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Abstract. Recent debates in metaphysics have highlighted the signif-

icance of type theories, such as Simple Type Theory (STT), for our

philosophical analysis. In this chapter, I present the salient features of

a constructive type theory in the style of Martin-Löf, termed CTT. My

principal aim is to convey the flavour of this rich, flexible and sophisti-

cated theory and compare it with STT. I especially focus on the forms

of quantification which are available in CTT. A further aim is to argue

that a comparison between a plurality of theories is beneficial to the

philosophical analysis. We may, for example, discover helpful features

of one theory that we may want to import into another context, thus

enriching our repertoire of formal tools. Or, through comparison with

a less well-known theory, we may gain a better understanding of the

characteristics of the theories we are familiar with. As argued in this

chapter, CTT has much to offer in all of these respects.
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1. Introduction

Recent debates in metaphysics have made it absolutely clear that the in-

struments we employ to analyse philosophical phenomena are not neutral,

in the sense that the outcomes of our philosophical analysis may depend

on the resources which are available to us. In particular, this is so for

the formal theories we employ to underpin our philosophical analysis. For

example, proponents of higher-order metaphysics have argued that a shift

from first-order to higher-order theorising can help us resolve or even dis-

solve philosophical disputes that have become intractable within a first-order

context.1 Furthermore, different higher-order theories may make available

importantly different expressive resources, hence impacting the outcome of

one’s philosophical analysis.2

This is a pre-print of a chapter for the volume Higher-Order Metaphysics, edited by Peter
Fritz and Nicholas K. Jones, forthcoming with OUP.
1See, for instance, (Williamson 2003, Williamson 2013, Jones 2016, Fritz & Goodman
2017, Goodman 2017, Jones 2018, Jones 2019, Trueman 2020).
2See e.g. (Florio & Jones 2021).
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Key to the most recent debates in metaphysics is a substantial broadening

of the spectrum of formal resources ordinarily employed by the philosopher,

adding to first-order theories also powerful type theories such as, for exam-

ple, Simple Type Theory (STT). With this chapter, I wish to encourage a

further expansion of the formal tools we employ in our philosophical enquiry.

For this purpose, I present the salient features of an intuitionistic theory,

Constructive Type Theory (CTT), and compare it with STT. By ex-

ploring new theories and comparing them with better-known formalisms,

we are bound to enrich the philosophical analysis, for example, by making

more perspicuous the role and the nature of the formal instruments we em-

ploy. An additional benefit is that we may fruitfully import resources from

one formal context to another, therefore expanding the repertoire of formal

tools available to the philosopher. For example, CTT’s so-called dependent

types and universes are powerful constructs that can enrich other contexts

as well. As further argued in this chapter, CTT’s spirit harmonizes well with

the primitivist approach that characterises much of contemporary higher-

order metaphysics. There are, however, significant differences between CTT

and STT, so much so that even a succinct introduction to CTT would re-

quire substantial space and involve a high level of technicality. My strategy

is therefore to present selected features of CTT, focusing on those aspects of

the theory that I think will be most helpful to the higher-order metaphysi-

cian. As I go along, I provide references to the relevant literature for the

interested reader.

2. Constructive Type Theory: Types and propositions

Constructive Type Theory designates a family of rich and sophisticated

intuitionistic theories which are increasingly popular in mathematics and

computer science due to their expressive capabilities and computational

character. Recently they have been profitably applied to linguistics.3 The

main focus of this chapter is the constructive type theory proposed by Per

Martin-Löf as a foundation of constructive mathematics, that is, of math-

ematics carried out in intuitionistic logic.4 No system of constructive type

theory has reached the status of main reference system, in part due to the

numerous applications of this theory and in part as Martin-Löf has proposed

an open-ended theory: new ways of forming types can, and have been, added

over time, provided that they can be justified by the same constructive per-

spective as the core. In this chapter, I sketch the main traits of a type theory,

3See (Ranta 1994, Chatzikyriakidis & Luo 2021).
4See, for example, (Martin-Löf 1975, Martin-Löf 1984).
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CTT, which is close to the system presented in the book Intuitionistic type

theory (Martin-Löf 1984).5

As the current literature is primarily mathematical, and so are the avail-

able examples, my presentation differs in a number of respects from stan-

dard philosophical introductions to STT. Furthermore, as I focus on the

expressive capabilities of STT and CTT, I am mainly interested in syntactic

features of these type theories. However, I follow standard practice and use

expressions such as “element” of a type for what in the formal systems is

more precisely a term (or an expression) of that type and indulge in harmless

use and mention confusion. This is to ensure consistency with the relevant

literature, to which I often refer to complement my discussion. Furthermore,

due to space constraints, my exposition simplifies CTT as much as possible,

largely omitting its philosophical interpretations.6

2.1. Kinds of Types: a comparison between STT and CTT. In STT

there are two ground types, the type of individuals and the type of formulas

or, to use the terminology of CTT, propositions, often denoted by e and

t, respectively.7 Typically one also thinks of the type e as the syntactic

category of singular terms or ‘the type of objects’, and of the type t as the

type of truth values.8 New types can be formed by applying the following

rule: if A and B are types, then A → B is a type. Employing the terminology

of CTT, we may also say that in STT new types are formed by applying the

type constructor “→”, which given two types A and B produces the function

type A → B. In the mathematical literature, the elements of A → B are also

thought of as functions taking elements of A to elements of B, where the

notion of function is primitive and not to be thought of in set-theoretic terms.

Crucially, in STT one has also logical connectives and quantifiers obeying

the rules of classical logic and impredicative comprehension principles (e.g.

in the form of β-conversion).

5For book-length presentations of constructive type theory, see (Nordström, Petersson
& Smith 1990, Sommaruga 2000, Primiero 2007, Granström 2011). For short introduc-
tory texts, see (Crosilla 2006, Rahman, McConaughey, Klev & Clerbout 2018, Dybjer &
Palmgren 2020).
6For the philosophy of constructive type theory and for applications of this theory to
philosophy see especially the work by Per Martin-Löf, Göran Sundholm and Ansten Klev.
7The philosophical literature presents us with a number of variants of simple type the-
ory. Here I consider a functional presentation of simple type theory as in (Benzmüller &
Andrews 2019) and (Dorr 2016, p. 87). Furthermore, to ease the comparison between
simple and constructive type theories, I employ capital letters for meta-variables ranging
over types (rather than lower case Greek letters), in agreement with the conventions in
use in CTT.
8See, for instance, (Dorr 2016, p. 50) and (Benzmüller & Andrews 2019).
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Function types are particularly important as their elements enable us to

express predicates. For example, a predicate applying to a singular term can

be expressed in STT by a function belonging to the function type e → t.

Consider, for example, the sentence John is a child. This can be expressed

by applying a function child of type e → t to an individual John of type e,

giving as output a proposition, child(John), of type t. When considering

applications of STT to metaphysics, it is important to note that in STT

a function such as child is of a different, higher type compared to the

type to which an individual such as John belongs. This is fundamental

as it makes it possible to employ STT to express higher-order proposals

for the resolution (or dissolution) of long-standing metaphysical disputes as

mentioned in the Introduction. Another significant point to bear in mind

is that STT has the resources not only to express higher-order entities such

as the function child, but also to quantify over them. For example, we may

express sentences such as: there is a property that John has or John has

some property, where the quantifiers range over higher-order entities. I will

get back to the central issue of which kinds of quantification are available in

STT and in CTT in Section 4.

In CTT, we also have types of individuals and propositions, and we may

form new types by applying type constructors to types. However, a major

difference with STT is that there is no all-encompassing type of individuals,

but there are (infinitely)many ground types of individuals. Typical examples

of ground types are the type of natural numbers, N, and the finite types,

such as, for example, the type N2 which contains two (canonical) elements,

02 and 12. For applications outside mathematics, one may also consider non-

mathematical types that act as ground types of individuals. For example,

to express statements such as John is a child, one may consider a type of

children (see Section 3.2).

A further difference with STT is that new types are formed by applying

not just one but a number of type constructors. Prominent ones are: Σ

(dependent disjoint union), Π (dependent Cartesian product), I (identity),

+ (disjoint union of two types). For example, given types A and B we may

form the dependent Cartesian product of A and B, written Π(A,B) (see

Section 3.1). The function type constructor “→” is also available in CTT,

as it is a special case of the dependent Cartesian product.

Another substantial difference between STT and CTT is that the former

is classical and impredicative, while the latter is intuitionistic and pred-

icative, that is, intuitionistic rather than classical logic holds in CTT and

quantification is restricted in certain respects. We will look into each of these
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characteristics, intuitionism and predicativity, in Sections 2.4 and 4. In sec-

tions 2.2 and 2.3, we explore further CTT’s notions of type and proposition,

and in Section 3 we consider examples of types.

2.2. Types as domains of quantification. The principal kind of types

we consider in this chapter are also called sets in (Martin-Löf 1984). They

are not to be thought of as sets in axiomatic set theories (such as ZFC), as

they are essentially typed, namely each element belongs to a type. In fact,

Martin-Löf suggests to see his sets as a generalisation of Russell’s ranges of

significance of propositional functions.9 To avoid terminological confusion

with sets in axiomatic set theory, in this chapter I call Martin-Löf’s sets

simply types.10

Types in CTT are defined through rules which explain how to construct

their elements and when two such elements are equal. The rules thus bring

out the constructive character of CTT, as they describe a generative process

of construction of the types from their elements. In fact, the rules lay out

how to construct the so-called canonical elements of a type, namely its typ-

ical elements, and also give an identity criterion for them.11 The connection

between types, understood in this way, and Russell’s ranges of significance

of propositional functions becomes clearer when we consider Martin-Löf’s

further suggestion to think of types as domains of quantification: “it makes

sense to quantify over them” (Martin-Löf 1984, p. 22). Presumably the

thought is that since a type is defined through rules which thoroughly spell

out what the elements of a type are and when two of them are equal it

makes sense to talk of all or some of the elements of that type, namely

quantification over types is meaningful. For example, as there are exhaus-

tive rules prescribing how to form the natural numbers and how to identify

two of them, quantification over the type of natural numbers is meaningful.

However, we can also think of entities that are in some sense too large to be

types and over which quantification becomes problematic. For example, in

CTT there is no “type of all types”, as we cannot specify once and for all

all the rules defining types.12

9See e.g. (Martin-Löf 1975, p. 76) and (Martin-Löf 1984, p. 22).
10 Martin-Löf (Martin-Löf 1984, p. 21) distinguishes the kind of types we consider in this
chapter, that he calls sets, from a more general notion of type, that he calls category or
type. See Part III of (Nordström et al. 1990), especially p. 137.
11I discuss the notion of canonical element at the end of this subsection.
12See (Martin-Löf 1984, p. 87) and Section 4. One may wonder whether it makes even
sense to consider a type collecting types. As it turns out, this is a fruitful idea that
motivates the concept of universe (see Section 4).
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Let us consider in more detail how types are introduced in CTT. Each

type is introduced through four kind of rules: formation , introduction ,

elimination and equality . The formation rules explain how to form a new

type. For example, the formation rule for the natural numbers states that

there is a type N of natural numbers. There are then formation rules that

allow us to form new types from given ones. For example, given types A and

B also A+B, A×B and A → B are types. Furthermore, there are formation

rules for so-called dependent types, which will be discussed in Section 3.1.

For example, the formation rule for the disjoint union of two types, A

and B, is as follows:

+ - Formation
A type B type

A+B type

where A type signifies that A is a type. The rule explains that the con-

structor ‘+’ applies to two types, A and B, and gives as a result a new type,

A+B, the disjoint union of A and B.

The introduction and elimination rules are particularly important. The

purpose of the introduction rules is to explain what is a type by explaining

what are its canonical elements, that is, the typical elements of that type.

They also explain when two such elements are equal. For example, the

N-introduction rules are as follows:

N-Introduction

0 :N
a :N

suc(a) :N

For each rule introducing a canonical element, there is also a rule explaining

when two canonical elements are equal. For example, we have that the

element 0 of N is equal to itself, and that if a and b are equal elements of

N, so are suc(a) and suc(b), that is:

0 = 0 :N
a = b :N

suc(a) = suc(b) :N

The introduction rules for + explain how to form the disjoint union of

two types, by explaining what are its canonical elements:

+ - Introduction

a :A
inl(a) :A+B

b :B
inr(b) :A+B

where inl and inr are primitive constants that produce a canonical ele-

ment of A+B and also indicate if it comes from A (left) or from B (right).13

13I omit the corresponding equality rules. As the elimination and equality rules for both
N and + are rather complex they are omitted.
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The elimination rules explain how to use the elements of a type, that is,

they explain how to define functions on the type defined by the introduc-

tion rules (Martin-Löf 1984, p. 24). For example, in the case of the type

N, the elimination rule gives simultaneously the principle of mathematical

induction and definition by recursion over the natural numbers. Finally, the

equality rules furnish the relevant identity criteria for the elements of a type,

by showing how a function defined through the elimination rule acts on the

canonical elements of the type (as introduced by the introduction rules).

The notion of canonical element is an important feature of CTT, which

distinguishes it from type theories such as, for example, STT. The distinc-

tion between canonical and non-canonical elements of a type is particularly

important for mathematical types, such as the infinite typeN, which may be

thought of as generated through rules which specify its canonical elements.

The introduction rules for N introduce its canonical elements: 0 and suc(a)

for a a natural number (possibly non-canonical). The type N, however,

contains also non-canonical natural numbers, that is, natural numbers that

are not of the form 0 or suc(a) (for a a natural number). For example, 5+7

is not of the form suc(a) (for a in N), but it should also be considered a

natural number since we can calculate 5 + 7 and obtain a number which is

in canonical form. This justifies taking 5 + 7 as non-canonical element of

N. We may also think of canonical and non-canonical elements of N, for

example, suc(11) and 5 + 7, as different presentations of a natural number,

somehow resembling different Fregean senses denoting one and the same

object.14

The notion of canonical element plays a key role in the so-called mean-

ing explanations of CTT (Martin-Löf 1982, Martin-Löf 1984). These are

an informal, pre-mathematical semantics of CTT which explains the mean-

ing of a CTT-statement by showing how the terms occurring in it can be

brought into canonical form. Although formal semantics, such as realiz-

ability and set-theoretic interpretations, are available for CTT, Martin-Löf

introduced his meaning explanations to give a direct semantics for CTT,

without presupposing other mathematical theories. It is tempting to see

here a similarity of intent with primitivist interpretations of higher-order

logic in metaphysics.15

One may wonder whether the notion of canonical element, which plays an

important role for CTT as a foundation for mathematics, is also available

and helpful in applications of CTT to everyday situations. In the case of

14See (Naibo & Tranchini 2023).
15See Martin-Löf (Martin-Löf 1982, p. 176) and (Williamson 2003, p. 459).
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small, finite types the rules of introduction may be read as introducing a

name for each canonical element of that type and specifying an identity

criteria. It is less clear, however, how to introduce canonical elements for

types such as, for example, child or tree. In such cases, if the distinction

between canonical and non-canonical elements is not deemed helpful, one

may prefer to employ a more permissive formulation of CTT that makes use

of a less specific notion of type, which does not require canonical elements

for all types.16

2.3. Propositions. In STT, in addition to a type of individuals, there

is also a type of formulas or, we may say, propositions, namely the type

t. Propositions are likewise a key component of CTT, where they play

roughly a similar role as propositions in STT.17 There is, however, a signif-

icant difference with propositions in STT, since in STT a proposition is an

element of the type t, while in CTT a proposition is a type and therefore

may have elements. In fact, as further clarified in Section 2.4, in CTT propo-

sitions are identified with types, this being a distinguishing characteristics of

this type theory.

As propositions are types, they may have elements. What are the elements

of a proposition (if any)? The elements of a proposition are its proofs (if the

proposition has a proof). Indeed “a proposition is defined by laying down

what counts as a proof of the proposition” (Martin-Löf 1984, p. 11). More

precisely, a proposition is introduced through rules that specify what is a

canonical proof of that proposition, and when two such proofs are equal. For

example, given propositions A and B, we can form the proposition A ∧ B,

the conjunction of A and B. If a is a proof of A and b a proof of B, we

can combine these proofs to obtain a canonical proof of A ∧B, namely the

ordered pair ⟨a, b⟩. The notion of canonical proof is here akin to the notion

of canonical element that we saw in Section 2.2. The key idea is to include

as proofs of a proposition also non-canonical proofs, provided that they are

inferred in a cogent way. For example, a proof of A ∧ B which reaches the

conclusion A∧B, but whose last rule is not a conjunction introduction, but,

say, modus ponens, is also to be counted as a proof of A ∧B.

The higher-order metaphysician may find the thought that a proposition

has elements puzzling. Furthermore, one may worry that if elements of

16See footnote 10 for references and (Ranta 1994, Section 2.26) for discussion.
17In the philosophical literature on CTT it is often stressed that formulas are distinct from
propositions, as they are “the formalistic counterparts of propositions” (Sundholm 1986,
p. 498). CTT’s notion of proposition is inspired by the German philosophical tradition
including, for instance, Bolzano.
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a proposition are proofs, CTT describes a mind-dependent domain and is

therefore unsuitable as a framework for a general metaphysical theory. Due

to space constraints, I cannot discuss the complex question of how to best

interpret CTT’s notions of proposition and proof. However, arguably the

formal system itself leaves entirely open the question of the interpretation

of these notions: a proof is simply a term belonging to a type and a proposi-

tion is a type. CTT makes no further claim about the nature of the entities

these terms and types denote, including the issue of their dependence or

independence from us.18 My preferred way of thinking about propositions

in CTT is as having further “structure” or as carrying additional informa-

tion, their proofs, compared with propositions in STT. This mathematical

structure can be omitted when not required, but may be useful in certain

contexts; for example, it is key to applications of CTT to proof assistants

and also to linguistics, where it allows for an elegant treatment of anaphora

and generalized quantifiers.19

The crucial point to bear in mind in the present context is that the in-

terplay between propositions and their proofs is intimately bound up with

the constructive character of CTT: proofs of propositions are intuitionis-

tic rather than classical. The interaction between propositions and their

proofs is clarified by the so-called Curry-Howard correspondence (also

known as ‘propositions–as–types’ isomorphism), which is the focus of the

next section.

2.4. Curry–Howard correspondence. The Curry–Howard correspondence

is motivated by the observation that there is a structural similarity between

formal systems of intuitionistic predicate logic on the one side and construc-

tive type theories on the other side. The correspondence relates formulas in

the intuitionistic predicate calculus with types in a constructive type the-

ory, and proofs of such formulas with elements of those types. Although the

Curry-Howard correspondence is characteristic of a number of constructive

type theories, it takes a particularly strong form in CTT, where it is not

just a correspondence but an isomorphism: in CTT types and propositions

are identified.

18Recently Martin-Löf has offered an attractive interpretation of both propositions and
proofs in non-epistemic terms, so much so that proofs are often referred to as “proof-
objects”. This interpretation of proofs contrasts with earlier work by Martin-Löf which was
closer to traditional approaches to constructivism. See (Martin-Löf 1998) and (Prawitz
2012) for discussion. See also Sundholm’s interpretation of proofs of propositions as truth-
makers (Sundholm 1994, Klev 2016).
19See, for example, (Sundholm 1986, Sundholm 1989, Ranta 1994, Bekki 2014, Chatzikyr-
iakidis & Luo 2021).
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The Curry-Howard correspondence is often seen as giving precise math-

ematical content to the rather vague constructive explanation of the log-

ical constants that goes under the name of Brouwer-Heyting-Kolmogorov

(BHK) interpretation. The BHK interpretation gives an inductive proce-

dure for constructing intuitionistic proofs of a complex formula in terms of

the proofs of its components. The Curry–Howard correspondence builds on

this aspect of the BHK interpretation and gives a rigorous characterisation

of such proofs which are identified with elements of CTT’s types.

Let us see how the correspondence works in a simple case. From a con-

structive perspective, a proof of an implication A ⊃ B can be thought of as

a method or, more precisely, as a function that transforms a proof of A into

a proof of B. For example, a proof of A ⊃ A is the identity function that

takes a proof of A to itself. Now, in CTT the proposition A is a type whose

elements are proofs of A, or, as it is usually referred to in the literature, A

is the type of its proofs. Similarly for B. Therefore an intuitionistic proof

of the implication A ⊃ B is a function which given arguments in A (the

type of proofs of proposition A) produces values in B (the type of proofs of

proposition B). It is then natural to identify the proposition A ⊃ B with

the type A → B (the type of all functions from type A to type B) and an

intuitionistic proof of the implication A ⊃ B with a function belonging to

the type A → B.

Similar considerations explain the working of the Curry-Howard corre-

spondence for the other propositional connectives. To extend the corre-

spondence to the predicate calculus, we need types that exhibit the typical

variability of a quantifier over a domain: dependent types (see Section 3.1).

The significance of the Curry-Howard correspondence for CTT cannot

be overestimated. The correspondence is important first of all for practical

reasons: proofs in intuitionistic logic are mapped into elements of types in

CTT, and these have a natural computational interpretation. For example,

an intuitionistic proof of a statement of the form for every natural number

n there exists a natural number m such that m = 2n is now identified with

a typed expression in CTT which describes a step-by-step procedure that

given n computes m. This can be translated (in a thoroughly automatic

way) into a computer program which given n as input produces m as output.

The correspondence thus enables important applications of CTT to real-life

computer programming.

The correspondence is also important because, as further discussed in

Section 4.1, in the context of CTT, it enforces a rejection of so-called im-

predicative definitions. It therefore has important consequences for the kind
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of quantification that is available in CTT. Before looking at the latter issue,

we need to introduce the notion of dependent types, which enables us to

express quantifiers in CTT.

3. Judgements, hypothetical reasoning and dependent types

CTT’s types are introduced through rules in natural deduction style, with

premises and a conclusion, like the rules in Section 2.2. A distinguishing

feature of CTT is that the premises and the conclusions of its rules are not

formulas or propositions, as in typical presentations of natural deduction,

but judgements.20 The notion of judgement plays a significant role in

CTT, as it offers additional sophisticated expressive resources, such as the

possibility to define dependent types. In this section, I first clarify how

judgements differ from propositions and then sketch how they can be used

to express dependent types.

In CTT there are four fundamental judgement forms:

Judgement Meaning

A type A is a type

a :A a is an element of the type A

A = B A and B are equal types

a = b :A a and b are equal elements of the type A

Given the identification of propositions with types, each judgement form

also admits a propositional reading. For example, ‘A type’ may be read as

‘A prop’, which signifies ‘A is a proposition’. The judgement ‘a :A’, for some

a in A may also be read as ‘A is true’. This reading is less informative than a

judgement of the form ‘a :A’, as it does not carry the additional information

on which proof of A is being considered. It is therefore only used when all we

need to know is that A has a proof, but we are not interested in particular

proofs of A.

For example, a propositional reading of the constructor + gives the con-

nective ∨, and + - Formation (see page 6) becomes:

∨ - Formation
A prop B prop

A ∨B prop

This tells us that if A and B are propositions, then so is also A∨B. Here

A prop, B prop and A∨B prop are all judgements, while A, B and A∨B are

propositions, rather than judgements. Note that the connective ‘∨’ applies
20I only focus on the formal aspects of judgements. See (Martin-Löf 1985) for a detailed
discussion of the notion of judgement, its similarities with Frege’s notion and its historical
roots. See also (Sundholm 1986, p. 498) for discussion.
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to two propositions and gives as a result a proposition; it does not apply to

judgements.

Under a propositional reading, + - Introduction gives the natural deduc-

tion rules for disjunction introduction:

∨ - Introduction

A true
A ∨B true

B true
A ∨B true

Similarly, the elimination rule for + gives us the natural deduction rule

∨-Elimination.

Other type constructors in CTT can be given a propositional reading and

we obtain in this way all the connectives of propositional intuitionistic logic

with their natural deduction rules. To express quantifiers we need dependent

types, whose formulation requires a more sophisticated notion of judgement,

which is discussed next.

3.1. Hypothetical judgements and dependent types. The judgements

introduced so far are independent from assumptions: they are categorical.

CTT also features hypothetical judgements, which depend on assumptions.

A simple example of hypothetical judgement is the following:

(⋆) B(x) type (x :A),

which asserts that B(x) is a type under the hypothesis that x is in A.

The meaning of this hypothetical judgement is given by considering the

judgements that result if we substitute any element of A for x:

(i) B(a) is a type, for a in A,

(ii) B(a) and B(b) are equal types, for a and b equal elements of A. This

second judgement expresses the functional behaviour of B over A and we

thus call B a family of types depending on A.

The key observation is that in (⋆) B may depend on an element of A,

that is, depending on which element of A we plug in for x in B(x), we

may obtain different types – say for a, b, c different elements of the type A,

B(a), B(b), B(c) may be different types. This marks an important difference

with STT, where free variables may occur in expressions for elements of a

type but not in expressions involving types, such as B(x). When considering

propositions, a family B(x) of types depending on A may be read as a family

B(x) of propositions depending on A, written B(x) prop (x :A). This is

called a propositional function over A, as it may be thought of as a function

that when applied to an element a of A gives as result a proposition B(a).

To see how dependent families of types work, let us consider a simple

every-day example. Let P be the type of people. We can then use the
12



following judgement to expresses in CTT the relation admires between two

people:

admires(x,y) type (x :P , y :P ).

Here the value of the propositional function admires(x,y) (over the type

P ) varies as we substitute different elements of P for x and y.

A hypothetical judgement such as (⋆) can be used to introduce the de-

pendent Cartesian product and the dependent disjoint union, whose propo-

sitional reading give us the universal and the existential quantifiers, respec-

tively. Let us see how the universal quantifier can be read off from the

dependent Cartesian product.

Given a type A and a family, B(x), of types depending on A, we can form

a new type, the dependent Cartesian product Π(A,B). The elements of

Π(A,B) are functions which take an element a of type A as input and give

an element of type B(a) as output. It is important to distinguish Π(A,B)

from a family of types B(x) depending on A: Π(A,B) is a type, with certain

functions as its canonical elements, while B(x) (x :A) is better thought of

as a collection (rather than a type) of types indexed by A.

We can give a propositional reading of Π(A,B), yielding (∀x :A)B(x).

The introduction and elimination rules for the product then give rise to the

rules ∀-Introduction and ∀-Elimination in natural deduction. Note that in

this way we endow the universal quantifier with a constructive interpreta-

tion: proofs of (∀x :A)B(x) are functions that map an element a of A to

a proof of B(a). When B does not depend on A, the dependent Cartesian

product yields the function space A → B and, under the Curry-Howard cor-

respondence, implication , A ⊃ B. In a similar way, one introduces a type

for the so-called disjoint union of a family of types (with constructor Σ).

Under the Curry-Howard correspondence this gives the existential quantifier

and also conjunction, as special non-dependent case.

3.2. An example. Let us consider how we may formalize the sentence John

is a child in CTT. Given CTT’s rich type structure, we have a number of

options. The most common option is to express is a child by a type pred-

ication, introducing a type, say C, for child. As mentioned in Section 2.2,

a prominent interpretation of CTT sees types as domains of quantification.

Furthermore, we may want to distinguish between different roles of predica-

tion: to circumscribe or single out a domain of quantification or to express

a property of certain elements of a given domain. Common nouns such

as child are then naturally read as singling out a domain of quantification
13



rather than expressing a property of some individual.21 In this case John is

a child can be expressed as John is in C, written John :C, with the type

predication playing the role of the copula.

Another option is to use a propositional function to express the predicate

is a child. This suggests that we see this predication as expressing a prop-

erty of some elements of a type. For example, we may take child to be a

propositional function depending on the type P of people, that is, we make

the following judgement: child(x) prop (x :P ).

Finally, as function types are available in CTT, a further option is to

proceed as in STT, and take is a child as a function, say f , that to an

element of, say, the type P of people assigns a value in a suitable type. This

option requires us to have suitable types for the domain and range of the

function f . One option is to use an extension of CTT with a new powerful

type constructor, a so-called universe, which acts as a type of propositions

(see Section 4), and take the range of f to be such a universe.

This example witnesses the flexibility of CTT. Each of the options I have

sketched is importantly different from the others from a philosophical per-

spective and only a careful analysis can clarify which option is the most

appropriate in a given context. It is important to note, however, that all of

these options have in common that they distinguish sharply between the cat-

egories to which the individual John and the predication is a child belong.

For example, in the first option John and child belong to different categories

altogether, as John is an element of a type and child is a type. In the second

option, is a child is expressed by a propositional function over P , which is a

family of types, and hence of a different category from that of John, that is

an element of the type P . In the third option, John and is a child belong to

distinct types: a ground type of individuals for John and a higher function

type for is a child. In other terms, in all of these options there is a kind

of incommensurability between the the individual John and whatever has

been taken to codify in CTT the predicate is a child. This suggests that

it should be possible to employ CTT to express in full precision a variety

of philosophical responses to troubling metaphysical phenomena, that argue

for the incommensurability between different entities such as individuals,

properties, propositions etc.22

21See (Sundholm 1986, Ranta 1994, Chatzikyriakidis & Luo 2017) and (Bekki &
Mineshima 2017) for critical discussion. See (Klev 2018, Klev 2017) for a philosophical
discussion.
22See, for instance, (Jones 2016, Klev 2018, Trueman 2020). See also (Klev 2018), for a
higher-order solution of the “concept horse paradox” that makes use of type predication,
rather than functions, to express predicates such as “is a concept”.
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3.3. Equality. CTT’s treatment of identity, termed equality in (Martin-

Löf 1984), is sophisticated and flexible. Here I can only point to the most

essential aspects.23 We have seen that in CTT we have judgements and

propositions, therefore we have two kinds of equality: judgemental equal-

ity and propositional equality . Judgemental equality is the primary no-

tion of equality and figures in two of the four fundamental judgements:

A = B (for types A and B) and a = b :A (for a and b elements of type A).

Its behaviour is determined by CTT’s rules. For example, the rules that

define N explain when two distinct expressions, say 5 + 7 and suc(11) of

type N, are equal. Judgemental equality expresses a local form of identity,

since each type comes equipped with its own equality relation specified by its

defining rules. In this respect CTT differs importantly from other theories

which come equipped with a general identity relation, such as extensionality.

In CTT we cannot combine judgements by applying connectives to them

to obtain more complex judgements, since connectives apply to propositions

rather than judgements. Consequently, if we wish to express a complex

statement obtained by combining an equality statement with some other

statement by means of a connective, we need first to express the equality

statement as a proposition. To this aim, CTT has a constructor, I, that

allows us to form new types expressing equality statements. One may also

say that I enables us to internalise equality judgements at the level of propo-

sitions. Given a type A, and elements a and b of A, I(A, a, b) is a new type

(or proposition) which asserts that the two elements a and b of A are equal.

Contrary to judgemental equality, which is local, propositional equality al-

lows us to express identity statements across the type-theoretic hierarchy in

a uniform manner, making use of just one type constructor, I, that can be

applied to any type and its elements.24

4. Quantification

In Section 3.1, we have seen that dependent types allow us to express

quantified statements of the form (∀x :A)B(x) and (∃x :A)B(x), where A

is a type. We have also seen that given types A and B, A → B is a type,

as the function type is a special case of the dependent Cartesian product.

We can therefore quantify over function types such as A → B, use them to

23See (Klev 2022) for a detailed discussion and (Dybjer & Palmgren 2020) for a self-
contained description.
24The interplay between judgemental and propositional identity has been thoroughly stud-
ied as it relates to important variants of CTT, so-called intensional and extensional type
theories. See (Maietti & Sambin 2005, Maietti 2009) for a variant of CTT that brings
together within one framework intensional and extensional aspects.
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construct new types, and so on. An element of a function type such as, for

example, a function from the natural numbers to the natural numbers, is a

higher-order entity. Consequently, in CTT we can represent some higher-

order entities and quantify over their types. However, in STT there is also a

more powerful kind of quantification, as quantifiers may range over the type

t of all propositions. Quantification of this kind figures prominently within

higher-order metaphysics; it is therefore important to clarify whether it is

available in CTT. Higher order theories such as STT have also played a

significant role within debates over unrestricted quantification. In the fol-

lowing, I briefly discuss each of these issues and rise some questions, leaving

to another occasion a through analysis of each point.

4.1. Quantification and predicativity. In CTT propositions are not el-

ements of a distinguished type of propositions but types. Quantifying over

a type of all propositions would then amount to quantifying over a type

of all types. One may wonder whether it makes sense to consider a type

whose elements are types. As we will see shortly, when carefully executed,

the idea of introducing a type collecting other types can enrich CTT with

new expressive capabilities. However, care is needed. An early version of

CTT featuring a type of all types turned out to be inconsistent, as realised

by Girard (Girard’s paradox).25 As in CTT propositions are identified with

types, this rules out quantification over a type of all propositions.

Note that if we could quantify over a type of all propositions, we could

define new propositions in terms of the totality of all propositions. Such defi-

nitions are paradigmatic examples of impredicative definitions, as they define

an entity, say A, in terms of a totality to which A belongs. Martin-Löf’s way

out of Girard’s paradox was to ensure that types are defined predicatively,

that is, avoiding impredicative definitions. In other terms, types are defined

from the bottom up, namely, from their elements, as explained in Section

2.2 and 3.1. This bottom-up construction rules out impredicative definitions

and thus also the problematic type of all types. However, it also limits in

some respects the expressive capabilities of CTT compared with stronger

impredicative type theories.26 In fact, the form of CTT I have considered so

25See (Girard 1972) and (Coquand 1986, Coquand 1989) for insightful analysis of Girard’s
paradox. In particular, Coquand clarifies the significance of the strong form of Curry-
Howard correspondence that CTT implements.
26For example, the Calculus of Constructions (Coquand & Huet 1986) suitably weak-
ens the Curry-Howard correspondence to enable impredicativity. See also (Crosilla 2016,
Crosilla 2022a, Crosilla 2022b) for more on the variant of predicativity that is characteristic
of constructive type theory.
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far is rather weak also for mathematical purposes. For this reason, Martin-

Löf began a process of expansion of CTT with new type constructors, thus

making available new domains of quantification. One may say that the fact

that CTT is predicative is compensated by the addition of new powerful

type constructions.

Of particular interest in our context are extensions of CTT by universes.27

Universes play the role of transfinite types in type theory and their introduc-

tion amounts to a “reflection principle which roughly speaking says whatever

we are used to doing with [types] can be done inside a universe” (Martin-

Löf 1975, p. 83). We may think of a universe as collecting into a new type

(codes for) all the types constructed so far. To avoid paradoxical situations,

a universe cannot belong to itself, but (a code for it) belongs to a higher

universe. For example, we may introduce a first universe, U1, and then a

next universe, U2, which contains (a code for) the universe U1. As uni-

verses gather together (codes for) types that can be thought of as “already

constructed”, the resulting substantial expansion of CTT is in agreement

with the general outlook of type theory as built up from below, or predica-

tive. It also witnesses the open-ended character of type theory, as a new

kind of types is added to an initial CTT, therefore expanding its expressive

capabilities.

The crucial point for the present analysis is that the first universe U1 can

now be seen as a (higher-level) type of propositions and enable us to express

quantification over all propositions – all the propositions constructed prior

to introducing the universe. This can be iterated indefinitely, by adding fur-

ther universes. In the mathematical case, the combination of universes with

other powerful constructions, such as inductive types, produces strong and

expressive theories.28 More work needs to be carried out to see if construc-

tions of this kind suffice to express the forms of quantification that figure

prominently in contemporary metaphysics.

4.2. Unrestricted quantification. Higher-order theories such as STT have

been hold to offer a hospitable environment for unrestricted quantification.

It is often claimed that when a philosopher states, for example, that ev-

erything is physical, they intend to say that absolutely everything there is,

27See (Martin-Löf 1975, Martin-Löf 1984, Palmgren 1992).
28Rathjen (Rathjen 2005) argues that such theories are strong enough to prove the con-
sistency of a classical theory in which virtually all ordinary mathematics can be carried
out.
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nothing excluded, is physical, that is, they have in mind an all-inclusive do-

main. It has been argued that in standard first-order contexts the assump-

tion of such unrestricted domains gives rise to paradoxical situations, which

are, however, averted by employing higher-order theories (Williamson 2003).

Recently, Florio and Jones (Florio & Jones 2021) have given a new analysis

of unrestricted quantification in simple type theory that takes inspiration

from Russell’s notion of range of significance of a propositional function.

As Martin-Löf explicitly refers to Russell’s ranges of significance of proposi-

tional functions, of which his types are meant to be generalisations, Florio

and Jones’ analysis is particularly promising in our context. In the reminder

of this section, I briefly sketch an approach to unrestricted quantification in

STT broadly within the spirit of (Florio & Jones 2021) and carry out a

first few steps towards its extension to CTT.29 My aim is not to argue for

unrestricted quantification, rather to explore CTT’s capabilities and show

the fruitfulness of a comparison between STT and CTT under the light of

Florio and Jones’ analysis.

Florio and Jones’s analysis builds around the claim that there is an in-

timate connection between unrestricted quantification and the structure of

meaningful predicability. The latter is further taken to line up with syntac-

tic restrictions on predication as expressed in simple type theory. Given this

assumption, it is natural to wonder whether different formulations of simple

type theory have an impact on the availability or not of unrestricted quan-

tification. Florio and Jones’ conclusion is that unrestricted quantification

is available in two formulations of simple type theory they consider, strict

and cumulative type theories, but not in a third more permissive theory. To

reach this conclusion, they proceed as follows.

As they take unrestricted quantification to be quantification over an un-

restricted domain, Florio and Jones begin by explicating the notion of un-

restricted domain. A key insight informs their analysis: an unrestricted

domain contains absolutely everything relevant in principle to the truth or

falsity of a generalisation. In other terms, true universal quantification over

an unrestricted domain “precludes there from being absolutely any coun-

terexamples whatsoever” (Florio & Jones 2021, p. 49). But when is a

domain unrestricted in this sense? To answer this question Florio and Jones

29Florio and Jones examine three variants of simple type theory, none of which coincides
with our STT. However, as most of what they say on strict type theory carries over to
STT, in my presentation I adapt their discussion to STT. Another difference with (Florio
& Jones 2021) is that their analysis makes use of semantic notions, such as interpretations,
framed within simple type theory. As more work is needed to transpose these semantic
notions to CTT, I here simply omit semantic considerations to focus on CTT itself.
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introduce the notion of Russellian domain. This notion is best explained by

considering a simple predication, say

(1) ∀xF (x),

which states that predicate F , of type e → t, holds of every individual x,

that is, of every x of type e.30 A domain is Russellian for (1), if and only

if it coincides with F ’s range of significance, namely, with all the entities

that can be meaningfully said to be F . The thought is that what cannot be

meaningfully said to be F cannot be meaningfully said not to be F either,

and therefore cannot be a counterexample to a generalisation involving F

(Florio & Jones 2021, p. 52). Therefore Florio and Jones claim that Russel-

lian domains play the role of unrestricted domains: a domain is unrestricted

relative to some predication if and only if it is Russellian relative to it. For

example, in the case of (1), given the type structure of STT, F can be mean-

ingfully applied only to entities of type e. Therefore no entity of a different

type, such as, for example, a property of individuals, can be in F ’s range of

significance and provide a counterexample to (1).

The next question is whether there are in fact unrestricted domains in

STT for some predication. To answer this question positively, Florio and

Jones observe that every individual is self-identical and hence we may em-

ploy comprehension to define a property, say u(e→t), that holds of all and

only the individuals. This property may be regarded as an unrestricted do-

main for predications such as (1), as it clearly satisfies the conditions for

being a Russellian domain for such predications. Similar considerations al-

low us to define universal properties analogous to u(e→t) that play the role

of unrestricted domains for predications of higher orders.

Let us now try to apply Florio and Jones’ analysis to CTT. We want to

see if unrestricted quantification is available in CTT, that is, if there is a

domain, say D, and a predication such that D is unrestricted relative to that

predication – in the sense that it is Russellian for it. As constructive type

theorists usually regard types as domains of quantification, a straightforward

approach to adapting Florio and Jones’ analysis to CTT is to take domains

to be types. Then the question can be rephrased as follows: is there a

type D and a predication, (∀x : D)B(x), such that D is Russellian for

that predication? Here D is Russellian for (∀x : D)B(x) if it coincides

with B’s range of significance. Now, for each type, A, for each element a

of A, we have that a = a. Hence for each a in A we can prove that the

proposition I(A, a, a), expressing the judgement that the element a of A is

30Types are omitted for ease of reading.
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self-identical, is true. Therefore (∀x : A) I(A, x, x) is true. But the type A

is Russellian for the predication (∀x : A) I(A, x, x), since I(A, x, x)(x : A)

can be meaningfully applied to all and only the elements of A. According to

Florio and Jones’ analysis, this means that there is a domain in CTT that

is unrestricted for some predication, in fact, every type D is unrestricted

for the predication everything in D is self-identical. Hence unrestricted

quantification in the sense of Florio and Jones is available in CTT.

While both CTT and STT satisfy Florio and Jones’ criteria for unre-

stricted quantification, there are striking dissimilarities between these the-

ories’ type-theoretic structures. In CTT, contrary to STT, there is no type

of all individuals, rather, there are infinitely many types of individuals, each

equipped with its own identity criteria. It is then natural to ask whether

these theories’ type-theoretic structures have an impact on each theory’s

ability to express the kinds of quantification that occur in philosophical

enquiry. Consider a two-element type, say the type N2, with canonical el-

ements 02 and 12. If I say (in CTT) everything in N2 is self-identical and

(now in STT) everything in u is self-identical it is tempting to think that

the range of the second quantifier is somehow wider than that of the first

quantifier. This is not to say that the first domain is restricted nor that the

second domain contains all the elements of the first one. Types N2 and u

are not only distinct but belong to different theories altogether, so that we

cannot directly compare them in any meaningful way. The naive thought

is rather that it seems that N2 will not in general play the role of an all-

inclusive domain within our philosophical theorising in the same way as the

type of all individuals, u.

Let us go back to the philosophical example we started with, the sentence

everything is physical. Let us call this sentence s. One may perhaps argue

that as STT’s type structure lines up with the structure of predication,

unrestricted quantification over domains such as umake available the kind of

generality required by sentences such as s. The domain u, one may argue, is

an all-inclusive domain of individuals. However, it seems that CTT’s wealth

of separate and unconnected domains of quantification will not provide us

with an all-inclusive domain of quantification as required by s.31

A possible way out of this difficulty would be to add a new type, say thing,

to CTT, which plays a similar role as e in STT. It is, however, difficult to

imagine how such a type could be introduced in CTT, as types are defined by

specifying their (canonical) elements and an identity criteria. What would

be the identity criteria for a type thing? A more promising strategy is to

31See also (Parsons 2006, p. 215).
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bring together all the types of CTT into an all-inclusive domain, that is, to

introduce a universe. Given a universe, U1, we can prove that for every type

A (whose code is) in U1, for every element x of A, I(A, x, x). The universe

is therefore a Russellian domain for this predication, as it coincides with its

range of significance. The universe would also seem to be the kind of all-

inclusive domain that can help us in our philosophical inquiry in a similar

way as e.

An important point to note is that CTT with a universe has additional

expressive capabilities compared with STT, as we can now quantify not only

over individual types but over the types themselves. We can, for example,

say: every type in the universe is so-and-so. One may say that a universe

enables a view from above of the types, rather than from within, and con-

sequently offers substantial new expressive capabilities.

5. Conclusions

In this chapter, we have seen some of the most significant features of CTT,

among which, for example, the Curry-Howard correspondence, the role of

dependent types for quantification and the powerful addition of universes.

I hope to have shown the fruitfulness of a comparison between STT and

CTT, which has the potential to increase our understanding of the formal

tools we employ and their role within philosophy. The comparison may also

suggest to import new instruments within our best-known theories.
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