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1. INTRODUCTION

Constructive mathematics is a form of mathematics which uses intu-
ittonistic rather than classical logic. Different varieties of mathematics
based on intuitionistic logic have been proposed over the years since
Brouwer’s inception of intuitionism. In the following, “constructive
mathematics” denotes “Bishop—style” mathematics, the mathematics
based on intuitionistic logic initiated by Errett Bishop in “Foundations
of constructive analysis” [9]." Constructive mathematics has since wit-
nessed substantial advances in analysis, topology and algebra. Starting
from the 1970’s, a number of formal systems have been proposed to cod-
ify or formalise this form of mathematics. Their aim was to isolate the
principles underlying constructive mathematics’ fundamental concepts,
especially its concepts of set and function. Among these systems are
Martin-Lof Type Theory and Constructive Set Theory.?

In this article, I consider one aspect in which constructive and clas-
sical foundations of mathematics differ. Constructive set and type
theories diverge from standard classical set theories such as Zermelo-
Fraenkel set theory in two distinct respects: they employ intuitionistic

Acknowledgments: This is a pre-print of an article to appear in Objects, Struc-
tures, and Logics, Springer. I would like to thank the editors of this volume, Stefano
Boscolo, Gianluigi Olivieri and Claudio Ternullo for their determination in bring-
ing the project of this volume to completion. I am grateful to Andrea Cantini and
@ystein Linnebo for comments on an earlier version of this article. The research
leading to this article has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 838445.

See [10] for an introduction.

2See e.g. [43, 48, 2, 45, 7]. Another approach to the foundations of constructive
mathematics is Feferman’s Explicit Mathematics, which has been studied especially
in proof theory [27]. A very recent development is Homotopy Type Theory [71].
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rather than classical logic and they comply with a form of predicativity.
Predicativity is my main objective, as I compare a prominent classical
approach to predicativity with the form of predicativity that we find in
constructive foundational systems. My focus is therefore not a compar-
ison between constructive systems and standard classical foundations
such as ZFC, rather a comparison between two distinct proposals for
developing mathematics on the basis of a predicative concept of set.
In so doing, I shed some light on the very notion of predicativity con-
structive systems contrive, which is not fully spelled out in the relevant
literature.

In the following, I focus on a disagreement between standard classical
and constructive approaches to predicativity. This regards the predica-
tive status of so-called generalised inductive definitions. An inductive
definition defines a set, say X, by: (i) identifying some initial elements
of X; (ii) specifying new elements of X in terms of elements already
included in it and (iii) finally adding that nothing else belongs to X.
Inductive definitions are clearly appealing from a constructive point of
view, as they present a set as if it were constructed step-by-step from
below. The metaphor of a step-wise generation of a set from below is
also often employed to convey the notion of predicative definition of
a set, i.e. of a definition that is not viciously circular. While salient
inductive definitions are considered constructive, their predicative sta-
tus is disputed. According to constructive approaches to predicativity,
such as the one developed in Martin-Lof type theory, generalised in-
ductive definitions are acceptable. They are, however, impredicative
according to a well-known classical approach to predicativity.>

The remarkable feature of this disagreement is that constructive ap-
proaches to predicativity may be seen as more “generous” compared
with standard classical approaches to predicativity. This fact is at first
sight surprising, since we usually expect constructive foundations to be
more restrictive than their classical counterparts. Constructive founda-
tions are indeed substantially more restrictive than impredicative foun-
dations such as ZFC, in the sense that they do not countenance impred-
icative and essentially non-constructive methods of proof.* However, if

3As further clarified in section 4.1, the debate on the predicative status of induc-
tive definitions has focused on generalised inductive definitions. In the following,
unless otherwise stated, I omit the qualification “generalised”.

4A1rguaubly7 from a different prespective, constructive systems are more flexible
and less restrictive than traditional classical systems such as ZFC, as they allow for
a variety of interpretations, including computational interpretations (see section 2).
See also [10].



PREDICATIVITY AND CONSTRUCTIVE MATHEMATICS 3

we consider predicative approaches to foundations, the standard classi-
cal approach elaborated, for example, by Kreisel, Feferman and Schiitte
turns out to be more restrictive compared with the constructive one,
and the key difference is its rejection of generalised inductive defini-
tions. This observation can be made precise by employing fundamental
results in ordinal analysis, a branch of proof theory. By carefully as-
signing ordinals to formal theories, proof theorists have devised means
of comparing theories in terms of their “proof-theoretic strength”. An
outcome of that research is that constructive theories such as Martin-
Lof Type Theory and Constructive Zermelo Fraenkel set theory coun-
tenance systems which are proof-theoretically much stronger than clas-
sical theories that have been devised to codify (classical) predicativity.
Crucially, these constructive systems have the resources to express gen-
eralised inductive definitions.’

This disagreement between classical and constructive forms of pred-
icativity is pivotal for an understanding of predicativity and for an
assessment of its significance within the foundations of mathematics.
Inductive definitions play a substantial role within the contemporary
constructive practice, as they are a fundamental component of con-
structive sets and type theories and also play a major role within con-
structive proof assistants such as Coq [70]. For this reason, an analysis
of the foundational status of these definitions is timely and valuable.

Surprisingly, the relevant literature does not offer, as far as I know,
a sharp delineation of the notion of constructive predicativity. More
specifically, there is no detailed philosophical comparison between clas-
sical and constructive forms of predicativity nor an analysis of the
above-mentioned disagreement between classical and constructive forms
of predicativity. As (generalised) inductive definitions are considered a
crucial component of constructive predicativity, an analysis of this dis-
agreement, between classical and constructive forms of predicativity is
bound to shed light on the very notion of constructive predicativity and
contribute to a more precise characterisation of this notion. For these
reasons, the fundamental step into a philosophical investigation of con-
structive predicativity has to be an explication of the problem itself,
i.e. of the disagreement between classical and constructive approaches
to predicativity on the status of generalised inductive definitions.

In the first part of this article, I begin by offering some motivation for
an enquiry in the predicative foundations of constructive mathematics,
by looking at contemporary work at the intersection between mathe-
matics and computer science. I then review the background notions

5See [45, 3, 51, 23, 25].
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and spell out the above-mentioned disagreement between classical and
constructive approaches to predicativity. In the second part of this ar-
ticle, I look at possible ways of defending the constructive predicativity
of inductive definitions. Due to space constraints, I can only quickly
sketch the main ideas. My proposal is to explore and further expand
ideas on predicativity first put forth by Poincaré and Weyl at the turn
of the 20" century, as they seem to offer a plausible route leading to
the claim that inductive definitions are predicative from a constructive
perspective. I also highlight the importance of clarifying whether the
underlying logic, classical or intuitionistic, may have a role to play in as-
sessing the predicative status of inductive definitions. A full assessment
of the complex question of whether generalised inductive definitions are
constructively predicatively justified but classically predicatively inad-
missible will have to be postponed to another occasion. My hope at
present is to generate some discussion on this important question and,
more generally, on the very notion of constructive predicativity.

2. MOTIVATION: CONSTRUCTIVE MATHEMATICS AS ALGORITHMIC
MATHEMATICS

One of constructive mathematics’ most significant characteristics is
that its theorems afford a computational or “algorithmic” interpreta-
tion: they can, at least in principle, run on a computer. Bishop’s pio-
neer realisation that the exclusive use of intuitionistic logic could endow
mathematical theorems with computational meaning has been vindi-
cated in recent years. In fact, constructive mathematics and, especially,
constructive type theory, have been fundamental source of inspiration
for the theory and the applications of computer aided mathematics.
One of the main instruments in this thriving area of research are proof
assistants, i.e. computer software which is used interactively to for-
malize mathematical proofs. In recent times large and complex proofs
of mathematical theorems, such as the Four Colour Theorem in graph
theory and the Feit-Thompson Theorem in finite group theory have
been implemented in such systems.®

Proof assistants are primarily used to completely formalize proofs
and check their correctness. This is no trivial work, as a thorough
formalization of a straightforward theorem requires not only to fill in
all the gaps routinely left out in an informal proof and correct possi-
ble mistakes, but also formalize substantial portions of mathematics
in view of all the background definitions and results the theorem de-
pends on. It also involves subtle choices on how to best formalize

6See, for example, [44, 15, 13, 50, 36, 4, 70].
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individual components of a proof. In addition to this “primary” ap-

plication within mathematics the formalization of mathematical proofs
has other uses, which are attracting renewed interest for this area of
research. For example, proof assistants are also applied to verify the
correctness of computer software. A further emerging area of research
looks at utilizing proof assistants to “extract” computer programs from
fully formalized proofs. Here constructive proofs have been the main
focus so far, as we can make use of their interpretation as algorithms
to produce real-life, working programs.

The extensive research on proof assistants, motivated as it is by a
number of applications, is bound to have a considerable impact within
mathematics. Mathematical proofs are becoming increasingly complex
and large. Computer system that check the correctness of proofs are
therefore likely to become a significant part of everyday mathematics.
The hope is that computer systems could over time help us not only
check existing large proofs, but also support us in finding new ones
and develop effective proof strategies. Since constructive type theo-
ries (both predicative and impredicative) are at the heart of some of
the most widely used proof assistants (e.g. Coq) these new develop-
ments may change significantly the perceived position of constructive
mathematics within the mathematical community, granting it a more
central role. For these reasons it is necessary that the philosopher of
mathematics reflects on constructive mathematics and its philosophical
motivations and compares it with the better-known classical practice.

Predicativity is a crucial component of foundational systems such as
Martin-Lof type theory. The form of predicativity that we find in this
theory combines the availability of a quite general form of inductive
definitions (e.g. in the guise of so-called W types) with a strong form
of Curry-Howard correspondence. The latter endows the logical con-
stants with a direct computational meaning which is key to the theory’s
role as programming framework [44]. This interpretation of the logical
constants, however, turns out to be incompatible with impredicativity,
as demonstrated by Girard’s paradox.” Martin-Lof’s way out of para-
dox was to abide to a form of predicativity while enriching the theory
with powerful type constructing devices, i.e. W types and reflecting
universes.

Predicativity is widely discussed from a technical point of view also
within the Coq community. While the calculus of constructions (i.e.
the type theory on which the Coq system is founded) features a strong

"See [34]. See also [14, 46] for analysis and [19] for philosophical reflections.
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form of impredicativity, recent versions of Coq have restricted this im-
predicativity so to gain more flexibility and ease compatibility with
mainstream mathematics. Given the varieties of applications of proof
assistants, it is important to allow for the possibility of adding assump-
tions that enable the formalization of different forms of mathematics,
such as, for example, the axiom of choice or the principle of excluded
middle, which are required to formalise standard classical mathemat-
ics. It is here that the notion of predicativity (in the form of syntactic
constraints that block specific forms of impredicativity) has proved use-
ful.®

As (generalised) inductive definitions are increasingly employed within
the computer aided formalization of mathematics and are considered
predicative there and within constructive mathematics, a clarification
of their predicative status becomes particularly urgent. In this context,
the disagreement between alternative approaches to predicativity that
was mentioned in the Introduction becomes particularly significant. In
the next section, I review the standard classical approach to predica-
tivity which emerged from fundamental work in proof theory, before
turning to the constructive case in subsequent sections.

3. PREDICATIVITY GIVEN THE NATURAL NUMBERS: THE CLASSICAL
APPROACH

The notion of predicativity emerged at the beginning of the last cen-
tury within Poincaré and Russell’s analysis of the set-theoretic para-
doxes.? The analysis identified a form of vicious circularity as source
of the paradoxes. This circularity is manifested in problematic im-
predicative definitions which attempt to define mathematical entities
in a circular way, e.g. by specifying a “new” element of a collection
by reference to all of that collection. Adherence to predicativity was
therefore proposed as an instrument for avoiding vicious circularity in
definitions and, in this way, stay clear of paradoxes. Russell introduced
his well-known “Vicious—Circle Principle” (VCP), according to which a
definition ought not to refer to (e.g. quantify over) a set containing the
very entity it defines.’® Russell’s ramified type theory was put forward

8In Coq there are two sorts (i.e. categories) of objects “Prop” and “Set”. Both
had impredicative features in early versions of the system, so that, for example, one
could quantify over all Sets to define a new set. Recent versions, however, retain
an impredicative “Prop” but abandon the impredicativity of “Set”. These new
restrictions are introduced to increase compatibility with classical mathematics [5].

9See, for example, [54, 55, 56, 62, 61, 63, 57, 58].

10Russell and Whitehead gave a number of renderings of the VCP. For example,
“no totality can contain members defined in terms of itself” [63, p. 237] and ”[...]
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to ensure full compliance with the VCP.!! The main idea of ramified
type theory is to define sets (i.e. types) by introducing simultaneously
two kinds of regimentation: type levels and orders. The latter regiment
propositional functions so to ensure that properties defined by reference
to the totality of properties of a given order belong to the next higher
order. The interplay of these restrictions aims at avoiding the occur-
rence of the perceived problematic circularity in definitions. Avoiding
vicious circularity in analysis was also Weyl’s aim in “Das Kontinuum”
(73], where a highly original and influential predicative treatment of
analysis was undertaken without recourse to ramification.!

Following Poincaré and Russell, (im)predicativity is usually charac-
terised as follows:

(i) a definition is impredicative if it defines an entity by reference
to a totality to which the entity itself belongs; it is predicative
otherwise.

(ii) a mathematical entity (e.g. a set) is impredicative if it can only be
defined by an impredicative definition; it is predicative otherwise.

The qualification “only” in clause (ii) is important. This clause states
that an entity is predicative provided that it affords a predicative def-
inition. Since it is common for a mathematical entity to be defined in
a number of equivalent ways, an entity is considered impredicative as
long as no alternative predicative definition of it is available. Extensive
work in mathematical logic in recent years has shown that many appar-
ently impredicative notions in analysis can be reformulated so to afford
predicative treatment.!®> This work is complex, as one typically needs
to re-frame one’s definitions to avoid impredicativity. Sometimes this
requires the redevelopment of a substantial portion of mathematics.
Weyl’s book “Das Kontinuum” [73] sets out a fundamental example
in this respect, as it shows how to carry out large portions of analysis
from a predicative point of view.

Of special interest in the present context are developments that took
place from the 1950’s, when prominent logicians undertook a precise
formal analysis of predicativity. Only the most general points of that
development are needed for the present discussion.!* Among these new

whatever in any way concerns all or any or some of a class must not be itself one
of the members of a class” [64, p. 198]. See also [35] for an influential discussion,
especially p. 454-5.

USee [63, 74].

129¢e Section 4.3.1 for more on [73].

13See e.g. [28, 68, 69, 29, 32].

14Some of the most significant steps in that development are recalled in [30]. See
also [21, 18].
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developments, one course of thought brought to what is often termed
“predicativity given the natural numbers” [30]. From a technical point
of view, this may be seen as a continuation of both Russell’s ramified
type theory and Weyl’s predicative analysis. It takes the VCP as the
main guiding principle and further develops Russell’s idea of ramifica-
tion. It also takes the natural numbers as ‘given’, while introducing
predicatively motivated constraints on subsets of the natural numbers,
as Weyl did. The thought is that the natural numbers are unprob-
lematic and safe, but sets of natural numbers need to be defined pred-
icatively to avoid vicious circularity. Importantly, as in Weyl’s 1918
booklet and in Russell’s type theory, one uses classical logic through-
out.

Notwithstanding these similarities, there is a significant difference
with Weyl’s and Russell’s predicativism. The aim of the logical anal-
ysis of predicativity was not a predicative foundation of analysis, with
the consequent abandonment of those parts of analysis that could not
be rephrased in purely predicative terms. The main focus was rather a
clarification —from the outside so to speak— of the limit of predicativity:
how far can we reach if we take a predicativist stance? This question
was approached along two main dimensions: (1) by using mathemat-
ical logic to determine the limit of predicativity and (2) by a case by
case study of ordinary mathematics to assess which parts of it can be
given predicative treatment. A further difference with Weyl is that
the new attitude as well as the more refined logical instruments in the
meantime available brought the logicians to go beyond Weyl’s predica-
tive analysis, by contemplating transfinite iterations of ramified com-
prehension along so-called predicative ordinals. Through fundamental
contributions by Kreisel, Feferman and Schiitte the “logical analysis of
predicativity” gave rise to an exemplary chapter in proof theory, which
culminated with the determination by Feferman and Schiitte (indepen-
dently) of the limit of predicativity by means of ordinal analysis.

Ordinal analysis uses proof-theoretic techniques to assign ordinals to
theories as a way of assessing and comparing their strength. The proof-
theoretic analysis of predicativity of the 1960’s made use of a transfinite
hierarchy of subsystems of second order arithmetic with ramified com-
prehension (also called ramified analysis). The main idea is that each

15 See [37, 26, 67, 66]. Note that this is not the only logical analysis of predicativ-
ity proposed in the 1950-60’s. Another approach [38] made essential use of work in
recursion theory and definability theory, and identified the predicatively definable
sets of natural numbers with the so-called hyperarithmetical sets. Here work by
Kleene, among others, provided fundamental insights and the necessary tools for
the analysis. See [47] for the relevant notions, historical notes and references.
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system allows for a ramified form of comprehension, thus only “refer-
ring” to entities populating earlier stages of the hierarchy. This ensures
that each level of the hierarchy is predicatively justified. Crucially, the
hierarchy is indexed by ordinals and a substantial contribution of this
analysis was a proposal on how far along the ordinals we may proceed
without stepping into impredicativity. To this end, the notion of pred-
icatively provable ordinal was introduced with the intention to capture
the concept of an ordinal a predicativist would recognize. Roughly,
predicatively provable ordinals can be defined “from below” through a
bootstrapping process: one progresses along the ramified hierarchy to
a theory indexed by an ordinal « only if one has already proved that «
is an ordinal in a “previous” theory within the hierarchy. This hierar-
chy of formal systems then acted as canonical reference: one considers
predicative any formal system which can be reduced to a system in that
hierarchy (according to a formally specified notion of proof-theoretic
reduction). The so-called limit of predicativity was then identified in
terms of an ordinal known as I'y, the first non-predicatively provable
ordinal.'®

The logical analysis of predicativity therefore made a clear and pre-
cise proposal for a formal anlaysis of predicativity, employing state of
the art logical machinery to extend Russell’s and Weyl’s work.

4. CONSTRUCTIVE PREDICATIVITY AND INDUCTIVE DEFINITIONS

A number of formal systems have been introduced over the years to
formalise constructive mathematics. It is common to distinguish two
kinds of systems: impredicative systems such as Intuitionistic Zermelo
Fraenkel set theory and the Calculus of Constructions [33, 15|, and
predicative systems, such as Martin-Lof Type Theory and Constructive
Zermelo Fraenkel set theory [43, 2]. While the latter theories are said
to be predicative, the literature does not offer a sharp delineation of the
relevant notion of predicativity, nor is there an authoritative analysis of
this notion comparable to the insightful appraisal given over the years
in the classical case, especially through the work of Feferman.'” There
is agreement among constructive mathematicians on paradigmatic ex-
amples of impredicativity: as in the classical approach to predicativity

168chiitte’s fundamental contribution to this analysis of predicativity is acknowl-
edged by [31, p. 8-9] as follows: “[...] the determination by Schiitte and me in the
mid-1960s of I'y as the upper bound for the ordinal of predicativity simply fell out
of his ordinal analysis of the systems of ramified analysis translated into infinitary
rules of inference when one added the condition of autonomy.”

1"For discussion see [14, 24, 52, 59].
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discussed above, the powerset of an infinite set is considered impredica-
tive, and so is full second order arithmetic. Other forms of higher order
quantification (e.g. over so-called “propositions” in type theory) are
also considered impredicative. Moreover, there is overall agreement in
the literature that some generalised inductive definitions are construc-
tively predicatively justified.'® In fact, the acceptance of (at least some)
generalised inductive definitions is often taken to be the main charac-
teristic distinguishing the constructive from the classical approach to
predicativity discussed in the previous Section. In fact, according to
classical predicativity given the natural numbers generalised inductive
definitions are impredicative, on the basis of proof-theoretic results.

In the following, I first review the notion of generalised inductive
definition and then investigate why it is considered problematic from a
classical predicativist perspective but may be considered unproblematic
from a constructive point of view.

4.1. Inductive definitions. Inductive definitions were used in con-
structive mathematics from the very start as witnessed, for example,
by Brouwer’s constructive ordinals. In mathematical logic, inductive
definitions gained particular relevance from the 1950’s especially in re-
cursion theory and in proof theory.'® A principal reason for the focus
on inductive definitions in proof theory was Kreisel’s hope that the
study of formal theories for inductive definitions could clarify whether
Spector’s 1961’s proof of consistency of second order arithmetic could
be constructively justified. In fact, it turned out that such theories are
not sufficiently strong to accomplish this task, as their proof-theoretic
strength is strictly in between the strength of predicative theories (ac-
cording to the I'y analysis) and full second order arithmetic. However,
the proof-theoretic investigation of theories of inductive definitions gave
rise to crucial advances in ordinal analysis and was also key to the proof-
theoretic study of prominent impredicative subsystems of second order
arithmetic.?

Today inductive definitions figure prominently in Martin-Lof type
theory, for example in the form of well-founded trees, which are defined

18Note that while my focus in this note are intuitionistic theories, Lorenzen and
Myhill have argued for a rather liberal notion of predicativity with respect to a
quite general notion of constructivity (also in the context of theories with classical
logic). See especially [41, 42]. See also [72]. For Martin-Lof type theory, see e.g.
[52, 59].

19See the fundamental [47, 6].

208ee [11]. The introduction gives an insight into the historical developments
of ordinal analysis beyond predicativity. See Chapter 1 for background. See also
[31, 46].
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by employing the so-called W type constructor. In the case of type
theory, the combination of well-founded trees and universes (i.e. re-
flection principles) endow this theory with considerable proof-theoretic
strength, well exceeding the strength of theories in the ramified hierar-
chy up to I'g. Martin-Lof type theory therefore includes systems whose
proof-theoretic strength well exceeds the realm of predicativity given
the natural numbers.?! Recent years have also seen frequent applica-
tion of inductive definitions in constructive mathematics. For example,
they have been successfully employed in formal topology [65, 16] to
circumvent the ubiquitous use of the powerset operation. As already
mentioned in Section 2, inductive definitions are also extensively used
in the formalization of mathematics within theorem provers such as
Coq. One reason for this is that inductive definitions offer a uniform
way of characterising a number of type constructions, avoiding the pro-
liferation of primitive types. For example, given a general scheme for
inductive definitions, one can apply it to define the natural numbers,
without assuming a primitive type of natural numbers.??

An inductive definition defines a set, say X, by identifying some
initial elements of it and specifying all the remaining elements of X
in terms of elements already included in it. It may be helpful to see
how one usually characterises inductive definitions from a standard
set-theoretic perspective. Here an inductively defined set may be seen
as the least fixed point of a monotone operator. For our purposes, it
suffices to focus on the case of inductive definitions of sets of natural
numbers.?® Let T' : P(N) — P(N) be an operator (or function) from
the power set of the natural numbers to the power set of the natural
numbers and let X, Y € P(N). We say that I" is monotone if:

XCY >T(X)CTI(Y).
X is I'-closed when
['X) C X.

For monotone I'; it is easy to show that there is the smallest I'-closed
set, also called the fized point of T':

Ir = ﬂ{X : X is I'-closed}.

The constructive appeal of inductive definitions is due to the fact
that they can be thought of as constructing a set step-by-step and
from below. This metaphor of a bottom-up construction can be made

213ee e.g. [51, 60, 52, 23, 25, 59].
22Gee [24] for discussion and references.
233ee the exposition in [11], Chapter 1.
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more precise by using the ordinals to index the stages of the least fixed
point of a monotone operator. One starts from stage 0 and successively
applies the operator I' to go from one stage to the next. More precisely,
given I' as above, and Ir its least fixed point, the a-stage of It is:

=1 n.

B<a

The crucial point is that, at the price of taking the classical ordinals
as given, an inductively defined set can now be presented as the closure
of a step-by-step process of generation, so that each stage is the result
of applying the operator to a previously generated fragment of the set.

The reference above to the classical ordinals, however, is problematic
from a constructive perspective. Another way of presenting inductive
definitions may, however, be more appealing from a constructive per-
spective. This is in terms of a set of rules that specify the elements
of an inductively defined set. Typically, one starts from some initial
elements and then gives rules that yield new elements of a set from
“previously constructed” elements of it. The least set closed under
these rules is then the set inductively defined by them.**

The simplest example of inductive definition of an infinite set is the
inductive definition of the set of natural numbers as the smallest set
containing 0 and closed under the successor operation. One has the
following introduction rules:

(1) 01is a natural number,
(2) if n is a natural number, then its successor, suc(n), is also a
natural number.

Taking the natural numbers to be the smallest set satisfying these
rules, amounts to adding the claim that nothing else is a natural num-
ber. The latter clause is expressed by the principle of mathematical
induction, which is often formulated as an elimination rule comple-
menting the introduction rules.

The example of the inductive definition of the natural numbers is
here chosen for its simplicity. As already mentioned, both predica-
tivity given the natural numbers and constructive predicativity take

248ee [1]. Particularly appealing from a constructive point of view are determin-
istic rules. A rule is deterministic if for any conclusion a there exists exactly one
set of premises X such that a is a consequence of X according to the rule.
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the natural numbers as unproblematic, as given, and introduce pred-
icatively motivated constraints on subsets of the natural numbers.?
The inductive definitions that rise concerns from a standard (classical)
predicativist perspective are those that go beyond the natural num-
bers, like, for example, the definition of the constructive ordinals. The
latter can be defined by the following introduction rules:

(1) 0isin O,

(2) if a is in O, then suc(a) is in O,

(3) if f is a function from the natural numbers, N, to O and for all

nin N, f(n) is in O, then the supremum of the f(n) is in O.

While the inductive definition of the natural numbers is finitary, in
the sense that each rule has only finitely many premises, the definition
of the constructive ordinals is an example of infinitary inductive defi-
nition. Note also that the definition of the constructive ordinals builds
on the definition of the natural numbers. One can further iterate this
process and build a new inductive definition on the basis of the con-
structive ordinals, and so on. In this way, the so-called “higher tree
classes” can be defined inductively.?® Generalised inductive definitions
include definitions such as that of O and also countenance iterated
inductive definitions.

The proof theory of inductive definitions has focused on formal theo-
ries that codify generalised inductive definitions. These formal theories
extend Peano Arithmetic by introducing predicates for so-called posi-
tively definable operators. Here the positivity of the relevant predicates
is required to ensure the monotonicity of the operators they define.?”
Theories, based on intuitionistic logic (i.e. extensions of Heyting Arith-
metic) have also been considered and have played a crucial role in the
proof theoretic analysis. In practice, theories of inductive definitions
have acted as systems of reference in the proof-theoretic analysis of
inductive definitions, therefore playing a similar role in this context as
systems of ramified analysis for the proof-theoretic analysis of pred-
icativity. A well-known theory which formalises non-iterated inductive
definitions goes under the name of I D;. Stronger theories have been in-
troduced to codify iterated inductive definitions. As already mentioned

25Note that while the forms of predicativity considered in this article take the
natural numbers as unproblematic, this assumption is not gone unchallenged. Dum-
mett, Nelson and Parsons have (independently) argued for the impredicativity of
the principle of mathematical induction [22, 49, 53]. [49] develops a form of pred-
icative arithmetic that substantially constrains mathematical induction, therefore
giving rise to weak subsystems of Peano Arithmetic.

268ee [11, p. 147].

27See [11, Chapter 1].
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at the beginning of this section, the proof-theoretic analysis of theo-
ries of inductive definitions shows that their proof-theoretic strength
exceeds that of predicative theories according to the I'g analysis [11].
This is the case already for the theory I D;, whose proof-theoretic or-
dinal, the so-called Bachmann-Howard ordinal, is much larger than I'.

4.2. The impredicativity of generalised inductive definitions.
Generalised inductive definitions are considered impredicative accord-
ing to the logical analysis of predicativity mentioned in Section 3. The
worry is that in the build up of an inductive set we need to refer to the
very set we are defining, thus contravening the VCP. In the terminology
introduced in the previous section, the main difficulty lies in the claim
that the inductively defined set we are defining is the least fixed point
of the given inductive definition. This worry is particularly evident
when we look at the standard set-theoretic presentation of inductive
definitions. If we take the set-theoretic definition of the least fixed point
of an inductive definition as the intersection of all I'-closed subsets of
N, for some monotone operator I', then the difficulty is obvious: we
define a subset of the natural numbers by reference to a collection of
subsets of the natural numbers to which it belongs, against the VCP.
Arguably, one of the main benefits of the logical analysis of predica-
tivity is that it has revealed that apparently impredicative notions of
ordinary mathematics could after all be given a predicative treatment.
As a consequence, a prima facie impredicativity could be eliminated.
We could then explain a prima facie impredicativity as a by-product
of its codification within a certain conceptual framework (e.g. set the-
ory). One could hope that similar considerations could also be applied
to the case of inductive definitions: while the set-theoretic framework
strongly suggests the impredicativity of inductive definitions, a more
careful analysis could perhaps offer a different verdict (at least in the
case of the inductive definitions the constructivist cares about). For
example, one could hope that an idea mentioned towards the end of
the previous section could help defuse the impredicativity of inductive
definitions. There we saw that the classical ordinals can be used to
index the stages of the least fixed point of an inductive definition. The
ordinals, in other terms, can help us stratify an inductively defined set
so that at each step we refer only to “previously” constructed frag-
ments of it. Borrowing the proof-theorist’s terminology [11, p. 262-3],
with the help of the ordinals, an inductive definition such as that of
O can be expressed in such a way that it becomes locally predica-
tive, i.e. it is predicative at each stage since, locally, we only refer to
what has already been constructed, rather than to the whole set under
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construction. However, the difficulty with this strategy is that the or-
dinals we need to employ in order to index the stages of the inductive
definition cannot be given a predicative justification that would sat-
isfy the predicativist given the natural numbers. This is confirmed by
the proof-theoretic analysis of theories of inductive definitions which
are seen to exceed the proof-theoretic strength of predicative theories.
In other terms, one could claim that we have local predicativity, but
impredicativity as a whole.

Perhaps representing inductive definitions in terms of rules, with no
explicit mention of the classical ordinals, could help explain away their
impredicativity. The worry in this case is that the rules themselves may
involve a circularity. In the case of generalised inductive definitions,
in fact, the clause expressing the minimality of the inductive definition
will have no restriction to prevent it from referring to the very set it
inductively defines.?®

These observations can be made fully precise through a careful proof-
theoretic analysis of formal theories for inductive definitions. The main
“argument” adduced for the impredicativity of inductive definitions,
therefore, is the fact that the proof-theoretic strength of theories of in-
ductive definitions exceeds the limit of predicativity given the natural
numbers, captured by the ordinal I'y. In fact, there is no proof-theoretic
reduction of theories of (generalised) inductive definitions to the sys-
tems of ramified analysis, since the former are proof-theoretically much
stronger than the latter. As we saw above, the ramified hierarchy acts
as canonical systems of reference for predicativity given the natural
numbers. Therefore, the fact that the proof-theoretic strength of theo-
ries of inductive definitions exceeds the strength of the whole ramified
hierarchy is taken as clear indication that generalised inductive defini-
tions involve impredicativity.

4.3. Predicative after all? Although inductive definitions are con-
sidered impredicative according to predicativity given the natural num-
bers, they are usually considered constructive and predicative in the
constructive literature. The term “constructive” is notoriously vague
and is routinely applied to a variety of forms of mathematics, often
very different from each other. It is thus perhaps not that surprising
that the literature presents us with the claim that generalised inductive
definitions are constructive, but impredicative. The availability of a set
of rules for the generation of the elements of an inductively defined set

28 “miniature” argument along these lines can be carried out already in the case
of the natural numbers to argue for the impredicativity of the induction principle.
This will be discussed in section 4.3.2.
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is often considered key to the constructivity of inductive definitions.
For example, when inductively defining an infinite set, one does so by
means of fixed rules and in a uniform way: by employing some initial
elements of the set and repeatedly applying a uniform procedure to ob-
tain all the other elements of the set. Crucially, the induction principle
associated with an inductive definition somehow mirrors the construc-
tion of the elements of the set. Hence, the proofs are also likewise
structured. This latter point is rightly stressed by Sieg [11, Chapter 3,
p. 147], when discussing the intuitionistic theory that formalises the
construction over Heyting Arithmetic of the constructive ordinals. Sieg
writes that this theory is constructively justified:

and by that I simply mean that the theory is based on
intuitionistic logic, the objects in its intended model are
exhibited or obtained by construction and the proof-
procedures follow or parallel the construction of the ob-
jects.

While it is usually agreed that (at least some) generalised inductive
definitions are constructive, it is their predicativity that is controversial
26, 11]. For example, the inductive definition of O is considered con-
structively acceptable, but it is impredicative according to the proof-
theoretic analysis of predicativity. To conclude this section, I sketch
some options that a constructivist could consider to support the view
that inductive definitions are after all not only constructive but also
predicative.

4.3.1. Inwvariance. A first option is to link the contemporary discussion
on inductive definitions directly to the original debate on predicativ-
ity. The idea is to focus on strong affinities that exist between the
motivation offered today for the predicativity of inductive definitions
and themes that pervade the original debate on predicativity at the
beginning of the 20th century. I only consider two points, the role of
infinity in this debate and the concept of set, even if an analysis of the
relevant literature suggests further significant similarities.

In Section 3, I have presented a standard characterisation of predica-
tivity in terms of lack of vicious circularity. Poincaré also offered an-
other characterisation of predicativity in terms of a form of invariance,
which seems more suitable to capture the phenomenon of inductive
definitions. According to this new characterisation of predicativity, a
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predicatively defined set cannot be modified or disordered by an exten-
sion of the class of sets under consideration.?® This characterisation of
predicativity relates to the one in terms of vicious circularity as follows:
if we consider an impredicative definition (in the sense of circular), it
would seem to have the effect of extending or enlarging a set under
consideration. Let us see this with an example. Suppose we are given
an impredicative definition of as set X which refers to (e.g. universally
quantifies over) a set G to which X belongs. For this definition to be
meaningful, it would seem that we need first to fix the extent of the set
G. But then X would be a “new” element of G which therefore extends
or disorders G. Poincaré’s requirement of invariance of mathematical
definitions aims at avoiding definitionsof this kind: a predicative (in
the sense of invariant) definition does not disorder a set by introducing
new elements.

[73] proposed a detailed predicative foundation of analysis that bears
important analogies with Poincaré’s new characterisation of predicativ-
ity. Weyl’s discussion, like Poincaré’s, is characteristically bound up
with his stark rejection of actual infinity in mathematics, advocating
instead a potentialist view of infinity. In Weyl’s case, this is further
directly connected with his explicit rejection of arbitrary sets. The
main idea, which is reminiscent of Poincaré, is that for a correct treat-
ment of infinite sets, one needs predicative definitions. For Weyl this
means that one defines an infinite set as the extension of some property
or relation, which may be seen as describing a step-by-step process of
formation of the set.®® In the case of analysis, which is Weyl’s main
focus in “Das Kontiuum”, sets of natural numbers are extensions of
properties built up step-by-step from the natural numbers by repeated
application of the logical operations, with the crucial restriction of quan-
tification to the domain of the natural numbers. Weyl calls this process
of set-formation “the mathematical process” and contrasts his predica-
tive concept of set with the dominant concept of set. He writes [73, p.
20]:

Finite sets can be described in two ways: either in indi-
vidual terms, by exhibiting each of their elements, or in
general terms, on the basis of a rule, i.e., by indicating
properties which apply to the elements of the set and
to no other objects. In the case of infinite sets, the first

298ee [57, 58]. See also [38, p. 378]. Note that I am here interested in the main
ideas underlying this notion, rather than in an exegesis of Poincaré’s thought.
308ee also [12] for discussion.
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way is impossible (and this is the very essence of the
infinite).

This brings Weyl to reject the meaningfulness of the powerset of an
infinite set, including the set of all subsets of the natural numbers, as
it is not amenable to a general description in terms of rules. The open-
endedness of infinite sets means that infinite subsets of the natural
numbers should be defined by rules which specify properties of the
natural numbers. Weyl [73, p. 23] writes:

The representation of an infinite set as a “gathering”
brought together by infinitely many individual arbitrary
acts of selection, assembled, and then surveyed as a
whole by consciousness, is nonsensical; “inexhaustibil-
ity” is essential to the infinite. [...] Therefore I contrast
the concept of set and function formulated here in an ex-
act way with the completely vague concept of function
which has become canonical in analysis since Dirichlet
and, together with it, the prevailing concept of set.

A remarkable aspect of Weyl’s concept of set is the inductive gen-
eration of the properties of the natural numbers through iterated ap-
plication of the logical operations (with restricted quantifiers). Weyl
lucidly highlights the crucial role of this iteration for the mathematical
process. I will get back to this at the end of Section 4.3.3.

I have emphasised two significant aspects in Weyl’s “Das Kontin-
uum”: the objection to the powerset of an infinite set and the role of
a potentialist view of infinity. It is interesting to compare these with
more recent discussions on predicativity. The impredicativity and the
arbitrariness of the powerset of an infinite set is also exposed in a fun-
damental article by [48], in which the author sets out the details of a
constructive set theory that, notwithstanding its use of intuitionistic
logic, bears strong formal affinities with ZF set theory. Myhill replaces
the powerset axiom of ZF with a constructively weaker axiom of ex-
ponentiation, as the first is seen as lacking constructive justification.®!
Myhill’s criticism of the powerset axiom of ZF is particularly clear, and
deserves quoting:

Power set seems especially nonconstructive and impred-
icative compared with the other axioms [of set theory]:
it does not involve, as the others do, putting together or
taking apart sets that one has already constructed but
rather selecting out of the totality of all sets, all those

31The axiom of exponentiation allows us to collect in a set all the functions from
a set A to a set B. This is constructively weaker than the full powerset [48, 2].
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that stand in the relation of inclusion with a given set.
[48, p. 351]

We have here the opposition between, on the one side, the arbitrari-
ness of the powerset of an infinite set, whose justification seems to
require the prior availability or even surveyability of an infinite math-
ematical domain, with, on the other side, the rule-like construction of
a set. This strongly resonates with the typical constructive appeal of
inductive definitions, which has been repeatedly stressed above: the
rule-like build up of a set from some initial unproblematic elements.
We also saw that inductive definitions are often introduced today to
eliminate problematic uses of the powerset of infinite sets, almost as if
they were computationally approximating from below as much as pos-
sible of the powerset of an infinite set. Furthermore, the monontonicity
of inductive definitions would seem to ensure that at no time the gen-
eration of new elements “disrupts” or modifies earlier fragments of the
set — at least in the sense that what has entered the set at a certain
stage cannot leave it at subsequent stages.

As to the role of potential infinity in Weyl’s analysis, this also has
a counterpart in more recent discussions. In the fundamental [42],
the authors introduce (generalised) inductive definitions and argue for
their constructivity. In their conclusion they write that the method of
inductive definitions

exhausts those means of definition at present known
which are acceptable from a standpoint which rejects
the actual infinite.*?

In view of the rule-like character and the monotonicity of induc-
tive definitions, as well as these remarkable similarities with recent
discussions on predicativity, it seems at least possible to give a pred-
icative justification of these constructions along the lines of Poincare
and Weyl’s considerations. The challenge here is to sharpen the notion
of invariance in a way that more directly applies to the case of inductive
definitions.*

321 would like to thank a referee for drawing my attention to this passage and to
[41].

33A thorough discussion of this point would require careful consideration of
Lorenzen’s work. See e.g. [41]. Note that one could argue that the term “predica-
tivity” is now been used to refer to a different phenomenon altogether compared
with that giving rise to the I'g limit. This seems to be Feferman’s point of view in
[26, p. 4-5], when discussing especially Lorenzen and Wang’s work on predicativity.
I am persuaded this is a complex issue that would require careful consideration.
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4.3.2. Logic. The constructivist could explore another, not necessar-
ily disjoint, strategy, by pursuing the question whether the underlying
logic has a role to play in an assessment of the predicativity of inductive
definitions. More specifically, one could argue that a shift to intuition-
istic logic makes a defense of the predicativity of inductive definitions
more plausible.

The idea is to extend to the case of generalised inductive defini-
tions considerations that arise for the inductive definition of the natural
numbers. Elsewhere, I analyse the presuppositions of a predicativist
argument for intuitionistic logic inspired by Dummett’s argument for
indefinite extensibility [20].>* This argument makes essential use of a
claim that mathematical induction involves a form of circularity.* In
section 4.1, we saw the inductive definition of the natural numbers as
the least set containing 0 and closed with respect to the successor op-
eration. The closure condition for the natural numbers is expressed
by the principle of mathematical induction. Mathematical induction is
a fundamental principle in arithmetic, which enables us to prove uni-
versal statements as follows: it suffices to show that a property, say
F, holds of the first natural number, 0, and that it progresses from a
number to the next one, i.e. that if ' holds of n, it also holds of suc(n).
Then we can conclude that F' holds of every natural number.

Though the natural numbers are considered unproblematic accord-
ing to both forms of predicativity under examination here, one may
claim that a thorough predicativist perspective should recognize the
impredicativity of the principle of mathematical induction [53]. The
worry regarding induction is that this minimality condition involves a
circularity. One way of expressing this concern is by observing that
the principle of mathematical induction is stated for arbitrary proper-
ties. Therefore, it also applies to those properties, F', that refer to the
whole set of natural numbers. In other terms, the formula which de-
scribes the property F in the principle of mathematical induction may
contain unrestricted number quantifiers, like, for example, a universal
quantifier ranging over all the natural numbers. The set of natural
numbers would then be defined by reference to the whole natural num-
bers, against the VCP.3

The thought scrutinised in [20] is that while standard interpretations
of classical quantification require the availability of each element of the
domain prior to quantification and therefore give rise to the difficulties

34Gee also [39, 40].

35Qee [22, 49, 53].

363ee [49, 53]. See also [17, 20] for a detailed analysis of the natural number
case.
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above, an intuitionistic universal quantifier may by given a generic in-
terpretation. In particular, the universal quantifiers ranging over the
natural numbers that we find in the principle of mathematical induc-
tion can be given a generic interpretation in an intuitionistic context.
This would seem to suffice to eliminate the difficulty involved with the
circularity of mathematical induction. The constructivist could hope
that considerations such as these could be extended to the case of gen-
eralised inductive definitions, so to ease the difficulty with the apparent
circularity of the closure condition which was discussed in section 4.2.

4.3.3. Trees. In Section 4.2, we saw that a generalised inductive defi-
nition can be presented in stages, indexed by classical (impredicative)
ordinals. The constructivist could employ well-founded trees within
an intuistionistic context to play a role analogous to that of the clas-
sical ordinals in the classical context and argue that, constructively,
well-founded trees are directly predicatively justified. This seems to
be a view often put forth by constructive type theorists. For exam-
ple, [52] compares predicativity given the natural numbers with “the
constructivist notion of predicativity which recognises a construction
as predicative if it has a clear inductive structure, e.g. W-sets and
superuniverses.”®” A constructivist who wished to proceed along this
route, would need to explain what grants, in an intuitionistic context,
a direct justification of the induction principles that express the closure
of (at least some) generalised inductive definition. Perhaps, one could
proceed by analogy to the case of predicativity given the natural num-
bers. That form of predicativity takes the natural numbers as given,
and in so doing accepts as unproblematic the principle of mathemat-
ical induction. Omne could perhaps make a similar move in the case
of inductive definitions, claiming that the relevant form of transfinite
induction is predicatively justified at least on the basis of intuitionistic
logic. An argument along these lines could also employ some of the
considerations from the previous subsection, as one may insist that the
intuitionistic focus on proofs rather than objects could make such an
assumption more acceptable. Once more, Poincaré and Weyl’s philoso-
phies of mathematics could be source of inspiration. Both mathemati-
cians insisted on the impossibility of giving a reduction of the principle
of mathematical induction. Poincaré appealed to a form of intuition
to justify it. Weyl made very clear the crucial role of the principle of
iteration within his predicative foundation of analysis and in mathe-
matics more generally. One could then explore the plausibility of an
approach to predicativity which takes the inductive definition of the

37See also [24, 25].
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natural numbers as paradigmatic example of more general forms of
inductive definitions that are taken as given and no further reducible.

5. CONCLUSION

In this note, I have offered motivation, stemming from the current
mathematical practice, for an investigation into the notion of predica-
tivity and especially constructive predicativity. I have highlighted the
role of predicativity in current debates, and its key role in concrete
practical applications, where it acts as a criteria for the correctness of
computation and for consistency. Inductive definitions represent pow-
erful expressive means of definition, which are increasingly employed
in the constructive practice. In that context, they are usually consid-
ered justified not only from a constructive but also from a predicative
point of view. The predicative justification of inductive definitions,
though, requires further thought. One of the points of concern is the
fact that these definitions are impredicative according to the proof-
theoretic analysis of predicativity put forth by Kreisel, Feferman and
Schiitte. More specifically, the proof-theoretic strength of theories of
inductive definitions exceeds by far the proof-theoretic strength of theo-
ries which are recognised as predicative according to that analysis. This
leaves open the question of what could be taken to offer predicative jus-
tification to inductive definitions from a constructive perspective and,
therefore, what characterises constructive predicativity. I have offered
three (non—exclusive) suggestions. One would be to explore the original
debates on predicativity, especially Poincaré and Weyl’s contributions,
as they present us with ideas which have significant affinities with those
emerging in more recent debates. Another option is to focus on the role
of different understanding of quantification, and explore whether a shift
to intuitionistic rather than classical logic could eliminate or alleviate
the perceived difficulties with inductive definitions. Finally, the third
option is to explore the role of the paradigmatic example of the natural
numbers, with its principle of induction, for a new constructive route
to a justification of the stratification in stages of an inductively defined
set. Here the principal question is what could grant the constructivist’s
belief that the relevant well-founded trees are constructively and pred-
icatively acceptable.

REFERENCES

[1] P. Aczel. An introduction to inductive definitions. In Jon Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foun-
dations of Mathematics, pages 739 — 782. Elsevier, 1977.



PREDICATIVITY AND CONSTRUCTIVE MATHEMATICS 23

[2] P. Aczel. The type theoretic interpretation of constructive set theory. In
A. MaclIntyre, L. Pacholski, and J. Paris, editors, Logic Colloguium 77, pages
55—66. North—Holland, Amsterdam-New York, 1978.

[3] P. Aczel. The type theoretic interpretation of constructive set theory: Induc-
tive definitions. In R. B. Marcus, G. J. Dorn, and G. J. W. Dorn, editors, Logic,
Methodology, and Philosophy of Science VII, pages 17-49. North—Holland, Am-
sterdam and New York, 1986.

[4] AGDA. Agda wiki, 2020. Available at http://wiki.portal.chalmers.se/agda/pmwiki.php.

[5] F. Barbanera and S. Berardi. Proof-irrelevance out of excluded-middle and
choice in the calculus of constructions. Journal of Functional Programming,
6(3):519-525, 1996.

[6] J. Barwise. Admissible sets and structures. An approach to definability theory.
Springer Verlag, Berlin, 1975.

[7] M. Beeson. Foundations of Constructive Mathematics. Springer Verlag, Berlin,
1985.

[8] P. Benacerraf and H. Putnam. Philosophy of Mathematics: Selected Readings.
Cambridge University Press, 1983.

[9] E. Bishop. Foundations of constructive analysis. McGraw-Hill, New York, 1967.

[10] D. S. Bridges and F. Richman. Varieties of Constructive Mathematics. Cam-
bridge University Press, 1987.

[11] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated inductive defini-
tions and subsystems of analysis. Springer, Berlin, 1981.

[12] A. Cantini. Truth and the philosophy of mathematics. This volume, 2020.
[13] R. L. Constable and et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice—Hall, Englewood Cliffs, New Jersey, 1986.

[14] T. Coquand. Metamathematical investigations of a calculus of constructions.
Technical report, INRIA, 1989.

[15] T. Coquand and G. Huet. The calculus of constructions. Technical Report
RR-0530, INRIA, May 1986.

[16] T. Coquand, G. Sambin, J. Smith, and S. Valentini. Inductively generated
formal topologies. Annals of Pure and Applied Logic, 124(1):71 — 106, 2003.

[17] L. Crosilla. Constructivity and Predicativity: Philosophical foundations. PhD
thesis, School of Philosophy, Religion and the History of Science, University of
Leeds, 2016.

[18] L. Crosilla. Predicativity and Feferman. In G. Jager and W. Sieg, editors, Fe-
ferman on Foundations: Logic, Mathematics, Philosophy, Outstanding Con-
tributions to Logic. Springer, 2017. Forthcoming.

[19] L. Crosilla. The entanglement of logic and set theory, constructively. Inquiry,
0(0):1-22, 2019.

[20] L. Crosilla. From predicativity to intuitionistic mathematics, via Dummett.
Unpublished Manuscript, 2020.

[21] W. Dean and S. Walsh. The prehistory of the subsystems of second-order
arithmetic. Rev. Symb. Log., 10:357-396, 2016.

[22] M. Dummett. The Philosophical Significance of G6del’s Theorem. Ratio, 5:140—
155, 1963.

[23] P. Dybjer. A general formulation of simultaneous inductive-recursive defini-
tions in type theory. The Journal of Symbolic Logic, 65(2):525-549, 2000.



24

[24]

[25]
[26]

[27]

28]

LAURA CROSILLA

P. Dybjer. Program Testing and The Meaning Explanations of Martin-Lof
Type Theory. In P. Dybjer, S. Lindstrom, E. Palmgren, and B.G. Sundholm,
editors, Epistemology versus Ontology, Essays on the Philosophy and Founda-
tions of Mathematics in Honour of Per Martin-Ldf, 2012.

P. Dybjer and A. Setzer. Induction—recursion and initial algebras. Annals of
Pure and Applied Logic, 124(1):1 — 47, 2003.

S. Feferman. Systems of predicative analysis. Journal of Symbolic Logic, 29:1—
30, 1964.

S. Feferman. A language and axioms for explicit mathematics. In J. Crossley,
editor, Algebra and Logic, volume 450 of Lecture Notes in Mathematics, pages
87-139. Springer, Berlin, 1975.

S. Feferman. Weyl vindicated: Das Kontinuum seventy years later. In C. Cel-
lucci and G. Sambin, editors, Temi e prospettive della logica e della scienza
contemporanee, pages 59-93, 1988.

S. Feferman. Comments on ‘Predicativity as a philosophical position’ by G.
Hellman. Review Internationale de Philosophie, 229(3), 2004.

S. Feferman. Predicativity. In S. Shapiro, editor, Handbook of the Philosophy
of Mathematics and Logic. Oxford University Press, Oxford, 2005.

S. Feferman. The proof theory of classical and constructive inductive defini-
tions. a forty year saga, 1968 — 2008. In R. Schindler, editor, Ways of Proof
Theory, pages 7-30. De Gruyter, 2013.

S. Feferman. Why a little bit goes a long way: predicative foundations of anal-
ysis. Unpublished notes dating from 1977-1981, with a new introduction. Re-
trieved from the address: https://math.stanford.edu/~feferman/papers.html,
2013.

H. Friedman. The consistency of classical set theory relative to a set theory
with intuitionistic logic. Journal of Symbolic Logic, 38:315-319, 1973.

J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de
Uarithmétique d’ordre supérieur. PhD thesis, These d’Etat, Paris VII, 1972.
K. Goédel. Russell’s mathematical logic. In P. A. Schlipp, editor, The philosophy
of Bertrand Russell, pages 123—-153. Northwestern University, Evanston and
Chicago, 1944. Reprinted in [8]. (Page references are to the reprinting).

G. Gonthier. Formal Proof-The Four-Color Theorem. Notices of the American
Mathematical Society, 11(55):1382-1393, 2008.

G. Kreisel. Ordinal logics and the characterization of informal concepts of
proof. In Proceedings of the International Congress of Mathematicians (August
1958), pages 289-299. Gauthier—Villars, Paris, 1958.

G. Kreisel. La prédicativité. Bulletin de la Societé Mathématique de France,
88:371-391, 1960.

. Linnebo. Dummett on indefinite extensibility. Philosophical Issues,
28(1):196-220, 2018.

. Linnebo. Generality explained, 2018. Unpublished manuscript.

P. Lorenzen. Logical reflection and formalism. The Journal of Symbolic Logic,
23(3):241-249, 1958.

P. Lorenzen and J. Myhill. Constructive definition of certain analytic sets of
numbers. Journal of Symbolic Logic, 24:37-49, 1959.



[43]

[44]

[45]
[46]

PREDICATIVITY AND CONSTRUCTIVE MATHEMATICS 25

P. Martin-Lo6f. An intuitionistic theory of types: predicative part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloguium 1973. North—Holland,
Amsterdam, 1975.

P. Martin-Lof. Constructive mathematics and computer programming. In L. J.
Choen, editor, Logic, Methodology, and Philosophy of Science VI. North—
Holland, Amsterdam, 1982.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

P. Martin-Lof. The Hilbert—Brouwer controversy resolved? In et al. van At-
ten, editor, One Hundred Years of Intuitionism (1907 — 2007), pages 243—-256.
Publications des Archives Henri Poincaré , 2008.

Y.N. Moschovakis. Elementary Induction on Abstract Structures (Studies in
Logic and the Foundations of Mathematics). American Elsevier Pub. Co, 1974.
J. Myhill. Constructive set theory. Journal of Symbolic Logic, 40:347-382, 1975.
E. Nelson. Predicative arithmetic. Princeton University Press, Princeton, 1986.
B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Ldf’s
Type Theory: an introduction. Clarendon Press, 1990.

E. Palmgren. Type-theoretic interpretation of iterated, strictly positive induc-
tive definitions. Arch Math Logic, 32:75-99, 1992.

E. Palmgren. On universes in type theory. In G. Sambin and J. Smith, editors,
Twenty—five years of type theory. Oxford University Press, Oxford, 1998.

C. Parsons. The impredicativity of induction. In M. Detlefsen, editor, Proof,
Logic, and Formalization, pages 139-161. Routledge, London, 1992.

H. Poincaré. Les mathématiques et la logique. Revue de Métaphysique et
Morale, 1:815-835, 1905.

H. Poincaré. Les mathématiques et la logique. Revue de Métaphysique et de
Morale, 2:17-34, 1906.

H. Poincaré. Les mathématiques et la logique. Revue de Métaphysique et de
Morale, 14:294-317, 1906.

H. Poincaré. La logique de l'infini. Revue de Métaphysique et Morale, 17:461—
482, 1909.

H. Poincaré. La logique de l'infini. Scientia, 12:1-11, 1912.

M. Rathjen. The constructive Hilbert program and the limits of Martin—Lof
type theory. Synthese, 147:81-120, 2005.

M. Rathjen, E. Griffor, and E. Palmgren. Inaccessibility in constructive set
theory and type theory. Annals of Pure and Applied Logic, 94:181-200, 1998.
B. Russell. Les paradoxes de la logique. Revue de métaphysique et de morale,
14:627-650, 1906.

B. Russell. On Some Difficulties in the Theory of Transfinite Numbers and
Order Types. Proceedings of the London Mathematical Society, 4:29-53, 1906.
B. Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, 30:222-262, 1908.

B. Russell. Essays in Analysis. George Braziller, New York, 1973. Edited by
D. Lackey.

G. Sambin. Intuitionistic formal spaces — a first communication. In D. Skordev,
editor, Mathematical Logic and its Applications, pages 187-204. Plenum, 1987.
K. Schiitte. Eine Grenze fiir die Beweisbarkeit der Transfiniten Induktion in
der verzweigten Typenlogik. Archiv fiir mathematische Logik und Grundlagen-
forschung, 7:45-60, 1965.



26

[67]

[72]
[73]

[74]

LAURA CROSILLA

K. Schiitte. Predicative well-orderings. In J. Crossley and M. Dummett, ed-
itors, Formal Systems and Recursive Functions. North-Holland, Amsterdam,
1965.

S. G. Simpson. Partial realizations of Hilbert’s program. Journal of Symbolic
Logic, 53(2):349-363, 1988.

S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Math-
ematical Logic. Springer-Verlag, 1999.

The Coq Development Team. Coq, 2020. https://coq.inria.fr.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute of Advanced Studies, 2013.

H. Wang. Ordinal numbers and predicative set theory. Zeitschr. f. math.Logik
und Grundlagen d. Math., 5:pp. 216-239, 1959.

H. Weyl. Das Kontinuum. Kritische Untersuchungen uber die Grundlagen der
Analysis. Veit, Leipzig, 1918.

A. N. Whitehead and B. Russell. Principia Mathematica, 8 Vols., volume 1.
Cambridge: Cambridge University Press, 1910, 1912, 1913. Second edition,
1925 (Vol 1), 1927 (Vols 2, 3); abridged as Principia Mathematica to *56,
Cambridge: Cambridge University Press, 1962.

UNIVERSITY OF OSLO, E-MAIL: LAURA.CROSILLAQIFIKK.UIO.NO



