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Criterion Setting and the Dynamics of Recognition Memory
Gregory E. Cox (grcox@indiana.edu)

Richard M. Shiffrin (shiffrin@indiana.edu)
Department of Psychological and Brain Sciences, Indiana University

1101 E. Tenth St., Bloomington, IN 47405 USA

Abstract
A major puzzle in recognition memory has been the process
by which participants set reasonable old/new decision crite-
ria when the study and test lists are comprised of items of
widely varying types, with differing degrees of baseline famil-
iarity and experience (e.g., words vs. random dot patterns).
We present a model of the recognition process that addresses
this issue. Its core assumption is that recognition decisions are
based not on the absolute value of familiarity, but on how fa-
miliarity changes over time as features are sampled from the
test item. We model recognition decisions as the outcome of a
race between two parallel accumulators: one that accumulates
positive changes in familiarity (leading to an “old” decision)
and another that accumulates negative changes (leading to a
“new” decision). Simulations with this model make realistic
predictions for recognition performance and latency regardless
of the baseline familiarity of study and test items.
Keywords: Episodic memory; recognition memory; mem-
ory models; reaction time.

Introduction
Recognition memory has been a focus of cognitive science for
many decades, yet remains a rich source of intriguing results
that challenge the many models that have been developed in
this field (e.g., SAM, Gillund & Shiffrin, 1984; MINERVA2,
Hintzman, 1988; TODAM, Murdock, 1982; REM, Shiffrin &
Steyvers, 1997; subjective likelihood, McClelland & Chap-
pell, 1998; BCDMEM, Dennis & Humphreys, 2001). These
models share some similarities, including a reliance on “fa-
miliarity” as a major or sole component, where familiarity is a
global signal of match between the memory probe and mem-
ory traces. During study of a list of items, memory traces are
formed for the items and enter long-term memory, where in-
dividual traces may be stored separately (e.g., SAM, REM)
or in composite (MINERVA2, TODAM, BCDMEM). At test,
a probe item is presented and the task is to say whether or
not the probe was on the most recently studied list. To make
this decision, the probe is compared to the composite trace
or separate traces, resulting in a familiarity value (summed
across individual matches in the case of separate traces) used
to make a decision, with higher values of familiarity lead-
ing to an “old” decision. Typically, the match depends both
on context features (features defining the general list context)
and content features (the features of the items on the list).

Generally, these models assume that only those traces from
the most recently studied list enter into the matching process.
In such models, the primary sources of noise in recognition
are the traces of the other list items (called, for short, item
noise). Another class of models, restricted to the usual case
in which study lists are comprised of words (e.g., BCDMEM;
Dennis & Humphreys, 2001), assumes that the noise inher-
ent in recognition memory arises not from traces of the other

studied words, but from traces of the test word formed dur-
ing previous life history. In this case, the familiarity value
is based on a comparison of the current context to the con-
text stored with the probe. Target words, having occurred in
the study context, tend to produce higher familiarity values
than foils, with noise arising when probes have occurred in
contexts similar to the study context—we term this context
noise.

Both item noise and context noise models have been shown
to account for myriad effects in the recognition memory lit-
erature, including manipulations of list length, list strength,
and similarity between study and test items (for a review, see
Malmberg, 2008). Each of these model types has its merits
and demerits, but both suffer from a problem that arises most
strongly when study and test items are a mixture of different
stimulus types, strengths, and/or similarities. One can imag-
ine, for example, a study list that mixes words (with many
traces from history), random dot patterns (few or no traces
from history), faces (known or unknown and in identical or
similar views), and common objects, with different numbers
of each of these types and items of each type studied for long
or short times. It may be assumed that under these condi-
tions, the absolute degree of match of different kinds of test
items (both targets and foils) to the traces in memory will vary
quite widely (e.g., a dot pattern test item will activate/match
no history traces, but a word will). In such a case how does a
criterion (or several criteria if graded judgments are required)
get set? Different criteria would be needed for each stimu-
lus type, lest certain types always be given “old” judgments
and others always given “new” judgments. Thus far, the field
has not provided a mechanism by which appropriate criteria
could be established and used during testing of a single list of
vastly different test types.

In this research, we propose a way by which recognition
decisions could be made without reference to fixed criteria
and in such a way that they are sensitive to the structure of
both the study and test lists. The essential idea is that the
test item itself can serve as its own reference point. It can do
this because perception takes time. As the percept of the test
item develops, perhaps over a few hundred ms, it is used in
conjunction with context to probe memory, resulting in a fa-
miliarity value that evolves dynamically. Early in perception,
this familiarity will be depend primarily on context matching,
since while few item features have yet to be perceived, list
context is more or less constant across testing and is known
before the test item arrives. In these early moments of the test
trial, then, familiarity will result mostly from list traces, since
the item is not well enough perceived for historical traces of
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the test item to be evoked. For example, if the test item is a
word, early matching will be based mainly on traces of list
words, since these match on context and the test probe con-
sists mainly of context features. As perception of the test item
continues, the test probe will include more and more features
of the test item itself, increasingly matching history traces of
that test item while reducing the match with list traces (be-
sides that of the test item itself). Thus, the time course pro-
file of familiarity will have a characteristic shape that differs
for targets and foils: target familiarity will gain as perception
continues (because the list trace of the target will be adding
activation) whereas foil familiarity will gain less or decrease
(because there will be no list trace to add to the overall fa-
miliarity). The exact shape of the profiles will depend on the
way matching is calculated. If we calculate activation with a
likelihood ratio, as we do shortly, then the target profile tends
to rise and the foil profile tends to fall.

The critical element of this approach, using the shape of
the familiarity profile to make a decision, is the independence
of the decision from overall level of activation: Some item
types will have high familiarity and others low familiarity, but
the profile shape will remain diagnostic of the target-foil dis-
crimination. In this paper, we lay out the details of a system
that will implement these ideas, and show how recognition
decisions might be made sensibly despite wide variations in
type of item studied and tested. Let us emphasize that there
are many ways to estimate stimulus specific criteria if there
is sufficient experience with a given item type, either during
list study or during testing. Such tuning of criteria might in-
deed be superimposed on the model we are about to present.
Here, our concern is recognition judgments that must be made
without such extended experience. The development of this
model is still in its infancy, so this paper serves primarily as
a proof of concept. We have made several arbitrary and sim-
plifying assumptions in the simulation results that follow that
may need to be revised in applications to real data. Such sim-
plification has the merit, however, that the basic concepts are
implemented in a straightforward fashion.

The Model
The model described below owes much to the original REM
model of Shiffrin and Steyvers (1997) and somewhat to the
ARC-REM model of Diller, Nobel, and Shiffrin (2001), al-
though it differs substantially from both of those models. The
parameters of the model are summarized in Table 1.

Structure of Memory Traces
Memory traces for items are assumed to consist of a
set of features, with equiprobable binary values, e.g.,
[0,1,0,0,1,0,1,1,1, . . .]. Although we are agnostic as to ex-
actly what these features might represent, we allow that some
of these features arise from properties of the item itself, and
others arise from properties of the context in which the trace
for the item was encoded. Relevant item properties might in-
clude the item’s physical features or semantic content. Con-
textual properties could include information about the time

Name Value Description
K varies Number of history traces for a test item that

have the potential to be activated.
Nc 30. Number of item features stored in each

memory trace.
Nx 30. Number of context features stored in each

memory trace.
c 0.85 Probability of correctly copying a feature to

a memory trace.
Ts varies Study item presentation duration.
ρ 60.0 Rate (per unit time) at which feature values

are sampled during encoding.
θ 1.0 Familiarity threshold for a trace to be acti-

vated.
αold 13.0 Evidence threshold for making an “old” re-

sponse.
αnew −16.0 Evidence threshold for making a “new” re-

sponse.

Table 1: Parameters of the model, along with the values used
in the simulations reported in this paper. It should be noted
that there is no compelling reason to set Nc = Nx; this is
merely for convenience.

and place in which the item was studied. It is important to
note that although features in the memory trace can arise from
multiple sources (items, context), we do not assume that the
“memory system” has access to the source identity of features
in memory. That is, the memory system treats a context fea-
ture and an item feature identically when matching test probes
to memory traces.

Encoding
When an item is studied, a memory trace is created and added
to memory. However, encoding is assumed to take place over
time, and to be subject to noise. To create a memory trace
for an item, features are sampled from the item one at a time.
With probability c, the sampled feature is copied into the de-
veloping memory trace correctly and with probability (1−c),
a random value (0 or 1) is stored for that feature. Because
each feature sampling event is presumed to be independent, it
is possible that a feature may be sampled for which a value is
already stored. In this case, the most recent sampled value
(which, again, might be copied correctly or randomly) re-
places any value that was already stored in the developing
memory trace.

Memory traces also contain features from the context in
which the item is experienced. In accord with findings
that the amount of context stored is independent of study
time (Malmberg & Shiffrin, 2005), and partly because one
could imagine a trade-off between assumptions of probabilis-
tic storage and relative number of context features, we assume
that all context features have a value stored in the memory
trace. Such storage is still noisy, so a context feature is cor-
rectly stored with probability c, otherwise a random value (ei-
ther 0 or 1 with equal probability) is stored with probability
(1− c).

This encoding procedure is just a simple extension of the
encoding process found in many memory models, especially
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REM. It differs from REM in that features are sampled from
items with replacement (i.e., the same feature might be sam-
pled more than once), although this change is probably not
consequential for present applications. Content features will
be present in the final memory trace to a degree that depends
on study time. As study time is reduced, fewer samples will
be taken and fewer features will be stored, making it hard
to differentiate between memory traces on the basis of their
content features, resulting in reduced performance.

The notion that perception of an item can be described as
a sequence of independent feature samples is not foreign to
memory models (Brockdorff & Lamberts, 2000; Wagenmak-
ers et al., 2004). As in such models, we assume that the dis-
tribution of times between samples is exponential with rate ρ,
f (t) = ρexp(−ρt), meaning that feature sampling is a homo-
geneous Poisson process. Thus, for a given trial, the number
of samples drawn, ns, when studying an item for Ts time units
is sampled from the following distribution:

Pr(ns samples;Ts,ρ) =
e−ρTs (ρTs)

ns

ns!
.

Recognition
We consider just yes-no recognition (i.e., not multi-
alternative forced choice or confidence ratings). On each trial,
a test item is presented. Just as in study trials, the test item
consists of a set of binary features, which are sampled one at a
time (with exponentially distributed times between samples)
and added to a developing memory trace. The developing
probe trace is compared in parallel to the traces in memory
that are similar to the probe at that moment, producing a fa-
miliarity value that evolves as more features are sampled. The
rate of change of this familiarity value as more probe features
are sampled constitutes evidence for the recognition decision:
a preponderance of negative changes is evidence that the item
is new, while primarily positive changes are evidence that the
item is old. Two non-interacting accumulators keep track of
positive and negative familiarity changes and when one ac-
cumulator reaches a threshold, the corresponding response
(“old” or “new”) is made.

Feature Sampling The process of sampling features from
the probe item is identical to the feature sampling process at
study, with the exception that the sampling process is termi-
nated not by stimulus offset (as with a fixed amount of study
time) but by a signal from one of the “old” or “new” accumu-
lators that it has reached a threshold.

Familiarity Calculation Familiarity is calculated as a like-
lihood ratio: the likelihood that the probe trace (given the cur-
rent number of samples taken) and the memory trace encode
the same event (an item and its associated context) versus the
likelihood that the probe trace and memory trace encode dif-
ferent events (a different item or different context). Because
encoding is probabilistic, if we assume that the memory sys-
tem has some knowledge about the amount of noise in the
system and about the possible feature values, a likelihood ra-

tio is a natural way to represent the balance of evidence in
favor of a match between the probe and the memory trace.

The probability of a feature matching between the two
traces, given that the two traces encode the same item, is
Pr(Match|Same) = c + (1− c) 1

2 . That is, either the fea-
ture was encoded correctly or it was encoded incorrectly,
but matches by chance. Similarly, the probability of a fea-
ture match between two traces that do not encode the same
item is Pr(Match|Different) = 1

2 c+(1− c) 1
2 = 1

2 ; encoding
might have been correct or incorrect, but in either case the
match is purely by chance. Finally, Pr(Mismatch|Same) =
(1− c) 1

2 (stored incorrectly and does not match by chance)
and Pr(Mismatch|Different) = 1

2 c+(1−c) 1
2 = 1

2 (stored cor-
rectly and does not match by chance, or stored incorrectly and
does not match by chance).

Because features are encoded independent of one another,
we can directly multiply the probabilities of matches and mis-
matches for either the “same” or “different” alternatives. Let-
ting Nm and Nn be the number of feature matches and mis-
matches, respectively, the final match value between a probe
trace and a memory trace is given by:

λ =
Pr(Nm,Nn|Same)

Pr(Nm,Nn|Different)

=

[
Pr(Match|Same)

Pr(Match|Different)

]Nm [ Pr(Mismatch|Same)
Pr(Mismatch|Different)

]Nn

=

[
c+(1− c) 1

2
1
2

]Nm [
(1− c) 1

2
1
2

]Nn

= (c+1)Nm (1− c)Nn (1)

and any features where either the probe or the memory trace
have nothing stored (i.e., no value was sampled for that fea-
ture) do not enter into the calculation.

Selection of Active Traces We have postulated that the
probe activates only those memory traces that are similar
enough to the probe. If for no other reason, such an assump-
tion is warranted by the fact that the number of episodic traces
in memory is virtually uncountable. Similar traces could in-
clude those formed during list study (a target trace matches
well in both content and context; a foil matches only on con-
text features) as well as some of those stored in memory prior
to list study (i.e., from prior life history). For simplicity, we
only consider history traces that are stored during prior occur-
rences of the test item, since although these fail to match well
in context, they will match well on their content features.

The rule for activation is simple: There is an initial thresh-
old θ for the familiarity value (as calculated in equation 1),
and any trace exceeding that threshold is activated and takes
part in further calculations. We assume that all N traces from
the study list as well as K historical traces of the probe item
are available to be activated. The choice of K is somewhat
arbitrary, but should be fairly large if the probe item is some-
thing with which one is expected to have had prior experience
(e.g., a word or picture of a common object). Here, we sim-
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Figure 1: Familiarity over time as probe features are sam-
pled, for a variety of study list lengths N. Profiles for target
(studied) items are shown in blue, for foils in red. The cases
where K = 0 (no available history traces) are shown in solid
lines, while dashed lines depict K = 200. Green lines reflect
the amount of activation from history—as opposed to list—
traces. Averaged over 1000 simulations.

ply let θ = 1, meaning that if the balance of evidence favors
a potential match to the probe (which could be a result of
matching item features, context features, or both) it is acti-
vated.

Computing Total Familiarity Computing the summed fa-
miliarity φ over the activated memory traces is straightfor-
ward, since a familiarity value was already computed for each
trace to determine whether it passes threshold. To put it for-
mally:

φ = ∑
i∈Memory

{
λi if λi > θ

0 if λi ≤ θ
(2)

where λi is the familiarity match of memory trace i to the
probe trace, as given by equation 1.

Making a Recognition Decision Figure 1 shows the aver-
age time course of total familiarity (specifically, the natural
logarithm of the result of equation 2) as more features are
sampled and added to the probe trace. The “activation pro-
files” for both targets and foils across list lengths approach
an asymptotic value, reflecting the saturation of the probe
trace when all (or nearly all) features have a sampled value1.

1Because of probabilistic noise in the sampling process, this
value will never remain completely stationary, since a sampled fea-
ture value might later be replaced with a different value.

Note, however, that although target familiarity is greater than
foil familiarity, the absolute values are not diagnostic on their
own; they vary with list length, number of available history
traces, and other factors to be discussed shortly, including
study time, category size, and similarity. Simulations with
fixed criteria operating on asymptotic familiarity (omitted due
to space limitations) systematically fail to produce appropri-
ate performance predictions.

The shape of the familiarity profiles for targets and foils
are systematically different, regardless of list length or num-
ber of available history traces. Although the shape of the
profiles arises in a complex fashion, the slope of target fa-
miliarity profiles is usually positive, while that of foils is
predominantly negative. Thus, rather than make a recogni-
tion decision on the basis of raw familiarity, we can do so
on the basis of this slope information. The slope of the log-
familiarity2 profile at time t, logφ(t) can be estimated by tak-
ing the difference between times t and (t− 1), ∇ [logφ(t)] =
logφ(t)− logφ(t−1) = log φ(t)

φ(t−1) . We posit that this slope in-
formation accrues in two independent, racing accumulators:
Positive values of ∇ [logφ(t)] are added to an “old” accumu-
lator, while negative values are added to a “new” accumula-
tor. When either of these accumulators reaches its respective
threshold, αold or αnew, feature sampling stops and the corre-
sponding decision is made.

Dynamics The process by which features are sequentially
sampled from the test item to form a probe trace is presumed
to be the same process at work when studying list items—a
homogeneous Poisson process. Given that the decision proce-
dure terminates after taking a certain number of feature sam-
ples from the test item (call this number of samples q), we
can predict a trial’s response time (RT) as a sample from a
q-stage Gamma distribution with rate ρ:

f (RT ;q,ρ) =
ρq

(q−1)!
RT q−1e−ρRT .

Applications
In all of the following applications of the model, context is
represented by 30 random binary features, the values of which
are fixed across all study and test items. Each simulated data
point reflects an average of 1000 simulations. Test lists are
unbiased, consisting of an equal number of old and new items.
No forgetting is posited, nor are any new traces formed dur-
ing testing. These assumptions are made for the sake of sim-
plicity, to better demonstrate the properties of the recognition
mechanism, which is our primary focus. We also note that
the model’s parameters were chosen in a more-or-less arbi-
trary fashion, and were not fit to data; the qualitative trends
shown here hold across a variety of parameter settings. His-
tory traces are created by the same encoding process as list
traces (with study time Ts = 2), only the context features of
each history trace are randomized.

2We work with the logarithm solely to transform the domain to
all reals, but the logic remains the same if working with untrans-
formed familiarity.

117



10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

List Length

P
("

O
ld

") K = 0
K = 100
K = 200

10 20 30 40 50 60
0

.8
1

.0
1

.2
1

.4

List Length

M
e

a
n

 R
T

Hit
CR

Figure 2: Simulation results for a variety of list lengths (N)
and number of available history traces (K). The left plot
shows hits (◦) and FAs (M) while the right plot shows mean
predicted RT (in arbitrary units) for hits and CRs.

List Length
Before addressing more complicated situations, we consider
the most basic episodic recognition paradigm in which par-
ticipants study a single list of items of the same stimulus type
(e.g., words) one at a time for Ts = 1 time unit. Study of each
item results in the encoding of a trace in long-term memory.
The content features for each item are represented by 30 bi-
nary features, assigned randomly such that the items do not
bear any systematic similarity to one another. At test, the
content features of foil items are also assigned at random.

The model’s predicted hit and FA rates, as well as mean
correct RTs (hits and CRs), for varying list lengths are shown
in Figure 2. In addition, we varied the number of his-
tory traces for each test item (K) that were available dur-
ing recognition (i.e., the number that could contribute to the
summed familiarity in equation 2). Across varying values of
K, the model predicts a standard list length mirror effect—
decreasing hit rate and increasing FA rate with list length.
The model’s predicted response time distributions also con-
form to what is usually found in recognition memory: in-
creased overall correct RT with list length (e.g., Ratcliff &
Murdock, 1976).

Mixed Lists
A particularly problematic situation for models with fixed de-
cision criteria is the case where study and test lists are com-
prised of varying numbers of items of different types. Differ-
ent item types may have different raw familiarity values by
virtue of having many history traces (as, perhaps, with words
or well-known objects) or by being studied for a longer time
(an increase in memory “strength”).

Varying Strength Study time is governed by the model pa-
rameter Ts, which reflects the amount of time available to
draw samples from an item at study (at rate ρ). For this simu-
lation, we created a study list with 40 items, twenty of which
were studied for Ts = .5 time units, the others for Ts = 2 units.
Further, ten items from each strength level were presumed to
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Figure 3: Simulation results for a list with varying study time
(Ts) and history traces (K) per item. In the left plot, upper
lines (◦) are hits, lower lines (M) are FAs (which, strictly, have
a study time of zero). The right plot shows mean model RTs
for hits (in arbitrary units).

be “novel” (K = 0) while the other ten had been previously
encountered in other contexts (K = 200). Foils could also be
“novel” (K = 0) or previously seen (K = 200). Consistent
with results on increased study time (Criss, 2006; Ratcliff &
Murdock, 1976), more study is predicted to result in a higher
hit rate and faster correct responses, regardless of the number
of history traces available for activation, although a foil with
history traces may be endorsed more readily than one without
(see Figure 3).
Varying Knowledge Finally, we turn to a version of the
case described in the introduction in which a single list con-
tains varying numbers of items of varying familiarity. The
study list in this simulation consists of items drawn from eight
categories, four of which are novel (and thus their items have
no history traces, e.g., random dot patterns) and four of which
are familiar (200 available history traces, e.g., everyday ob-
jects). The list itself contains a single exemplar from each of
two of the novel categories and two of the familiar categories
and eight exemplars from the remaining four categories (two
novel and two familiar). Within-category similarity was mod-
eled by randomly generating 30 binary features to serve as
a category “prototype” while the features of each exemplar
could be copied from the prototype with 50% probability, or
assigned at random.

Once again, performance of the model (shown in Figure 4)
is generally robust to the introduction of history traces. The
model correctly predicts an increase in FA to categorically
related foils with the number of studied exemplars with no
concomitant rise in unrelated FAs or fall in hit rate (Dennis
& Chapman, 2010; Shiffrin, Huber, & Marinelli, 1995). The
presence of history traces has its main effect on RT, where
more history traces result in faster hits and slower FAs (as
the presence of history traces tends to flatten the familiarity
profile for foils, as can be seen in Figure 1).

118



1 2 3 4 5 6 7 8

0
.0

0
.4

0
.8

Num. studied exemplars

P
("

O
ld

")

K = 0
K = 200

P
("

O
ld

")

K = 0
K = 200

P
("

O
ld

")

K = 0
K = 200

1 2 3 4 5 6 7 8
1

.1
0

1
.2

0
1

.3
0

Num. studied exemplars

M
e

a
n

 R
T

M
e

a
n

 R
T

M
e

a
n

 R
T

Figure 4: Simulation results for a list with varying numbers
of category exemplars and history traces (K). In the left plot,
upper lines (◦) are hits, lower lines are FAs to unrelated (M)
and related (+) foils. In the right plot, ◦’s show mean RT for
hits, +’s show mean RT for CRs of related foils, M’s show
mean RT for CRs of unrelated foils. RTs shown in arbitrary
units.

Discussion
The recognition memory model presented in this paper is a
proof of concept that sensible recognition decisions are pos-
sible even with variations in task, study factors, stimuli, and
various other factors that affect overall familiarity of a test
probe. Using two racing accumulators to make a decision
provides a way to take advantage of the expected difference
in the time course profile of familiarity growth for targets and
foils: Noting that the successive familiarity changes tend to
be positive for targets and negative for foils, we let one ac-
cumulator add up positive changes, and the other negative
changes. The present results show that such an approach
has promise to solve a long time puzzle in recognition mem-
ory: how recognition can occur when tasks and stimulus types
vary widely and there is insufficient experience with any one
type to learn appropriate criteria. Traditional models treat
this problem by adjusting criteria as any of these variables
change. Our approach still involves criteria (αold and αnew)
but these do not need to change across stimulus types in or-
der to produce reasonable predictions. In a sense, this can be
seen as re-framing the problem of criterion setting such that
items themselves can serve as their own reference, rather than
relying on assumed distributions of absolute familiarity.

We believe the approach presented here can shed light on
some recent results that apparently demonstrate criteria ad-
justments that are problematic for many existing memory
models (e.g., Dennis & Chapman, 2010; Starns, White, &
Ratcliff, 2010), although we have yet to apply our model
directly to their data. Our preliminary results also suggest
that the source of noise may change during recognition, with
other list items serving as the primary source of noise early
in recognition, while historical traces of the test item intrude
later in the process (note the rising activation of history traces
in Figure 1). This possibility could be examined within a

signal-to-respond paradigm that interrupts recognition at var-
ious points (as in Brockdorff & Lamberts, 2000; Hintzman
& Curran, 1994). Finally, the ability of our model to make
simultaneous predictions about both accuracy and RT under-
scores the need for future research into the dynamics of long-
term recognition memory, so as to place tighter constraints on
theory development. While the model presented in this paper
is clearly preliminary, we hope that it may suggest new av-
enues of research and new ways of conceptualizing problems
in recognition memory.
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