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IN DEFENCE OF THE BARCAN FORMULA

The principle of modal logic known as the Barcan Formula

BF vxL4).x D LV.,t0

M J CRESSWELL

has tended to have a rough passage in the literature o f quantified modal
logic. A typical negative reaction may be found in Garson 1984, p.257, and
a preference for a semantics which fails to validate BF is expressed on
p.127 of Fine 1978. In chapter 7 of Cresswell 1990 1 gave a philosophical
defence of the formula, but my present concern, although related, is more
internal to quantified modal logic, and argues that it  is systems with the
Barcan Formula which should be taken as basic, with the systems without
BF being taken as systems of restricted quantification.

The semantics for quantified modal logic is of course an extension of the
familiar possible-worlds semantics for modal propositional logics. I t  is by
no means a trivial question to examine what happens when various different
propositional log ics are extended t o  predicate logics. Fo r  instance a
complete propositional logic may well lose this property when extended to
a predicate logic. Thus, the propositional system S4.2 is characterized by
models in  which the accessibility relation is  reflexive, transitive and
satisfies the convergence condition, that i f  a world can see two worlds,
those two  can between them see another world .  S4.2 +  B F  is  no t
characterized by this or any other condition on an accessibility relation -
though the extension of S4.2 which lacks BF is so characterized (Cresswell,
forthcoming). Fascinating as a ll th is is  the primary interest o f  modal
predicate logic is by and large independent of which propositional system
is taken as basic.

In addition to a set of possible worlds modal predicate logic must assume
a domain D o f  individuals. I t  is with respect to such a domain that the
quantifiers are interpreted, and it is here that the Barcan Formula enters the
picture. For modal systems with BF the case is simple. Where w is any
world
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IN/NI v x 0 x  is true in w if f  0x is true in w whatever member o f  D is
assigned to x.

(This rule normally requires a more complex formulation since, f irst,  a
value to a wf f  with a (free) variable x is relative to an assignment to the
variables and, second, it  must be so stated as to give a value to all wf f  of
the fo rm VXOE, however complex a  w f f  cy is.  Such complexity is  not
required fo r my purposes.) I  hope i t  is not d iff icu lt to  see why IN/Nil
satisfies BF. For suppose the consequent Lvx0x is false in some world w.
Then there is a world wi accessible from w such that vx0x is false in w'.
So there must be some u in D such that when x is assigned u, 0x is false
in wr. But then 1.40c will be false in w when x is assigned u, and since u
D, slix/Apx will be false in w.

I've said that the rule is simple. And indeed its simplicity is one of the
things I 'm going to hold in  its favour. To  get a  semantics fo r systems
without the Barcan formula what happens is that instead of a single domain
D there is for each world a domain D„ which is the things which exist in
that world. The relations between the different D„'s are often supposed to
be a metaphysical matter. At one extreme is David Lewis's view (beginning
in Lewis 1968) that nothing exists in more than one world. A t  the other
extreme would be the view that exactly the same things exist in all possible
worlds. The quantifier is then supposed to range only over things which
exist in the world o f evaluation. More precisely

vx0x is true in w if f  0x is true in w whatever member of D„ is
assigned to x.

To get the Barcan formula on this view one supposes that exactly the same
things exist in all possible worlds, so that D„ in IVY'! can be replaced by
D, since D no longer depends on w, and we get back to IVY]. That is the
sense in  which i t  is supposed that the valid ity o f  the Barcan Formula
reflects the view that the same things exist in all possible worlds. Now this
looks like the view that everything is a necessary existent, and that makes
the I3arcan Formula look not only like  a special case o f  a more general
semantics, but in fact like an implausible special case. One of the earliest
philosophers to  get worried about B F was Arthur Prio r in  Time and
Modality (Prior 1957). Prior was concerned with a temporal interpretation
of the necessity operator. He read La as ' it  is and always will be that a '
and he read BF as saying that i f  everything will always be 0  then always
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everything wi l l  be 0 .  And he thought th is was false because even i f
everything now existing will always be 0 it does not follow that always it
will be that everything then existing is 0.

But you don't have to interpret BF that way. (See Cresswell 1990, p.96)
You can interpret v  as ranging over all past, present or future individuals,
and i f  every one o f  them wi l l  always be 0  then i t  wi l l  always be that
everything is 0 . The point is simple. Even i f  each world w has its own
domain D„ o f the things which exist in w there is no reason why all these
D ' s  can't be collected into one single domain D. Perhaps the culprit here
was isolated by Ruth Marcus herself in Marcus 1962. It is easier to see in
the case of the existential quantifier 3. For 3 the rule is

1V31 3 x 0 x  is true in w if f  0x is true in w for some assignment to x of
a member of D.

Marcus was concerned to protest against reading 3x0x as 'there is an x such
that Ox' on  the ground that that implied existence. (That article has
subsequently been considered one o f  the originating articles o f  the
'substitutional' interpretation of the quantifiers. That is the view that 3x0x
is true i f  there is a name a such that Oa is true. However as I  read her
Marcus's 1962 article is neutral on whether to read it  that way o r as in
IVRI, which is not a substitutional reading.) Th e  problem with reading 3
as 'there is a' is that, in a modal context it seems to claim actual existence
and in a temporal context it seems to claim present existence. Prior at any
rate so read it, and thus rejected the Barcan Formula.

But, as Marcus says, why must one read it  that way? O n e  could o f
course read it substitutionally as subsequent defences of BF by Marcus and
others have done, but even i f  you read i t  referentially why must you
interpret the quantifier only in  the domain o f  things which exist in  the
world in  question? Wh y not interpret it in the whole domain which is the
union o f  the domains o f  each world? I t  might be thought there are
metaphysical reasons against doing this. I t  might be thought that i t  is
contradictory to say that there are things which don't exist. Arthur Prior
certainly believed that on ly presently existing things existed and was
perplexed about how you could speak of anything as coming into existence.
For before it existed there was no ' it '  to come into existence. I  don't want
this paper to be concerned with metaphysics, though I  wil l  mention one
confusion which does I  think cloud the issue here. I f  the causal theory o f
reference is correct, and i f  something in one world can never be part of a
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causal chain leading to an utterance in another world then no one can refer
to any particular non-existing thing. But when we say 'there might have
been more things than there are' we are not refering to any particular one
of them, even though our statement cannot be true without quantifying over
non-existent things.

Now those who eschew modality altogether may refuse to quantify over
the non-existent, as also may those who use modal languages but do not
take seriously a possible-worlds semantics. My concern is with authors who
offer [V \e'l as a semantics for the universal quantifier in a modal language.
For such a semantics already assumes a set of possible worlds and already
assumes a domain of individuals for each one of them. Perhaps that is what
drove Marcus to the substitutional interpretation o f  the quantifiers. Once
you have chosen a  semantics invo lving  wo rld s and  domains t h e
metaphysical plunge is taken, and i t  is then a purely semantical matter
whether you use INhil or [Vv' l.

Could there be  semantical reasons f o r W V
]
?  O n e  m i g h t  
b e  t h e

following. You might hold that the only reason fo r studying intensional
languages at all is that the semantics of natural language is intensional. And
you might also hold that the quantifiers of natural language only refer to
actually existing things, and so should be modelled on IV1/2e'l rather than
[Vv]. I  don't in fact believe that natural language quantifiers are actual ist
and have argued so in  chapter 7  o f  Cresswell 1990 and chapter 4  o f
Cresswell 1994. However I shall not pursue these claims here since I am
at present concerned with reasons for BF internal to modal logic. And in
the choice between various modal systems I  am concerned to defend the
view that taking systems with BF as basic gives a better account of systems
without BF then does proceeding in the other direction.

If systems with BF are taken as basic, and IVY] rather than IVY ]  is used
then the quantifiers in systems without BF are best regarded as restricted
quantifiers. Restricted to the domain of the world in question. But how can
this restriction be expressed? Well, that will depend on whether the system
has an existence predicate either primitive o r defined. I  shall begin by
looking at systems which do have an existence predicate, and then proceed
to those which do not. But before I can look at systems without BF I will
have to look at the following question. In a wf f  like Ox in which x is free
what happens in a world w in which x is assigned as a value an individual
which is not in  D„.? O n e  way o f  avoiding this question would be to
prohibit such assignments altogether and I  shall look later at what kind o f
semantics you get when you do. But for now I shall take it that such cases



can arise. Another way, which actually turns Out to be equivalent, is to say
that 0x lacks a truth value in such worlds. That was the way we proceeded
in chapter 10 of Hughes and Cresswell 1968 (IML). A  third way, the way
chosen in Kripke 1963,p.85f, is to say that it is either true or false, just as
when x is assigned something which is in D„.  Which of these values it has
of course is up to the model, since the value of 0 will deliver in each world
the set o f things which satisfy 0. (it  might be tempting to require that i f
(u,w) E  V (0 ) then u E  D„,  but although this would make 0x false for
every atomic wf f  when x has a value not in D,  it would make every — 0x
true for every such value, and i f  we don't want to say that 0x is true when
x doesn't exist, does it  mean that we do want to say that — 0x is always
true when x doesn't exist. As Kripke points Out on p.86n it  would require
certain axioms to be stated for atomic wff  which would not hold of all wff.)

Look f irst  a t  languages which do have an existence predicate. I .e . ,
assume then that there is  a  predicate E  which has the ve ry simple
semantics:
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[VE1 E x  is true in w if f  x is assigned a member of D .

It is now easy to define a quantifier satisfying [Vv' l in terms of a quantifier
satisfying 1Vv1. To  avoid confusion I  shall temporarily use v  fo r the
'possibilist' quantifier, that is the quantifier satisfying [V v i and ranging
over the whole of D, and will follow Prior in using Lukasiewicz's universal
quantifier symbol H  fo r the 'actualist' quantifier, that is the quantifier
satisfying [Vv' ]  and ranging over the domain o f the world in  question. I t
is trivial to note that Hx0x can be expressed as

[Def  H1 Vx (Ex  D  0 . 0

This means that systems without BF but which have an existence predicate
emerge as subsystems o f  systems with 13F. One reason for treating H as
defined is that i t  does not obey all the laws o f  standard quantificational
logic. One such law, which I ' l l state for v  is

N I  I V x c l a

This law is sometimes called universal instantiation and is a law of standard
non-modal logic. Now although in modal logic the schematic version of this
law



276 m  J CRESSWELL

IV 1 '1 V x a D  otly/x1

can have modal instances, as when ce is L x ,  the simple I v i l  is not a modal
wff  at all, and it  would therefore be reasonable to expect that its analogue

[ l i i i  l i x 4 a  D  (Ay

would also be a law. However it is easy to see that this is not so, for (1111
becomes

1v1"1 Yx(Ex D 0.x) D  Oy

and if  we consider an interpretation in which every member of D. satisfies
(15, but y is assigned something which is not in D„ and does not satisfy
then [ ' t e n  wi l l  be false. O f  course [ M I  can be turned into a truth by
replacing it with

[111E] (Hx0 x A  Ey) D (1)y

or schematically

IHIE ' l ( ra c y  A  Ey) D ci[y/xI

[ f l I
E l  
i
s  
o
n
e  
o
f  
t
h
e  
f
o
r
m
s  
u
n
i
v
e
r
s
a
l  
i
n
s
t
a
n
t
i
a
t
i
o
n  
c
a
n  
h
a
v
e  
i
n  
w
h
a
t  
i
s  
c
a
l
l
e
d

free lo g ic (meaning, a s I  understand i t ,  lo g ic  ' f re e '  o f  existential
assumptions) and free logic is often considered the appropriate way to deal
with quantified modal logic (see Garson 1984.) However care is needed
in taking free logic as our model. In a non-modal free logic it  is tempting
to th ink o f  the variable y, in  those cases when [111] fa ils, as a  'non-
denoting' term. This is because in non-modal logic we don't normally have
a class o f  things which don't happen to exist but might have. But in  a
modal semantics as I  have been presenting i t  so far there are no non-
denoting terms. The y in [H1
]  d e n o t e s  
a l l  
r i g h t .  
B u t  
t h e  
t h i n
g  
i t  
d e n o
t e s

does not exist in the world in which the sentence is being evaluated.
I f  we are to make a choice between y and H then the natural one seems

to me to take the quantifier y  as basic and treat H as definable. The issue
here is one o f  expressibility; f o r in  a  language with  V  one can easily
express I I  as a quantifier restricted by E but not vice-versa. And indeed,
a language with 11 and E has no simple way to express Vx0x at all. (One



might think that vx0x could be expressed as L11x0x but that would be a
mistake. vx0x says that every possible object is 0  in  this world. 111x0x
says that in every world the things that exist in that world are 4) in  that
world.)

In logics with an existence predicate we may easily express H in terms
of V. I  now want to consider what happens in  a language with H  rather
than v as primitive, but no existence predicate. I f  we add identity to modal
LPC the issue is changed since Ex can be defined as Ex(x =  y) where E is
the actualist existential quantifier defined as —f ix  T h i s  assumes that
identity is given its standard meaning that x =  y is true if f  x and y are both
assigned the same value. However, identity raises issues beyond the scope
of this article and I  wi l l  now proceed to  consider what happens in  a
language with actualist quantifiers but without identity and without E. Such
a language does not have E and RH 1 is not valid. What can we do? What
Kripke did was to replace M I  I by its universal closure.

Ry(Ux0x D 0y)
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Wi l l ]  is indeed valid, for the initial H restricts the values of y to those in
domain of the evaluation world. Kripke follows Quine 1940 in maintaining
that the validity o f  wf f  containing free variables is really the valid ity o f
their universal closures and so replacing 11111 by [ L I M I is  not in  fact
changing anything. The problem is that this procedure only changes nothing
if  the quantifiers range over the whole domain from which the values of the
free variables are chosen, and that is just what we don't have here since in
evaluating [HI I in a world w the variable)' may be assigned something not
in D„.  In fact we don't need to go to modal logic to distinguish between
1H11 and R I M  I. For imagine a non-modal predicate logic in which there
is a domain D and a subdomain Q D .  Assume that H is interpreted so
that

Hx0x is true i f  Ox is true whenever a member of Q is assigned
to x.

With th is semantics R i f i l l  w i l l  be valid  but [ f i l ]  w i l l  not. Kripke 's
technique gives us the logic of restricted quantification. (For a discussion
of issues connected with Kripke's axiomatization see Fine 1983.)

Looking at the non-modal case is helpful since it would I think be granted
that the more natural way to express restricted quantification is with the use
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of a  restricting predicate. I n  discussing languages with  an  existence
predicate I  pointed out that a wf f  using only H and E quantifiers can be
translated (with the aid o f  E) into a wf f  with the quantifiers y  and 3. In
such languages the notion o f  translation is quite a strong one since an
interpretation for a language with E stipulates that V(E) must satisfy IVEI,
which stipulates that Ex is true in w if f  x is assigned a member of D .  This
will ensure that every interpretation will require that in any world a H/E
wff  receives the same value, under any assignment to its variables, as its
Y/i/E translation. Without E  we have no way o f  forcing any particular
predicate to match up with  the system o f  domains in  the way E  does.
However a slightly weaker result can be proved, and that is that there is a
simple translation which preserves logical truth. Consider a wf f  a in  the
HIE language. Choose some predicate 0 which does not occur in a  and let
the translation function T into the v i l  language be obtained as follows, for
any subformulae 13 and -y of a:

If (3 is atomic then TO) =
7( — 0) =  — 7
( 0 )7(0 D ')/) =  (
7
( ( 3 ' )  
D  7
( 7 ) )

r(Tlxfi) =  Yx(0.x D 7
-
( f 3 ) )I f  a is not logically valid, then take the model in which it  fails and define

a model for the new language just like it except that (u,w) E  V(0 ) if f  u
D„,.. This model will falsify 7(a) so that it will not be valid either. And i f
r(a) is not valid define a model for the original language in which u e  D .
if f  (u ,w) E  V (0 )  i n  the  model wh ich  falsifies T(a ).  six0x has n o
comparable translation in terms of H or E.

Kripke's approach consists in weakening principles of standard non-modal
logic, specifically in  replacing H i l l  b y  R11111. I t  might therefore be
profitable to consider whether there is any way o f  saving modal systems
without BF which do not sacrifice principles of standard non-modal logic.
One suggestion might be to modify the definition of validity. For restricted
quantification in a non-modal language, one can simply define validity by
saying that a  is valid in an interpretation i f  it is true in that interpretation
for a ll assignments to  its variables which g ive values in  the restricted
domain (the domain called Q in IVHD. In a non-modal language this means
that members o f  D not in Q play no role at a ll in  the determination o f
validity, and we get just the same result as by taking Q to be the whole
domain. As might be expected, in  the modal case things are a b it  more



complicated. For suppose we say simply that a is valid in an interpretation
i f  a is true in that interpretation in every world w when its variables are
assigned members o f  D„.. Th is certainly validates 11111 but consider its
necessitated version

111111 L (I ix  O y )
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Suppose that y is assigned a member u  o f  D„ and suppose that wRw
1
.
Suppose that everything in  D„,  satisfies 0 .  So 11
x4 5 x  i s  t r u e  i n  
w ' .  B u t
suppose u D .  and suppose that u does not satisfy (/) in wr. Then 475y will
be false in wl thus making f ixcbx D  y  false at w' and so making R I M
false at w. So perhaps we should insist that the variables o f a should be
assigned values f rom the domains o f  the evaluation world  and a ll the
worlds in  the posterity of w, where this is defined to be the smallest set
POS„ such that

(i) w  E  POS„,
(ii) I f  w' E  POS„. and w'Rw" then w" E  POS..

But that will not do either since, although such a semantics validates

1121111O x  D 14y

(because if  y's value is in the domain of every world accessible from w and
if  Hx0x is true in  every such world then LOy must be also) is valid its
universalized version

11.J L2H11 Hy(L Hx0 x D LOy)

is not valid, since despite 11,2H11's valid ity i t  can be false when y  is
assigned something in  D„ which is not in  some accessible w' and which
does not satisfy g5 in  iv' even though everything in  D ,  is 4), and that is
enough to shew the invalidity of IUL2H11. Now, one can save the situation
by changing the evaluation rule for the quantifier so that it  reads

1VH'1 H x a  is true at a world w if f  a is true at w for all assignments to
x which assign it  some u which is in the domain of every world
in the posterity of w.

The reason this works is the following. Let us define D„* to be the set such
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that u E  D „ *  if f  u is in the domain of every world in the posterity of w.
Then P i l l ' l  is just the usual rule except that D„*  is used as the domain
instead o f  D .  So although it  may look as i f  D,„ is the domain o f  things
existing in w the real domain is D,,*, and when we look at D,,* we notice
an interesting fact. Suppose wRw
1
.  T h e n  i f  
u  i s  
i n  
t h e  
d o m a i n  
o f  
e v e r
y

world in  the posterity of w it  is certainly in the domain o f every world in
the posterity o f W. In  other words i f  wRw
1 t h e n  D „ , *  
A n d  
t h a t

means that the * domains satisfy what in IML  p.171 is called the inclusion
requirement. The inclusion requirement says that when you move from one
world to another which is accessible from it you are allowed to add things
which don't already exist, but you are not allowed to drop anything which
does already exist. I t  is known that imposing the inclusion requirement
gives the semantics for the systems you get when you simply combine the
axioms and rules o f  standard propositional modal log ic with  those o f
standard non-modal predicate logic. The inclusion requirement also makes
it clear wh y any interpretation which has a  symmetrical accessibility
relation will interpret the quantifiers in the same domain for each world.
And indeed BF is a theorem o f  the predicate logics standard!)
, b a s e d  o nextensions of the Brouwerian system. B. (B is the extension o f T defined
by the axiom schema

B —a D

Although this result may please those who want to provide a semantics for
standardly axiomatized systems o f  modal predicate logic the semantics it
provides can hardly be considered philosophically plausible. For while it
allows you to say that there might have been more things than there are it
does not allow you to say that there might have been fewer. And that seems
quite the wrong direction, fo r one can surely point to something and say
'that might not have existed.' A n d  finally it  prohibits you from using a
logic like S5 for necessity on pain of re-introducing the Barcan Formula.

The semantics I have been discussing have all assumed that every wff  has
a truth value at every world even if  its variables are assigned values outside
the domain of that world. In chapter 10 of MI ,  we presented a semantics
in which a wff  was said to be undefined in a world w if  its variables were
given values outside D„. I  want to make a few brief remarks to the effect
that doing this doesn't give you any new results, and doesn't add anything
to the issue of whether or not to accept the Barcan Formula. The first thing
to notice is that the semantics offered on p.171f o f  I ML  assumes the



inclusion requirement. With  the inclusion requirement the rules fo r V
presented on p.172 entail that for any given world w the truth o f  a wf f
at w whose free variables are all assigned members of D„ never depends on
undefined subformulae, and so would remain the same in a model which
does not permit undefined wff, so long as the new model agrees with the
original model on all defined atomic wff.

When the inclusion requirement is dropped it  is unclear just what to do
in models which allow undefined wff. For consider a wf f  like 11x145x. I f
rule 6 on p.172 of IML. is used this will be true in w if f  L x  is true in w
(not just never false) for all values for x taken from D„.  Now consider a
value u for x where u E  D„,  but where wRw' and u D „ , .  What are we
to say here? From rules 3 and 7 on p.172 of IML we say that since (/)x is
undefined in w' (by rule 3) then L x  is undefined in w. But then 1.4x will
not be true for every u E  D„,  since it will be undefined for some. I f  the
model does not satisfy the inclusion requirement for some wRw' then there
will have to be some u E  D .  not in D ,  and so a ll wf f  of the form siXce
where x is free in a in the scope of a modal operator will be undefined at
w irrespective o f the meanings o f  the predicates in a. So 11x145x will be
undefined at w. And notice that it  wil l  be undefined so long as there is
some value u for x which makes L x  undefined. i.e. so long as there is
some u  D „ , ,  wh ich  i s  precisely what a  fa ilure o f  the inclusion
requirement amounts to. In  short the effect will be that the only defined
cases o f  quantification into modal contexts wi l l  arise in  worlds which
respect the inclusion requirement in  the sense that everything in  their
domain is also in the domains of all the worlds they can see.

One might be tempted to propose an alternative evaluation rule for v to
cover the undefined cases. One might say that f ixLgSx is true provided 1.4)x
is true where defined for every value u of x taken from D„.. However that
would have the effect of invalidating

(A 111 Hx(4)x A  14a) D  OX
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This will be false in a model with wRw' and x assigned some u E  D„  but
u E  D„,.  For suppose u does not satisfy 4) in w, but every other individual
satisfies q5 both in w and in every other world. This will mean that Ox will
be false at w. But g5x A  b t a  will be undefined at w when x is assigned u,
since 4)x is undefined at w' so by rule 7, L4)x is undefined at w, so by rules
4 and 5, Ox A LOX is also undefined at w. But otherwise it is true, so it  is
true where defined for every member o f D„. So Hx(4.1x A  LOX) is true at
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w, and so [  A HI is false at w and so not valid. Further (fo r what it  is
worth) Ilx(Ox A  L x )  D I R O  also fails, so the problem cannot be blamed
on the presence of free variables. Admitting truth value gaps is not a way
of avoiding the problems which arise when you drop the Barcan Formula.

The upshot of this discussion is to suggest that since the possible worlds
semantics fo r quantified modal log ic already assumes that we  have a
domain of possible objects, not all of which need actually exist, there is no
metaphysical bar to  quantifying over them, and that considerations o f
naturalness, expressibility, and axiomatizability as extensions o f  standard
axiomatic predicate log ic,  a l l  strongly indicate that w e  should. I n
consequence it is systems possessing the Barcan Formula which should be
taken as basic in modal predicate logic.
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