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Abstract 

On the basis of examples from mathematical physics, theoretical hypotheses are distinguished 

from generative theories.  An example of the former is Green’s claim that light is the vibrations 

of a certain type of elastic solid.  An example of the later is the wave theory of light.  Both 

hypotheses and theories are characterized in terms of theoretical principles and models, but 

unique to a theory is a language frame for generating its many models.  The aim of theory is 

defined in terms of both accommodating nature and unifying nature through assimilation.  The 

structure and use of generative theories closely resembles the structure of paradigms and their 

use in normal science [Kuhn 1970]. 

 

Introduction 

Our conference topic begins with the statement, “what distinguishes science from all other 

human endeavours is that the accounts of the world that our best, mature sciences deliver are 

strongly supported by evidence and this evidence gives us the strongest reason to believe them.”  

To examine this topic, we need to dive down and address the question of what sorts of accounts 

of the world are intended by science, by theories, and then discuss the extent to which these 

accounts are supported by evidence.  To answer this question, we need to dive down further and 

understand theories, specifically, the aim and structure of theories.  Then we can work our way 

back up and begin to discuss the question of how evidence supports the accounts of the world 

provided by our best theories.  All of the examples in this paper are drawn from mathematical, 

physics theories, which for brevity I will refer to as physical theories. 

We therefore start with a theory about the aim and structure of physical theory, a so-

called theory of theories [see Bromberger 1992].  Just as a physical theory attempts to both fit 

and explain nature, so too, a theory of theories should both fit and explain theories.  To fit, it 

must describe the phenomena, namely, theories, their structure and use.  To explain, it should 

provide an account of why theories are as they are and this can be done by showing that the 
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structure of theory is an outcome of the aims we assign them and the constraints they operate 

within. 

The paper begins by characterizing the aim of physical theory in terms of accommodating 

nature and unifying nature through assimilation.   A distinction between theoretical hypotheses 

and generative theories is then established.  An example of the former is Green’s claim that light 

is the vibrations of a certain type of elastic solid.  An example of the later is the wave theory of 

light.  Both hypotheses and theories are characterized in terms of theoretical principles and 

models, but unique to a theory is a language frame for generating its many models.  The structure 

and use of generative theories closely resembles the structure of paradigms and their use in 

normal science [Kuhn 1970].   

 

The Aim of Physical Theory 

Theories must accommodate nature, or more precisely, our beliefs about nature.  To 

accommodate is “to make fit, to bring into agreement”.  Equally important, theories must 

assimilate nature.  The need to assimilate reflects a human bias.  The world, on the surface 

appears complex and multifarious. Light, heat, sound and the motion of bodies appear as very 

different types of phenomena.  The human intellect is inclined to seek sameness, commonality, at 

a level below appearances, showing that light, heat and sound are manifestations of the same 

sorts of thing.  Though on the surface these phenomena seem quite different, they can be thought 

of as caused by similar mechanisms.  This human inclination is sometimes described as a need to 

systematize or unify the world, though the concept of assimilation better captures the active 

nature of the intellect in making sense of the world.  To ‘systematize’ means to arrange in accord 

with a definite plan or scheme.  To ‘assimilate’ means to make similar—then we arrange 

according to some scheme.2   

 

Three Examples of Theoretical Hypotheses 

I will start with three brief examples of the application of physical theory to nature which 

illustrate the combined use of theoretical principles, models and hypotheses.  Consider Green’s 

                                                 
2 See Nietzsche [1968] and discussion of biological epistemology.  Nietzsche describes the 
intellect as actively making things similar in order to make them more comprehensible and likens 
the intellect to the biological process of assimilation by which things are made similar before 
they can be absorbed (comprehended) by a system. 
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1838 elastic solid theory of light.  Green modeled the luminiferous aether as a strained 

“ordinary” elastic solid.  His account of the reflection of light at a boundary between two optical 

media assumed that the rigidity η of the aether is the same in both media while its inertia ρ has 

different values in the two media.  The general method, used by Green and others at the time, 

was to sufficiently detail a model of the aether so as to obtain a mathematical expression for 

potential energy φ which could then be substituted into the general variational equation: 
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Assuming e to represent the vector displacement of an aethereal particle from its 

equilibrium position, Green obtained a lengthy expression for potential energy φ, which, when 

substituted into the variational equation, results in the following equation of motion: 
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One objective of Green’s theory was to derive Fresnel’s sine and tangent laws of 

reflection.  Fresnel’s laws describe the ratio of the amplitude of reflected to incident light when 

light is incident on a planar surface separating two isotropic media.  The sine law applies when 

the incident light is polarized in the plane of incidence and the tangent law when polarized 

perpendicular to the plane of incidence:3   
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With the above theoretical assumptions, Green also derived the boundary conditions that 

must be satisfied at the interface between real elastic solids, which state that, along the interface 

between the two media, the three components of displacement and the three components of stress 

must be equal.  After analyzing the reflection and refraction of an incident wave Green found 

that if the vibration of the aethereal molecules is at right angles to the plane of incidence, the 

intensity of the reflected light obeys Fresnel’s sine law. 

In 1856 Krönig developed a version of the kinetic theory of gases based on a simple 

model of a gas as consisting of a vast number of atoms that behave like solid, perfectly elastic 

                                                 
3 When the incident wave is polarized in the plane of incidence, the vibration of the aethereal 
particles is at right angles to the plane of incidence.  When the incident wave is polarized 
perpendicular to the plane of incidence, the vibration of the aethereal particles is parallel to the 
plane of incidence.   
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spheres moving with definite velocities.  One objective of kinetic theory is to derive the specific 

heats of gases, which is defined in terms of the heat energy E required to raise the temperature T 

of the gas.  Cv is the specific heat when volume is constant and is defined as: 

T

E
Cv ∂

∂=  

The principle of equipartition of energy states that for a substance in thermal equilibrium 

its energy is equally divided between the degrees of freedom of its molecules, that is, between its 

translational, rotational and vibrational degrees of freedom.  Previous results indicated that a 

mole of gas has RT/2 units of energy per degree of molecular freedom where R is the universal 

gas constant.  If we define t, r and v as the degrees of translational, rotational and vibrational 

degrees of freedom, we obtain the following expression for the energy in one mole of a gas: 

2/)2( RTvrtE ++=  

Substituting this expression for E into the previous equation for Cv and taking a simple 

derivative results in the following expression for Cv: 

2/)2( RvrtCv ++=  

The model described by Krönig has no rotational or vibrational degrees of freedom, only 

three degrees of translational freedom; hence, Cv for this model is 3R/2.   

Consider one last example, one which brings quantum theory into the discussion.  

Imagine that our objective is to derive the energy levels of some gas with wave mechanics.  The 

central theoretical principle of wave mechanics is Schrödinger’s equation: 

ψψ EH =  

A general procedure for deriving the energy spectrum of a system with wave mechanics 

is to first construct a model, obtain the Hamiltonian H for the model, substitute the Hamiltonian 

into Schrödinger’s equation and then solve this equation to obtain the energy eigenvalues of the 

system.   

The rigid rotator model provides a relatively simple illustration.  It consists of two masses 

m1 and m2 connected by a mass-less rod of length r, with moment of inertia I and angular 

momentum operator L. The Hamiltonian H operator associated with the rigid rotator is L2/2I, 

which, when expanded in polar coordinates takes the form: 
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Substituting this expression for H into Schrödinger’s equation, followed by a complex 

mathematical derivation, leads to the following expression for the quantized energy values of the 

system: 

IJJE j 2/)1( 2h+=  

 

Theoretical Principles, Models and Hypotheses 

These three examples illustrate a common pattern.  In the case of Green’s theory, the 

variational principle is applied through a specific elastic solid model.   In Krönig’s theory, the 

principle of equipartition of energy is applied through a simple gas model.  In the wave 

mechanics example, Schrödinger’s equation was applied through the rigid rotator model.  Said 

differently, the models were designed with an eye towards applying the principles and 

mathematical assumptions of the theory [see Cartwright 1983].  These three examples illustrate 

what I will refer to as theoretical hypotheses, a notion which depends on an understanding of 

theoretical principles and theoretical models. 

Examples of theoretical principles include the principles of conservation of energy and 

momentum, Newton’s laws of motion, Schrödinger’s equation, the variational principle and 

Maxwell’s equations.  First, these principles are fundamental in the sense that there is no attempt 

to reduce them to, or derive them from, more fundamental principles; instead, they serve as the 

foundation for almost all derivations of their respective theories.  Second, at least in 

mathematical physics, they are symbolic in form and have variables as placeholders for 

mathematical expressions of potential energy, force, the Hamiltonian of a system and the like.   

And finally, theoretical principles are used by all members of the theoretical without any need 

for justification.  Conversely, we might say that membership in the community is defined in 

terms of acceptance of these principles. 

Because of the multiple meanings of model, theoretical models are two-sided, both 

models of the theory and models of the world.  They are models of the theory in the sense that 

they satisfy the theoretical and mathematical statements of the theory.  Cartwright [1983] and 

Giere [1988] have discussed this aspect of theoretical models. Giere writes, “I propose we regard 
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the simple harmonic oscillator and the like as abstract entities having all and only the properties 

ascribed to them in standard textbooks” [1988, p. 78].  

Properties are assigned to models with an eye towards engaging a theory’s inferential 

mechanisms, namely, its theoretical principles and mathematical tools.  Our three examples are 

based on models that have clearly been designed to engage theoretical principles.  Green’s 

elastic solid model, described in terms of particles displaced from their equilibrium position, is 

constructed so as to yield an expression for potential energy that can then be substituted into the 

variational equation.  Gas models used to derive specific heats clearly indicate values for 

translational, rotational and vibrational degrees of freedom which are then substituted for r, v 

and t in the equation describing the energy of the system.  Finally, the rigid rotator model and all 

of the models of wave mechanics are designed so as to yield an expression for the Hamiltonian 

of the system, which can then be substituted into Schrödinger’s equation.  At the same time, 

models are designed with idealizations like point masses and perfect elasticity so as to satisfy the 

mathematical needs of the theory.   

Models should actually be understood as three-sided, as models of the world, of the 

theory’s principles and mathematics, but also, as models of a generative language frame.  But we 

will postpone a discussion of this third side of models until we turn to an analysis of theories.  

Up to this point, we have only been talking about theoretical hypotheses.  

Models become models of the world through theoretical hypotheses.  Our three examples 

are illustrations of theoretical hypotheses, although, they might also be referred to as theories, for 

example, Green’s 1838 elastic solid theory of light.  But, for reasons that will become apparent, 

it is better to reserve the term theory for the likes of the wave theory of light, the kinetic theory 

of gases and the quantum theory of molecular spectroscopy, and regard our the above examples 

as possible hypotheses of these theories.  A theoretical hypothesis is therefore a statement that 

asserts a model as representational of some aspect of the world such that conclusions drawn from 

the model should reflect their parallel in the world.  Examples include the statements “light is the 

vibrations of a Greenian elastic solid” and “hydrogen gas consists of atoms described by Bohr’s 

model”.  Unlike a stand alone model, a theoretical hypothesis can be evaluated. 
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Illustrations of Generative Theories 

The wave theory of light is consistent with conflicting theoretical hypotheses about light 

just as kinetic theory is consistent with many conflicting hypotheses about the same type of gas.  

Such options are generated from the internal structure of these theories, on, what I will 

eventually characterize in terms of generative language frames.  But first, I will provide some 

historical background on the use of generative theories. 

 One objective of kinetic theory, as applied to some gas, is the derivation of its specific 

heat.  Historically, a physicist may have considered two types of options when confronted with 

this problem, one based on vortex models, the other on “billiard ball” type models.  Rankine and 

others championed vortex models which portrayed atoms as a nucleus, enveloped by a rotating 

elastic atmosphere which is retained in place by attractive forces of the nucleus.  As the heat of a 

gas is increased the rotational kinetic energy and centrifugal force increase, thus increasing 

pressure. There were several types of vortex models just as there were many variations of 

“billiard ball” models, Krönig’s model being the simplest of this type of model.   

The particles of Krönig’s simple model have only three degrees of motion, namely, 

translation in three directions.  But in 1857, Clausius, in reflecting upon Krönig’s model, 

imagined more complex models that would exhibit both rotational and translational degrees of 

freedom.  In modern terms, he imagined rigid rotators, and particles attached by “springs”, which 

exhibit various degrees of freedom, and result in a variety of values for specific heat using the 

following equation: 

2/)2( RvrtCv ++=  

Further variations of the “billiard ball” type of model were developed in the process of 

fitting the kinetic theory to experiment.  Jeans, for example, considered the implications of 

molecules that can aggregate with one another and assumed that in raising the temperature of a 

gas, work is not only done in increasing the energy of its individual molecules but also in 

separating them, which, if the case, would increase predicted values of Cv.  Likewise, Maxwell 

considered particle shape and modeled gases with different ratios of spherical and non-spherical 

particles, and depending on the assumed ratio, computed different values for the specific heat of 

a gas. 

The above options provide these theories with many models and theorists with many 

possible hypotheses when confronting a problem.  If a specific hypothesis fails to accommodate 
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experimental results, then an alternative can be developed, without in the process calling into 

question the theory or its basic principles.  But, foreshadowing a question we will return to, how 

does the community reach consensus about what are, and what are not, legitimate hypotheses of 

the theory.  After all, we can not understand theories or their evaluation, without answering this 

question.   

An illustration of the question of legitimacy, of standards, is found in the context of the 

classical theory of light, our second example of a generative physical theory.  Green’s elastic 

solid model of light, though successful in deriving Fresnel’s sine law of reflection, was 

inconsistent with Fresnel’s tangent law of reflection.  Eventually MacCullagh [1839] developed 

an elastic solid model of light consistent with both laws of reflection as well as the absence of 

longitudinal waves.  But to illustrate the issue of hypothesis legitimacy, let us begin with 

MacCullagh’s paper of 1837.  Mathematically, this paper achieved similar results to his paper of 

1839, but it was “without dynamical” foundation.  In particular, MacCullagh’s 1837 paper was 

based on assumptions about the boundary conditions between two optical media that are violated 

in the case of an ordinary elastic solid (such as Green’s).  This would not have been a problem if 

MacCullagh had backed his mathematical assumption with a model that provided dynamical 

foundation for the alleged boundary conditions.  But he did not, and recognizing this deficiency 

himself, concluded that his 1837 paper amounted to nothing more than fortunate conjecture 

without any theoretical foundation. 

MacCullagh’s 1839 model, however, provided a dynamical foundation for the 

assumptions of his 1837 conjecture.  He assumed a new type of elastic solid, one whose potential 

energy depends only on the rotation of its volume elements.  Substituting the expression for 

potential energy into the variational equation led to an elegant expression for the equation of 

motion that describes purely transverse waves and is consistent with both of Fresnel’s laws of 

reflection:  
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About MacCullagh’s work, Whittaker concludes, “there can be no doubt that MacCullagh 

really solved the problem of devising a medium whose vibrations, calculated in accordance with 

the correct laws of dynamics, should have the same properties as the vibrations of light” [1989, 

p. 144].  Nonetheless, MacCullagh’s solution was not immediately embraced because of 
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questions concerning its legitimacy and whether it adhered to required standards.  Although, on 

the surface, the notion of a rotationally elastic solid offered some dynamical foundation for his 

mathematical assumptions, MacCullagh failed to describe a mechanical model that illustrated the 

dependence of potential energy on rotation.  In 1889, Thomson (Lord Kelvin), addressed this 

concern, and constructed, not simply in thought, a mechanical system consisting of spheres, rigid 

bars, and spherical caps, which illustrated the concept of rotational elasticity.  

While it is not actually necessary to actually build a physical model in order to legitimate 

a theoretical model, something is needed in order to justify an equation; after all, one can not 

simply write down any equation, derive a desired result, and declare success in the sense of 

having solved a problem with a theory.  But we have started our discussion of the classical 

theory of light down in the details; let us bring the discussion up a few levels and paint a broader 

picture of this generative theory and then return to the question of standards. 

One objective of the classical theory of light was to fit various experimental results, 

including those relating to reflection, refraction and polarization.  But the first order of business 

was to simply account for the fact that light travels from one place to another in a finite duration.  

Broadly conceived, there were two basic responses to this aim which divided the theory into two 

major versions, the corpuscular and wave theories of light.  From the perspective of classical 

mechanics, one could think of light as like a dart, or a projectile, that travels from one place to 

another.  Or one could think of light as traveling as a progressive disturbance that initiates with 

the agitation of some particles, which communicate the disturbance to neighboring particles, 

which in turn agitate their neighboring particles, and so forth.  Newton and Laplace were 

advocates of corpuscular hypotheses, while Young, Fresnel, Stokes, Green, MacCullagh, 

Thomson and others developed versions of the wave theory of light. 
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Figure 1 Tree diagram, evolution path for classical theory of light 

 

Through a process similar to evolution and natural selection (figure 1), alternative 

hypotheses of the classical theory of light were developed and tested for fitness with respect to 

experimental results. Combined requirements relating to reflection, refraction, polarization and 

other experimental results, eventually gave preference to the wave theory of light, more 

specifically, to the transverse wave theory of light.  The assumption of a transverse wave theory 

of light was quickly translated into the need for elastic solid models since it was known that such 

a medium could support transverse waves.  Finally, many hypotheses of the elastic solid theory 

of light were developed, based on various options, such as those relating to the rigidity and 

inertia of the medium. 

 

Expectations of a Theory of Theories 

I will argue that the kinetic theory of heat and the classical theory of light are generative 

theories and that such theories consist of theoretical principles, theoretical hypotheses and a 

mechanism for generating (and legitimating) the models of the theory.  But before detailing this 

response, we need to understand the criteria for judging a theory of theories.  After all, just like a 

physical theory, a theory of theories should be evaluated according to some recognized 

standards, and following the example of physical theory, it is appropriate that a theory of theories 

fit and explain theories.  



11 

In the case of a theory of theories, what we are fitting is a practice, known to us through 

historical documents and textbooks.  Any such account of physical theory had better take 

account of the use of theoretical principles, theoretical models and mathematical derivation.  But 

it also needs to capture standards of practice, and the fact that members of the community, in 

understanding a theory, have criteria for agreeing on what is, and what is not, a legitimate 

expression of the theory.  Kuhn emphasizes this point in writing, “No puzzle-solving enterprise 

can exist unless its practitioners share criteria which, for that group and for that time, determine 

when a particular puzzle has been solved” [293].  This does not mean that practitioners must 

agree on which model to use for a given problem.  But there must be criteria, shared by the 

community, for deciding what counts as solving a problem.  Although these standards may not 

be clear cut rules, as evidenced by the debate about the legitimacy of MacCullagh’s rotationally 

elastic solid theory, without something in this role, a sort of anarchy would ensue.   

Likewise, a theory about physical theories will ideally explain specific instances of 

physical theory, just as kinetic theory aims to explain the specific heat of a gas by showing it as 

the outcome of some underlying mechanism. So too, a theory of theories should explain the 

structure and use of theories as a consequence of their aims and the constraints they operate 

within.    

 

The Structure of Generative Theories 

Earlier I described theoretical hypotheses in terms of theoretical models, governed by 

theoretical principles and mathematics.  These concepts are also essential to understanding 

generative theories, but something in addition is needed to capture a theory’s mechanism for 

generating and legitimating its models.   

According to Kuhn, models supply the group with “preferred or permissible analogies 

and metaphors” which “help to determine what will be accepted as an explanation and as a 

puzzle-solution” [1970, 184].  Directionally this seems correct, but I believe the concept of 

generative language frames, as developed by Barsalou [1992] and others might provide a better 

framework for what Kuhn was after here.  More work needs to be done in this area, but I will 

sketch a role for language frames in the context of generative physical theories.   

Figure 2 illustrates a modified version of a language frame given by Barsalou for the 

category car.  Barsalou describes several features and uses for language frames but I will only 
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focus on those features which seem particularly suited to an analysis of the structure of physical 

theory, namely, attributes and values, the concept of a model of a language frame, exemplars, the 

enablement relation, and the idea that the choice of a specific model of a language frame is goal 

driven. 

 
Figure 2 Generative language frame for car category 

 
Figure 2 illustrates various attributes of car and their possible values. The concept of 

enablement is also illustrated and in this case reflects the fact that automatic transmission is an 

enabler for remote start but standard transmission is not.  Shading is used to identify a specific 

instantiation of the language frame, in this case, a green, six cylinder, standard transmission, 

gasohol fueled car that Sarah will drive.  Barsalou defines an exemplar as an instantiated frame, 

in which case, the car defined about would be an exemplar.  I would prefer to use the term model 

for any instantiation of a frame, and reserve the term exemplar for special instantiations, special 

models, those that have particular significance.  A model of a language frame is therefore a 

model in the sense in which an ideal spring is a model of certain theoretical equations.  The car 

model selected above has all, and only, those attributes and values assigned to it. 

Specific models of a frame result from a series of choices.  These choices should be seen 

as goal driven.  The selected car model reflects a compromise between a desire for quickness, 
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environmentalism and comfort.  The standard transmission is optimal for quickness, and good 

for gas consumption, but it implies that the car can not have remote start.  The choice of a six 

cylinder engine reflects a compromise between miles per gallon and quickness, and gasohol was 

selected because of environmental commitment.  

Language frames provide a useful medium for representing model generation in the 

context of physical theories.  Choices within the language frame of a physical theory, as well as 

the specification of the language frame itself, are goal driven. First, models of the language 

frame must be suited to application of the theory’s principles and mathematics.  Second, the 

selection of a specific model of the frame will be guided by the goal of solving a given problem, 

for example, deriving the energy spectrum of some gas.  And finally, and we will discuss this 

more later, the goal is to not overly inflate the frame and allow too many model types. 

Consider a language frame for the kinetic theory of heat.  Within the frame, alternative 

models result from a series of choices, and, as we will see, a very similar frame is used by 

various quantum theories, such as quantum theory of molecular spectra.   

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Partial language frames for particle system and particle 
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Figure 3 illustrates a partial frame for particle system and particle.  The attributes of 

particle system include number of particles, arrangement and modes of interaction between 

particles.  The attributes of particle include mass, elasticity, size and shape.  Attribute and value 

decisions are constrained by the requirements of applying the theory’s principles and 

mathematics as well as the goal of accommodating nature.  For the time being we will assume a 

fixed frame and hold off on discussion of expanding the frame so as to accommodate anomalies 

or additional types of phenomena.  

In the particle frame, color has been crossed out because, unlike the other attributes, it is 

irrelevant with respect to the assumed principles of kinetic theory.  These principles require 

models defined in terms of mass, elasticity, size, shape and the like.  Likewise, the mathematical 

needs of the theory are captured by selection of attributes and values that lend themselves to 

mathematical derivation, such as point masses, and perfect elasticity.  The concept of enablement 

is essential here because some attribute values are only permitted if other attributes have certain 

values.  If, for example, the number of particles in the system is two, then a triangular 

arrangement of particles is not permitted.  If, on the other hand, a three particle system is 

selected, then there are three choices as to arrangement— point, linear, and triangular.   A 

specific model of the combined language frames, in this case, a rigid rotator model, is identified 

by shading specific attribute values—the key attribute values are two particles, rigid rod 

connection and linear arrangement. 

Figure 4 illustrates some of the models that can be generated with these simple language 

frames as well as the values of specific heat obtained with these models.  Although the frame is 

simple, permutations of its attribute values allow for many models and values of Cv, even more if 

other attributes are exploited.  Maxwell, through consideration of the attribute of particle shape, 

imagined different ratios of spherical and non-spherical particles and was able to predict a 

continuous range for Cv between some interval. 
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Figure 4 Models, degrees of freedom and specific heats 

 

Not all frames are so easily deciphered and constructed.   This frame happens to lend 

itself to a sort of “tinker-toy” interpretation, such that the models of the frame are objects one 

could build with rigid rods, springs and spheres.  But the critical point here is that there must be 

something that plays this role, the role of identifying legitimate expressions of the theory.   

 

Structure of Generative Theories Revisited 

To summarize up to this point, a generative theory consists of theoretical principles, a 

language frame for generating the theory’s models, and a set of theoretical hypotheses that, 

somewhat artificially, reflect the intent of the theory at some point in time.  This statement 

requires two points of clarification.  First, theoretical models were previously described as two 

sided, as models of the world and as models of theoretical equations.  But theoretical models are 

also models of the generative language frame assumed by a theory.  Second, a generative theory 

is not simply a tool for hypothesizing about the world, but, as a theory about the world, it must 

also assume theoretical hypotheses.  We have seen that generative theories are consistent with 

many hypotheses about the same phenomenon, for example, about the mechanisms underlying 

the propagation of light and the specific heat of a gas.  Hence, to associate a generative theory 

with any given set of hypotheses is somewhat arbitrary, but aimed at capturing the preferred, 

perhaps exemplary, hypotheses of the theory at some point in time.  Figure 5 summarizes the 
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structure and use of generative theories.  The activity described characterizes normal science and 

the current analysis of generative theories is proposed as a further detailing of Kuhn’s concept of 

a paradigm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 5 Feedback diagram for generative theory testing (paradigms and normal science) 
 

We start with a specific problem (or puzzle), for example, to derive the specific heat of 

hydrogen or the reflection of polarized light.  Next, a specific model of the language frame is 

selected, which then becomes a model of the theory’s principles and mathematics.  A theoretical 

hypothesis can then be formulated, for example, light is the vibrations of a certain type of elastic 

solid.  The theoretical model is then set in motion by the theory’s principles and mathematics.  

The first step is typically writing down a mathematical version of a key theoretical principle, 

such as the variational equation, f=ma or Schrödinger’s equation.  The result is a specific version 

of one of these equations.  Mathematical, theoretical derivation proceeds and implications of the 

hypothesis are drawn which are compared with experimental results.  Success implies that the 

community can move onto another problem in an effort to assimilate more of nature to the 

generative theory (or paradigm).  In addition, the theoretical hypothesis might be given 
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exemplary status in the theory’s literature just as the stand alone model might be dubbed an 

exemplar and given a section in standard textbooks.  Failure typically results in returning to the 

language frame to select an alternative model, a selection that will be informed by previous 

failures.  A critical experiment that appears to implicate the entire language frame may imply 

that there is no point in returning to the language frame in search of a better model. 

 

But success, or the criterion for success, needs clarification.  In upper right corner of 

figure 5 there is reference to evaluation of a hypothesis in terms of consistency with the 

hypotheses of other theories.  For example, do we need to worry about the interaction of the 

molecules of kinetic theory with an elastic solid that pervades all space?  Likewise, astronomy 

tells us that the planets are not appreciably slowing down as they move through space, but if an 

aether fills all of space, then classical mechanics implies that the planets should slow down over 

time.  One might object that this sort of reasoning implies that we are taking models too literally 

and are not reflecting the theory’s intended account of the world.  One might argue that what we 

were really after here was the equations for an elastic solid and not the hypothesis that there 

really is an elastic solid occupying all space.  I will counter this objection by arguing that by 

disassociating theoretical models from the language frames they originated within, a theory fails 

to assimilate and unify nature.  But first, let us consider how theories do in fact assimilate and 

unify nature.   

 

Generative Theories and Assimilation  

While Newton’s laws and Schrödinger’s equation are critical to any account of how 

classical and quantum theories unify nature, by themselves, these principles are impotent when it 

comes to unifying nature.  For the sake of argument, imagine theories without recourse to 

language frames and their models.  Different applications of f=ma and Schrödinger’s equation 

require different versions of these equations, in the end, in order to solve a variety of problems, 

many mathematical versions of these equations are required.  Figure 6 shows just a few of the 

many versions of f=ma and Schrödinger’s equation.   
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Figure 6 Mathematical versions of f=ma and Schrödinger’s equation 
 

Without recourse to the semantic content of models, we have two options for capturing 

the systematic unification of nature by theories.  One option is to derive these equations from 

some smaller set of more fundamental principles.  As an example of this exercise, consider the 

four mathematical versions of Schrödinger’s equation shown in figure 6, and try to derive them 

from a smaller number of equations.  A second option is to list all of these equations as 

fundamental, but then the theory has too many “fundamental principles” and fails to somehow 

reduce the many to the few.     

Assimilation is not achieved not through mathematic derivation of many equations from a 

few equations; rather, it is achieved through the semantic content of models.  The equations of a 

theory should be seen as versions of a handful of fundamental principles, and though each 

version is based on a unique model, the models are similar in terms of semantic content, that is, 

are instantiations of a common language frame.  The result is a small number of fundamental 

principles that govern a large number of models that are all similar in the sense that they stem 

from a common language frame.  In this way, theories assimilate the multifarious surface 

phenomena to deeper, but similar, causal mechanisms.   

To summarize the dependence of theories on models, models are indispensable to theory 

and should not be thought of as scaffolding that can be removed once a theory is constructed.  

Hertz wrote, “Maxwell’s theory is Maxwell’s equations”.  The aether models are superfluous.  In 

the end, that appears to be true, but for that reason, Maxwell did not assimilate electromagnetic 
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phenomena to classical mechanics.  He introduced a different language frame, one based on 

fields, as well a new set of theoretical principles.  Metaphorically, models are critical to 

assimilation and provide the organic matter that unites the symbolic expressions of a theory.  

Poincare offers a lovely metaphor which, though used with different intent, can be seen as 

describing the mathematical equations of a theory after their models are removed: 

. . . You have doubtless seen those delicate assemblages of 
silicious needles which form the skeleton of certain sponges. When 
the organic matter has disappeared, there remains only a frail and 
delicate lacework, True, nothing is there but the silica, but what is 
interesting is the form this silica has taken, and we could not 
understand it if we did not know the living sponge which has given 
it precisely this form.  

 

Accommodation versus Assimilation Trade-offs 

The aims of accommodating and assimilating nature pull theories in opposite directions.  

They do so for two reasons, one of which is obvious, the other more subtle.   

Assimilation is optimized if the theory’s language frame and cast of models is limited.  

At one extreme is a language frame similar to that of Descartes’ physics, limited to particles of 

different sizes and shapes, where the only type of force admitted is that due to collision.  The 

metaphor is very restrictive and judging from history unable to fit diverse phenomena.  To better 

accommodate the world, the language is given more freedom, perhaps initially allowing for 

different degrees of elasticity or types of interactions beyond collision.  1/r forces might be added 

to the language frame as possible values for the particle to particle interaction attribute.  The 

acceptance of new attributes, or new attribute values, may require a change in standards.  Kuhn 

makes this point in writing, “Must a theory of motion explain the cause of the attractive forces 

between particles of matter or may it simply note the existence of such forces?  Newton’s 

dynamics was widely rejected because, unlike both Aristotle’s and Descartes’ theories, it implied 

the latter answer to the question.  When Newton’s theory had been accepted, a question was 

therefore banished from science” [1970, p. 148]. But in loosening standards in this manner, 

assimilation is compromised in order to better accommodate nature.  

Accommodation and assimilation, however, can interact in a more subtle way.  While the 

semantic content of models provides the grounds for assimilation, it also endows models with the 

means for interacting with other beliefs and this can get hypotheses into trouble.  If the aether is 
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an elastic solid then that means it is a resistive medium that should interact with planetary motion 

and the molecules of kinetic theory.  Stokes addressed this concern by likening the aether to an 

extreme example of substances like “shoemaker’s wax” which is rigid enough to permit elastic 

vibration, but plastic enough to allow others bodies to pass slowly through it.  Stokes’ proposal 

may provide a solution to this problem, but MacCullagh and others did not endow their models 

with these properties and then show that the resulting hypothesis was consistent with the 

observed motion of planets as well as Fresnel’s laws of reflection and the absence of longitudinal 

light waves.  

Likewise, in the end, advocates of kinetic theory overlooked an apparent conflict between 

their hypotheses and the assumption of an aether.  In the early part of the nineteenth century 

many physicists believed in a luminiferous aether and were therefore reluctant to advance a 

kinetic theory of heat because they suspected an inconsistency between the two theories.  

Clausius was one of the first physicists to overcome this reluctance and as a consequence he was 

critical to the early development of kinetic theory.  In general, physicists often ignore conflicts 

between the hypotheses of different theories and one can imagine several reasons why this is the 

case.  One reason is that the task of fitting nature with theories is hard enough already.  

But the question remains as to whether these conflicts should be overlooked, or expressed 

differently, how should we understand the intended accounts of our best theories?  Earlier I 

mentioned that one might object that concerns about, for instance, the consistency between the 

kinetic theory of gases and the assumption of an aether, suggest that models are being taken too 

literally.  In response, I argue that we can not have it both ways—rely on the semantic content of 

models in order to make a case for assimilation, and ignore semantic content when it interacts 

with other hypotheses and makes fitting nature more difficult.4 

 

Explaining Generative Theories 

Finally, I turn to the questions of why and must physical theories look like this.  Can we 

imagine other alternatives, theories constructed in different ways, which achieve similar goals?  

                                                 
4 It is interesting that while philosophers worry about underdetermination, physicists 

neglect to consider interactions between their theories that could “further determine them”. 
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While not prepared to address this question in its entirety, I will at least attempt an argument for 

the necessity of models and language frames. 

It is important to acknowledge that language frames and their models have a primary and 

secondary role in the context of physical theory.  Their primary role relates to assimilation and 

the goal of showing many phenomena as consequences of similar sorts of mechanisms that are 

governed by a small number of basic principles.  And because of this role, language frames and 

their models establish standards that are used to identify what are legitimate expressions of a 

theory.   

It is not necessary for theories to assume models in the sense of familiar pictures, for 

example, cogs, wheels, pulleys and springs.  The theoretical models of quantum theory certainly 

challenge the imagination.  But this is after the principles and mathematics of the theory have 

imposed their requirements on these models.  Models start as models of a familiar language 

frame.  After they are then further characterized by theoretical principles like Schrödinger’s 

equation and the mathematics of quantum theory, we can certainly lose sight of the model.  But 

we should not lose sight of their origin as models of a familiar language frame.  There is a 

tendency to think of modern physics as free of models.  This point of view is echoed by Dirac’s 

proclamation that quantum theory has no dependence on what can be perceived, talked about, 

and that one should simply stick with the equations, the mathematics.  Even in quantum theory 

there is a familiar language that serves as the origin for its models, without which, the theory 

would not assimilate any more than a long list of equations. 

The language frames of classical and quantum theory have much in common.  In fact, the 

language frame previously illustrated for classical kinetic theory is remarkable similar to that 

used in the quantum theory of specific heats and the quantum theory of molecular spectroscopy.  

A cursory study of Herzberg’s “The Spectra and Structure of Simple Free Radicals” reveals a 

language frame built on particle systems consisting of varying numbers of particles, arranged in 

different ways and connected by the likes of abstract rigid rotators and ideal springs.  The models 

of the language frame exhibit different rotational, vibrational and electronic states.  When the 

models then become models of the principles and equations of quantum theory so as to derive 

transition probabilities and line spectra, indeed, the models become rather peculiar.  But we 

should not lose sight of their origin in a familiar language frame. 
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Atavism 

In order to fit nature, theories require many variations of their theoretical principles.  

Unification of nature, through assimilation, is achieved by recognizing these equations as 

versions of a handful of fundamental principles, and though each version is based on a unique 

model, the models are similar in terms of semantic content, that is, they are instantiations of a 

common language frame.  Quine [1953], in Two Dogmas of Empiricism remarks that “language 

is social and so depends for its development upon intersubjective reference”.  The reliance of 

theories on language, and the dependence of language on intersubjective reference, implies that 

generative physical theories are necessarily atavistic and dependent on something more primitive 

than themselves.  Models, originating in everyday experiences with the mid-sized objects of 

intersubjective reference, keep reappearing-- in classical mechanics, in the classical theories of 

light, heat and sound, and finally in quantum mechanics.  On the topic of philosophical atavism, 

Nietzsche wrote: 

 …. the most diverse philosophers unfailingly fill out again and 
again a certain basic scheme of possible philosophies.  Under an 
invisible spell they always trace once more the identical orbit: 
however independent of one another they may feel [1990, p. 20]. 

Whether or not this is true of philosophy, something like this occurs in physics.  Modern 

theories are more dependent on ancient ideas than we might prefer to recognize.  But the orbit 

theories trace is certainly not identical.  What reappears are not theoretical models but only 

models in the more limited sense of models as models of a language frame.  Theoretical models 

are both models of a language frame and models of a theory’s principles and mathematics and 

progress requires that they change from one theory to the next. 

 

Conclusions 

What distinguishes science from all other human endeavours is that the accounts of the 

world that our best, mature sciences deliver are strongly supported by evidence and this evidence 

gives us the strongest reason to believe them.   

I have barely reached the point at which the topic of theory confirmation can be 

addressed, but hopefully I have provided a framework that might be useful in this context.  In 

approaching the issue of theory evaluation and confirmation, it is important to contrast the 

testing of theoretical hypotheses with the testing of a generative theory.   
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Theoretical hypotheses, such as Green’s elastic solid hypothesis about light, can easily be 

reconstructed as derivations where consequents are mechanically derived from antecedents; 

hence, if consequents do not agree with experiment, the hypothesis is in trouble. For pragmatic 

reasons the principles and mathematics are typically exempt from questioning, and the models 

are the preferred victim [Quine 1953].  But, given that these hypotheses are the hypotheses of a 

broader theory, which aims at assimilating nature, the semantic content of their models is 

essential and interaction with other beliefs, other theories, must be reconciled—but only if 

theories are to both accommodate and unify nature through assimilation.  

On the other hand, failure of generative theories is less obvious and the traditional 

contexts of discovery and justification become intertwined as discovering, creating new models, 

is integral to the evaluation of these theories.  Finally, it is important to recognize everything that 

is tested when we evaluate a generative theory.  We are testing theoretical principles and 

mathematics, but we are also testing the suitability of a familiar language to simultaneously 

accommodate and assimilate nature. 
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