describe RT distributions in terms of a parametric family (Rouder, Lu,
Speckman, Sun, & Jiang, 2005, although we will resort to parametric models of RT distri-
butions when the number of observations is small or only summary statistics are available).

An important advantage to finding parameters by maximum likelihood is that the Aka-
ike and Bayesian Information Criteria (AIC and BIC, respectively) can be used to compare
different models and different parameterizations within the same model class. AIC and
BIC represent “badness of fit”, such that the preferred model minimizes these values, which

depend on both the negative log-likelihood achieved by the best-fitting parameters (denoted
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NLL) and on the number of model parameters k. Additionally, BIC depends on the number
of observations N, imposing a greater penalty on the number of free parameters as the

number of observations increases:

AIC =2 x NLL+ 2k

BIC =2 x NLL+klogN.

3.1.2 Parameter search

For all the fits we report (including those of other models), we found parameters that maxi-
mized the quantile likelihood by first using a stochastic Differential Evolution search algo-
rithm (Price, Storn, & Lampinen, 2006; Mullen, Ardia, Gil, Windover, & Cline, 2011) to
find a good initial set of parameters, then used a simplex routine (Nelder & Mead, 1965) to
find the maximum. Although the possibility of arriving at a local maximum can never be
completely ruled out, this possibility is minimized by the initial stochastic search, which

does a good job of exploring the full parameter space.

3.2 List length and study time: Nobel & Shiffrin, 2001

Nobel and Shiffrin (2001) present a series of studies of the dynamics of recognition memory
using a variety of response procedures, including free response old/new recognition, cued
recall, signal-to-respond, and associative recognition. Here, we specifically address single-
item recognition under both free response and signal-to-respond conditions. These were
the conditions that motivated the ARC model (Assessment of Retrieval Completion; Diller,
Nobel, & Shiffrin, 2001), particularly the critical—and somewhat surprising—finding that

although accuracy in free response differed as a function of both study time and list length,
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response time distributions did not. Thus, Diller et al. (2001) postulated that instead of
terminating their decisions on the basis of accumulated evidence, participants instead made
a decision once a sufficient number of probe features had been sampled, regardless of the
degree of match between the probe and memory. The degree of match determined the
actual response made once feature sampling was terminated, but was not used as the basis
for termination; thus, response time was decoupled from accuracy, in accord with the data.
To put it another way, participants appeared to make no use of the quality of evidence when
terminating their decisions, only the quantity of evidence.

Our proposed decision mechanism in free response is based on both the quality and
quantity of evidence, since we assume decision boundaries collapse over time as a func-
tion of expected probe completeness. As a result, it is not clear a priori whether or how
our model can best account for these data; perhaps decision boundaries will need to vary
between conditions, but perhaps the use of collapsing boundaries is sufficient to account
for the similarity in response time distributions across conditions. The model proposed
by Diller et al. (2001) is only entailed if one assumes that decision criteria are constant
across conditions. Given that study time and list length were manipulated between lists,
rather than within list, it seems reasonable that participants could adjust their criteria in
response to the experimental condition. For example, Ratcliff and Murdock (1976) and
Ratcliff (1978) found that although response times increase with study time when study
time is varied between lists—a result that seems counterintuitive—response times decrease
with study time when study time is varied within lists, as one would expect. This result
makes sense if participants maintain constant decision criteria within a list, but can vary
them between lists. More recently, it has been found that even when study conditions are

held constant, participants are able to adjust aspects of processing, like decision criteria,
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in response to instructions or expectations at test (Starns, White, & Ratcliff, 2010; Kili¢ &

Oztekin, 2014).

3.2.1 The data

The data to which we fit our model comes from Nobel and Shiffrin (2001), Experiment
1. In this experiment, participants studied lists of word pairs which contained either 10
or 40 pairs. Each pair on each list were studied for either 670 ms or 2000 ms. Thus, list
length and study time were varied between lists. After study, participants were tested with
either cued recall test or single-item recognition; we focus here on only the recognition
data (Diller et al., 2001, provide a model for cued recall). Half of the experimental sessions
called for a free response while the other half used a signal-to-respond procedure of the
kind already discussed. The reader is directed to the original papers for further detail.
Nobel and Shiffrin (2001) report several summary statistics of the observed RT distri-
butions in each free response condition, but full quantile information was not available.
Therefore, in order to fit accuracy and RT jointly using QML, we used the observed mean,
standard deviation, and median RT’s to estimate the parameters of an ex-Gaussian distribu-
tion. This distribution is the convolution of an exponential and Gaussian distributions, with

density function

1 6> t—u -t y?
)= —— — = 2 )d
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where y and ¢ are the mean and standard deviation of the Gaussian component and 7 is
the rate of the exponential component. The ex-Gaussian distribution was chosen not for
theoretical reasons, but simply because it has the same number of degrees of freedom as

the data (three, the mean, s.d., and median) and has been found to accurately describe RT
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distributions in memory tasks (Ratcliff & Murdock, 1976). The best-fitting ex-Gaussian pa-
rameters were found by minimizing the squared error between the observed and predicted
mean, standard deviation, and median RT’s; the resulting parameter values and estimated
RT quantiles are given in Table 3.1. We computed the .1, .3, .5, .7, and .9 RT quantiles
from the best-fitting ex-Gaussian distribution for each response type in each condition.
This, combined with the accuracy data and knowledge of the number of observations in
each condition, allowed us to fit our model using quantile maximum likelihood. Fitting to a
derived distribution rather than directly to the observed data is not ideal, but has been found

to preserve the important features of the observed data (Ratcliff, 1979).

3.2.2 Model fit

We assume that each word of each pair is stored as a separate trace in memory, such that
20 traces are stored in a 10-pair list and 80 traces are stored in a 40-pair list; for simplicity,
we assume that only list traces are involved and that history traces play little to no role
(this assumption receives qualitative and quantitative support in the next section). The
probability of feature storage u varies as a function of study time (ug79 and uzogp). We fit
single values of cg, Tg, and p across all conditions, and assumed that g and cr were fixed
at their “default” values of % and 1, respectively. Because study conditions were varied
between lists, allowing participants to adapt their behavior between conditions, we began
by fitting a model that allowed parameters governing decision boundaries (Ao, b, and N;)
to vary between conditions and used AIC and BIC measures to investigate the contribution
of each parameter to performance difference across conditions.

As pointed out by Diller et al. (2001), it is highly impractical to find best-fitting parame-

ters for the ARC model, so in order to have a reasonable baseline against which to compare
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our model’s performance, we also fit a diffusion model to these data (Ratcliff, 1978). In
the full version of the model, we allowed it a great deal of parametric freedom, with the
goal of achieving the best quantitative fit. The mean and variance of the drift rate distribu-
tions were allowed to vary between targets and foils in each condition, as were boundary
separation and response bias (boundary separation and response bias have a similar inter-
pretation in our dynamic model, although the decision bounds are constant over time in
the diffusion model). In most applications of the diffusion model, including ours, residual
time is assumed to vary randomly from trial to trial according to a uniform distribution
characterized by a mean and range (Ratcliff & Tuerlincx, 2002). We found that start-point
variability was unnecessary to fit these data and so was not included (this is not surprising
given that errors in this experiment are consistently slower than correct responses; Ratcliff
& Rouder, 1998). The diffusion model was fit using the same QML procedure we used
to fit our model, using the algorithms described by Tuerlincx (2004) to compute the joint
accuracy-RT distribution functions and quantiles of the diffusion model. While other mod-
els of joint accuracy and RT (e.g., S. Brown & Heathcote, 2008) would likely have sufficed
for comparison purposes, we selected a diffusion model for its demonstrated ability to fit
a wide variety of data and for its resemblance to our own model, which is also a type of
random walk, making it easier to align parameters with a similar function in each model.
The best-fitting parameters of our dynamic recognition model are given in Table 3.2,
with the best-fitting model’s predictions in Figure 3.1. As expected, the probability of
feature storage u increases with study time. As measured by both AIC and BIC, unlike the
ARC model, our model needs to allow response boundaries to change between conditions
in order to obtain the near-equivalence of response time distributions between the different

conditions. In particular, allowing all aspects of the response boundaries to change as a
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Table 3.2: Best-fitting parameters of the dynamic recognition model to the free-response data of
Nobel and Shiffrin (2001), as well as comparable parameters from the best-fitting diffusion model.
Conditions are labeled according to the number of studied pairs and study time. NLL = Negative

Log-Likelihood, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion.

Parameter Condition Full model A restricted b restricted N restricted

Ug70 0.394 0.391 0.401 0.398
12000 0.500 0.490 0.496 0.499
cs 0.904 0.908 0.903 0.903
Ay 10-670 46.926 46.539 46.653 47.271
10-2000 55.676 56.748 57.366
40-670 43.638 38.149 37.444
40-2000 39.454 43.532 44.140
b 10-670 0.536 0.536 0.537 0.536
10-2000 0.538 0.545 0.537
40-670 0.529 0.526 0.534
40-2000 0.544 0.537 0.540
N¢ 10-670 31.982 32.277 32.240 31.987
10-2000 32.613 35.795 32.108
40-670 29.477 28.819 31.417
40-2000 34.163 31.512 32.370
Tr 20.649 20.960 20.952 21.004
p 10.479 10.476 10.476 10.475
NLL 1411 1596 1575 1536
AIC 2857 3221 3177 3100
BIC 3018 3353 3310 3232
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Figure 3.1: Observed response proportions and RT quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) for each

response type from Nobel and Shiffrin (2001), Exp. 1, along with predictions from the best-fitting

dynamic recognition model. Conditions labeled according to the number of studied pairs and study

time per pair.
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function of condition, including initial separation, bias, and rate of collapse, produces the
best fit, although fixing N produces a smaller harm than fixing A or b.

The best-fitting values of various diffusion models are given in Table 3.3. Despite the
larger number of free parameters, even the fully parameterized diffusion model is not able
to fit these data as well as our best-fitting dynamic model. Nonetheless, the fit is still
reasonably good, and just as in our model, it is clear that boundary separation needs to
vary between conditions to achieve a good fit. On the other hand, the diffusion model
does not require bias to vary by condition (the increase in NLL is quite minuscule) and
according to BIC—which imposes a stronger penalty on the number of free parameters
than AIC—the diffusion model is preferred that fixes bias and the standard deviation of
the drift rate distribution across conditions. We note, however, that the diffusion model’s
fit is significantly harmed if the trial-to-trial variability in residual time is removed. This
result is not simply a function of using derived distributions instead of raw data, as it will
be replicated in subsequent fits; thus, it suggests that the RT distributions in recognition
memory are not as skewed as those predicted by the diffusion model (Ratcliff & Tuerlincx,
2002; Ratcliff & Smith, 2004). Note that our model does not assume any variability in

residual time from trial-to-trial.

3.2.3 Discussion

The finding that participants adjust their response boundaries across conditions is consistent
with the idea that memory evidence reaches an asymptote over time, as in our model, or
is highly variable from trial to trial, as in the diffusion model. Although admittedly a post
hoc explanation, if it is the case that the quality of evidence does not improve over time,

such that additional accumulation would not provide additional information, there is no
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Table 3.3: Best-fitting parameters and fit diagnostics of diffusion models to the free response data
from Nobel and Shiffrin (2001), Exp. 1. NLL = Negative Log-Likelihood, AIC = Akaike Informa-

tion Criterion, BIC = Bayesian Information Criterion.

Restricted
Parameter  Condition Full  Drifts.d.  Bound. sep. Bias  Drift s.d. and bias  Resid. time var.
Target mean drift 10-670  0.146 0.139 0.157 0.150 0.141 0.113
10-2000  0.317 0.277 0.308 0.310 0.279 0.200
40-670  0.109 0.112 0.130  0.111 0.114 0.080
40-2000  0.209 0.215 0210  0.214 0.214 0.145
Foil mean drift 10-670  -0.193 -0.188 -0.207  -0.192 -0.188 -0.139
10-2000  -0.239 -0.238 -0.237  -0.248 -0.241 -0.270
40-670  -0.119 -0.123 -0.140  -0.119 -0.124 -0.122
40-2000  -0.168 -0.157 -0.170  -0.166 -0.160 -0.121
Target drift s.d. 10-670  0.279 0.259 0.305 0.285 0.262 0.214
10-2000  0.296 0290  0.297 0.238
40-670  0.250 0.301 0.254 0.200
40-2000  0.250 0254  0.254 0.173
Foil drift s.d. 10-670  0.190 0.182 0209  0.191 0.184 0.120
10-2000  0.189 0.185 0.195 0.221
40-670  0.173 0.225 0.178 0.169
40-2000  0.197 0202  0.199 0.145
Boundary separation 10-670 0.154 0.153 0.156 0.155 0.153 0.178
10-2000  0.163 0.159 0.164 0.159 0.210
40-670  0.145 0.148 0.146 0.148 0.180
40-2000  0.158 0.158 0.159 0.158 0.175
Bias 10-670  0.531 0.532 0.534  0.524 0.527 0.524
10-2000  0.511 0.526 0.513 0.570
40-670  0.527 0.527 0.526 0.561
40-2000  0.531 0.522 0.533 0.518
Mean residual time 0.513 0.511 0519  0.513 0.512 0.394
Resid. time range 0.425 0.421 0.433 0.425 0.423
NLL 1528 1549 1580 1531 1551 5721
AIC 3108 3138 3206 3107 3136 11493
BIC 3355 3327 3424 3325 3297 11729
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point in spending additional time accumulating evidence for a decision after a certain point,
because either no new information is available (the probe is saturated with features) or any
new information is not informative (if it is too variable). The lowest boundary separations
occur for long lists (40 pairs), where interference from the many studied traces reduces the
separation between target and foil familiarity trajectories. The fastest rates of boundary
collapse occur for short study times, when fewer features are stored and the chance that a
new feature will lead to a change in familiarity is low. Both of these results suggest that
participants adapt their decision criteria to the quality of the memory evidence, which had
previously been shown when study time is varied between lists (Ratcliff & Murdock, 1976;
Ratcliff, 1978). The design of the current experiment, in which participants experienced
the various conditions many times over many sessions, would certainly afford ample time
for such adaptation to occur. Why it would occur in such a way as to produce roughly
equivalent RT distributions between conditions is not clear, and the chief virtue of the ARC
model (Diller et al., 2001) is that it provides an a priori reason for such a finding. Our
model does not entail an equivalence in RT distributions between conditions, but like the
diffusion model, is capable of fitting a much broader range of findings than the ARC model
(Nosofsky & Stanton, 2006). We can only say that the good fit of our model to the Nobel
and Shiffrin (2001) data means that it is possible to explain their results without recourse
to a model built especially to fit their data.

Given that both our model and the diffusion model assume that evidence accumulation
for recognition is a random walk (albeit with very different properties for each model),
it is informative to compare parameters between the two models to see if they have the
same interpretations. Because evidence is nonstationary in our model, we only examine its

asymptotic form (i.e., as time ¢ — oo or, equivalently, when all probe features have been
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Figure 3.2: Comparison of asymptotic familiarity distributions produced by our model and param-
eter estimates for the diffusion model fitted to the free response data of Nobel and Shiffrin (2001),

Exp. 1. Dashed lines depict the least-squares regression line.
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sampled). In Figure 3.2, we plot the mean and standard deviations of the asymptotic distri-
butions of x(z) against the mean and standard deviation of the drift rate distributions in the
full diffusion model. Both the means and standard deviations are correlated—particularly
the means—indicating at the least that “memory evidence” would seem to have a similar
interpretation within both models, although our model provides a set of principles from
which to derive these values rather than letting them be free parameters. In contrast, deci-
sion parameters like boundary separation and response bias (also shown in Figure 3.2) are
only weakly related between the two models, but given the vastly different character of the
decision bounds in the two models, this is not surprising.

A final comparison between the two models is in their treatment of residual time (7g):
In our model fits, this is estimated to be quite low (around 20 ms) while in the diffusion
model it is quite high (roughly half a second). In addition, our model assumes residual
time is a constant, whereas the diffusion model requires substantial trial-to-trial variability
in T to fit the data (see Table 3.3). While our assumption of constant residual time is
undoubtedly over-simplistic, the facts that it is shorter in our model and does not need to
vary to achieve a similar quantitative fit suggest that the processes of feature sampling and
probe/trace comparison posited by our model account for a large amount of the variability
in response time, more so than the linear evidence accumulation process posited by the
diffusion model. Indeed, “residual time” in applications of the diffusion model is typically
assumed to include time for stimulus encoding (Ratcliff, 1978), a process made explicit
in our model. Finally, with regard to the very brief residual time estimates for our model,
we note that although residual time is also presumed to include components related to
stimulus detection and response execution, such processes need not occur serially (see,

e.g., Sternberg, 1969; Townsend & Ashby, 1983). They may well occur in cascaded fashion

50



(e.g., McClelland, 1979; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), with various
stages of stimulus detection and response execution “leaking” into the retrieval process.

It is clear that our dynamic model for recognition provides a good quantitative account
of these data, on par with the diffusion model. Our model has fewer free parameters and
offers a mechanistic account of the recognition process in terms of degree of feature storage
(1), encoding noise (cs), and interference from other list items. Thus, in addition to fitting
data, our model offers additional insight into the recognition processes that generate the

data.

3.3 Word Frequency

In this section, we continue to demonstrate that our proposed dynamic model for recogni-
tion does a good job of fitting both accuracy and response time distributions and that, in
doing so, it provides insights that would not be available with either a static memory model
or a generic decision model. Although various issues will be discussed, our primary focus
is on how word frequency manifests in recognition. Recognition performance is better for
low frequency (LF) words than for high frequency (HF) words, with this advantage typi-
cally taking the form of a “mirror effect”: not only are hit rates higher for LF words, but
false alarm rates are lower (Glanzer & Adams, 1985). Such a finding is counter-intuitive
from a simple familiarity-based perspective on recognition: If LF items simply possessed
less memory strength or lower familiarity, this would predict a lower false alarm rate, but
not a lower hit rate. For this reason, the word frequency mirror effect has led to a great deal
of theoretical and empirical investigation, although it remains difficult to decide between
the various theories proposed. We show that, by taking a dynamic approach, it is possible

to rule out a certain class of theories that would be otherwise indistinguishable.
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Before we can make this argument, we must lay out the various explanations provided
for the word frequency mirror effect. One type of explanation is based on the idea that
participants are aware of how often an item occurs and in what situations, and are able to
use this information to make a “meta-memory” judgment during a recognition test. For
instance, participants do not commit false alarms to their own names, despite their obvious
familiarity, suggesting that, in some cases, participants know if they would have encoded
their name had it been studied (J. Brown, Lewis, & Monk, 1977). The notion that recog-
nition judgments in general depend on meta-memory was codified in Attention Likelihood
Theory (ALT; Glanzer & Adams, 1990), which posits that studying a word leads to certain
features of the word becoming “marked” (in the language of our theory, we would say that
these features are “stored”). Then, when an item is presented at test, a participant com-
pares how many “marked” features the word has to how many it would have normally by
chance; if the number of marked features exceeds this amount, a participant calls the word
“old”, operating under the assumption that studying the item is what increased the number
of marked features. A word frequency mirror effect obtains because participants know that
they would have attended to and marked the features of a LF word more so than a HF word.
Thus, when a studied LF word is tested, it has many marked features as would be expected
if it has been studied; if a novel LF word is tested, it has many fewer marked features than
it would have had if it had been studied.

An acknowledged drawback of ALT is that it is not clear how participants form these
meta-memory expectations from one trial to the next. A participant must first decide what
class the item belongs to (HF or LF) such that the correct expectations can be brought
to bear. A different account that nonetheless implicates attention as the source of the LF

advantage is the early-phase elevated attention hypothesis (Malmberg & Nelson, 2003).
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This hypothesis holds that LF words present a kind of “desirable difficulty”: because LF
words require more attentional resources to initially identify (Becker, 1976), this greater
investment of effort enables more features of the word to be detected and encoded. How-
ever, although participants do in fact look longer at LF words at study—and looking time
is predictive of subsequent memory performance—there is no interaction between looking
time and word frequency (Pazzaglia, Staub, & Rotello, 2014). That is, if LF words are
advantaged only to the extent that they attract or require more attention, as the early-phase
elevated attention hypothesis proposes, then this advantage should be reduced with reduced
looking time. That this does not occur suggests that, although LF items do indeed attract
more attention, this alone is not the source of their mnemonic advantage.

A second group of explanations for the word frequency effect holds that memory differ-
ences by word frequency depend not on attention or meta-memory judgments, but on how
the words are encoded in memory. This group may be divided into dual- and single-process
accounts, although we will argue later that this division may obscure a deeper underlying
similarity between these two types of account. Dual coding theory (Reder et al., 2000) is
based on the idea that there are two routes to making a recognition judgment: one based
purely on a continuous value of memory strength and another based on explicit recollec-
tion of a memory trace. Memory strength is presumed to increase with frequency, such
that a high frequency item will have high memory strength and a low frequency item will
have low memory strength. However, this is counterbalanced by a “fan” effect (e.g., An-
derson, 1983) whereby the large number of memory traces stored for high frequency items
compete with one another making any one of them difficult to retrieve. The LF advantage
results, then, from the joint operation of these two factors on the two processes presumed to

underlie recognition: LF foils have lower memory strength, leading to a lower false alarm
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rate; LF targets, however, have fewer memory traces that compete to be retrieved and so
are more likely to result in a hit via the recollection of the target trace.

Single-process theories provide a different explanation for word frequency effects that
nonetheless relies on encoding differences. In particular, such theories posit that the repre-
sentations of low frequency words in memory are more distinctive (Schmidt, 1991; Nosof-
sky & Zaki, 2003). According to the REM model (Shiffrin & Steyvers, 1997, 1998), this
distinctiveness manifests in the features used to encode the words themselves. Specifically,
low frequency words are comprised of both semantic (Adelman, Brown, & Quesada, 2006)
and orthographic (Malmberg, Steyvers, Stevens, & Shiffrin, 2002) features that are more
rare. In our model, then, studying a LF word would result in a trace with features that have
a lower g parameter than HF words, and a LF test word would produce a memory probe
with a lower g value for its features. If g is lower for probe features, there will be fewer
traces in memory that happen to share the probe’s value on that feature by chance, thus
lowering the false alarm rate. Contrariwise, if there is a target trace in memory, a match
when g is low provides stronger evidence that the probe and trace encode the same event,
thus increasing the likelihood ratio for the target trace (termed “self-match” by Nosofsky
& Zaki, 2003) and thereby increasing the hit rate.

Low frequency items not only occur less often, they also tend to occur in fewer different
contexts (Adelman et al., 2006). Thus, the word frequency effect could result from context
noise (Dennis & Humphreys, 2001), since LF words are less likely than HF words to have
occurred in a context that is confusable with the study context. How this context noise
operates depends on whether a separate- or composite-trace view is adopted. BCDMEM
takes a composite-trace approach, such that a word is associated with a particular set of

context features reflecting that word’s pattern of use; when the word is studied, it becomes
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associated with some additional features of the study context, and the degree of match be-
tween the features of the study context and a word’s associated context features determines
whether or not it will be judged “old”. Because common words tend to be associated with
more context features, it is more difficult to tell whether a feature of the study context is
associated with that word because of studying it, or simply by chance, leading to a lower hit
rate and higher false alarm rate for HF words. An analogous separate-trace implementation
of context noise is to assume that memory contains more traces of HF words from prior
life history, represented by parameter K in our model. Although history traces match in
content features, they mismatch in context. Just as adding more list traces—which match
in context, but not content—leads to a mirror effect, adding more history traces will do
the same by increasing the odds that one of those traces was formed in a context similar
to the experimental study context (higher false alarms to HF words) and introducing many
poor matches that swamp the influence of a well-matching target trace (lower hit rate to
HF words; Nelson & Shiffrin, 2013). Regardless of implementation, the contexts in which
a word appears in prior life history affect episodic recognition: When normative word fre-
quency is held constant but contextual diversity is varied, words that occur in more diverse
contexts have a lower hit rate and higher false alarm rate than words that only occur in a
few contexts (Steyvers & Malmberg, 2003).

Each of these various theories accounts for the effects of word frequency on recognition
accuracy, and there is little basis for deciding between them on the basis of accuracy alone.
Many of these theories do make predictions about the dynamics of the word frequency ef-
fect, at least at a qualitative level. If the word frequency effect depends on first determining
the frequency class to which the word belongs such that an appropriate criterion can be

set (e.g., Gillund & Shiffrin, 1984; Glanzer & Adams, 1990; Hintzman, 1994), then the
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canonical mirror effect should only obtain when enough time is allowed for criterion set-
ting. Similarly, if the LF hit rate advantage depends on recalling a LF target trace (Reder et
al., 2000), this should take additional time to manifest. If LF words attract more attentional
resources by virtue of more difficult initial identification (Malmberg & Nelson, 2003), there
should be an overall delay in processing LF words during that initial period, but after that
the mirror effect should appear. If word frequency effects depend on interference from spe-
cific prior episodes, this should only be apparent later in processing, when enough content
features are sampled to overcome the initial mismatching context features. On the other
hand, if frequency effects depend on feature distinctiveness (Shiffrin & Steyvers, 1997) or
retrieval of associated context features (Dennis & Humphreys, 2001), then the frequency
effect will persist throughout the trial since those features—whether content or associated
context—are available from the very beginning.

These dynamic predictions can be tested using both a response signal paradigm, and
free response under both speed and accuracy emphasis. Hintzman et al. (1994) conducted
a response signal study of recognition of both HF and LF words, and we will examine this
first, since it most clearly tests the dynamic predictions above. We also examine two free
response studies, one by Rae et al. (2014) and another by Starns et al. (2012), in which
both word frequency and response emphasis, speed versus accuracy, was varied. Starns
et al. (2012) also varied study time and response bias, providing further opportunities to
investigate the properties of our dynamic model. Across all these experiments, we find that
the word frequency mirror effect persists across response signals at various times and as
instructional focus shifts from speed to accuracy emphasis, arguing against any account of

word frequency that predicts a difference in the effect as a function of time.
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3.3.1 Signal to respond

Hintzman et al. (1994) studied the source of the word frequency effect using both divided
attention and response signal procedures, but we focus on the response signal procedure
used in their Experiment 6. On each study-test block, participants studied a list of 20
words, 5 of which were low frequency, 5 were high frequency, and 10 were of moderate
frequency (these were used to test a different mirror effect—between concrete and abstract
words—but will not be discussed here). At test, all of these words were tested along with
20 foils. To fit these data, we minimized the sum of squared error between predicted and
observed probability of saying “old” at each signal lag, and assessed model fit via adjusted
R,

Y (di—d;)?
2 N—k
Rig=1— <t

N—1
where d; is the predicted probability of responding “old” at point i, d is the mean probability
of saying “old” across lags and item types, N is the number of observed points, and k is
the number of free parameters. Thus, Ridj implements a trade-off between model fit and
complexity.

To model frequency effects arising from interference from prior life history, we allowed
the number of history traces to differ between LF and HF words (parameters K7 and Ky,
respectively). These traces match the test word in content features, but have random con-
text features, assuming that most life experience bares little similarity to the experimental
situation. We compared this account of word frequency effects with a feature distinctive-
ness account, which was embodied by a single parameter gz, reflecting the probability that

a content feature of a LF word would match a probe feature by chance; we simply let this

value for HF words be gz = 1 — g;. Historical traces will not be activated until sufficient
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Table 3.4: Best-fitting parameters of models representing different account of the word frequency
effect in the Hintzman et al. (1994, Exp. 6), along with fit diagnostic Ridj. Values fixed for each

model are marked with an asterisk.

Word frequency source

Parameter Feature distinctiveness Prior history traces Both
u 0.371 0.373 0.371

cs 0.982 0.986 0.982

K1 0* 668 0

Ky 0* 2886 0

gL 0.484 0.5% 0.484

0 0.037 0.062 0.037

fo 121.809 94.305 121.809

p 6.686 7.718 6.686

Rig 0.958 0914  0.950
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content features have been sampled to allow them to be active, overcoming their initial
mismatching context features, leading to the prediction that differences between frequency
classes will not arise until later response signals. Feature distinctiveness, on the other hand,
predicts frequency differences at all lags, although the size of the effect will grow as more
content features are sampled. We fit three versions of our dynamic model, one under the as-
sumption that only feature distinctiveness leads to frequency effects, another that assumes
only interference from history traces leads to frequency effect, and a model that allows both
mechanisms to operate. Fitted parameter values are given in Table 3.4.

The preferred model is that in which frequency effects are due only to feature distinc-
tiveness; when both that and history traces are allowed to vary, the data are best fit by
assuming K; = Ky = 0. The reason is clear by examining the data, which are shown along
with predictions of the feature distinctiveness model in Figure 3.3: A word frequency mir-
ror effect is, indeed, present across signal lags, while a difference in history traces predicts
that such a difference would not appear until later. Beyond the fact that it is unwise to draw
strong conclusions from a single study, we note that it is also possible that the unusual
demands of the response signal procedure entail a different kind of processing from that
normally encountered in free response settings. We thus turn to two large-scale studies of

free response recognition.

3.3.2 Raeetal. 2014

Rae et al. (2014) report results from a recognition memory experiment with 47 participants
and a total of 18,001 trials; participants studied lists containing 56 words, of which 50
appeared as targets on a subsequent test along with 50 foils. For each study/test block,

participants were instructed to emphasize either accuracy or speed in their responses. Al-
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Figure 3.3: Observed probability of responding “old” as a function of signal lag and response time
in Hintzman et al. (1994, Exp. 6), with predictions from the dynamic model that assumes feature

distinctiveness underlies differences between frequency classes.
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though Rae et al. (2014) did not analyze and report effects of normative word frequency,
we divided their stimuli into LF and HF words based on a median split in word frequency
(using the MRC database; Coltheart, 1981). For further details of the experimental pro-
cedure, the reader is directed to their paper. In this case, we were able to find parameter
estimates via QML, enabling more robust quantitative model comparisons using both AIC

and BIC.

Frequency

Once again, we fit three versions of the model each embodying different assumptions about
the source of frequency effects: One that assumes only differences in the number of history
traces (model 1), one that assumes only differences in feature distinctiveness (model 2),
and another that allows both mechanisms (model 3). As evidenced by both AIC and BIC
(Table 3.5, rows 1-3), and by the optimization routine hitting the minimum K values of 0
for both HF and LF items, the model (#2) is preferred where history traces play no role
(K = Kz = 0) and frequency effects are accounted for solely in terms of different base-
rates between HF and LF items (g7 < gg). Once again, this quantitative result is anticipated
by the qualitative finding that frequency effects persist under both speed instructions (where
responses are made quickly) and accuracy instructions (where responses are made slowly),
as shown in Figure 3.5. If the source of frequency effects was time-dependent, as would be
predicted by the historical interference account, then frequency effects should be mitigated

under speed instructions, but this is not the case.
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Table 3.5: Best-fitting parameter values and fit criteria for the data from Rae et al. (2014). Values
fixed for each model are marked with an asterisk. Models 1-3 only vary frequency-related param-
eters while models 4-8 vary parameters related to speed/accuracy trade-off; the overall preferred

model is indicated in boldface.

Model
Parameter Condition 1 2 3 4 5 6 7 8
u 0.393 0394 0394 0407 0407 0412 039 0.408
cs 0.932 0931 0931 0938 0935 0938 0.934 0.939
K, 0 0* 0 0* 0* 0* 0* 0*
Ky 0 0* 0 0* 0* 0* 0* 0*
gL 0.5* 0479 0479 0478 0474 0474 0473 0473

Ao Accuracy 46.6 483 483 454 451 425 455 445
Speed 226 219 219 225 263 283 283 302
b  Accuracy 0.541 054 054 0541 0543 0545 0542 0.543
Speed 0.573 0.572 0572 0.579  0.56 0.559 0.557 0.555
Tk Accuracy 315 320 320 323 323 336 323 335
Speed 327 331 331 319 304 292 298 285
p Accuracy 6.27 6.1 6.1 638 638 637 638 639
Speed 417 417 417 417 562 562 562 583
N¢ Accuracy 30%* 30%* 30%* 30%* 30%* 30 292 29.1
Speed 30%* 30%* 30%* 30+ 226 219 221 213

cr Speed 1* 1* 1* 0.961 1* 0971 1* 0975
NLL 830 779 779 749 704 678 693 669
AIC 1685 1579 1583 1522 1432 1381 1413 1366
BIC 1778 1665 1685 1616 1526 1483 1514 1475
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Speed-accuracy trade-offs

Rae et al. (2014) assessed the possibility that instructions to focus on speed, rather than
accuracy, affect not just response boundaries, but decision evidence as well. Starns et
al. (2012) argue that a focus on response speed may impair participants’ ability to form
effective retrieval cues. In our model, this concept can be embodied in two ways. Speed
instructions may cause sampling of test item features to be less accurate, represented by a
value of ¢7 < 1. Different instructions may also lead to a more rapid collapse of response
boundaries, represented as a lower value of N/ in Equation 2.10. If boundaries collapse
faster, decisions will tend to be made on the basis of fewer features, before the evidence
has matured.

As shown in rows 4-8 of Table 3.5 the preferred model (#8) allows both ¢ and N* to
vary. This is in accord with Rae et al. (2014) and Starns et al. (2012): participants under
speed instructions make decisions both with lower quality evidence—reflected in decreased
boundary separation and increased sampling noise cr—and lower quantity of evidence—

reflected in faster boundary collapse. This situation is depicted graphically in Figure 3.4.

Quality of fit

As shown in Figure 3.5, the best-fitting version of our dynamic model (#8) does a good
job accounting for both accuracy and RT quantiles. For comparison, we again looked to
the diffusion model (Ratcliff, 1978) as a reasonable baseline. According to AIC, the pre-
ferred diffusion model was one that allowed both the mean drift rate for each item type
(LF and HF targets and foils) and the standard deviation of the drift rate distributions to

vary as a function of speed/accuracy focus. In addition, boundary separation, bias, mean
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Figure 3.4: Mean familiarity trajectories and response boundaries for the preferred model fit (#8)
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Table 3.6: Best-fitting parameter values and fit criteria of diffusion models fit to the data from Rae

etal. (2014).

Parameter Condition Best AIC Best BIC No residual time variability

Target mean drift HF-Accuracy 0.260 0.186 0.154
HF-Speed 0.206 — 0.151

LF-Accuracy 0.357 0.260 0.207

LF-Speed 0.293 — 0.195

Foil mean drift HF-Accuracy -0.234 -0.166 -0.163
HF-Speed -0.164 — -0.106

LF-Accuracy -0.300 -0.222 -0.205

LF-Speed -0.225 — -0.153

Target drift s.d. HF-Accuracy 0.325 0.217 0.166
HF-Speed 0.270 — 0.154

LF-Accuracy 0.347 0.222 0.148

LF-Speed 0.284 — 0.113

Foil drift s.d. HF-Accuracy 0.242 0.140 0.121
HF-Speed 0.209 — 0.102

LF-Accuracy 0.241 0.143 0.121

LF-Speed 0.167 — 0.0811

Boundary separation Accuracy 0.121 0.111 0.123
Speed 0.0738 0.0691 0.0854

Bias Accuracy 0.546 0.541 0.551

Speed 0.528 0.539 0.510

Mean residual time Accuracy 0.577 0.562 0.523
Speed 0.455 0.452 0.410

Residual time range Accuracy 0.206 0.191 —
Speed 0.161 0.171 —

Start-point variability 0.0386 — 0.0326
NLL 505 531 1159

AIC 1061 1094 2364

BIC 1256 1219 2543
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Figure 3.5: Diagnostic plots for the preferred model fit (#8) to the data from Rae et al. (2014), with

proportion of variance accounted for (R?) indicated in the upper left corner.

residual time, and residual time variability were allowed to vary between speed and accu-
racy instructions, although only a single start-point variability parameter was needed. The
preferred diffusion model according to AIC, then, had 25 free parameters, achieving an
AIC of 1061, considerably better than the best version of our dynamic model (#8, which
had an AIC of 1366). According to BIC, which imposes a stronger penalty on free param-
eters, the preferred diffusion model fixed the mean and standard deviation of the drift rate
distributions across instructions and had no start-point variability at all; this model allowed
boundary separation, bias, mean residual time, and residual time variability to vary as a
function of instructions. The BIC-preferred diffusion model had only 16 free parameters
and achieved a BIC of 1219, again lower than our best model’s BIC (1475).

For the most part, the best-fitting diffusion model parameters (Table 3.6) are sensible
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and in accord with the explanation offered by our dynamic model, but offer a somewhat
confusing picture of the effect of speed vs. accuracy instructions, in that BIC argues against
an effect of instructions on mnemonic evidence. This could be an artifact of fitting to group
data rather than individuals, as the full model (the one selected by AIC here) is preferred
according to both AIC and BIC in individual fits (Rae et al., 2014). Still, it is interesting
that not only mean residual time, but the range of the residual time distribution is still
selected to vary according to BIC. This, combined with the fact that residual time variability
is necessary for the diffusion model to fit these data at all (see the final column of Table
3.6), suggests that important decision-relevant processes are occurring during this “residual
time” that are not accounted for by linear accumulation of noisy evidence. Such processes
could include feature sampling, as posited by our model, reinforcing the importance using

a dynamic model to dig deeper into the mechanisms underlying recognition.

3.3.3 Starns et al. 2012

In the experiment reported by Starns et al. (2012), four participants each completed 20
sessions of a recognition memory task for a total of 66,986 trials. Within each study/test
block, study words were shown 1, 2, or 4 times and words at both study and test could be
of either high or low frequency. Between blocks, participants were instructed to focus on
either speed or accuracy. Unlike the Rae et al. (2014) study, test lists also varied in the
proportion of targets, either .21, .32, .5, .68, or .79, thus inducing a bias (participants were
informed about this proportion prior to testing). The reader is directed to their paper for
further details of their experimental procedure.

We allowed u (the probability of encoding a content feature at study) to vary with

number of repetitions; across all model fits (Table 3.7), u increases with the number of rep-
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Table 3.7: Best-fitting parameter values and fit criteria for the data from Starns et al. (2012). Values
fixed for each model are marked with an asterisk. Models 1-3 only vary frequency-related param-
eters while models 4-8 vary parameters related to speed/accuracy trade-off; the overall preferred

model is indicated in boldface.

Model
Parameter Emphasis Target proportion 1 2 3 4 5 6 7 8
uj 0.299 0.272 0.272 0.275 0.268 0.275 0.268 0.276
uy 0.388 0.360 0.360 0.364 0.383 0.364 0.383 0.364
Uy 0.434 0.408 0.408 0.423 0.443 0.423 0.443 0.423
cs 0.937 0.944 0.944 0.954 0.945 0.954 0.945 0.954
K1 0 0* 0 0* 0* 0* 0* 0*
Kn 0 0* 0 0* 0* 0* [ 0*
8L 0.5% 0.472 0.472 0.473 0.473 0.477 0.473 0.481
Ag Accuracy 0.21 16.2 154 154 15.1 15.1 15.5 15.1 16.4
0.32 14.7 15.6 15.6 15.7 14.8 152 14.8 15.6
0.50 15.1 15.8 15.8 15.4 15.4 154 154 15.8
0.68 13.8 14.2 14.2 15.0 14.5 14.9 14.5 14.7
0.79 16.0 15.5 15.5 15.8 15.6 15.7 15.6 16.9
Speed 0.21 16.1 149 14.9 14.0 18.7 142 18.7 14.6
0.32 12.6 12.9 12.9 12.1 155 12.0 155 12.7
0.50 14.3 13.5 135 13.1 17.8 12.6 17.8 13.0
0.68 13.7 13.2 13.2 12.1 16.4 12.1 16.4 13.1
0.79 12.7 12.6 12.6 11.3 16.8 11.7 16.8 12.1
b Accuracy 0.21 0.446 0.429 0.429 0.42 0.434 0.423 0.434 0.421

0.32 0.498 0.488 0.488 0.48 0.489 0.474 0.488 0.476
0.50 0.575 0.558 0.558 0.554 0.566 0.554 0.566 0.552

0.68 0.67 0.655 0.655 0.649 0.663 0.647 0.663 0.645
0.79 0.718 0.711 0.711 0.705 0.716 0.7 0.716 0.692
Speed 0.21 0.494 0.471 0.471 0.507 0.474 0.503 0.475 0.5

0.32 0.537 0.517 0.517 0.557 0.512 0.549 0.512 0.547
0.50 0.566 0.552 0.552 0.582 0.539 0.582 0.539 0.576
0.68 0.602 0.588 0.588 0.619 0.567 0.616 0.567 0.611
0.79 0.669 0.654 0.654 0.697 0.613 0.687 0.613 0.68

Tr Accuracy 0.21 321 329 329 338 333 333 333 329
0.32 332 326 326 335 339 339 339 335

0.50 334 331 331 344 340 344 340 340

0.68 360 357 357 363 363 363 363 362

0.79 346 354 354 358 355 358 355 349

Speed 0.21 268 277 271 270 227 270 226 268

0.32 299 296 296 288 252 292 252 287

0.50 289 294 294 282 239 290 239 289

0.68 293 294 294 287 243 291 243 285

0.79 308 307 307 306 246 303 246 302

P Accuracy 4.68 4.59 4.59 4.59 4.59 4.59 4.59 4.60
Speed 3.99 3.96 3.96 3.96 6.47 3.96 6.47 3.98

N¢ Accuracy 30% 30* 30* 30* 30* 30* 30.0 30.0
Speed 30% 30% 30% 30% 20.0 30%* 20.0 30.0

cr Speed 1* 1%* 1%* 0.955 1* 0.962 1* 0.964
NLL 6095 5972 5972 5998 5796 5976 5795 5937
AIC 12265 12019 12023 12071 11667 12029 11669 11955
BIC 12611 12356 12378 12417 12014 12385 12024 12319
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Figure 3.6: Asymptotic familiarity distributions and decision bounds (black) produced by model 7

of the data from Starns et al. (2012).

etitions. In all model fits, b increases with the proportion of targets, as in Figure 3.6 which
shows the asymptotic boundaries (Ag (% — b)) for model 5. As above, the best account for
word frequency effects assumes that HF/LF words differ in feature-frequency base rates
rather than the number of episodic history traces (rows 1-3 of Table 3.7). Finally, speed in-
structions are found to result both in a smaller initial boundary separation and a faster rate
of boundary collapse, but allowing for additional noise in probe feature sampling (cr < 1)
does not improve the model fit in this case. These results are consistent with Rae et al.
(2014) in that speed instructions result in fewer probe features being sampled before a de-
cision is made, but in this case, there is no evidence that the perception of those features is

impaired.

Target/foil variance

One of the main arguments in Starns et al. (2012), expanded in Starns and Ratcliff (2014),

is that the distribution of target evidence has greater variance than that for foils. Although
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the evidence distributions in our model are non-stationary, the asymptotic familiarity dis-
tributions predicted by the AIC- and BIC-preferred model (#5; Figure 3.6) show greater
target than foil variance in all but one case: HF targets that appear only once at study.
In that case, the very low u value means that the single matching target trace cannot take
many values even when the probe is saturated, thereby decreasing the variance of the fa-
miliarity distribution when this single target is averaged with the likelihoods of the many
non-matching list traces (which have higher variance as their feature values bear only a
chance resemblance to the target). Given the small size of this effect, we do not make a
strong theoretical claim about it, but note that the ratio of target to foil variance is often

estimated to be lower for weak HF words (Starns et al., 2012; Starns & Ratcliff, 2014).

Quality of fit

Once again, as shown in Figure 3.7, our model does a good job at accounting for both ob-
served accuracy and RT quantiles, although it is not as good at predicting the longest (.9)
quantiles. By comparison, the best-fitting diffusion model reported by Starns et al. (2012)
achieved a BIC of 7886, considerably lower than our best BIC of 12014 (Table 3.7, albeit
with 66 free parameters compared to the 38 free parameters in our preferred model (#5).
As another point of model comparison, Starns et al. (2012) fit the RTCON model (Ratcliff
& Starns, 2009) to these data; RTCON uses a bank of nonlinear leaky competing accu-
mulators (similar to Usher & McClelland, 2001) rather than the perfect linear accumulator
assumed in the diffusion model, and has been shown to fit joint confidence-RT data quite
well (Ratcliff & Starns, 2009, 2013), so it stands to reason that it should be able to fit bi-

nary choice data as well. Nonetheless, they report that RTCON was only able to achieve a
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Figure 3.7: Diagnostic plots for the preferred model fit (#5) to the data from Starns et al. (2012),

with proportion of variance accounted for indicated in the upper left corner.
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%2 of 5533 on these data', which is worse than both the diffusion model (x> = 2418) and
our BIC-preferred dynamic model (model 5, %% = 5190). Thus, while the diffusion model
provides the best quantitative fit of the models under consideration, our dynamic model
is competitive with other accounts like RTCON and represents a considerable savings in

parameters (38 for our model versus 66 for the diffusion).

3.3.4 Discussion

Once again, we have shown that our dynamic model for recognition does a good job fitting
free response data quantitatively. Although in these datasets, in contrast with those from
(Nobel & Shiffrin, 2001), a diffusion model was always able to provide a better quantita-
tive fit, it generally required considerably more parameters to do so. Furthermore, those
parameters cannot be directly tied to memory processes, which is the primary goal of our
modeling efforts: To develop a model that jointly describes how memory retrieval and de-
cision evolve over time, and use this model to increase our understanding of memory. To
that end, we have made considerable progress in discovering the source of word frequency
effects in recognition.

Across all model fits, the best explanation for word frequency effects in recognition
memory was that LF words contain more distinctive features that are less likely to match
by chance (e.g., Shiffrin & Steyvers, 1997). In contrast, no support was found for a model
in which word frequency effects arose from interference from prior occurrences of the
word in life history (e.g., Nelson & Shiffrin, 2013). Indeed, no support was found for

any account of word frequency effects that predict that word frequency effects are time-

! Although we fit by minimizing NLL, for as large samples as we have here, this is essentially equivalent

to minimizing .
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dependent. Regardless of response signal lag (Hintzman et al., 1994) or speed vs. accuracy
focus (Starns et al., 2012; Rae et al., 2014), word frequency effects persist. Thus, our
investigation appears to also rule out recall-based (Reder et al., 2000), criterion-setting
(Glanzer & Adams, 1990; Hintzman, 1994), and time-specific attentional (Malmberg &
Nelson, 2003) accounts of the word frequency effect in recognition, unless those secondary
processes occur so rapidly as to be undetectable, at which point they cease to become useful
theoretical constructs.

Although we have shown that interference from specific prior episodes does not under-
lie the word frequency effect in recognition, we do not claim that such interference does
not exist (cf. Nosofsky, Cao, et al., 2014). Words, however, have been experienced over the
course of a participants lifetime, albeit at different rates and in different contexts. Thus, we
believe that there is, in fact, a deep relationship between our account of the word frequency
effect and that offered by “context noise” models (Dennis & Humphreys, 2001). In partic-
ular, to the degree that semantic features are used to encode traces of a word at study—the
content features of the trace—these features must have been learned over the lifetime. This
prior learning, naturally, took place in contexts prior to that of the experiment.

A wealth of research into semantic memory has supported theories in which learned
semantic features are dependent on the contexts in which a word occurs, whether that con-
text is other nearby words (e.g., Lund & Burgess, 1996; M. N. Jones & Mewhort, 2007,
Howard, Shankar, & Jagadisan, 2011), documents in which the word occurs (e.g., Lan-
dauer & Dumais, 1997; Griffiths, Steyvers, & Tenenbaum, 2007), or perceptual features of
the environment in which the word is used (e.g., Barsalou, 1999; Rogers & McClelland,

2004)2. As outlined in our model, when a word is encountered in a study episode, the con-

ZPerceptual and linguistic context appear to carry a great deal of redundant information about word mean-
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tent features of the trace that is formed derive from these learned semantic features, which
in turn reflect the contexts in which the word is typically used in language. Because LF
words tend to be used in more distinctive contexts, the semantic features by which they
are encoded are correspondingly more distinctive, just as we have inferred from our model
fits (M. N. Jones, Johns, & Recchia, 2012; Nelson & Shiffrin, 2013). One can even use
representations derived from a context-based model of semantics to predict episodic recog-
nition, enabling more fine-grained item-level predictions (Johns & Jones, 2010), so our
model might be considered a more abstract “stand-in” for such an approach.

The key difference, then, between our model and a pure context noise model like BCD-
MEM (Dennis & Humphreys, 2001) is that, in our model, we distinguish between two
senses of “context”: Although representations in semantic memory are learned by aggre-
gating over many prior contexts, episodic memory traces distinguish between semantic
features and the environmental/task context. These two kinds of memory representations
undoubtedly exist in a perpetual cycle, where each new event updates the semantic repre-
sentation which is then used as a basis for encoding new events (e.g., Kumaran & McClel-

land, 2012; Nelson & Shiffrin, 2013).

ing (Riordan & Jones, 2010), although the two forms of experience can interact to support additional learning

and inference (Johns & Jones, 2012).
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Chapter 4

Secondary Processes in Recognition

Several theories of recognition posit the operation of two processes, in contrast to the model
we have presented which involves only a single process by which familiarity evolves over
time to lead to a recognition decision. In this section, we consider a variety of scenarios in
which there is evidence for multiple processes operating at recognition and show how our
model can be extended to account for them. In particular, we challenge the common claim
that the secondary process is always a form of “recollection”, in which details of an event
are retrieved from episodic memory and used to make a recognition decision. Recollection
is typically contrasted with “familiarity”, which is assumed to depend only on the strength
of the test item, and which might be identified with the model we have thus far proposed.
The distinction between familiarity and recollection is referred to as “dual process” theory
(for reviews of these theories and their empirical support, see Yonelinas, 2002; Mandler,
2008). Our attempt is not to argue for or against “dual process” models of recognition—
indeed, the models we propose entail the operation of more than one process. Instead, our
aim is to explicitly characterize the secondary processes involved, such that the resulting
theory enhances understanding of how recognition operates.

A popular approach to distinguishing between familiarity-based and recollection-based

responses is the “remember-know” paradigm (Tulving, 1985). In this paradigm, partici-
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pants are instructed to give a “know” response if the test item only seems familiar, while
they must give a “remember” response if they consciously recall having seen the test item
before. It is unclear to what extent this subjective experience actually dissociates between
two qualitatively different processes, or even if the two responses arise from different
processes at all (W. Donaldson, 1996; Hirshman & Master, 1997; Dunn, 2004, 2008).
Most critically for our purposes, correct response times for “remember” judgments are
faster than those for “know” judgments (Dewhurst & Conway, 1994), even when confi-
dence is controlled (Rotello & Zeng, 2008). This stands in contrast to the assumption that
recollection—which is presumed to underlie “remember” responses—is slower than famil-
iarity. We therefore believe that the remember-know procedure is not alone sufficient to
characterize secondary processes in recognition.

Another technique used to determine the extent of the contribution of a secondary recol-
lection process is the process dissociation procedure (Jacoby, 1991). This procedure begins
by assuming that familiarity makes an equal contribution to recognition decisions across
conditions, but that different test instructions can induce conscious recollective strategies.
By comparing conditions in which certain information is relevant for the decision (e.g., ac-
cepting only items presented in an auditory rather than visual modality) with conditions in
which that information is irrelevant for recognition, Jacoby’s procedure allows researchers
to obtain an estimate of the relative contribution of recollection to recognition. However,
this procedure will nonetheless produce high estimates of the contribution of recollection
even when the data are simulated from a single-process model where it is known that rec-
ollection did not generate the data, and when a model with recollection is used to generate
the data, the process dissociation estimates of recollection’s contributions are incorrect

(Ratcliff, Van Zandt, & McKoon, 1995). The process dissociation procedure also relies on
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the strong assumption that the two processes are stochastically independent of one another;
when the assumption is violated, estimates obtained from this procedure are uninterpretable
(Curran & Hintzman, 1995; Hillstrom & Logan, 1997). Indeed, it has long been established
that there is a correlation between the probability of correct recall and that of correct recog-
nition (Tulving & Wiseman, 1975; Kahana, Rizzuto, & Schneider, 2005), strongly arguing
against the process dissociation assumption of independence (item and source memory per-
formance are also correlated; Starns, Rotello, & Hautus, 2014). Finally, even if the assump-
tion of the process dissociation procedure are satisfied, it is insufficient for identifying the
relevant processing components (Humphreys, Dennis, Chalmers, & Finnigan, 2000). The
process dissociation procedure cannot provide compelling evidence for or against the oper-
ation of secondary processes in recognition, let alone describe what those processes might
be.

We believe that the debate over the relative contribution of secondary processes in
recognition can be best advanced by attempting to develop explicit models of such pro-
cesses, which we now proceed to do. As we have emphasized throughout, such a model
should be dynamic in that it specifies how the state of the process evolves over time. Thus,
for our purposes, accuracy data alone—which has been the primary source of evidence for
dual-process theories—is not sufficient. Rather, we consider the clearest evidence for sec-
ondary processes to arise from speed-accuracy trade-off studies. When such a study finds
a non-monotonic response curve, this is evidence that a secondary process or secondary
source of information begins to contribute to the decision. Our aim in this section is to
review studies that provide evidence for secondary processes in recognition and then to
characterize these processes within our dynamic framework. In so doing, we cannot claim

to be truly “predicting” the data, since in general we will need to tailor some aspect of the
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model’s structure to each experiment. While some may then criticize our work for “re-
describing” the data, this criticism is overly narrow. Our descriptions of the mechanisms
needed to explain these data afford greater clarity and understanding by virtue of being em-
bedded in our larger dynamic approach to recognition. In addition, by providing an explicit

mechanistic account, our candidate explanations are made testable by experiment.

4.1 Highly similar foils

The operation of a recall-like process has been implicated in situations where participants
must detect foils that are highly similar to studied items. It has been proposed that par-
ticipants make use of a “recall-to-reject” strategy wherein the target memory trace is re-
trieved and compared to the current test item; a similar foil can then be rejected by direct
comparison of the trace to the test item. The main evidence for this theory comes from
speed-accuracy trade-off studies in which, at short signal lags, participants are likely to call
similar foils “old”, with this tendency reversing at longer signal lags. We argue that, instead
of recall, this finding is better explained by a delay in the availability of distinguishing fea-
tures. That is, the features that would be needed to detect the mismatch between the test
item and memory are not available until later in the trial. Such an explanation is more con-
sistent with the finding that the time at which similar foils begin to be rejected is the same
regardless of the strength of the similar target item. It is also easier to reconcile with the
fact that only certain kinds of similarity lead to non-monotonic false alarm curves. We pro-
ceed to describe the evidence for secondary processes in the rejection of similar foils, and
show how an extension of our dynamic recognition model can account for these findings.
Hintzman and Curran (1994) report a set of SAT studies in which participants studied

a list of nouns. In their second and third experiments, test items comprised old words,
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Figure 4.1: Observed and predicted probability of responding “old” as a function of response signal

lag plus response time from Hintzman and Curran (1994, Exp. 3). See text for details.

new words, and words that were studied in the opposite plurality (e.g., if “apple” had been
studied, “apples” might appear as a test item). When participants were told to accept only
words in their exact studied form (Exp. 2 and the “exclusion” condition of Exp. 3), partici-
pants were initially more likely to endorse similar items that had been studied in the oppo-
site plurality before reversing and correctly rejecting such items (Figure 4.1, “exclusion”).
Hintzman and Curran proposed that, in order to correctly reject similar foils, participants
had to explicitly retrieve the trace of the corresponding study item and compare the stored
plurality to the plurality of the similar test item; if they failed to match, the participant
would reject the item.

One explanation for these results that does not involve a secondary recollection process
is that response bias changes over different signal lags. Rotello and Heit (1999) reana-

lyzed Hintzman’s and Curran’s data in terms of dy, a discriminability measure similar to d’
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that factors out the effect of bias. Under this analysis, d;. curves were strictly monotonic,
suggesting that similar foils did not become more discriminable from completely novel
foils later in the trial, as one might expect from a “’recall-to-reject” strategy. However, it is
not clear why bias should differ as a function of signal lag only for similar items; indeed,
Hintzman et al. (1994) found that bias did not differ across lags. Without a compelling
account of why response bias might change over signal lags for specific conditions in these
experiments, we consider this explanation lacking.

Brockdorff and Lamberts (2000) offered a different explanation: Instead of needing a
secondary retrieval process, plurality may simply be a feature that is not available until later
in processing. That is, semantic features of a word might become active earlier, leading
participants to endorse a foil regardless of its plurality, but only later does the discriminating
plurality feature become available to be used to reject the item. In the context of our model,
rather than the plurality feature “activating” at a later time, we would say that the features
of the item pertaining to its plurality are only available for sampling later in the trial. In
support of this explanation, the inflection point in the false alarm curves to reverse-plurality
foils is the same regardless of whether the similar item had been studied once or twice. This
follows directly from the assumption that plurality information isn’t available until later
in the trial, since the time at which plurality features are available to be sampled would
not depend on memory. Recall, on the other hand, would depend on the strength of the
corresponding memory trace, predicting that “similar 2” foils (foils similar to an item that
had been studied twice) could be rejected earlier than “similar 17 foils, which is not seen
in the data.

Under the assumption that plurality information is not available until later in a trial, we

fit a version of our dynamic recognition model to Experiment 3 from Hintzman and Curran
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(1994). In this experiment, participants studied lists consisting of 46 nouns, evenly split
between singular and plural nouns. Half of the studied nouns were repeated on the study
list. Test lists consisted of old items that appeared once or twice on the study list (labeled
“Old 1”7 and “Old 27, respectively), words that were the opposite plurality of a word that
had been studied either once or twice (“Similar 17 and “Similar 27, respectively), and com-
pletely novel items (“New”). Prior to the test lists, participants were told either to reject
any item that did not exactly match a word on the study list (the “Exclusion” condition)
or to accept words even if they did not match the studied plurality (the “Inclusion” condi-
tion). Thus, similar foils should be rejected in the exclusion condition, but accepted in the
inclusion condition. Participants, then, need not attend at all to plurality in the inclusion
condition, since it is no longer useful for distinguishing targets and foils.

We assume that a certain proportion of content features, pp, represent the plurality
of a word and that these features become available for sampling at time tp'. Before that
time, only non-plurality (e.g., semantic) features are available to be sampled, but after
that time, all features are available for sampling. Although all plurality features are used
in the exclusion condition, participants attempt to ignore them in the inclusion condition,
since they are not needed to discriminate targets from foils. Notice, however, that the
probability of calling a reverse-plurality item “old” in the inclusion condition is still lower
than the probability of a hit to an actual old item; thus, we assume that a proportion p;
of plurality features are still available for sampling even in the inclusion condition, thus
harming the match between a reverse-plurality test item and its corresponding memory

trace. Because participants are not told what kind of test condition they are in until after

"The proportion of features dedicated to representing plurality may be less in experiments where plurality

is not critical for distinguishing targets from foils.
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Table 4.1: Best-fitting parameters of the dynamic model to the data from Hintzman and Curran

(1994, Exp. 3).

Parameter Value
up 0.415
up 0.528
cs 0.976
BOmclusion 0.425
OExclusion 1.152
pp 0.134
tp 374.961
DI 0.0585
fo 87.138
p 5.034
R? 0.958

study, attempting to ignore the plurality features of the test item in the inclusion condition
means that participants cannot make use of the plurality features that were stored at study,
effectively reducing the number of content features available on which to base a decision.
Besides pp, tp, and p;, we fit separate decision criteria 0 to each condition (owing to
the different prior probabilities of a positive response—1/3 in the exclusion condition and
2/3 in the inclusion condition) and single values of cg, fy, and p across both conditions. We
also allowed u to vary with number of repetitions (u1, u); note that u applies equally to
the semantic and plurality features of the trace, such that a repeated item has, on average,
more of both types of features. The fitted values of these parameters are given in Table
4.1. As shown in Figure 4.1, the model captures the trends in the data both qualitatively

and quantitatively. Obviously, our account was deliberately tailored to fit these data, so this
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should not be surprising. Nonetheless, it shows that our account is reasonable and that the
dynamic approach to recognition can be easily extended to apply to new paradigms.

A delay in sampling plurality features could be attributed to a strategy adopted by par-
ticipants specifically for this task. It could also reflect the operation of lexical access,
wherein both the singular and plural forms of the word are initially activate in the lexicon,
with additional time needed to access a specific lexical trace. Although possible (New, et
al., 2004), this explanation merely “kicks the can” from the dynamics of episodic retrieval
to the dynamics of lexical/semantic retrieval; more work must be done to elucidate the re-
lationships between these processes (e.g., Hintzman & Curran, 1997). Another explanation
for the relative lateness of access to plurality features is that it reflects a narrowing of atten-
tion over time, from an initial broad distribution over the whole word to a subsequent focus
on plurality-specific features. Such a narrowing of attention has been implicated in a vari-
ety of tasks, particularly the flanker task (e.g., White, Ratcliff, & Starns, 2011), and forms
a critical component of theories of visual detection (Smith, Ratcliff, & Wolfgang, 2004;
Ratcliff & Smith, 2010) and changes in preference over time (Busemeyer & Townsend,
1993; Diederich, 2003). An attentional explanation is also consistent with the Stroop task,
wherein the semantic features of a word capture attention quickly, and it requires additional
time and/or effort before finer details (like print color or plurality) of the word are available.

Finally, we note that Malmberg, Holden, and Shiffrin (2004) also used opposite-plurality
foils in a recognition paradigm where the number of repetitions spanned a much larger
range (0-12) than in Hintzman and Curran (1994, Exp. 3). They found that the false alarm
rate to similar foils did not substantially increase with the number of repetitions of the
corresponding target at study, arguing that the increase in familiarity was counteracted by

the increased availability of recall with repetition. Because their study did not examine
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response times or speed-accuracy trade-off, we will not address it here in full, although
we acknowledge that, given the much larger number of study repetitions involved in their
study, it may be that recall or some other process is playing a role in their results that is not
apparent with smaller numbers of repetitions. We also note, however, that hits and false
alarms to similar foils can rise at different rates if repetition increases the storage of both
semantic and plurality information, as we have assumed throughout. The reason is that, in a
likelihood-based model like ours, a mismatching feature value (say, in plurality) can count
as stronger evidence against a match between the probe and trace than a matching feature
(say, in semantics) counts in favor of a match. This can be clearly seen in the simplified
likelihood computation in Equation 2.7 where, as cg — 1, the match term approaches ﬁ
while the mismatch term approaches 1 — cg = 0, overwhelming any positive evidence from
matching features. This feature of the model is illustrated in the fit to the Exclusion condi-
tion (Figure 4.1), in which the asymptotic false alarm rate to “Similar 2" items (words of

the opposite plurality to a repeated studied word) is lower than the asymptotic hit rate to

“Similar 1" items.

4.1.1 Other Kkinds of similarity

Our account of the data of Hintzman and Curran (1994) depends on the assumption that plu-
rality information is available late in the trial, while semantic features (that do not on their
own convey any information about plurality) are available early, a view consistent with the
early availability of semantic information in word recognition (Feldman, O’Connor, & Del
Prado Martin, 2009). That is, the features that distinguish between a target and a similar
foil are of different kinds. When similarity is defined in terms of a single type of feature,

we would not expect any difference in the time at which distinguishing features would

84



e ]
-
«Q _]
o . 'S
..................................... g
.
s
© | ’
. ©
i
O
a
N
(@)
c\! [ ]
o .
—— New: Predicted «  New: Observed
---- 0ld 1: Predicted A Old 1: Observed
------ Old 3: Predicted ¢ Old 3: Observed
o | Similar 1: Predicted ®  Similar 1: Observed
o~~~ - Similar 3: Predicted O  Similar 3: Observed
| I | !
500 1000 1500 2000

Response signal lag (ms)

Figure 4.2: Observed and predicted probability of responding “old” as a function of response signal
lag for the three “unpaired” condition in Rotello and Heit (1999, Exp. 2). Model parameters used

to generate predictions are given in Table 4.2.
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Table 4.2: Best-fitting parameters of the dynamic model to the data from the “unpaired” condition

of Rotello and Heit (1999, Exp. 2).

Parameter Value
up 0.294
u3 0.383
cs 0.974
s 0.711
0 0.330
fo 193.189
p 3.357
R® 0.878

be available, and consequently we would not expect any strong nonmonotonicity in false
alarm curves. Rotello and Heit (1999) replicated Hintzman and Curran (1994) using pseu-
dowords, thus diminishing the role of semantic features and ensuring that “similarity” could
depend only on orthography. Data from and model predictions for the “unpaired” condi-
tion of Rotello and Heit (1999, Exp. 2) are shown in Figure 4.2; this condition replicates
the general design of the exclusion condition of Hintzman and Curran (1994, Exp. 3), but
instead of unrelated words, participants studied unrelated pseudowords either once or three
times (labeled “Old 17, “Old 3”). Similar foils were created by altering some letters of one
of the studied words. As shown in Figure 4.2, there is little suggestion of the kind of sharp
nonmonotonicity observed by Hintzman and Curran (1994), and our model fits these data
quite well without assuming any delay in the availability of orthographic features that dis-
tinguish old items from similar foils (model parameters are given in Table 4.2). The model

still predicts a slight nonmonotonicity in the false alarm curves to similar foils, but this is
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Figure 4.3: Observed and predicted probability of responding “old” as a function of response signal
lag plus response time for the three instructional conditions in Heit et al. (2004, Exp. 2). Parameters

used to produce model fits are given in Table 4.3.

a consequence purely of the normal feature sampling process: Given that the majority of
features of similar foils match those of the corresponding target (represented by parameter
s), the first few features sampled are more likely to increase the match between the probe
and the target trace; only with the later sampling of additional mismatching features does
the match begin to decrease.

Just as there is no difference in the time at which distinguishing features are available
when similarity is defined purely in terms of orthography, there is no difference in the time
at which distinguishing semantic features are available. Heit et al. (2004) conducted several
response signal variants of the Deese-Roediger-McDermott (DRM; Deese, 1959; Roediger
& McDermott, 1995) paradigm, in which participants study lists of words containing sev-
eral close associates (e.g., bed, pillow, dream) of an unstudied critical word (e.g., sleep).
In their second experiment (Figure 4.3), three sets of instructions were given to different
groups of participants with regard to the recognition test: 1) a “standard” set of instructions

in which participants were told to respond “old” only to words that were on the study list;
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Table 4.3: Best-fitting parameters of the dynamic model to the data from Heit et al. (2004, Exp. 2).

Parameter Value

u 0.444
cs 0.973
Ps 0.166
DS.Inc 0.528
sc 0.438

eForewalrning 1.436
eInclusion -0.138
eStandard 0.608

1 50.915
P 6.202
R? 0.967

2) “forewarning” instructions that informed participants that the test list would contain foils
that were related to the studied words; and 3) an “inclusion” condition in which participants
were told to endorse not only studied words but words that were similar (i.e., the critical
word). We assume that a certain proportion pg of content features represent the semantic
features shared among each group of associated words, such that these have equal values
for the critical word and its studied associates; in the inclusion condition, this proportion is
slightly higher (denoted pg 1n¢) reflecting the increased attention to similarity in response to
instructions (which were given prior to study and hence could influence both encoding and
retrieval). The critical word, in addition, shares other content features with its associates
with probability sc, reflecting its central status within the set of associates. Finally, we fit
decision criteria for each condition (owing to the different instructions) and single values

of u, cs, ty, and p across all conditions.
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The fitted values of these parameters are given in Table 4.3. As shown in Figure 4.3,
the model captures the critical finding that, in the Standard and Forewarning conditions,
participants are initially likely to false alarm to the critical word, with this tendency re-
versing as time passes. This is a direct consequence of large proportion of shared features
between the critical word and its associates, which because s¢ > 0 is higher, on average,
than the degree of match between two studied associates. As more features are sampled,
enough non-matching features enter the probe that the initial good match is overwhelmed,
except in the Inclusion condition in which there are a sufficient number of shared features
(ps.nc) to maintain a high rate of endorsement of the critical word. Our fits agree with the
conclusions of Heit et al. (2004) by finding that the decision criterion is most lenient in
the Inclusion condition and least in the Forewarning condition, where avoidance of false
alarms to similar items was emphasized. Finally, we note that we have treated the notion
of semantic similarity in a purely abstract way here, as a set of free parameters, but a more
detailed account of these data is possible if the semantic features are derived from a model

of semantics (Johns & Jones, 2010).

4.2 Associative recognition

In associative recognition, participants study sets of items simultaneously, such as pairs
of words. They are then tested on both “intact” pairs—words that appeared together at
study—and “rearranged” pairs—pairs formed from two studied words that were not pre-
sented together. Thus, associative recognition goes beyond single-item recognition in that
one cannot discriminate intact from rearranged pairs on the basis of separate recognition
judgments for each word. For that reason, many theorists assume that associative recog-

nition requires a secondary process that is not present in single-item recognition. This
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(a) Experiment 1 (inclusion instructions).  (b) Experiment 2 (exclusion instructions).

Figure 4.4: Probability of endorsing a test item as a function of response signal lag and response
time from Gronlund and Ratcliff (1989), along with predictions from our dynamic recognition

model. Parameters used to generate these predictions are given in Table 4.4.

process has been described as a form of cued recall, wherein one pair member is used as
a cue to retrieve the item that it had been studied with; if the recalled word matches the
other word in the test pair, an “old” response is given, otherwise the pair is judged “new”
(ANDERSON). Alternatively, the secondary process involved in associative recognition
may be the formation of a compound probe (Dosher & Rosedale, 1989, 1997): Initial judg-
ments might be based on separate assessments of the two members of the pair, but later
judgments are made by comparing the two words jointly to the contents of memory. We
argue that the dynamics of associative recognition are better described by a compound cue
model than one based on recall. Before describing an extension of our dynamic recognition
model for associative recognition, we explore the evidence in favor of secondary processes
in associative recognition and show that they do not entail a recall-like process.

The critical evidence for a secondary process in associative recognition is exemplified
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in a series of response signal experiments by Gronlund and Ratcliff (1989), the results of
which are shown in Figure 4.4. In their Experiment 1, participants were instructed to en-
dorse a test pair if both of its members had been studied, regardless of whether they had
been studied together (labeled AB and AB’, in contrast to novel pairs XY or pairs with
one novel member AX); this decision involves only item-level information. In Experi-
ment 2, participants were told to endorse a pair only if its two members had actually been
studied together (only AB); this decision requires associative information. Under these
exclusion instructions, participants initially endorsed rearranged pairs (AB’) before this
tendency reversed at later signal lags. Rotello and Heit (1999, 2000) did not find a similar
nonmonotonic pattern when single words were tested against similar foils (orthographi-
cally similar words in 1999 and synonyms in 2000), suggesting that rearranged pairs are
not simply “similar” versions of the intact studied pairs, but that correctly rejecting them
requires the involvement of a secondary process or source of information that is not avail-
able early in associative recognition. Furthermore, as we shall see, not all studies of the
dynamics of associative recognition find a nonmonotonic false alarm curve to rearranged
foils (Wickelgren & Corbett, 1977; Dosher, 1984a), suggesting that this secondary process
is flexible or is not always deployed.

Many researchers have described this secondary process as a form of recall. Early
false alarms to AB’ pairs result from the familiarity of both members of the pair, while
later correct rejections arise from cued recall. One of the words, say word A, is used to cue
recall of the item it had been studied with (call this word B). If the recalled word (B) fails to
match the other word in the test pair (B’), the test pair AB’ is correctly rejected. However,
in their Experiment 4, Gronlund and Ratcliff (1989) attempt to test this “recall-to-reject”

account by presenting the first word of the pair 200 ms before the second; if participants
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were using a recall-to-reject strategy, they should use the first word to cue recall of the
second, allowing them to correctly reject a rearranged pair much faster after the second
word appeared and, perhaps, without any nonmonotonic false alarm curve. Instead, they
found that, although participants could reject novel foils (XY) more quickly when given a
200 ms head start, that same time conferred no advantage in rejecting AB’ foils. Rotello
and Heit (2000) contend that 200 ms is quite brief and may not have been long enough to
allow for participants to use the first word as a retrieval cue, since it would take participants
roughly that amount of time to even read the word.

Nobel and Shiffrin (2001) directly compare the dynamics of cued recall and associative
recognition in a set of signal-to-respond experiments (in recall, participants either gener-
ated a response word immediately after the signal or were allowed to make a “give up”
response). They found that discriminability between intact (AB) and rearranged (AB’)
pairs, as measured by a variety of indices, rose to asymptote with dynamics comparable to
that of the probability of correct cued recall. Of course, similarity in dynamics does not, on
its own, entail that the same mechanisms give rise to those dynamics. In their third exper-
iment, Nobel and Shiffrin (2001) tested the operation of recall in recognition in two ways:
First, they manipulated both item strength (as a function of study time) and interference (as
a function of the number of studied pairs per list), allowing us to assess whether retrieval
dynamics vary with memory strength, which would be good evidence for recall. Second,
in addition to usual associative recognition, they use a variant of cued recall developed
by Wickelgren and Corbett (1977) which they called “wickelcall” in which only one word
of a pair (A) is shown until the response signal is given, at which point the second word
(B or B’) appears and participants must immediately give an “old” (AB) or “new” (AB’)

response. Participants are explicitly instructed to attempt to recall the word that had been
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studied (B) with the given cue (A); if participants are able to recall the correct associate by
the time the second word appears, they should be able to easily decide whether the second
word matches that retrieved word or not.

They found, first of all, that there was no reliable difference in the dynamics of either
associative recognition or wickelcall as a function of study time or list length, with only
asymptotic performance, not intercept or growth rate, varying significantly between con-
ditions. This replicates the findings of Dosher (1984a), who also found that study time
affected only asymptotic performance and not retrieval dynamics. This result fails to sup-
port the operation of recall during associative recognition, at least at signal lags of up to
4500 ms, since recall should operate more quickly not just on stronger items (those studied
longer), but when there is less interference (shorter list in the case of Nobel & Shiffrin
or smaller associative fan in Wickelgren & Corbett). Second, although the dynamics of
wickelcall and associative recognition, as measured by the intercept and growth rate of
the exponential functions fitted to the data, were statistically equivalent, asymptotic perfor-
mance in wickelcall was considerably lower than that of associative recognition, replicat-
ing Wickelgren and Corbett (1977). One explanation, offered by Wickelgren and Corbett
(1977) and echoed by Nobel and Shiffrin (2001), is that a cued recall process operates in
both wickelcall and associative recognition, but the presence of two possible cues in as-
sociative recognition enables more to be retrieved. A second, closely related, possibility
also mentioned by Nobel and Shiffrin (2001) is that increased performance in associative
recognition results from the use of a compound cue, which is impossible to form when only
a single pair member is present (e.g., Clark & Shiffrin, 1987; Dosher & Rosedale, 1989,
1997).

The relatively low performance in wickelcall and cued recall brings to light an issue
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with the usual “recall-to-reject” account: what should a participant do if recall fails or pro-
vides an incorrect answer? Dual process theorists (Reder, Jacoby, etc.) often assume that,
when recall occurs in recognition, it is veridical. When people are actually given a recall
task, of course, they are far from perfect, not only failing to retrieve items, but produc-
ing incorrect items as well. For example, in their second experiment, Nobel and Shiffrin
(2001) report an asymptotic probability of correct recall of .24, with a .10 probability of
recalling an incorrect item. Consider a simple non-dynamic dual process account of asso-
ciative recognition, similar to Jacoby’s process-dissociation model, in which responses at
asymptote are a mixture of those produced by a familiarity process and those produced by
cued recall. Familiarity produces a correct response with probability pr (for simplicity, and
because we do not seriously pursue this model, this probability is identical for both targets
and foils). Recall is able to occur by the final signal lag with probability pg, and if it does
occur, it produces a correct response with probability pc. For simplicity, we assume that if
recall results in an intrusion, there is effectively zero chance that it matches the other word
in the pair (in reality, this chance is probably not negligible, but it is not necessary for the
present argument). Then, the probabilities of a hit, p(H), and false alarm p(FA) are given

by

p(H) =pr(1—pr) + prpc 4.1)

p(FA) =(1—pr)(1 - pr) (4.2)

and we can solve for pr and pg to find

PR = 4.3)
pc—1
H _
or _( 1) PRPC 4.4)
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By plugging in the observed values of p(H) = 0.75, p(FA) =0.21, and pc = 0.24/(0.24 +
0.1) ~ 0.71 from Nobel & Shiffrin (2001; Exp.2, Table 11), we find pg = 0.14 and pr =
0.76. In other words, the probability that familiarity generates a correct response, pr, is
higher than the probability of correct recall (0.71), and recall is estimated to operate on
only a small proportion (14%) of trials. Although this analysis is hardly exhaustive, it
represents a direct test of the “recall-to-reject” idea and demonstrates that, by allowing
recall to be error-prone, the probability that associative recognition arises from a cued
recall-like process may be quite low. Indeed, given that recall is not perfect, it may not even
be a good strategy for participants to use, assuming they have another source of information

on which to make their decision.

4.2.1 Modeling associative recognition

Given the difficulties with a recall-based account of associative recognition, we decided
to model associative recognition via the formation of a compound cue. In developing this
model, we must first decide how associations should be represented. We must choose a rep-
resentation that makes it straightforward to model the dynamics of associative recognition
as reflected in the data, such that associative information can be clearly separated from item
information, while maintaining the ability of the model to account for single-item recog-
nition. Although space precludes us delving into the rich literature on associative learning
and recognition, we begin by noting that many representations of association are possible
in a vector-based model like ours. Shiffrin and Steyvers (1998) suggest that associations be
represented by concatenating the feature vectors corresponding to the single items present

in the association, like so:

AB— b g o BB S
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where fij denotes feature i of item j. Criss and Shiffrin (2004b) suggest how this kind of
representation can be augmented to represent different types of pairs. While this represen-
tation makes sense when all the items studied and tested are pairs, it is harder to justify
when, as in the two studies under consideration, both single items and pairs can appear
at either study or test. It is unclear how the features of a single item should be aligned
for comparison with a pair, although several options exist: One could assume that a single
item at study is encoded by concatenating its trace with itself, in order to allow it to be
compared to the elements of a pair; at test, a single item is compared in parallel to both
the left and right components of each stored trace. While this modeling scheme is certainly
feasible from a technical standpoint, it muddles the relationship between single items and
pairs, and does not offer a straightforward way to separate associative from single-item
information, as is required to model these data.

In the TODAM model (Murdock, 1982), a pair AB is represented by the storage of
three separate traces, one for each element of the pair (A, B) and another representing the
compound of the two element (A ® B, where ® represents the convolution of the feature
vectors representing A and B). The compound A ® B can be thought of as configural
information that goes beyond that present in either item alone. Dosher and Rosedale (1989,
1997) found evidence that such configural information is used in associative recognition,
although their data do not necessarily entail a particular representation of such information.
Criss and Shiffrin (2005) found that interference in single-item recognition increased when
items were studied in pairs across different contexts, suggesting that item and associative
(configural) information is stored separately (cf. Buchler, Light, & Reder, 2008).

We therefore adopt a representational assumption based on that used by Criss and

Shiffrin (2005) and related to that of TODAM, as depicted in Figure 4.5. When a pair
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Figure 4.5: Schematic depiction of how studied pairs are stored as memory traces. See text for

detail.

of words is presented at study, we assume that a separate trace is formed for each word.
Each trace contains content features of the word itself as well as additional associative fea-
tures. These associative features are “configural” in that they go beyond the features of
either word alone. The true value of these features is equal between the two traces, al-
though the features are still subject to noisy encoding (i.e., they may fail to be stored or
have an incorrect value stored, as with any other feature). When the two items already have
a prior association, such as the semantically-related word pairs used by Dosher (1984b)
and Dosher and Rosedale (1991) discussed below, we assume that this allows for more
associative features to be stored. This representation makes it clear how one could perform
single-item recognition even when words were studied in pairs—the associative features
are simply not used when a single item is tested.

Having decided on a way to represent the storage of word pairs in our model, we must
now determine how to model recognition of multiple items. Shiffrin and Steyvers (1998);

Criss and Shiffrin (2004b) suggest several ways a participant might make an associative
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recognition decision. We begin by considering pair recognition, in which participants call
a pair “old” if both of its members were studied, regardless of whether they were studied
together (e.g., AB or AB’). Pair recognition performance is superior to single-item recog-
nition performance, although the dynamics of single-item and pair recognition can differ,
with pair recognition rising above chance at an earlier time than single-item recognition
(Gronlund & Ratcliff, 1989; Nobel & Shiffrin, 2001). That pair recognition can occur
slightly faster implies that participants are not taking extra time to read the two words, and
the increased performance suggests that the two items can, in fact, facilitate one another.
Shiffrin and Steyvers (1998) found, however, that the same parameters of the REM model
used to predict single-item recognition would produce too high performance in pair recog-
nition. To address this, they suggested two possibilities: 1) Although participants attempt to
make a joint judgment about the pair, they are unable to make use of all the features of both
items due to short-term memory capacity constraints (c.f. Gillund & Shiffrin, 1984). 2)
Rather than making a judgment about the pair as a whole, participants assess each item in-
dividually and then combine those judgments. Indeed, Gronlund and Ratcliff (1989) found
in their first experiment, where associative information was not relevant to the decision,
performance is well characterized by a simple multiplicative model in which participants
make independent assessments of the oldness of the two items and only respond “old” to
the pair if each of its elements is thought to be old.

Thus, we assume that pair recognition proceeds by processing the two items in two par-
allel channels, using the same model for single-item recognition we have already proposed.
Participants only make an “old” response if the accumulated change in familiarity for each
item is sufficient to call both of them “old” (i.e., if both x4 (7) and xp(¢) are greater than 0 at

the time of the response signal). For each channel, we assume as we have thus far that the

98



Two parallel channels

« N

Word A Word B
t,: Only item features T | CoT
available for sampling S | R
[ o
o | [
[ | o

t.: Shared associative
features become
available (compound
cue)

A

Respond “old” only if both channels lead to “old” response.

Figure 4.6: Schematic depiction of pairs are processed for recognition. In associative recognition,
at time #,, the participant begins to have access to associative features representing the compound

of the two items. See text for detail.

99



probe begins with Nx context features and that there is available capacity for N¢ content
features. In pair recognition, a certain proportion of the N¢ content features, denoted py,
are given over to representing the association between the two items; the remaining fea-
tures are used to represent the items. We allow for the possibility that, due to constraints
on short-term memory capacity, not all item-specific features can be sampled into the two
probes; we denote the proportion of the maximum number of item features (of which there
are (1 — ps)Nc) that can be sampled in pair recognition by py.

Associative recognition begins just like pair recognition, but at some time ¢4 after the
start of processing, the psN¢ associative features become available for sampling. At that
point, both item and associative features can be sampled into each probe. The only differ-
ence between item and associative features from the perspective of the retrieval process is
that the values of the associative features match between the two probes. Just as in pair
recognition, a participant only responds “old” if both probes result in sufficiently high ac-
cumulated change in familiarity. This process is depicted schematically in Figure 4.6. It is
flexible enough to allow us to explain both single- and multiple-item recognition within the
same modeling framework, and enables one to infer the degree to which associative infor-
mation is used (p4), when it is available (z4), and to what extent it interferes with item-level
processing (ps). As we shall show, this flexibility is needed to account for the wide variety

of data on associative recognition.

4.2.2 Model fits

We fit this model to the data from the first two experiments reported by Gronlund and Rat-
cliff (1989) and described above, where Experiment 1 involved only pair recognition while

Experiment 2 required associative information. These experiments involved studying both
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Table 4.4: Best-fitting parameters of the dynamic model for associative recognition to various

datasets. In Dosher (1984a, Exp. 2), multiple study times were used, entailing multiple values of

up; study times were 1, 2, 4, and 6 seconds per pair.

Gronlund and Ratcliff (1989) Rotello and Heit (2000) Dosher (1984a)
Parameter  Exp. 1 Exp. 2 Exp. 1 Exp. 2
us 0.316 0.414 — —
up 0.339 0.388 0.439 0.356,0.420, 0.437, 0.463
cs 0.988 0.980 0.984 0.969
DA 0.017 0.170 0.162 0.190
t4  751.655 411.847 437.489 447.302
Ds 0.937 0.869 — —
Os -0.118 0.245 — —
Op -0.891 0.048 1.097 -0.228
o 89.047 94.477 82.982 187.346
p 5.880 4.096 7.899 9.639
R? 0.898 0.936 0.923 0.881
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pairs and single items; we allowed the probability of feature encoding to differ between
these two classes (ug for single items up for pairs). Even though participants did not need
to use associative information in Experiment 1, we nonetheless fit values of p4, the propor-
tion of content features used to represent associations, and #4, the delay in availability of
associative features, for both experiments to verify the model’s ability to detect this differ-
ence. Two criterion parameters were also required, one for single-item recognition 65 and
another that applied to both parallel channels in pair recognition Op. Finally, we fit values
of ps, cs, ty, and p. Model predictions are shown in Figure 4.4, showing that the model
closely matches the data, with the fitted parameter values in Table 4.4. Estimates of ug and
up are similar to each other within each experiment, consistent with the fact that partici-
pants were given twice as long to study a pair as they were a single item. As expected, pa
is much lower in Experiment 1, where associative information is not required, although the
fact that it is non-zero suggests that some associative information is nonetheless encoded
(this would account for the slight increase in asymptotic hit rate for AB pairs compared to
AB’). It would also appear the increase in p4 in Experiment 2 is accompanied by a decrease
in pg, suggesting that a greater focus on associative features entails a smaller capacity for
item features.

We also fit our model to two experiments that only tested pair recognition®. In Rotello
and Heit (2000, Exp. 1), participants had to distinguish between intact pairs (AB), rear-
ranged pairs (AB’), and novel pairs (XY), rejecting both novel and rearranged pairs (data

and predictions are shown in Figure 4.7). In Dosher (1984a, Exp. 2), participants only

2 Accordingly, we assumed that pg = 1 in these experiments since, without tests of both single items
and pairs, this parameter becomes unidentifiable. It is still likely, of course, that participants are subject to

capacity limitations on the number of item features that can be sampled into the two probes.
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Figure 4.8: Probability of endorsing a test item as a function of response signal lag and response
time from Dosher (1984a, Exp. 2), along with predictions from our dynamic recognition model.

Parameters used to generate these predictions are given in Table 4.4.
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had to distinguish between intact and rearranged pairs, such that item information alone
would never be sufficient. Participants in Dosher (1984a, Exp. 2) studied pairs for varying
amounts of time (1, 2, 4, or 6 seconds per pair) and foils were created by rearranging pairs
within each level of study time. This experiment thus tests for the signature of recall-like
processing: recall should operate faster on items studied longer, enabling participants to
accept targets and reject foils more quickly. As shown in Figure 4.8, this is not the case;
Dosher (1984a) found that an increase in study time did not affect the rate of approach to
asymptotic performance, as would be predicted by a recall-based process.

Instead, our compound-cue formation model fits all these datasets quite well, suggest-
ing that this is a better description of the processes underlying associative recognition. In
further support of our model, we note that parameter estimates are consistent with the task
demands in each experiment. Where associative information is not needed (Gronlund &
Ratcliff, 1989, Exp. 1), the probe is given over to mostly item features and associative
features, to the extent that they are involved at all, are not available until quite late. When
associative information is required, it becomes available at roughly the same time across
all experiments—between 400 and 450 ms after stimulus onset. Finally, when item infor-
mation is not at all informative (Dosher, 1984a, Exp. 2), participants delay the onset of
information accumulation (¢p) by 100 ms relative to experiments in which item information
is informative. This effectively reduces the influence of item features by diminishing the
time between the onset of processing and the time at which associative features become

available.
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Figure 4.9: Predicted and observed probabilities of endorsing a test item as a function of re-
sponse signal lag and response time from two associative recognition experiments that used both
semantically-related and unrelated word pairs. S-E+: Semantically unrelated intact pair; S+E-: se-
mantically related rearranged pair; S+E+: semantically related intact pair; S-E-r: pair formed by
rearranging words that had been studied with a related word; S-E-u: pair formed by rearranging

words that had been studied with unrelated words. Parameters used to generate these predictions

are given in Table 4.5.
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4.2.3 Preexperimental associations

Finally, we examine associative recognition when the members of the pair have an existing
pre-experimental association. Dosher (1984b) and Dosher and Rosedale (1991) had partic-
ipants study word pairs, some of which had an existing pre-experimental association (e.g.,
EVIL-SIN). At test, participants had to distinguish between intact and rearranged pairs in
a response signal paradigm. Some episodically-related pairs were also semantically (pre-
experimentally) related (S+E+) while others were not (S-E+). Similarly, rearranged pairs
might (S+E-) or might not (S-E-) be semantically related. Of the unrelated rearranged
pairs, some were formed by rearranging that were themselves unrelated (S-E-u) while oth-
ers “broke” one of the studied semantically-related pairs (S-E-r). As shown in Figure 4.9,
which depicts data and model fits from Dosher (1984b, Exp. 1) and Dosher and Rosedale
(1991, Exp. 1), intact semantically-related pairs (S+E+) had a higher asymptotic hit rate
than unrelated intact pairs (S-E+). Related rearranged pairs (S+E-) are initially more likely
to be endorsed than unrelated rearranged pairs, although this difference disappears at later
lags. Finally, rearranged pairs that “break™ a studied semantic relationship (S-E-r) have a
lower asymptotic false alarm rate than other rearranged pairs.

To explain these results within the associative recognition framework we have devel-
oped, we make two additional assumptions: First, we assume that when two semantically
related words are paired, some of their item features match by virtue of this relationship; the
proportion of matching item features between semantically-related word pairs is denoted
s. Since associative features also match, one could view these matching item features as
a kind of associative feature that is available earlier in the trial. Second, we assume that a

pre-existing semantic association allows for more associative features to be stored at study;
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Table 4.5: Model parameters used to fit data from Dosher (1984b, Exp. 1) and Dosher and Rosedale

(1991, Exp. 1).

Parameter Dosher (1984b, Exp. 1) Dosher and Rosedale (1991, Exp. 1)  Pooled

u 0.518 0.530  0.510
UAs 0.727 0.748  0.732
cs 0.954 0.967  0.967
s 0.041 0.019  0.025
PA 0.292 0.245  0.263
A 268.623 486.032 476.931
0 -2.127 0573 -1.064
fo 0.964 0303  0.000
p 6.692 8.161  7.726
R? 0.966 0.950  0.958

the probability of storing an associative feature when semantically related words are stud-
ied together is denoted uys, as opposed to item features or associative features of unrelated
pairs which are stored with probability u. The first assumption addresses the fact that S+E-
and S+E+ pairs are more likely to be endorsed than unrelated pairs early in the trial; more
matching features leads to a stronger match to the relevant memory traces. The second
assumption deals with the lower asymptotic false alarm rate to S-E-r pairs relative to S-E-u
pairs; more associative features in the traces of the rearranged words makes it easier to
reject the S-E-r pair (both assumptions predict a higher hit rate for S+E+ pairs, of course).
Note, however, that the difference between S-E-r and S-E-u pairs only manifests later in
the trial, suggesting that semantically related pairs do not lead to greater storage overall,
but especially for associative features which are only available later.

The parameters of our model used to fit the data from Dosher (1984b, Exp. 1) and
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Dosher and Rosedale (1989, Exp. 1) are given in Table 4.5, with model predictions shown
in Figure 4.9. Because the two experiments are near replications (in Dosher & Rosedale,
1989, study times were 1 s longer and blocks of recognition were intermixed with blocks of
relatedness judgments, but other features of the design are identical), we also fit our model
to data pooled across both experiments to increase power (there were four participants
in Dosher, 1984b, Exp. 1 and five in Dosher & Rosedale, 1991, Exp. 1). Across both
experiments, the estimated proportion of shared item features between semantic associates
(s) is relatively small, but such pairs gain a large bonus to the proportion of associative
features that can be stored (uas > u). In both experiments, sampling of item features begins
almost immediately (fp < 1 ms) after stimulus onset, in contrast with previous fits in which
the onset of sampling was slightly delayed. Oddly, when fitting just the data from Dosher
(1984b, Exp. 1), the onset of the availability of associative features is abnormally fast
relative to Dosher and Rosedale (1991, Exp. 1) and other associative recognition studies,
but given that the estimate of 74 for the pooled data is closer to that of other experiments,
this deviation is likely due to noise. In all cases, however, the model closely matches the
observed SAT functions.

We note that our explanation of the nonmonotonic false alarm curve for S+E- pairs is
different from the suppression mechanism suggested by Dosher (1984b) and Dosher and
Rosedale (1991). They proposed a process whereby semantically related pairs were ini-
tially judged as old because participants initially failed to use the current context to focus
on only recently learned associations. In other words, they argue that early responses to
related pairs are really “relatedness” judgments and only later, when the current context is
added to the memory probe, are participants actually engaging in an episodic judgment.

According to our explanation, participants are always making an episodic judgment, since
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all context features are present from the start of the trial, it is just that the presence of a
semantic relationship influences how the pair is encoded. This is similar to our explanation
for word frequency effects, where the effect results not from interference from traces stored
in other contexts but from how prior experience influences episodic encoding. One advan-
tage of our explanation is that a suppression mechanism would have to operate differently
for targets (S+E+) and foils (S+E-), since hit rates for semantically related pairs are consis-
tently higher than those for unrelated pairs (S-E+). Our explanation is also able to account
for the lower false alarms to S-E-r pairs, which has no clear basis under a suppression ac-
count. Our assumption of enhanced storage of associative features for semantically related
pairs explains both results—the consistent hit rate advantage for S+E+ pairs and the lower

false alarm rate to S-E-r pairs.

4.2.4 Discussion

In this section, we have extended the dynamic model for recognition of single items to the
recognition of pairs and showed how it can account for numerous results in both pair and
associative recognition. Pair recognition results from the parallel operation of two single-
item recognition processes in which changes in familiarity are accumulated as features of
each item are sampled. If the accumulated changes for both items is sufficiently large, the
pair is judged “old”, otherwise it is called “new”. In associative recognition, an additional
set of features becomes available later in the processing of the two items; these features
represent an associative binding between the two items. Our model can thus be considered
a form of compound cue formation (Dosher & Rosedale, 1989, 1997).

The consistency of parameter estimates across experiments is remarkable and, coupled

with the good quantitative fits, suggests that this model is capturing something important
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about associative recognition. In particular, associative features, regardless of other aspects
of the experiment, are generally available 400-500 ms after stimulus onset, which is in-
triguing because it lies on the border between the two temporal regions supposed to reflect
“familiarity” (typically 300-500 ms) and “recollective” (typically 500-800 ms) processing
in event-related EEG (Rugg & Curran, 2007). Even if associative features become available
400-500 ms after stimulus onset, on some trials they will all be sampled quickly and fall
into the early “familiarity” bin, while on other trials they will be sampled more slowly and
affect the later “recollective” ERP components, and this potential confusion is reflected
in the ERP literature on associative recognition in which associative recognition perfor-
mance sometimes preferentially related to late positive ERPs (D. 1. Donaldson & Rugg,
1998) and sometimes with both early negative and late positive ERPs (Speer & Curran,
2007). Indeed, when test pairs contain a pre-existing (e.g., semantic) relationship—which
we have assumed leads to shared features between the two probes from the beginning of
sampling—those pairs exhibit different ERPs at early time windows (up to about 600 ms)
but not later, consistent with our model that additional (experimental) associative features
become available at the same time (z4) for both related and unrelated pairs (Greve, van

Rossum, & Donaldson, 2007).

4.3 List discrimination

In most recognition experiments, the recognition test occurs shortly after study, perhaps
with a distractor task intervening between them. In such cases, the test context and study
context are closely aligned, justifying our assumption that participants make recognition
decisions by tracking changes in familiarity from a starting point determined primarily by

context features. In a list discrimination paradigm, however, participants are only told to
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Figure 4.10: Data and model predictions for Hintzman et al. (1998, Exp. 1). Parameters used to

generate model predictions are given in Table 4.6.

endorse an item if it appeared on a particular study list that may not be the most recent
one. For example, Hintzman et al. (1998, Exp. 1) present results from a response signal
study in which participants studied a series of word lists. At test, participants were told
to respond “old” to items from either the most recent list (“List 2””) or the list prior to the
current one (“List 17°). Thus, when List 2 is the target list, this is similar to the standard
recognition situation; still, when participants were told to endorse only List 2 items, they
would nonetheless produce false alarms to List 1 items. This false alarm curve, however,
remains monotonic, as shown in Figure 4.10. However, when participants were to endorse
only List 1 items—a departure from the usual recognition paradigm—they would initially
false alarm to List 2 items and then reverse this tendency at longer lags.

This nonmonotonic false alarm curve provides evidence that a secondary process is in-

volved when the target context is not the current one. One characterization of this secondary
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process is a form of recall: The test item is used to cue recall of the context in which the
item had been studied. If the retrieved context matches the target context—which is not the
current context—then it is called “old’’; otherwise, if the retrieved context does not match
the target context, the item is rejected as “new”. Because this recall process takes longer
to operate than the parallel matching process between the probe (with the current context)
and memory traces, List 2 foils will initially and erroneously be called “old” before recall
can be used to correctly reject such items.

An alternative account of this secondary process is a form of contextual reinstatement.
The context used to probe memory is, initially, the current context, leading to a high false
alarm rate to recent List 2 items. Over time, the context used to probe memory is changed
as participants reinstate the target context. This reinstated context will grow to match the
target context more and the current context less, thus producing a reversal in false alarms
at later signal lags. A contextual reinstatement mechanism has received strong evidentiary
support in both free and serial recall (Howard & Kahana, 2002; Jang & Huber, 2008), and
has been implicated in recognition as well (Schwartz, Howard, Jing, & Kahana, 2005).

These two explanations differ in the driving force behind the observed changes in mem-
ory performance over time: Under the recall account, the change in false alarm rate over
time is determined by recall of context from the trace of the test item. Under the contex-
tual reinstatement account, changes are independent of the contents of memory and are
driven entirely by the changes in the context cue used to probe memory. If the dynamics
of list discrimination are affected by the strength of the trace of the test item, this would
be evidence in favor of recall and against a pure contextual reinstatement account. This
prediction was tested by Hintzman et al. (1998, Exp. 2), in which participants studied two

lists of words where some words were studied once or twice on each list. Participants
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subsequently engaged in one of two response signal tasks: a recognition test, in which
participants were to endorse words from either studied list; or a list discrimination task
which required participants to judge whether a word had been studied on either the first
or second list. If list discrimination were based on recall, performance on the list discrim-
ination task should rise above chance earlier for repeated words. In fact, there was no
reliable difference between repeated and unrepeated words in terms of either recognition
or list discrimination dynamics (both rose above chance performance at the same time and
approached asymptotic performance at the same rate), failing to support the operation of
recall in list discrimination.

We thus chose to model both experiments from Hintzman et al. (1998) by assuming
that list discrimination depends on contextual reinstatement. We model contextual rein-
statement in exactly the same way as we modeled a delay in plurality features and the
delay of associative features, above. At time #y, the probe of memory consists of the Ny
features of the current context and the N¢ content features begin to be sampled. At a later
time fx, a certain number N; of additional context features becomes available and begin
to be sampled into the probe. The original Nx context features will perfectly match the
features of the most recent study list and partially match the features of the previous list
(the features of List 1 match those of the current context with probability sy ), leading to an
early tendency to endorse words from both lists. The Ny additional features match only the
target list context, thus “focusing” the set of activated traces on just those from the target
context by simultaneously enhancing the match to the target context and decreasing the
match to the non-target context, thus allowing participants to correctly reject words from
the non-target list.

We note two important details of our approach to modeling contextual reinstatement:
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Table 4.6: Model parameters used to fit data from Hintzman et al. (1998).

Parameter Experiment 1 Experiment 2

| 0.403 0.401
Uy — 0.514
cs 0.959 0.937
Sx 0.966 0.970
Ny 7.774 8.438
tx 370.024 416.258
ORecognition 0.283 -2.079
OList discrim. — -0.228
o 93.803 0.000
P 3.507 7.294
R? 0.963 0.843

First, contextual reinstatement (the sampling of additional target context features) occurs
whenever list discrimination is required, even if the target list is the most recent list. This
reflects the idea that the “ambient” context features initially present in the probe are likely
to overlap considerably between lists, given that they are experienced near in time and in
the same location. Second, the N;{ additional context features are, effectively, added to
the “pool” of N¢ content features available for sampling at time 7y. Arguably, contextual
reinstatement might occur independently of the sampling of content features, but we believe
our approach is consistent with the idea that contextual reinstatement requires cognitive
resources that might interfere with the ability to form a complete memory probe.

The fit of this model to the data from Hintzman et al. (1998, Exp. 1) is shown in Figure
4.10, with model parameters given in Table 4.6. Our proposed contextual reinstatement

mechanism correctly reproduces the nonmonotonic false alarm curve found for List 2 words
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(the most recent list) when the target is List 1, as well as the delayed rise in the hit curve
to List 1 targets. The mechanism does so without sacrificing the ability of the model to
correctly fit the curves for words repeated across lists or completely novel words.

In Hintzman et al. (1998, Exp. 2), participants had to make not just recognition judg-
ments, but list discrimination judgments as well. Our contextual reinstatement mecha-
nism suggests a way that participants could make list discrimination judgments by tracking
changes in familiarity, in the same way that participants perform a recognition task. If
instead of tracking changes from time #(, they tracked changes from time ¢y, participants
could use the change in familiarity over time as features of the target context entered the
probe to gauge the degree to which a word matched that target context, such that the evi-
dence for list discrimination x(¢) is given by

t
xt)="), 0(t)—o(t—1)=0(t) — o(tx). (4.5)
T=tx+1

As features of the target context are sampled, they will tend to increase the match to a
trace from that context and decrease the match to a trace encoded in a different context, so
the accumulated change in familiarity can be used in exactly the same way as in normal
recognition, only with a different start point. To maximize efficiency and minimize inter-
ference from non-target traces, the starting point for contextual reinstatement zx should be
sufficiently late that enough content features have been sampled to identify the relevant
memory trace. Note, again, that this mechanism predicts no difference in retrieval dynam-
ics as a function of item strength because sampling is driven by contextual reinstatement,
which is independent of trace strength; strength only affects asymptotic performance under
the assumption that additional storage time allows for more features to be stored.

We fit this model to both the recognition and list discrimination tasks from Hintzman et
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Figure 4.11: Data and model predictions for Hintzman et al. (1998, Exp. 2). In recognition, positive
“yes” responses should be given to any studied item, regardless of list. In list discrimination, “yes”
responses should be given only to words studied in List 1. Parameters used to generate model

predictions are given in Table 4.6.
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al. (1998, Exp. 2), as shown in Figure 4.11, with parameters given in Table 4.6. Participants
were not told until test what kind of task they would be engaged in, so the storage param-
eters (u;, up for the two levels of repetition, cg, and sy) were identical across tasks. We
also assumed for simplicity that feature sampling dynamics (f) and p) were identical across
the two tasks, although a better fit could undoubtedly be obtained by relaxing this assump-
tion. Besides different criteria (Orecognition and OList discrim.)> the key difference between the
two tasks is that contextual reinstatement only occurs in list discrimination. In recognition,
the Ny features of the current context are the only context features that are present in the
probe, and they are present throughout. Although these features perfectly match the stor-
age context of List 2, they only match the context features of List 1 with probability sx.
Sampling of content features begins almost immediately after stimulus onset (#(), but list
discrimination does not begin until additional context features become available at time #x.
At this time—comparable to #x in Experiment 1—the List 1 context is partially reinstated
as N; features from that context begin to be sampled into the probe. This time corresponds
to roughly 57 model “time-steps”, at which point there is an 86% chance that all content
features have been sampled (Equation 2.1), consistent with the idea that list discrimination
must wait until the target trace is effectively isolated.

At this point, a reasonable question to ask is why, if participants know the target context
at the beginning of the trial (as in Hintzman et al., 1998, Exp. 1), do they not begin prob-
ing memory with the features of the target context? Why must reinstatement occur during
the trial, rather than before? Dosher (1984b, Exp. 3) provides evidence that, even when
participants could have used a simple rule to reject items from an irrelevant preexperimen-
tal context, they nonetheless fail to do so until later in retrieval. In Dosher (1984b, Exp.

1) and Dosher and Rosedale (1991), discussed above, both the study list and the test list
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contained semantically related word pairs, so the presence of a preexperimental (semantic)
association could not be used to diagnose whether a pair had been studied or not. In exper-
iment 3 of Dosher (1984b), however, the study list contained no semantically related items;
thus, the presence of a preexperimental association could, in principle, be used to imme-
diately reject such pairs. Instead, three out of five participants showed the same pattern as
Exp. 1, with initially rising, then falling false alarm rate to unstudied semantically related
word pairs; the remaining two participants showed instead a longer non-decision time to
semantically related pairs, effectively “smothering” the false alarms the other participants
committed during the same time interval. Thus, it would appear that, at least under normal
testing conditions, the initial context features present in participants’ memory probe are not
under any kind of strategic control. When traces from outside the target context must be
excluded, participants must engage in a process of contextual reinstatement that is delayed
relative to the time at which content features begin to be sampled from the test item. Per-
haps the need to expend resources maintaining context features that are not already present
in the environment results in participants not maintaining them during the between-trial
interval.

Finally, we note that our approach to modeling contextual reinstatement implies that
participants can, in principle, store more than Nx context features in a memory trace. This
does not alter the behavior of the model in any other setting, however, because what mat-
ters is that, without additional effort to reinstate the context, those features will never enter
the memory probe and contribute to the likelihood ratio for the trace. When the current
“ambient” context features are sufficient to pick out the target context, as they are in stan-
dard study-test recognition paradigms, only the original Ny context features are presumed

to play a role. Consistent with this account, correct free response time distributions after a

119



four month retention interval—presumably entailing contextual reinstatement—are quali-
tatively similar to distributions after a ten minute interval (Reber, Alvarez, & Squire, 1997).
Distributions after a longer delay are still unimodal, suggesting that a single retrieval pro-
cess is involved, but are more spread out, as would occur if feature sampling were extended

to allow for the reinstatement of target context features.

4.4 Source memory

We have thus far argued that many kinds of retrieval functions are best understood as re-
flecting the availability of different kinds of information at different times, rather than as a
signal of recollection. The key claim we are making is that, to have evidence of recollec-
tion, retrieval dynamics must be affected by the strength of the trace that is being recalled.
If retrieval dynamics are independent of trace strength, then the result is better explained by
the dynamics of probe formation and feature sampling. In contrast to similar foils, associa-
tive recognition, and list discrimination, here we review a situation in which trace strength
does affect retrieval dynamics, thus suggesting the involvement of an explicit recollection
process. We develop a model of this process and show how it can be incorporated into
our dynamic framework. The domain in which we find evidence for the involvement of
recollection is source memory.

A source memory task requires participants to judge not just whether an item is present
in memory or not, but to make a decision about the situation in which it was originally
encountered—the “source” of the item. Thus, in source memory it is typically already
known or assumed that a trace exists in memory corresponding to the test item, and the task
requires extracting some additional information about the study event that is not present

in the probe. Logically, then, it is no surprise that source memory typically requires the
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operation of additional mnemonic processes beyond an assessment of familiarity (although
we will discuss below situations in which a dynamic model of familiarity alone could still
support source memory).

In their second experiment, Hintzman and Caulton (1997) had participants study a list
of words, some of which were presented auditorily and some of which were presented
visually. Afterwards, participants engaged in either a standard SAT recognition task or a
modality judgment task, although they were not informed of the test format until after study,
thus precluding any idiosyncratic study strategies. Test words were always presented visu-
ally, although, consistent with Mulligan and Hirshman (1995) modality match had only a
minimal effect on recognition performance. Crucially for present purposes, however, when
an item was repeated three times over the study list, not only did this improve asymp-
totic modality judgment performance, it also caused correct modality judgments to rise
above chance more quickly (Figures 4.12 and 4.13), hence we consider their findings evi-
dence that making a correct source judgment (in this case, modality) requires the recall of

modality-related features from the study trace.

4.4.1 A model for recall dynamics

Our model of recall is based on a simplified search-and-recovery mechanism similar to
SAM and to a variety of applications of similar models to recall (Raaijmakers & Shiffrin,
1981; Shiffrin & Steyvers, 1997, 1998; Diller et al., 2001; Malmberg, 2008). We assume
that, as in our base model, features of the test item are gradually sampled into a memory
probe that contains both content and context features. As usual, this probe is compared
in parallel to each trace in memory, producing a likelihood ratio A;(¢), as described above

(Equation 2.6). To recall a trace and examine its contents, it must first be sampled. The
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probability pg;(¢) that a trace i will be sampled at time ¢ is based on its relative likelihood:

Ai(t)
psi(t) = - :
L")

where N () is the number of active traces (those with A;(f) > 1) at time ¢. If a trace is

(4.6)

sampled, it must then be recovered into working memory. The probability that a sampled

trace i will be recovered depends on how complete both the probe and trace are:

pRi(t) =1- exp [—BRV(Z)M,'] s (4.7)

where v(z) is the completeness of the probe at time 7, given in Equation 2.1, u; is the
proportion of content features stored in trace i, and Pg reflects the rate of recovery. As Bg
increases, the probability of successfully recovering the trace increases.

To make a modality judgment, a participant must “read out” the modality features from
the recovered trace. We assume that modality features are like other features in that they
may or may not be stored and, if stored, may be stored incorrectly. For simplicity—and
because the modality can be either visual or auditory—we assume that modality is repre-
sented by a single binary feature. Further, because modality may be particularly salient
and because participants know they may later be tested on it, we assume that the modality
feature might be stored at a greater rate than other kinds of features. To model this, we
introduce a single scaling parameter m such that the probability of storing the modality fea-
ture for trace i is u}'. Thus, if m = 1, modality features are stored at the same rate as other
features, but if m < 1, modality has a greater chance of being stored. The probability of
giving an “auditory” source judgment to a word i that had, in fact, been presented auditorily
1s, then

paa =u" [cs+ (1 —cs)3] + (1 —u")b, (4.8)
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where b is an overall bias to say “auditory” in case the modality feature failed to be stored.
Alternatively, the probability of incorrectly giving an “auditory” source judgment to a word

i that had actually been presented visually is
_ M 1 m
pva=u; (1 —cs)5+(1—u")b. 4.9)

Notice that, in these equations, we assume that if the auditory feature is stored incorrectly
(with probability 1 — cg), it is simply given a random equiprobable value (either visual or
auditory).

The probability of giving an “auditory” judgment at time ¢ depends on which trace has
been sampled, whether it has been successfully recovered, whether the modality feature
has been stored, and if so, whether it has been stored correctly. Because features continue
to accumulate in the probe over time, the probability of sampling the correct (target) trace
also increases over time. Furthermore, because a recovery attempt is made on each time
step, the probability of successful recovery of a sampled trace also increases over time,
beyond the increase in recovery probability that results as more features are sampled into
the probe (i.e., as v(t) — 1)>. Accuracy is limited, however, by the fact that the modality
feature may not have been stored (with probability 1 — u!" for a given trace i) and even if it
has, it may have been stored incorrectly (with probability %(1 —cg)).

Crucially, however, the accuracy of modality judgments will evolve over time differ-
ently as a function of the strength of the target trace. This owes to the fact that both sam-
pling and recovery depend on the strength of the trace, not just the features in the probe—

the more features stored in the trace, the more quickly its likelihood ratio will grow relative

3Notice that, in the simplified model presented here, we assume that participants never “give up” after a
recovery failure, although a mechanism that allows participants to “give up” would certainly be necessary in

a more elaborate model of recall (e.g., Raaijmakers & Shiffrin, 1981; Diller et al., 2001).
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Figure 4.12: Probability of giving a positive response in the either the recognition or modality
judgment tasks from Hintzman and Caulton (1997, Exp. 2). In recognition a “yes” response is
given to studied items regardless of modality while in modality judgment, a “yes” response should
be given to a word that had been studied auditorily. Conditions are labeled by modality (A for
auditory, V for visual) and by the number of repetitions at study (1 or 3 times). Parameters used to

generate model fits are given in Table 4.7.
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Table 4.7: Parameters used to generate predictions for Hintzman and Caulton (1997, Exp. 2 and 3).
Conditions are labeled by modality (A for auditory, V for visual) and by the number of repetitions

at study (1 or 3 times).

Parameter Exp.2  Exp.3

ugy 0287 0341
ua3 0439 0513
wyr 0279 0.167
wyz 0391 0.398
cs 0981  0.986
0.558 —

m 0424 0515
b 0477  0.440
Br 0073  0.061
ty 78.575 145.657
p 7554 5343

125



to other traces and the more likely it is to be recovered on a given sampling attempt. In ad-
dition to varying study modality, Hintzman and Caulton (1997) also varied item strength by
presenting words either once or three times within a particular modality. They found that,
although the dynamic of episodic recognition were unaffected by strength or study modal-
ity (i.e., retrieval functions rose above chance at the same time and approached asymptote at
the same rate), modality judgments rose above chance earlier for repeated items. Thus, our
standard recognition model was able to fit the recognition conditions of their Experiment 2,
but we assumed that recall was used to make recognition judgments, albeit operating on the
same underlying memory structures. We fit separate values of u for the four types of item
(auditory or visual and once- or thrice-presented), as well as values for cg, 79, and p; these
applied to both the recognition and modality judgment conditions. Fitting the recognition
condition required a single additional criterion parameter 0, while the modality judgments
entailed a bias b, encoding factor m, and recovery rate B as described above. Fitted val-
ues of these parameters are given in Table 4.7 with model fits shown in Figure 4.12. As
expected, u is higher for repeated than non-repeated items, reflecting greater storage of
features with additional study. Storage probability u is also higher for auditorily presented
(A) items than visually presented (V) items. The modality feature does, indeed, appear to
be stored at a greater rate than other features, however, as reflected by m < 1.

We also fit our modality judgment model to Hintzman and Caulton (1997, Exp. 3),
which did not include a response signal recognition task (recognition was still tested to
ensure that participants were not using idiosyncratic strategies). Model fit, shown in Figure
4.13, was obtained using parameters very similar to those used to fit Experiment 2 (see
Table 4.7). Once again, the modality feature is encoded at a greater rate than other features

(m < 1), although the difference between auditory and visual words in overall feature stor-
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Figure 4.13: Probability of judging a word as having been presented auditorily in Hintzman and
Caulton (1997, Exp. 3). Conditions are labeled by modality (A for auditory, V for visual) and by
the number of repetitions at study (1 or 3 times). Parameters used to generate model fits are given

in Table 4.7.
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age probability u appears larger in Experiment 3. The only other notable difference is that
participants in Experiment 3 appear to take longer to initiate feature sampling (¢y), which
can be attributed to the longer lags used in Experiment 3, since participants would not feel

as compelled to begin processing before very short lags.

4.4.2 Source memory vs. source exclusion

Our claim that source memory requires recall is consistent with the results showing that
different regions of the medial temporal lobes are correlated with recognition confidence
than with source judgments (Ranganath et al., 2003), although these regions partially over-
lap. This overlap, coupled with the correlation in performance between source judgments
and recognition (Starns et al., 2014), reinforces the fact that the recall process used to make
a source judgment operates on the same memory traces and relies on the same process of
probe formation as in recognition. Unlike source memory—in which participants must re-
trieve information about source from a memory trace—source exclusion offers no evidence
for the operation of recall. The participants in McElree, Dolan, and Jacoby (1999) studied
two lists of words, one of which was presented auditorily and another was presented visu-
ally. In the subsequent recognition test, based on the exclusion procedure of Jacoby (1999),
participants were to respond positively only to the heard words, giving negative responses
to words that had been presented visually. Some of the visual words were presented multi-
ple times (3 times in Experiment 1, 5 times in Experiment 2). Early in the trial, participants
tended to false alarm to visually presented items, but this tendency reversed later, with a
lower asymptotic false alarm rate to repeated visual words than to those that had been pre-
sented only once. Critically, however, the inflection point at which the false alarm curve

began to reverse occurred at the same time for both once-presented and multiply-presented
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visual words, and the rate at which these words approached their final asymptotes was the
same. If recall were operating, as it appears to be in Hintzman and Caulton’s source mem-
ory task, multiply presented visual foils should show an earlier inflection point in their false
alarm curves, reflecting the greater probability of recovering those traces.

Instead, these recognition results resemble those found for reversed-plurality foils in
the exclusion condition of Hintzman and Curran (1994, Exp. 3). Just as in that previous
experiment, we can best explain these results by assuming that modality features do not
join the probe until later in the process of recognition, and that additional study time allows
for greater storage of such features. We fit our dynamic model to the data from McElree
et al. (1999, Exp. 2), shown in Figure 4.14, with a different value of u for each item type
(auditory, once-presented visual, and five-times-presented visual), where a certain propor-
tion pyy of features contain modality information which are not available for sampling into
the probe until time 73;. Above, we made the simplifying assumption that a single modality
feature was sufficient to make a modality judgment, but here we acknowledge that many
features in a memory trace might give information about the modality in which the word
had been presented (for example, a prosodic feature would probably only be encoded if
a word had been heard rather than read). Thus, the py; modality-related features might
not be used solely to encode modality per se, but some other feature related to modality.
As above, we assume that modality-related features may be stored at a different rate than
other content features (like semantics), as represented by the parameter m; the probability
of storing a modality-related feature is «™. Finally, we also fit values of cg, 0, ty, and p.

The parameters used to generate predictions from the model are given in Table 4.8.
Note that, in this application of the model, we assume that more than one feature is used to

represent modality, and that modality-related features comprise a sizable proportion (pys)
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Figure 4.14: Probability of endorsing a word as a function of response signal lag and response time
in McElree et al. (1999, Exp. 2). Parameters used to generate model predictions are given in Table

4.8.
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Table 4.8: Parameters used to generate predictions for McElree et al. (1999, Exp. 2). Conditions
are labeled by modality (A for auditory, V for visual) and by the number of repetitions at study (1

or 5 times).

Parameter Value
ua 0.483
uyq 0.604
uys 0.987
cs 0.972
PM 0.466
vy 182.986
6 -0.117
m 1.801
to  87.229

p 10.444
R? 0.973
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of the content features. The rate at which modality-specific features are stored is, here, esti-
mated to be less than the rate at which non-modality-related features are stored (m > 1), but
given that the number of features that carry information about modality (p) is quite high,
this is likely a case of diminishing returns. As reflected in the initial bias to respond “old”
to visual words, their content features (uy; and uys) are stored quite well; additional time
also allows for greater storage of modality features, which allows repeated visual words to
be correctly rejected at a greater rate once modality features become available. The time
at which they become available (#)7) is only about 100 ms after feature sampling begins
(o), suggesting that modality-related information can be brought to bear more quickly that
associative, plurality, or context-related features.

The delayed availability of modality features may, as with plurality features, reflect the
automatic deployment of attention to semantic features of a word first, followed later by
perceptual aspects of the word (as in the Stroop effect). The later availability of modality
features could also be strategic, since source-related differences in ERP only appear when
source is relevant to the recognition decision (Senkfor & Van Petten, 1998), although this
could depend on how “source” is defined (e.g., in terms of modality, speaker, location,
color, etc.; Mollison & Curran, 2012). An interesting alternative possibility is that the
delay results from the use of visual testing: because auditory features are not present in
the percept of the test item itself, participants must supply them if they are to serve as
a memory cue, as required by the exclusion instructions. This process is analogous to
contextual reinstatement required in the list discrimination task—only the features of the
current context are immediately available, while the participant must reinstate the target
context themselves. Note that, if this hypothesis is correct, then matching the test and

target modalities by instructing participants to respond “old” only to visually presented
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items should attenuate or eliminate the nonmonotonicity in false alarm curves to words
studied in the non-target modality because the target modality features would be available

from the beginning of the trial. To our knowledge, this critical control has not yet been run.

4.5 Discussion

Throughout this section, we have explored the notion that recognition decisions involve
multiple processes. We have shown that, in many cases, a secondary source of information
must be invoked to explain certain kinds of recognition, like the rejection of certain kinds
of foils, associative recognition, list discrimination, and source memory. We have formal-
ized this secondary information and its evolution over time within our dynamic model for
recognition, showing how our modeling framework can be extended to explore and under-
stand new phenomena. In particular, we have argued that although the situations reviewed
above might be considered “dual-process” explanations, the secondary process involved is
not necessarily best described as “recollection”, the term most often identified with dual-
process theory. Instead, a variety of processes seem to be involved, with only source mem-
ory providing any strong evidence for the involvement of a qualitatively different recall
process, for which we also presented a preliminary model. In light of our model, it would
appear that memory retrieval can involve a multitude of processes, operating concurrently,
any of which might be used to support a particular memory decision.

Although we have been concerned primarily with behavioral data throughout this sec-
tion, researchers investigating recognition memory via EEG have traditionally adopted a
dual process perspective, with a “familiarity” component associated with an early frontal
negativity peaking around 400 ms after stimulus onset (“FN400’; Curran, 1999) and a later

“recollection” component associated with greater positivity in parietal areas between 400
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and 800 ms after stimulus onset (see, e.g., Curran, 2000; Rugg & Curran, 2007). The
rationale behind identifying these two components with processes of familiarity and recol-
lection comes from two sources: First, the later parietal positivity is observed to be greater
when participants make “remember” judgments than when they make “know” judgments
(Diizel, Yonelinas, Mangun, Heinze, & Tulving, 1997); second, the later parietal positivity
is selectively associated with correct source memory judgments (Wilding & Rugg, 1997).
Other evidence supporting the identification of separate ERP components reflecting famil-
iarity and recollection processes comes from assuming that recollection is necessary to, for
instance, discriminate between targets and foils that vary in plurality, as discussed above
(Hintzman & Curran, 1994; Curran, 2000); in such cases, only the later parietal component
differentiates between targets and similar foils.

As should be clear, the ERP evidence supporting separate familiarity and recollection
processes is of essentially the same form as the behavioral evidence discussed thus far:
Both are predicated on the distinction between a fast and slow process, with the slower
process making use of information not available to the faster one. We do not dispute the
distinction between these two time-scales, but we maintain that this difference is not suffi-
cient to characterize fast and slow processes as “familiarity” and “recollection”. We have
shown above that recollection is not necessarily the best way to characterize secondary
processes in recognition as detected in behavioral paradigms. In some cases, changes in
memory dynamics may be attributed to the later availability of certain information (as with
plurality), the formation of a compound cue (in associative recognition), or the need to re-
instate context (in list discrimination). The late parietal positivity observed in such cases
may well reflect these other secondary processes, and not that of recollection. To decide

this question, explicit quantitative modeling of the putative processes must be done. We
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have done so at the behavioral level, and similar work would need to be done to model
neural responses. With such work, we believe that models of recognition dynamics like the
one we have proposed could be a boon to the interpretation of neural data. In particular,
the ability of EEG to probe ongoing cognitive processes at fine time scales provides a great

opportunity for future research to develop and test dynamic models of recognition.
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Chapter 5

Discussion

We have introduced a dynamic model for recognition memory and shown that it not only
fits data quantitatively, it offers new and deeper insights into the processes behind recogni-
tion. It goes beyond most existing models of memory by specifying how retrieval evolves
over time, and it goes beyond extant models of decision making by explicitly modeling
how memory evidence is generated. By using this model, it is possible to take a dynamic
approach to understanding memory, which provides insight about how instructions (such
as speed/accuracy trade-off) influence mnemonic processes and allows one to test specific
hypotheses about the source of word frequency effects that would be indistinguishable if
one treated memory statically. The model can also be extended to explore phenomena like
associative recognition, list discrimination, and source memory, showing that phenomena
in these domains can be explained by the differential availability of certain kinds of in-
formation at retrieval, whilst source memory judgments entail a secondary recall process.
Taken together, these theoretical advances demonstrate the utility of a dynamic approach to
recognition and, we hope, will spur further empirical and theoretical development. In this
final section, we discuss several ways in which a dynamic approach to recognition could

be extended beyond the data and modeling presented here.
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5.1 Other aspects of memory

We have demonstrated how our model of recognition dynamics can be extended to vari-
ous tasks besides single-item recognition, including pair and associative recognition, list
discrimination, and source memory, but episodic memory supports many other tasks, in-
cluding free recall, serial recall, judgments of frequency, and judgments of recency. Just a
dynamic approach sheds light on recognition, we believe such an approach will be fruitful
in these other domains, and has already done so in many cases. The simplified cued recall
model we proposed to explain source memory judgments was, in turn, based on a sampling-
and-recovery model of recall (Raaijmakers & Shiffrin, 1981; Diller et al., 2001) that was
itself motivated by the dynamics of inter-retrieval times and stopping times. The temporal
context model (Howard & Kahana, 2002) has also been extended to account for the dy-
namics of recall using a competing accumulator approach similar to the one we have used
to explain recognition (Sederberg, Howard, & Kahana, 2008; Polyn, Norman, & Kahana,
2009). These extensions revealed, among other things, the importance of semantic associa-
tions between successively recalled items predicting inter-response latencies, which would
not necessarily have been apparent otherwise. The dynamics of recency and frequency
judgments have not been explored as fully as those of recall or recognition, although the
response signal method indicates that the dynamics of frequency judgments are similar
to those of normal recognition (Hintzman & Curran, 1994). Although we have modeled
repetitions as strengthening only the content features of an existing memory trace, disso-
ciations between the effects of study time and number of repetitions on confidence ratings
and judgments of frequency and recency suggest that repetitions may introduce additional

“reminding” features (Hintzman, 2004, 2010). These features could be a “tag” intention-
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ally stored by the participant, or might be reflect the different temporal context in which the
various repetitions occurred (e.g., Hintzman, 2002). Given the similar dynamics between
frequency judgments and recognition, whatever new features are introduced might act like
other content features and be available from the start of feature sampling. Curiously, neu-
ral evidence indicates that different processes occur when an item is repeated at study than
when it is shown at test (which is, after all, another kind of repetition; de Zubicaray, McMa-
hon, Eastburn, Finnigan, & Humphreys, 2005); this indicates that although recollection and
strengthening—perhaps with additional “reminding” features—occurs at study, it does not
do so at test. This is consistent with a model in which reminding features are just another
kind of content feature available for sampling at test, and that otherwise recognition and
frequency judgment are not qualitatively different, although more empirical work would be

required to put any such theory on firm footing.

5.1.1 Short-term recognition and lag

Thus far we have not examined the effect of lag—the delay between study and test—within
the context of our model. Lag has been explored extensively within the Sternberg (1966)
paradigm, in which participants study a small set of items (typically within the span of
working memory) immediately before a recognition probe is presented, but is also present
in longer study-test paradigms of the kind we have addressed above. Although it was orig-
inally argued that a serial search process was necessary to explain these results (Sternberg,
1966; Atkinson & Juola, 1974), a variety of parallel matching models provide excellent fits
to this paradigm as well (Ratcliff, 1978; Hockley & Murdock, 1987; Nosofsky et al., 2011;
Donkin & Nosofsky, 2012b; Nosofsky, Cox, et al., 2014). At least at lags greater than one,

there is no evidence for difference in retrieval dynamics, only for differences in asymptotic
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performance, consistent with the idea that, for the most part, recognition even from short
lists is based on a parallel matching process rather than serial search (McElree & Dosher,
1989).

To allow parallel matching models—a class which includes our dynamic model—to
model lag effects, it is necessary to assume some sort of decay in the strength of the trace as
a function of the number of items intervening between the target trace and the probe. There
is no a priori reason why trace decay cannot be incorporated into our model in order to
account for lag effects in both short and long lists. The question is what form this decay will
take: Decay could be modeled as a loss of content features over time (decreasing u), which
would imply a kind of forgetting. Alternatively, decay could result from context drifting
over time, such that the context features at the time of test better match the context stored
with more recent traces. A contextual drift explanation would be consistent with the idea
that temporal information forms an integral part of “context” (particularly in judgments of
recency or list discrimination; see Dennis & Humphreys, 2001; Klein et al., 2007). Within
a particular parallel matching model—the Exemplar-Based Random Walk (EBRW; Donkin
& Nosofsky, 2012a; Nosofsky, Cox, et al., 2014)—strength decay was well-modeled by a
power function, but we leave it for future work to determine how contextual drift should

operate in our modeling framework.

5.1.2 Encoding

Memory theorists have tended to focus on retrieval from memory rather than storage, a
tradition we follow here. Nonetheless, it is clear that a complete theory of memory must
include an account of how memory traces are formed and stored. We argue that, just as with

retrieval, understanding such processes requires a dynamic approach, taking into account
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the dynamics of the study event both within the study trial and in the ongoing encoding
context. A dynamic approach to encoding as well as retrieval could also reveal similarities
between the two processes. For example, it has been argued that memory representations
themselves contain a dynamic component (e.g., Cooper & Shepard, 1973; Freyd, 1987) and
that retrieval involves a kind of “simulation” of the original experience (Barsalou, 1999;
Kent & Lamberts, 2008). Indeed, neural recordings from mice reveal that hippocampal
activity when choosing which path to follow in a maze resembles a temporally-compressed
version of the hippocampal activity that occurs when the mice actually traverse the maze

(Jadhav, Kemere, German, & Frank, 2012).

5.1.3 Extended events

Our model describes how familiarity evolves over time to make recognition decisions, but
the span of time we have considered is rather brief, on the order of a few seconds at most
and typically must less. This timescale is entailed by the kinds of stimuli used in the
experiments we have modeled, namely, visually presented words or images. Such stimuli,
once they appear, are static and are not extended in time. Of course, in addition to the
dynamics of probe formation and retrieval, most events have their own dynamics: a series
of actions leads to a goal, a sequence of words forms a sentence, a sequence of notes
forms a melody. Although we leave it as a topic for future investigation, we have no
reason to believe that the kind of process we have described for recognition over short
timescales might not apply to these kinds of extended events as well. As a longer event,
e.g., a sentence or sequence of items (e.g., Farrell & McLaughlin, 2007), unfolds over
time, aspects of the event—the incoming words, prosody, and momentary understanding

of the semantics of the sentence—join those features already present in working memory
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and could be used to probe memory in exactly the way our model describes. The dynamics
of familiarity are influenced by what features are present in the probe over time. In the
present applications, probe features arise from perception, lexical access, compound cue
formation, and contextual reinstatement, all processes that tend to occur quickly. There is
no reason to expect that process with longer timescales—Ilike the unfolding of a sentence
or action—would not also affect familiarity by adding features to the probe in their own

characteristic way.

5.1.4 Categorization

Recognition can be viewed as a form of categorization, where the category labels are “old”
and “new” (Brockdorff & Lamberts, 2000; Nosofsky et al., 2011). Both categorization and
recognition rely on the comparison of a test item with the contents of memory, and rely on
brain regions that tend to overlap (Nosofsky, Little, & James, 2012). Recognition decisions
are typically binary (“old” vs. “new”), so we consider an extension of our model to binary
categorization, where participants study items from either category A or category B. Each
studied exemplar results in a trace stored in memory consisting of item features, context
features, and category features. Context and item features would be the same as those in
the usual recognition paradigms we have been considering; category features would be ad-
ditional features representing the label (“A” or “B”) assigned to the item at study. At test,
the features initially present in the probe are not just context features, but also include fea-
tures of one of the categories—although the choice is arbitrary, say they are the features
of category A. As a result, the initial value of familiarity represents the overall familiarity
of category A (in the present context). Then, as item features are sampled, familiarity will

evolve over time as it does in normal recognition, only now the changes in familiarity re-
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flect the item’s degree of match to category A, not just to all items in memory. Thus, an
item from category A will, to the extent that it shares content features with other category
A items, lead to a rise in familiarity over time, and conversely for an item from category B,
and the accumulated change in familiarity over time can serve as the basis for a category
decision. This account of “categorization as recognition” only applies in the binary case
and would likely require further expansion, but represents a reasonable starting place, par-
ticularly given its resemblance to many extant successful accounts of categorization applied

to recognition (Brockdorff & Lamberts, 2000; Nosofsky et al., 2011).

5.2 Prospects for neuroscience

Recently, much progress has been made in cognitive neuroscience by interpreting measures
of neural function in terms of quantitative cognitive models, including in the domains of
categorization and recognition (e.g., Nosofsky et al., 2012; Mack, Preston, & Love, 2013;
Turner et al., 2013). By correlating model parameters with neural activity, it is possible
to make stronger inferences about the role that a particular area plays while engaged in a
particular task. Neural data can also be used to compare models that may be difficult to tell
apart on the basis of behavior alone (Mack et al., 2013). The advantage of model-based
analysis of neural data is strongly enhanced by using a dynamic model. Thus far, such anal-
yses have been limited to models that, although they may have a dynamic component, only
specify the internal state of the participant at the level of a whole trial (Bogacz, Wagen-
makers, Forstmann, & Nieuwenhuis, 2010; Turner et al., 2013). A dynamic model like the
one we have presented here makes predictions about the entire trajectory of internal states
through which a participant is expected to pass on the way toward making a final recog-

nition decision. Dynamic models that describe the evolution of cognitive states over time
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have the potential to allow for the interpretation of neural states over time. The utility of this
approach depends, of course, on the quality of the model—the level of detail at which it de-
scribes the hypothesized cognitive processes and how well it can predict behavioral data—
and on the quality of the data. The kind of model we have developed here operates on the
time-scale of milliseconds, which is far too fine-grained for functional magnetic resonance
imaging, although it is possible to analyze BOLD signal change on the scale of hundreds of
milliseconds with sufficiently focused regions of interest (Criss, Wheeler, & McClelland,
2012). Thus, it would seem the best prospects for increasing our understanding of cog-
nitive processes like recognition lies with EEG and MEG. Although electrophysiological
techniques have been used extensively in event-related (Rugg & Curran, 2007) and spectral
(Jacobs, Hwang, Curran, & Kahana, 2006) analyses of recognition memory, their utility is
limited by the fact that models of recognition have not been specified at a sufficiently fine
grain of temporal detail. Under the dynamic approach to recognition that we advocate, it
becomes possible to use functional electrophysiology to test specific hypotheses about the
time-course of mnemonic processing, since our model makes predictions about the distri-
bution of familiarity trajectories that any particular stimulus should follow. Whether the
evolution of familiarity is most apparent in the time domain or frequency domain remains

a target for future work (but see Polyn & Sederberg, 2014, for progress along these lines).

5.3 Model extensions

5.3.1 Modeling confidence judgments

In this paper, we have been concerned only with two-choice tasks, yet it is common and

informative to collect multiple responses in the form of confidence ratings. Several recent
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models of joint RT and confidence judgments in recognition memory have assumed that
each possible rating response is assigned a separate accumulator, but where the competi-
tion between them is attenuated (Ratcliff & Starns, 2009, 2013) or eliminated entirely (Van
Zandt, 2000). Such models have been successful at predicting a wide range of results, and
it would be possible to extend our model with their decision mechanisms. For example,
the RTCON model (Ratcliff & Starns, 2009, 2013) assumes that the range of evidence
is divided into several regions corresponding to each possible confidence rating. When
the evidence sample on a given trial falls within one of these regions, the accumulator
for its corresponding rating is incremented while the other accumulators are decremented,
in inverse proportion to the number of accumulators. In this model, then, the different
confidence responses have a kind of global competition, but the competition is spread out
over the possible competing responses, similar to the leaky competing accumulator model
(LCA; Usher & McClelland, 2001). This kind of decision mechanism would be easy to
graft onto our existing model, where changes in familiarity at each time step are divided
into bins, with accumulators driven whenever the change on a given time step falls within
its corresponding bin. Familiarity would still reach an asymptote, however: Accounting for
this may require that boundaries for different responses collapse at different rates; alterna-
tively, different response accumulators might themselves compete, a la the LCA, such that
response that had received strong evidence before familiarity reached asymptote would be
able to suppress the other accumulators and result in a final choice (this alternative model
formulation was discussed earlier in regards to the need for collapsing boundaries in our
current model).

A more challenging situation is presented when the number of response options be-

comes effectively infinite by allowing participants to make confidence judgments on a con-
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tinuous scale (Province & Rouder, 2012). In such a setting, it would be very impractical to
assume that there exist accumulators for responses for each pixel along the scale. Province
and Rouder (2012) finds evidence that participants’ confidence ratings nonetheless tend
to cluster around various points along this scale, arguing that this indicates discrete-state
processing in memory, in contrast to the continuous valued familiarity signal that we have
argued underlies recognition. Nonetheless, their results are equally well accounted for
by assuming not that memory evidence is discrete, but that participants discretize their
own responses: If participants entertain only a few confidence ratings dispersed throughout
the scale, their final responses would be a mixture of responses centered at each of these
internally-generated accumulators, just as (Province & Rouder, 2012) found, regardless of
whether the evidence being accumulated was discrete or continuous.

A different possibility is offered by our model’s use of collapsing decision boundaries.
According to this view, recognition decisions are not always made at the same level of ac-
cumulated change in familiarity; early decisions tend to be made on the basis of stronger
evidence while later decisions are based on weaker evidence. If one assumes a monotonic
mapping from the accumulated change in familiarity and a continuous confidence scale, our
model can be directly applied to the setting studied by Rouder. Indeed, such a model could
also apply to situations with a finite number of confidence ratings: Participants could par-
tition accumulated change in familiarity into different regions, making confidence ratings
according to where familiarity hit a boundary. Such a model is constrained to predict that
high-confidence judgments would be faster than low-confidence judgments, which does
not always occur (Ratcliff & Starns, 2009). It may be possible to ameliorate this by as-
suming that boundaries stay far apart for a time before quickly collapsing, thus reducing

the correlation between confidence and response time, but we leave this for future work.
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It is also not clear whether this model could predict the distributions of confidence ratings
obtained by Province and Rouder (2012), although such predictions will depend strongly
on the form of boundary collapse and mapping from accumulated change in familiarity to

confidence.

5.3.2 Alternative decision mechanisms

In our model, once the memory probe is saturated with features, familiarity reaches a stable
asymptote. We have chosen to model free response recognition decisions by assuming that
the criterial level of familiarity needed to make an old or new decision decreases over time,
such that a recognition decision will always be made, regardless of the asymptotic level
of familiarity. Although, as we have noted above, it is possible to reformulate the model
such that decision bounds are constant over time, we believe that a collapsing boundary
mechanism is conceptually transparent, easily interpreted, and is well-motivated by the
model architecture we propose. Nonetheless, other decision mechanisms might share these
virtues without changing much of the underlying model.

The evolution of familiarity over time in our model resembles an Ornstein-Uhlenbeck
process, which under certain conditions also reaches an asymptotic mean, albeit with con-
tinuing fluctuation around that mean that is not present in our model. Integrating an OU
process over time results in a diffusion process that closely resembles the Wiener pro-
cess, which often provides a good fit to behavioral data and bears resemblance to some
neural systems (Smith, 2010), suggesting that instead of allowing decision boundaries to
collapse over time, one might accumulate the accumulated change in familiarity from a
starting point toward fixed decision bounds. Conceptually, this seems quite reasonable to

us, although our own preliminary explorations of this model variant have not led to bet-
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ter behavioral fits than those shown here, so this alternative might not be distinguishable
from our current model on the basis of behavioral predictions alone. Finally, as a point of
theoretical interest, we note that if no additional moment-to-moment variability in famil-
iarity is present (as is the case in our current model), an integrated version of our model
would, asymptotically, become a linear ballistic process, albeit one with a distribution of
asymptotic rates. Given that our model is well-approximated by a Gaussian process, this
asymptotic rate distribution is itself approximately Gaussian, just as assumed in the LBA
model (S. Brown & Heathcote, 2008). The LBA, of course, does not involve changing drift
rates over time as features are sampled into the probe, which we argue is essential to un-
derstanding recognition; the LBA must include such a process as part of its “non-decision”
time. Nonetheless, this similarity points to a reason why both our model and the LBA can

fit recognition data.

5.3.3 Alternative memory representations

For simplicity, we have assumed that the features used to encode items are binary and
independent. However, alternative feature representations may be used that allow for much
richer information to be encoded without altering the general structure of the model, such
as the assumption of a geometric rather than Bernoulli distribution of feature values in
the original REM model (Shiffrin & Steyvers, 1997). The SLiM model (McClelland &
Chappell, 1998), like ours, assumes that probe features are binary, but allows for memory
traces to contain continuous feature values in the range (0, 1). In a sense, the memory trace
stores an estimate of the probability that the studied item had a “zero” or “one” feature
value. Because trace features are not discrete, the degree of match between a probe and

trace is more graded than in REM, leading to different predictions about similarity (Criss
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& McClelland, 2006). It may also be possible, with continuous representation assumption,
to more finely model changes in the memory probe over time, rather than assuming as
we have here that probe features are represented perfectly in short-term memory. Such an
extension might prevent familiarity from reaching a stable asymptote, obviating the need
for collapsing boundaries to model free response times. Of course, this extension would
have to be formulated in such a way as to retain the good fits we obtain between our current
model and both response time distributions and speed-accuracy trade-off functions. We also
note that the SLiM model makes a decision using the maximum probe/trace match, rather
than the average likelihood that we employ, although in practice the distinction between a
maximum and an average has turned out to be minor (Shiffrin & Steyvers, 1998; Criss &
McClelland, 2006). Although we leave it for future work, it would be eminently possible to
incorporate the SLiM model’s representational assumptions and decision rule without our
dynamic framework to investigate whether these assumptions lead to qualitatively different
predictions!.

Alternative representations may also be entailed by the design of the stimuli themselves:
We have so far been agnostic as to the meaning of any one feature, although we allowed
that certain features represented, say, plurality or semantic similarity. When stimuli are

well controlled, with features/dimensions that have been discovered by multidimensional

'We suspect any differences between our model and a SLiM-like variant will be minor, however. Criss
and McClelland (2006) noted that SLiM was able to account for a violation of the word frequency mirror
effect under the influence of Midazolam (Hirshman, Fisher, Henthorn, Arndt, & Passannante, 2002) by only
varying the learning rate (#), while REM needed to assume a difference in encoding fidelity (c). Simulations
with our model, which uses binary rather than geometrically-distributed features, show that we can obtain the
same aberrant word frequency effect by varying only u, with very low values of u resulting in lower hit rates

for low frequency than high frequency items.
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scaling or by their design, it seems reasonable to assume that the features stored in memory
traces and used in the probe correspond to these well-defined aspects of the stimuli (e.g.,
Nosofsky, 1992). It would still be possible to use a sufficient number of binary features
to encode such information: For example, the shapes “circle” and “triangle” might lie on
a psychological shape dimension, but are far apart, and could then be represented within
the same “bank” of binary features as, respectively, 1, 1, 1, 0, 0, 0 and O, O, O, 1, 1, 1.
Assuming that participants can only draw one probe feature sample at a time, however, this
representation would imply that more complex features/dimensions—those that require a
larger “bank™ of binary features to accurately reproduce their similarity relations—would
take longer to enter the probe than less complex features. Consistent with this prediction,
more complex stimuli take longer to encode, rotate, and compare (Bethell-Fox & Shepard,
1988), and features that take longer to perceive also take longer to be used in retrieval
(Lamberts, Brockdorff, & Heit, 2002), although effects of complexity can diminish over
training (Bethell-Fox & Shepard, 1988).

Distributing representations of both primitive and complex stimuli over a set of discrete
(e.g., binary) features offers a way to represent continuous feature values within the current
model. Color, for instance, may well be represented continuously along dimensions of hue,
saturation, and lightness, for example. But so long as the number of binary features used to
encode an apparently continuous feature is large enough, this does not pose a problem for
the present model. It would still, however, be straightforward to allow for continuous rather
than discrete features. Say that each feature used to encode an item was not binary, but
could take on any real value. For any single feature j, a particular item i will be associated
with a particular value of that feature, m;;. For simplicity, assume that, across all items,

the values of feature j are normally distributed with mean zero and variance 6°. Finally,
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assume that, when a value is stored for feature j, an amount of Gaussian noise is added to
the stored value with zero mean and variance 1]2. Then, assuming that the value of feature
J in the probe, denoted Pj, is known exactly, one can specify the likelihoods Pr(D|Same)

and Pr(D|Different) needed in Equation 2.6:

Pr(D|Same) = ¢ (t”_Tp”)

t..
Pr(D|Different) = 4y
(pIpiereny =0 (m)

where ¢(-) is the standard normal density function. Because a sufficient number of binary
features has, thus far, offered sufficient flexibility for our purposes, we have not yet pursued
this model variant, but it may well become useful in the future.

One aspect of the Gaussian representation for features is that it affords a different ap-
proach to representing encoding noise and fidelity at both study and test. In the model
we have proposed, we have assumed for simplicity that any one feature is either stored or
not and that, if it is stored, it is either correct or not. Additional study time allows more
features to be stored. One could imagine, instead, that all available Gaussian features are
stored, but with fidelity 1 decreasing with study time, similar to SLiM (McClelland &
Chappell, 1998). How a participant is able to adjust their internal estimate of 1| in response
to such manipulations—as well as other exploration of the consequences of the Gaussian
representation—is left for future work, although it is possible that a participant could store
both the mean and variance (or other measure of uncertainty) of a feature in a memory
trace.

Consideration of a Gaussian feature representation brings to light another avenue of
further exploration: correlations between features. Thus far, we have assumed complete

independence between features. This assumption is not as strong as it may first appear:
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So long as features are being treated abstractly, they may be assumed to represent a high-
dimensional embedding of the stimulus where the stimulus dimensions are chosen so as to
maximize independence between features, as in independent components analysis (Hyvi-
rinen & Oja, 2000). Apparent contingencies between features can, in principle, be repre-
sented by a different set of independent features. Nonetheless, there are situations where
the assumption of feature independence may be untenable or the resulting representation
will be difficult to interpret, in which case a representation that incorporates covariance

between features might be employed (Mueller & Shiffrin, 2006).

5.4 Conclusion

A dynamic approach to recognition memory offers a variety of insights that would be im-
possible either by examining memory as a static system or by treating decision dynamics
separately from memory dynamics. We believe that this approach not only deepens the
understanding of memory, but invites new kinds of research questions and possibilities for

synthesis.
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Appendix A

Continuous approximation to the model

To derive predictions from the model in an efficient manner that does not require a pro-
hibitive amount of simulation, we developed a continuous approximation. The layout of
this approximation is as follows: First, each probe-trace comparison at any given time is
approximated by a log-normal distribution. Then, familiarity is approximated as another
log-normal that is the average of each probe-trace comparison distribution. Next, we take
advantage of the fact that samples are independent to compute the mean vector and co-
variance matrix of familiarity over time. Finally, we adopt the renewal process approach
described by Smith (2000) to derive first-passage time distributions to each boundary given

the mean and covariance.

A.1 Likelihood as a log-normal

Recall that there are five possible results of a feature comparison between a probe and
a trace: match (M), mismatch (N), a feature in the probe that is not in the trace (P), a
feature in the trace that is not in the probe (7'), and a feature that is in neither the probe
nor the trace (O). At a given time, a particular probe/trace comparison will result in a
vector of counts reflecting the number of comparisons that fall into each of these types,

N(¢) = [Nm(t),Nn(t),Np(t),Nr(t),No(t)]. Ignoring for the moment that these values can
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change over time as sampling proceeds, we can consider this vector of counts to be a
random variable drawn from a multinomial distribution, with the number of trials given
by the number of content features N¢ and the probabilities given as above (conditioned on

whether the probe and trace match or not):
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The actual likelihood A(?) is a function of these five counts:

A(r) = Bl g GNP (O g (1)

where each f3; is the likelihood ratio % The logarithm of A(7) is, thus, a weighted sum,
X J

or dot product:

logA(t) = Num(t)log By + N () log By + Np(t) log Bp + Nr (1) log Br

logA(t) = (logB) e N(7). (A.2)

It is clear, then, that the log-likelihood is a linear function of the vector of counts, N(7).
For sufficiently large N¢, a multinomial distribution can be approximated by a multi-

variate normal distribution. To approximate the distribution of N(¢), the multivariate nor-
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mal approximation has mean and covariance matrix

pm(t)Nc
pn(t)Nc
u(t) = | pp(t)Nc (A.3)
pr(t)Ne
| po(t)Nc |
(1) = (A4)
pu(t)(1=pum(t))Nc  —pn(t)pm(t)Ne —pp(t)pm()Nc —pr(t)pm(t)Ne —po(t)pm(t)Nc
—pu(t)pn(tNc pn(t)(1—pn(t))Nc  —pp(t)pn(t)Nc —pr(t)pn(t)Ne =po(t)pn (t)Nc
—pu(t)pp(t)Nc —pn()pp(t)Nc — pp(t)(1—pp(t))Nc  —pr(t)pp(t)Nc —po(t)pp(t)Nc
—pm(t)pr(t)Nc —pn(t)pr(t)Ne —pp(t)pr()Nc  pr(t)(1—pr(t))Nc  —po(t)pr(t)Nc
—pm(t)po(t)Nc —pn(t)po(t)Nc —pp(t)po(t)Nc =pr(t)po(t)Nc  po(t)(1—po(t))Nc

Then, since the log-likelihood is a linear function of N(z), which is approximately mul-

tivariate normal, the log-likelihood is itself normal:

log.(r) ~ 2 (logP) (), (logB)" (1) (logP) ). (A5)

And thus it is seen how the likelihood ratio reflecting the match between a trace and the

probe is approximately log-normally distributed.

A.2 Familiarity as an average of log-normals

The problem of finding the distribution of a sum (or average) of log-normal random vari-
ables has been treated extensively in the engineering literature, however no universally
satisfying approximation has arisen. In many cases, the sum of several log-normal ran-
dom variables itself resembles a log-normal. This is particularly useful for our purposes,
since normal distributions are easier to work with. So, our first goal is to find a suitable

approximation to the sum of several log-normals that is, itself, a log-normal.
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A.2.1 Log-normal sum approximation

Since each trace is encoded independently, each likelihood ratio A;(z) are independently
distributed. The distribution function F(x) of a convolution (sum) of independent random
variables is less than or equal to the product of the distribution function of the convolved
variates, i.e., F(x) < [TV, F(x). Intuitively, this is because for the sum to be less than
or equal to a certain value, all of the summands must also be less than or equal to that
value. In the case of a log-normal, where the distributions are strongly skewed, the product
of the distribution functions of each component gives a good approximation to the true
distribution.

The distribution function of an individual log-normal can be expressed in terms of the

standard normal distribution function:

Fi(x) = (logx—_“) (A.6)

G;
where u; and ©; are the logarithmic mean and standard deviation, respectively. Thus, the

distribution function of a sum of N log-normals is approximated by

Fx) ST]® (—logx_“ i ) (A7)

i=1 Oi
which is quite easy to compute, given the means and standard deviations as computed above
for each likelihood ratio.

To approximate the sum distribution with another log-normal, we need to find its mean
and standard deviation, denoted uz and 6z. Under the assumption of normality, we can
approximate these using the distribution function given in Equation A.7: The mean should
be located at the median, where F (uz) = 0.5 and the standard deviation should be half the

distance between x, and x; where F(x,) = ®(1) ~ .84 and F(x;) = ®(—1) ~ .16, since

155



this is the region that is one standard deviation on either side of the mean of a normal
distribution.

We cannot directly invert the log-normal sum distribution function, but it is easy to
numerically solve these three equations, which we do with a simple univariate root-finding
routine. Now, we have approximated the sum of N log-normals with a single log-normal

and found its mean and standard deviation.

A.2.2 Computing the average

Recall that familiarity is the average likelihood over the activated traces. A trace is con-
sidered “active” if its likelihood ratio exceeds one, or on a log scale, if its log-likelihood
ratio exceeds zero. Thus, computing the probability of trace activation is easy with the

log-normal approximation:
Pr(Trace i active) = 1 — P (—&> . (A.8)

Strictly speaking, then, the distribution of familiarity is a mixture of those that would
result from each combination of the N traces being active or not. Given that the number
of such combinations grows factorially with N and that we are only interested in the first
two moments of the distribution, rather than its exact shape, we can take a few shortcuts:
First, because “deactivated” traces contribute very little to the resulting sum (since they
must, by definition, be less than one), we simply compute the mean and s.d. of the sum

using all N traces, regardless of activation status. Next, we divide the sum distribution by a
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denominator S, which is the sum of the activation probabilities over all N traces:

S

Z Pr(Trace i active)

£fi-o(-2)]

i [
Thus, S is the expected number of activated traces.

~.
—

i=1

Because the sum distribution is log-normal, dividing by S simply amounts to subtract-
ing log$ from the logarithmic mean uz. Thus, the mean and standard deviation of log-

familiarity at time ¢ are:

Ho(t) = pz —log$ (A.10)

(xu —x7) (A.11)

N —

Gy(t) =

where x, and x; are defined in the previous section.

A.2.3 Familiarity over time

So far, we have shown how to approximate the familiarity distribution at a single time ¢.
However, a key feature of the full model is that familiarity evolves over time. Fortunately,
another key feature of the model is that features are sampled independently at each time
step. Thus, the change in familiarity from time 7 to time ¢ 4 1 is independent of the actual
value of familiarity at time z. It is, however, dependent on elapsed time ¢, because the probe
is eventually saturated with features until there are no new features available to be sampled.

Because of this dependence structure, each step of familiarity contributes unique vari-
ance to the value of familiarity. In other words, the covariance between familiarity at time

t and familiarity at time s is the minimum variance at each of the two times:

min <c§(t), oq%(s)) .
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In this way, we can construct a covariance matrix €2 that describes how familiarity evolves
over time. This, coupled with a vector of means (0. ..tax), completely characterizes
the distribution of familiarity across time.

From this, we can easily obtain the distribution of changes in familiarity over time.

Define a linear difference operator D, a matrix of the form

-1 1 0 O
0 -1 1 0
0 0 -—-11

and apply this operator to uy and Q to find the mean vector and covariance matrix of the

differences (step sizes) in familiarity over time:

o7 = diag (D' QD) (A.13)

Because of the structure of Q, DT QD is diagonal (since each step is independent of the

other steps), so really each step is distributed as an normal, independent of all other steps.

A.3 Decision probabilities and latency

Armed with the mean and variance of familiarity over time, there are several ways to com-
pute the joint probability of familiarity reaching either the “old” or “new” decision bound
after a number of steps r. We adopt a renewal-process approach based on the following
logic (presented in terms of the first-passage time for the “old” boundary, but the reasoning
applies to the “new” boundary as well): If x(¢) crosses the “old” boundary Bp(¢) at time ¢,

there are three possibilities:
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1. This is the first time x(7) has crossed the “old” boundary, the probability of which is
denoted fo (7).
2. x(t) crossed the “old” boundary at some earlier time, moved back down, and is now
crossing it again, the probability of which is denoted rpo (7).
3. x(t) crossed the “new” boundary at some earlier time and has since moved back up
to cross the “old” boundary, the probability of which is denoted ryo (7).
The probability that x() crosses the “old” boundary at all at time ¢ (regardless of its prior

history) is the joint probability that x(t) > Bo(f) and x(t — 1) < Bo(t — 1):
po(t) =Prix(t) > Bo(t) Ax(t —1) < Bo(t —1)]. (A.14)

This and all subsequent bivariate normal cumulative distribution functions were computed
using high-precision algorithms by Genz (2004). Finding fo () is, then, a simple matter of

rearranging terms:

po(t) = fo(t) +roo(t) + rno(t)

fo(t) = po(t) —roo(t) —rno(t). (A.15)

The probability that x(r) crossed the “old” boundary earlier is the “renewal” probability

t—1
roo(t) = Y. fo(t)Pr[x(t) > Bo(t)|¢(t) > Bo(7)]. (A.16)
=0

Similarly, the “renewal” probability of first crossing the “new’” boundary and then crossing

the “old” boundary at time ¢ is

r—1
rno(t) = Y fn(0)Prlx(r) > Bo(1)[¢(t) < B (1)]. (A.17)
7=0

Given the time-varying boundaries Bo(t) and By(t) and the mean y, and variance X, the

results of Equations A.14, A.16, and A.17 can all be computed and used to solve for the
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first-passage time density (Equation A.15). The densities thus found, fo(¢) and fx(7), are
defective in that they add to the total probability of crossing their respective boundary at
any time, rather than 1, however they jointly determine the total probability of ¢ reaching
either boundary, allowing a decision to be made.

Finally, we convert model “time-steps” to real time via a linear transformation via Equa-
tion 2.13, as described in the main test. The final result is a stepwise (in time) joint proba-
bility density of a response at a particular time, thus allowing one to compute the likelihood
of a particular response or to integrate this density over a region of time to obtain predicted

RT quantiles or quantile likelihoods, as used for model-fitting in the main text.
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