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A Second Look at the Logic of
Explanatory Power (with Two Novel

Representation Theorems)
Vincenzo Crupi and Katya Tentori*y

We discuss the probabilistic analysis of explanatory power and prove a representation
theorem for posterior ratio measures recently advocated by Schupbach and Sprenger. We
then prove a representation theorem for an alternative class of measures that rely on the
notion of relative probability distance.We end up endorsing the latter, as relative distance
measures share the properties of posterior ratio measures that are genuinely appealing,
while overcoming a feature that we consider undesirable. They also yield a telling result
concerning formal accounts of explanatory power versus inductive confirmation, thereby
bridging our discussion to a so-called no-miracle argument.

1. Introduction. Explanation is a central notion in human reasoning and a
traditional topic in the philosophy of science. In a recent article, Schupbach
and Sprenger (2011) have put forward a probabilistic analysis of how
successful a hypothesis or theory h is in explaining an event or state of affairs
of interest e. In our view, the general philosophical assumptions of Schup-
bach and Sprenger’s approach are sensible, and the theoretical endeavor that
they pursue is highly valuable. Thus, in what follows, we will rely on how
they define their framework of inquiry. However, we will subject their
specific proposal, results, and interpretations to critical discussion.
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366 VINCENZO CRUPI AND KATYA TENTORI
We will use E to label a probabilistic measure of explanatory power and
write EPðe; hÞ, with e and h denoting contingent statements for the expla-
nandum and candidate explanans, respectively, and P a relevant probability
function, which is assumed to be regular (i.e., such that, for any contingent
statement α; 0 < PðαÞ < 1).1 Notably, EPðe; hÞ is meant as a measure of how
successful h is in explaining e assuming that h qualifies as potentially relevant
to e in explanatory terms. Following Schupbach and Sprenger (2011, 106–8),
we will see the latter caveat as implied in the use of EPðe; hÞ but not encoded
in EPðe; hÞ itself. Accordingly, EPðe; hÞ will reflect the strength of an ex-
planans-explanandum relation between h and e, if any is present. A system-
atic characterization ofwhen such a relation per se obtains, although of course
relevant and much deserving, is seen here as a distinct topic of investigation.

2. Reviewing Adequacy Conditions. Schupbach and Sprenger’s favorite
probabilistic measure of explanatory power is as follows:

εðe; hÞ ¼ PðhjeÞ�Pðhj:eÞ
PðhjeÞ þ Pðhj:eÞ :

In their main formal result, they prove that EPðe; hÞ ¼ f ½εðe; hÞ� must
hold (where f is a strictly increasing function), provided that four conditions
CA1–CA4 are satisfied (see their theorem 1; 2011, 111). This pinpoints
a class of ordinally equivalent measures that are represented by some
increasing function of the posterior ratio PðhjeÞ=Pðhj:eÞ. (To appreciate
this, consider the following rendition of εðe; hÞ : εðe; hÞ ¼ tanhð1=2
fln½PðhjeÞ=Pðhj:eÞ�gÞ.) We will now briefly comment on each of Schup-
bach and Sprenger’s adequacy conditions in turn.
1. As
edge
notat
CA1. There exists an analytic function g such that, for any contingent e; h
and any regular P;EPðe; hÞ ¼ g½PðhjeÞ;Pðhj:eÞ;PðeÞ�. Values of EPðe; hÞ
range in ½�1; þ 1�.
Schupbach and Sprenger label this condition formal structure and describe it
as “rather uncontentious” (2011, 109). Some cautionary notes are in order,
though. As they show, all measures satisfying their CA1–CA4 are ordinally
equivalent posterior ratio measures, as defined above. However, it is not the
case that all posterior ratio measures satisfy CA1–CA4, and this is especially
due to CA1, which goes beyond constraining the ordinal structure. For in-
stance, there is no doubt that it is mathematically elegant to have EPðe; hÞ
usual, a further term B could be included to represent relevant background knowl-
and assumptions, thus having EPðe; hjBÞ. Such a term will be omitted from our
ion for simple reasons of convenience, as it is inconsequential for our discussion.
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normalized to range within ½�1; þ 1�. If that specific range is imposed,
however, we have that posterior ratio measures such as EPðe; hÞ ¼
nεðe; hÞþ n (with n > 0) are ruled out just because the range becomes
½0; 2n�. Similar consequences arise from the analyticity requirement in CA1,
for there exist posterior ratio measures that are not analytic, thus violating
CA1.2 By this restrictive character, CA1 prevents Schupbach and Sprenger’s
main result from being a proper representation theorem for posterior ratio
measures. We will come back to this point soon.
2. He
½Pðhj
3. Le
funct
quan
CA2. Ceteris paribus, the greater the degree of statistical relevance be-
tween e and h, the greater the value of EPðe; hÞ.
Schupbach and Sprenger’s label for this condition is positive relevance. Our
sole remark here is that CA2 is left rather unspecified, as statistical relevance
can be measured in various ways. This is innocuous for their proof. Yet, to
allow for a discussion of the content and plausibility of this assumption, a
sharper rendition would be helpful.
CA3. If h2 is probabilistically independent from e, h1, and their conjunc-
tion (i.e., Pðe ∧ h2Þ ¼ PðeÞPðh2Þ, Pðh1 ∧ h2Þ ¼ Pðh1ÞPðh2Þ, and Pðe ∧
h1 ∧ h2Þ ¼ Pðe ∧ h1ÞPðh2Þ), then EPðe; h1Þ ¼ EPðe; h1 ∧ h2Þ.
Schupbach and Sprenger’s line of argument for this condition, which we do
not dispute, goes as follows. Statement h2 is assumed to be irrelevant, so we
have Pðejh1Þ ¼ Pðejh1 ∧ h2Þ. But then, as adding h2 leaves the degree to
which e is expected unchanged, it does not alter the degree to which e is
explained either. Their label for CA3 is irrelevant conjunctions. We suggest
conjunction of irrelevant explanantes, though, for we will have to deal with
the conjunction of irrelevant explananda as a separate issue later on.
CA4. If ¬h entails e, then the values of EPðe; hÞ do not depend on the
values of P(h). Formally, there exists a function f so that, if :h ⊨ e, then
either EPðe; hÞ ¼ f ½PðhjeÞ� or EPðe; hÞ ¼ f ½PðeÞ�.
We struggle to see a clear connection between the informal and the formal
clause in CA4 and, thus, to interpret this condition as conveying irrelevance
of priors, as Schupbach and Sprenger label it.3 In fact, we decidedly concur
re is an example: EPðe; hÞ ¼ 1�½Pðhj:eÞ=PðhjeÞ� if PðejhÞ ≥ PðeÞ; EPðe; hÞ ¼
eÞ=Pðhj:eÞ��1 if PðejhÞ < PðeÞ.
t us articulate our worry more precisely. CA4 is meant to say that EPðe; hÞ is a
ion of either just PðhjeÞ or just PðeÞ in the target class of cases. Yet none of these
tities can be said to make the prior PðhÞ “irrelevant,” lacking additional details. In
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with them that intuition is hardly “strong enough to make a conclusive case
for CA4” (2011, 111).

3. A Representation Theorem for Posterior Ratio Measures. The above
remarks were meant to motivate a partly different approach to the derivation
of posterior ratio measures of explanatory power to be pursued in the
present section. To this purpose, let us introduce a propositional language
L and the set Lc of the contingent formulas in L. Further, let P be the set of
all regular probability functions that can be defined over L (so that for any
P ∈ P and any α ∈ Lc, 0 < PðαÞ < 1) and posit EP : fLc�Lc�Pg→<. Each
P ∈ P can be seen as representing a possible state of belief concerning a
domain described in L. As a first move, we propose the following explica-
tion of CA2 above:
4. Se

fact,
happ
Pðhje
Surel
with
some
conn
for p
E1. Positive relevance. For any e; h1; h2 ∈ Lc and any P ∈ P, EPðe; h1Þ⋛
EPðe; h2Þ if and only if (iff) Pðejh1Þ⋛Pðejh2Þ.
In essence, E1 states that EPðe; hÞ is a strictly increasing function of PðejhÞ
when PðeÞ is kept fixed. Indeed, this assumption closely fits Schupbach and
Sprenger’s remark that (positive) explanatory power reflects “the strength”
of the inequality PðejhÞ > PðeÞ (see 2011, 110). An additional feature of E1
is that we immediately get an analogue of CA3 above, that is, an appropriate
principle concerning the conjunction of irrelevant explanantes. Indeed, E1
implies that, for any e; h1; h2 ∈ Lc and any P ∈ P, if h2 is probabilistically inde-
pendent from e, h1, and their conjunction, then EPðe; h1Þ ¼ EPðe; h1 ∧ h2Þ. As
it is redundant on our E1, this condition does not need to be stated on its own.

Second, it will prove convenient to retain a different statement of CA4
that Schupbach and Sprenger had employed in earlier versions of their
work.4 The informal wording simply read “values of EPðe; hÞ do not depend
on the values ofP(h)” (i.e., without the restrictive caveat about¬h implying e
that is involved in CA4 as spelled out above). Upon scrutiny, however, the
proper formal rendition of the assumption thatwas intended by this statement
e http://philsci-archive.pitt.edu/5521/1/ExplanatoryPower.pdf, 7.

it all depends on what is or is not being concurrently kept fixed. For instance, if we
en to keep PðejhÞ and PðeÞ fixed, then of course PðhjeÞ and PðhÞ vary together. If
Þ and Pðhj:eÞ are kept fixed instead, then it is PðeÞ and PðhÞ that vary together.
y, it could also be the case that, say, PðeÞ varies “independently” from PðhÞ (i.e.,
the latter possibly remaining fixed), provided that room for variation is allowed for
where else. But condition CA4 is silent on all this. For this reason, we think that the
ection with the “irrelevance of priors” is not well specified. (We thank Jan Sprenger
rompting this clarification.)
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turns out to yield a substantial constraint on the functional form of EPðe; hÞ.5
For lack of anything better, we will label this condition posteriors (its im-
plications and plausibility will be discussed later on).
5. W
helpe

6. An
requi
conce
506 n
E2.Posteriors. There exists a function g such that, for any e; h ∈ Lc and any
P ∈ P, EPðe; hÞ ¼ g½PðhjeÞ;Pðhj:eÞ�.
It is then possible to prove the following theorem (see app. A):
Theorem 1. E1 and E2 hold iff there exists a strictly increasing function f
such that, for any e; h ∈ Lc and any P ∈ P, EPðe; hÞ ¼ f ½εðe; hÞ�.
As a bidirectional implication, theorem 1 shows that E1 and E2 are both
sufficient and necessary to single out the set of posterior ratio measures of
explanatory power, thus providing a representation theorem, that is, an axio-
matic foundation carving out distinctive traits of these ordinally equivalent
measures taken together. Notably, this has not been achieved by invoking a
more demanding set of conditions than CA1–CA4, for the range of EPðe; hÞ
is left entirely unconstrained, and no analyticity, differentiability, or conti-
nuity requirement is involved.6 We now feel in a better position to precisely
discuss how appealing posterior ratio measures of explanatory power are in
philosophical terms.

4. Explanatory Justice. A clear and general axiomatization of posterior
ratio measures fosters insight into their distinctive properties and thus a
focused discussion of their implications. As a starting point for such a dis-
cussion, we will consider a quote from Schupbach and Sprenger (2011, 115)
in which they criticize an important competing measure of explanatory
power—that is, Iðe; hÞ ¼ ln½PðejhÞ=PðeÞ�—originally adopted by Good
(1960) and more recently by McGrew (2003):
Consider the following example: let e be a general description of the
Brownian motion observed in some particles suspended in a particular
liquid, and let h be Einstein’s atomic explanation of this motion. Of
course, h constitutes a lovely explanation of e. . . . However, take any
irrelevant new statement e* and conjoin it to e; for example, let e* be the
proposition that the mating season for an American green tree frog takes
place from mid-April to mid-August. In this case, measure Iðe; hÞ judges

e are grateful to Jonah Schupbach and Jan Sprenger for an e-mail exchange that
d us get this point clear.

alyticity implies differentiability, which in turn implies continuity. Notice that the
rement of continuity has been criticized as unduly demanding in similar results
rning the derivation of probabilistic measures of confirmation (see Fitelson 2006,
. 12).
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that Einstein hypothesis explains Brownian motion to the same extent that
it explains Brownian motion and this fact about tree frogs. Needless to say,
this result is deeply unsettling.
On the basis of this remark, Schupbach and Sprenger put forward the
requirement that EPðe ∧ e*; hÞ < EPðe; hÞ in such circumstances (i.e., when e
is an explanatory success of h and e* is probabilistically independent from e,
h, and their conjunction), which is in fact implied by any posterior ratio
measure. Presumably, the intuitive motivation here reflects a sense of
“explanatory justice,” to be informally understood as follows: a certain
amount of explanatory success of h concerning e, no matter how large,
cannot be extended “for free.” That is, it would not make sense to claim the
same amount of explanatory success concerning any logically stronger
statement e ∧ e*—unless of course some positive explanatory import of h on
e* independently exists.7 Along this line of argument, we urge, careful and
separate consideration should be given to the case of explanatory failure.

Let us illustrate with a mundane example. Assume there is a fair coin that
can only be of one of two kinds: either it is a normal coin or it has tails on
both sides. Label h the former hypothesis (normal coin) and¬h the latter (no
heads, two tails). Let e be a streak of tosses of, say, 10 tails. Clearly, ¬h
explains e perfectly well, while h fares poorly on this account. But now let e*
be involved once again (i.e., the American green tree frogs’mating season).
Should we say that the explanatory failure of h is at all mitigated if e* is
conjoined to e? We think not. Again it seems a matter of “explanatory jus-
tice.” For, should it be the case that EPðe ∧ e*; hÞ > EPðe; hÞ in these cir-
cumstances, then one would be allowed to indefinitely relieve a lack of
explanatory power, nomatter how large, by addingmore andmore irrelevant
explananda, simply at will. A strongly unpalatable outcome—yet this is
precisely what any posterior ratio measure of explanatory power implies,
including of course εðe; hÞ. Schupbach and Sprenger are aware of this
property (see 2011, 115), but they do not offer a discussion dispelling what
we see as its highly counterintuitive character. On the basis of the foregoing,
we put forward the following principle:
anonymous reviewer suggested that Schupbach and Sprenger’s quote is uncon-
ng to begin with, for in their view ameasure of explanatory power only applies when
uine explanatory connection is assumed to be present, which might fail to be the
when irrelevant statement e* is conjoined to explanandum e, so that the behavior of
; hÞ in these cases would become quite inconsequential. We find this worry legiti-
, although by no means conclusive. Space limitations force us to postpone more
ugh discussion to another occasion, but a relevant remark will arise in n. 10 below.
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E2*. Explanatory justice (upward and downward ).

i) For any e; e*; h ∈ Lc and any P ∈ P, if PðejhÞ > PðeÞ and e* is prob-
abilistically independent from e, h, and their conjunction, then
EPðe ∧ e*; hÞ < EPðe; hÞ.

ii) For any e; e*; h ∈ Lc and any P ∈ P, if PðejhÞ ≤ PðeÞ and e* is prob-
abilistically independent from e, h, and their conjunction, then
EPðe ∧ e*; hÞ ¼ EPðe; hÞ.
Recall that Schupbach and Sprenger criticized Good’s measure of explan-
atory power Iðe; hÞ for violating E2*i, which εðe; hÞ satisfies (along with all
posterior ratio measures). For the sake of brevity and vividness, we will say
that posterior ratio measures are just upward, while Good’s measure is not.
Notably, the pattern reverses with E2*ii, which is implied by Good’s
measure Iðe; hÞ but violated by εðe; hÞ (and all posterior ratio measures).
Good’s measure is thus just downward, while posterior ratio measures are
not. The question naturally arises, then, whether E2*i and E2*ii can ever be
satisfied at once, that is, whether there exist measures displaying overall
explanatory justice.8 This is the topic of the next section.

5. A Further Representation Theorem. Let us go back to the properties of
posterior ratio measures and pinpoint the culprit for their lack of downward
explanatory justice. Based on our theorem 1, the problem is easily located in
E2. To show this, we will now drop that assumption and replace it in such a
way as to obtain a new and different representation theorem by which both
clauses in E2* are fulfilled.

First, to dispense with E2, we will rely on another technical assumption
about EPðe; hÞ, that is,
E0. Formality. There exists a function g such that, for any e; h ∈ Lc and any
P ∈ P, EPðe; hÞ ¼ g½Pðe ∧ hÞ;PðeÞ;PðhÞ�.
e could wonder how the strict equality in E2*ii can be motivated, instead of
l to or lower than.” Here is one possible argument. Consider the limiting case of
ctive explanation, i.e., such that h ⊨ e, and so that h and ¬e are inconsistent. If and
if this holds, for each of Schupbach and Sprenger’s posterior ratio measures and
of our relative distance measures alike (see below), EPðe; hÞ gets a fixed maximum
and EPð:e; hÞ a fixed minimum value, which seems rather appealing (also see

pbach and Sprenger 2011, 111, corollary 1). Accordingly, if e* is irrelevant, one also
Pðe ∧ e*; hÞ < EPðe; hÞ (for the conjunctive explanandum e ∧ e*, unlike e, is not
ed by h) along with EPð:e ∧ e*; hÞ ¼ EPð:e; hÞ (for the conjunctive explanandum
e* is still inconsistent with h, just as ¬e was). While the strict inequality in E2*i
y generalizes the former fact, the strict equality in E2*ii does so with the latter. (We
an anonymous reviewer for raising this issue.)
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For a purely probabilistic theory of explanatory power, assumption E0 is
almost as undemanding as it can be. It simply states that EPðh; eÞ depends on
the probability distribution over the algebra generated by h and e, which is
entirely determined by Pðe ∧ hÞ, PðeÞ, and PðhÞ.9

Now we only need to include what follows:
9. In
the r
Tento

10. I
gestin
atory
(W) F
and
does
E3. Symmetry. For any e1; e2; h ∈ Lc and any P ∈ P, EPðe1; hÞ ⋛ EPðe2; hÞ
iff EPð:e1; hÞ ⋚ EPð:e2; hÞ.
E3 postulates an inverse (ordinal) correlation between the explanatory
success and explanatory failure of a hypothesis with regards to complemen-
tary events. Notably, it is purely ordinal in nature and, thus, a weaker version
of a homonymous condition that Schupbach and Sprenger themselves ad-
vocate and motivate with the remark that “the less surprising (more ex-
pected) the truth of e is in light of a hypothesis, the more surprising (less
expected) is e’s falsity” (2011, 113).

The announced result is thus as follows (see app. B for a proof ):
Theorem 2. E0, E1, E2*, and E3 hold iff there exists a strictly increasing
function f such that, for any e; h ∈ Lc and any P ∈ P, EPðe; hÞ ¼ f ½ε*ðe; hÞ�,
where

ε*ðe; hÞ ¼
PðejhÞ�PðeÞ

1�PðeÞ if PðejhÞ ≥ PðeÞ
PðejhÞ�PðeÞ

PðeÞ if PðejhÞ<PðeÞ
:

8>><
>>:
The answer to our question above concerning overall explanatory justice is
then in the positive. There exists a class of ordinally equivalent measures of
explanatory power that—unlike either Schupbach and Sprenger’s εðe; hÞ or
Good’s Iðe; hÞ—displays justice both upward and downward, that is, for both
explanatory success and failure. The crucial step is to assume E2* straight
away as an axiom and to get rid of E2.10
essence, E0 is nothing else than Schupbach and Sprenger’s CA1 itself without
estrictions concerning analyticity and range. The label formality is adopted after
ri, Crupi, and Osherson (2007, 2010).

n personal communication, Schupbach and Sprenger have disputed E2* by sug-
g that conjoining irrelevant explananda should water down degrees of explan-
success and failure alike (also see Schupbach and Sprenger 2011, 115), as follows:
or any e; e*; h ∈ Lc and any P ∈ P, if e* is probabilistically independent from e, h,
their conjunction, then jEPðe ∧ e*; hÞj < jEPðe; hÞj. Note, however, that εðe; hÞ
not imply W, as it gives εðe ∧ e*; hÞ ¼ εðe; hÞ ¼ �1 whenever h ⊨:e (also see
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Even beyond E0, E1, and E3, measures εðe; hÞ and ε*ðe; hÞ share further
desirable properties spelled out by Schupbach and Sprenger. For instance,
both of them take maximum (minimum) value iff h implies e (¬e). Yet given
the conflicting consequences of E2 and E2*, our theorems 1 and 2 imply that
εðe; hÞ and ε*ðe; hÞ are nonequivalent, not even in purely ordinal terms. For
instance, ε may rank e1 rather than e2 as a stronger explanatory success of a
given h, while ε* implies the opposite; that is, there exist cases in which
εðe1; hÞ > εðe2; hÞ, while ε*ðe1; hÞ < ε*ðe2; hÞ. So εðe; hÞ and ε*ðe; hÞ repre-
sent two genuinely alternative ways to explicate the notion of explanatory
power. As a historical note, it should be pointed out that ε*ðe; hÞ is not an
entirely new idea, as its positive branch already appears in Niiniluoto and
Tuomela (1973, 66, 89; also see Pietarinen 1970). The next section will
discuss some further properties of this measure.

6. Explanatory Power, Confirmation, and Miracles. There exists a rather
effective rule of thumb to generate a decent candidate measure of explan-
atory power; that is, take a plausible probabilistic measure of (incremental)
confirmation and invert the positions of e and h. Indeed, Schupbach and
Sprenger readily notice that their measure εðe; hÞ entertains this relationship
with a very interesting measure of confirmation or inductive support orig-
inally defined by Kemeny and Oppenheim (1952) and more recently revived
by Fitelson (2005); that is,

lðh; eÞ ¼ PðejhÞ�Pðej:hÞ
PðejhÞ þ Pðej:hÞ :

(The label l is employed here because this quantity is a strictly increasing
function of the likelihood ratio PðejhÞ=Pðej:hÞ.)

As shown below, the same kind of structural analogy holds between
ε*ðe; hÞ and yet another measure of confirmation, zðh; eÞ, which is based on
the notion of the “relative distance” between the initial and final probability
of a hypothesis (see Crupi, Tentori, and Gonzalez 2007; Crupi, Festa, and
Buttasi 2010; Crupi and Tentori 2010, forthcoming):
n. 8). Thus, posterior ratio measures do not convey the idea of watering down in a fully
coherent fashion. Second, by allowing for watering down in (nonextreme) cases of
explanatory failure, εðe; hÞ also allows for e being a worse explanatory failure than e ∧ e*,
despite e* being itself a (mild) explanatory failure for a given h, and even if h screens off
e* from e (proof omitted). So, e.g., let h be the hypothesis that Lee Harvey Oswald acted
alone in the assassination of JFK. There exist sensible subjective probability estimates by
which, according to a posterior ratio measure, h would fail to explain the sequence of
shots in Dallas (e) but fail to a lesser extent with the conjunctive explanandum consisting
in both that sequence of shots and the subsequent killing of Oswald (e ∧ e*). We find it
hard to see how rankings of this kind could be rationalized and highlight as a virtue of
explanatory justice (E2*) that it prevents them from arising.
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zðh; eÞ ¼
PðhjeÞ�PðhÞ

1�PðhÞ if PðhjeÞ ≥ PðhÞ
PðhjeÞ�PðhÞ

PðhÞ if PðhjeÞ< PðhÞ
:

8>><
>>:

ε*ðe; hÞ ¼
PðejhÞ�PðeÞ

1�PðeÞ if PðejhÞ ≥ PðeÞ
PðejhÞ�PðeÞ

PðeÞ if PðejhÞ< PðeÞ
:

8>><
>>:

In considering pairs of analogous expressions for explanatory power and
inductive confirmation, such as those above, one should always keep in
mind a crucial theoretical difference. In the measurement of explanatory
power, the hypothesis h at issue is meant to be in some explanatory relation
(to be separately defined) with evidence e—a caveat with no apparent
counterpart in probabilistic confirmation theory. That said, ε*ðe; hÞ is itself
a measure of relative distance, the latter notion involving the background
probability of the explanandum, PðeÞ, and the associated likelihood of the
candidate explanans, PðejhÞ. In particular, when h enjoys some amount of
explanatory success relative to e (so that PðejhÞ>PðeÞ), ε*ðe; hÞ assesses
that explanatory success by the proportion of the background surprisingness
of e (i.e., 1�PðeÞ) that is removed by assuming h (i.e., by covering the
positive difference between PðejhÞ and PðeÞ). However, in case e is at odds
with h (so that PðejhÞ< PðeÞ), ε*ðe; hÞ rates explanatory failure by a
negative value that is lower and lower, the higher the proportion of
the background expectedness of e (i.e., PðeÞ) that is removed by assuming
h (i.e., by covering the negative difference between PðejhÞ and PðeÞ).11

In view of these structural analogies, investigating the connections be-
tween probabilistic explanatory power EPðe; hÞ and confirmation CPðh; eÞ
appears appropriate (see Crupi 2012). Interestingly, if relative distance mea-
sures of confirmation and explanatory power are concurrently adopted—that
is, if one posits both CPðh; eÞ ¼ f ½zðh; eÞ� and EPðe; hÞ ¼ g½ε*ðe; hÞ�, where
f and g are strictly increasing functions—then one can easily derive what
follows (proof omitted):
11. A
that i
PðeÞ;
M. No miracle (retail version). For any e1; e2; h1; h2 ∈ Lc and any P ∈ P, if
Pðh1je1Þ > Pðh1Þ and Pðh2je2Þ > Pðh2Þ, then CPðh1; e1Þ⋛CPðh2; e2Þ iff
EPðe1;:h1Þ⋚ EPðe2;:h2Þ.
s suggested by an anonymous reviewer, ε*ðe; hÞ can be written in yet another way
s possibly instructive, as follows: ε*ðe; hÞ ¼ ½PðejhÞ�PðeÞ�=½1�PðeÞ� if PðejhÞ ≥
ε*ðe; hÞ ¼ �½Pð:ejhÞ�Pð:eÞ�=½1�Pð:eÞ� if Pð:ejhÞ>Pð:eÞ.
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M postulates an inverse (ordinal) correlation between the degree of positive
confirmation that a successful explanatory hypothesis h receives from the
occurrence of explanandum e and the degree to which e fails to be explained
by ¬h. So explanatory hypothesis h is confirmed by e to the extent that e
appears inexplicable (a miracle, as it were), assuming the falsity of h. No-
tably, if zðh; eÞ and ε*ðe; hÞ are chosen among the corresponding classes of
ordinal equivalence, a straightforward quantitative counterpart of M ob-
tains; that is zðh; eÞ ¼ � ε*ðe;:hÞ just in case PðejhÞ > PðeÞ.

While admittedly only a first step in a formal analysis of the subtle
relations between confirmation and explanatory power, this result strikes
us nonetheless as a telling implication of relative distance measures. In fact,
the label for M is freely adapted after Worrall (2006), who contrasts “retail”
instances of a so-called no-miracle argument with its “wholesale” variant. In
Worrall’s terms, retail instances of the argument involve specific (scientific)
hypotheses, while the wholesale argument (which he criticizes) would
concern the global philosophical stance of a realist view of “all” science.
Despite the differences between Worrall’s and our theoretical framework
and objectives, we believe that the meaning of M vindicates our termino-
logical suggestion.12

7. Conclusion. In our discussion, we have retained much of Schupbach and
Sprenger’s original approach in the inquiry on the notion of explanatory
power.Wehave proved a representation theorem for posterior ratiomeasures,
which Schupbach and Sprenger favor, along with a different representa-
tion theorem for an alternative set of measures relying on the notion of
relative distance in probability. We end up advocating the latter and ε*ðe; hÞ
as a suitable exemplar of its class of ordinal equivalence.We have motivated
this preference through several remarks. First, ε*ðe; hÞ shares the properties
set out by Schupbach and Sprenger that are genuinely appealing, while over-
coming an undesirable trait of posterior ratio measures, that is, departure
from downward justice upon the conjunction of irrelevant explananda.
Second, ε*ðe; hÞ conveys in probabilistic terms a view of explanatory power
that is conceptually sound, as it transparently involves how the background
surprisingness/expectedness of explanandum e is reduced by assuming
candidate explanans h. Finally, relative distance measures yield a telling
12. Our result M is clearly not meant to bear direct consequences on the philosophical
debate on scientific realism but only to pinpoint a sharp probabilistic rendition of
(retail) no-miracle arguments. Many realists would add that, for h and ¬h to have a
genuinely explanatory connection with e, they could not be instrumentalistically con-
strued to begin with. In virtue of its formal nature, however, M does not fix a specific
account of the relationship between explanatory relevance and the status of scientific
hypotheses. (We thank Jan Sprenger for prompting this remark.)
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preliminary result concerning the relation between formal representations of
explanatory power and inductive confirmation, thus bridging discussions in
this area with a so-called no-miracle argument.
Appendix A

Theorem 1. E1 and E2 hold iff there exists a strictly increasing
function f such that, for any e; h ∈ Lc and any P ∈ P, EPðe; hÞ ¼
f ½εðe; hÞ�.

Proof.

Right-to-Left Implication.

E1. Let O denote odds; that is, OðαÞ ¼ PðαÞ=Pð:αÞ. By the prob-
ability calculus (Bayes’s theorem), PðhjeÞ=Pðhj:eÞ ¼ OðejhÞ=OðeÞ.
Keeping in mind that f is an increasing function and εðe; hÞ is an
increasing function of the posterior ratio PðhjeÞ=Pðhj:eÞ, we have
EPðe; h1Þ ¼ f ½εðe; h1Þ� ⋛ f ½εðe; h2Þ� ¼ EPðe; h2Þ iff Oðejh1Þ=OðeÞ ⋛
Oðejh2Þ=OðeÞ iff Oðejh1Þ ⋛Oðejh2Þ iff Pðejh1Þ ⋛ Pðejh2Þ.

E2. Fulfillment of E2 immediately follows from εðe; hÞ ¼ tanhð1=2
fln½PðhjeÞ=Pðhj:eÞ�gÞ.
Left-to-Right Implication.

As a trivial consequence of E2, there exists a function j such that, for
any h; e ∈ Lc and any P ∈ P, EPðe; hÞ ¼ j½PðhjeÞ=Pðhj:eÞ;Pðhj:eÞ�.
With no loss of generality, we will convey probabilistic coherence and
regularity by constraining the domain of j to include pairs of values (x, y)
such that (i) 0 < y < 1, and (ii) 0 ≤ x ≤ 1=y. We thus posit j : fðx; yÞ ∈
f<þ ∪ f0gg� ð0; 1Þjx ≤ 1=yg→< and denote the domain of j as Dj.
Lemma 1.1. For any x, y1, y2 such that x ∈<þ ∪ f0g, y1; y2 ∈ ð0; 1Þ, and
x ≤ 1=y1; 1=y2, there exist e; h1; h2 ∈ Lc and P′∈ P such that P′ðh1jeÞ=
P′ðh1j:eÞ ¼ P′ðh2jeÞ=P′ðh2j:eÞ ¼ x,P′ðh1j:eÞ ¼ y1,andP′ðh2j:eÞ ¼ y2.
Proof. Let w ∈ ð0; 1Þ be given. The equalities in lemma 1.1 arise from
the following scheme of probability assignments:

P′ðh1 ∧ h2 ∧ eÞ ¼ x2y1y2w;
P′ðh1 ∧ h2 ∧ :eÞ ¼ y1y2ð1�wÞ;
P′ðh1 ∧ :h2 ∧ eÞ ¼ xy1ð1�xy2Þw;
P′ðh1 ∧ :h2 ∧ :eÞ ¼ y1ð1�y2Þð1�wÞ;

P′ð:h1 ∧ h2 ∧ eÞ ¼ ð1�xy1Þxy2w;
P′ð:h1 ∧ h2 ∧ :eÞ ¼ ð1�y1Þy2ð1�wÞ;
P′ð:h1 ∧ :h2 ∧ :eÞ ¼ ð1�xy1Þð1�xy2Þw;
P′ð:h1 ∧ :h2 ∧ :eÞ ¼ ð1�y1Þð1�y2Þð1�wÞ:
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Suppose there exist ðx; y1Þ; ðx; y2Þ ∈Dj such that jðx; y1Þ ≠ jðx; y2Þ. Then,
by lemma 1.1 and the definition ofDj, there exist e; h1; h2 ∈ Lc and P′∈ P
such thatP′ðh1jeÞ=P′ðh1j:eÞ ¼ P′ðh2jeÞ=P′ðh2j:eÞ ¼ x,P′ðh1j:eÞ ¼ y1,
and P′ðh2j:eÞ ¼ y2. By the probability calculus, if the latter equalities
hold, then P′ðejh1Þ ¼ P′ðejh2Þ. Thus, there exist e; h1; h2 ∈ Lc and P′∈ P
such that EP′ðe; h1Þ ¼ jðx; y1Þ ≠ jðx; y2Þ ¼ EP′ðe; h2Þ, even if P′ðejh1Þ ¼
P′ðejh2Þ, contradicting E1. Conversely, E1 implies that, for any ðx; y1Þ,
ðx; y2Þ ∈Dj, jðx; y1Þ ¼ jðx; y2Þ. So, for E1 to hold, there must exist f
such that, for any e; h ∈ Lc and anyP ∈ P,EPðe; hÞ ¼ f ½PðhjeÞ=Pðhj:eÞ�,
and f ðxÞ ¼ jðx; yÞ. We thus posit f : f<þ ∪ f0gg→< and denote the
domain of f as Df .
Lemma 1.2. For any x1; x2 ∈<þ ∪ f0g, there exist e; h1; h2 ∈ Lc and

P″∈ P such that P″ðh1jeÞ=P″ðh1j:eÞ ¼ x1 and P″ðh2jeÞ=P″ðh2j:eÞ ¼ x2.
Proof. Let y1; y2 ∈ ð0; 1Þ and w ∈ ð0; 1Þ be given so that y1 ≤ 1=x1 (as the

latter quantity must be positive, y1 exists) and y2 ≤ 1=x2 (as the latter
quantity must be positive, y2 exists). The equalities in lemma 1.2 arise
from the following scheme of probability assignments:

P″ðh1 ∧ h2 ∧ eÞ ¼ x1x2y1y2w;
P″ðh1 ∧ h2 ∧:eÞ ¼ y1y2ð1�wÞ;
P″ðh1 ∧:h2 ∧ eÞ ¼ xy1ð1�x2y2Þw;
P″ðh1 ∧:h2 ∧:eÞ ¼ y1ð1�y2Þð1�wÞ;

P″ð:h1 ∧ h2 ∧ eÞ ¼ ð1�x1y1Þx2y2w;
P″ð:h1 ∧ h2 ∧ :eÞ ¼ ð1�y1Þy2ð1�wÞ;
P″ð:h1 ∧ :h2 ∧ eÞ ¼ ð1�xy1Þð1�x2y2Þw;
P″ð:h1 ∧ :h2 ∧ :eÞ ¼ ð1�y1Þð1�y2Þð1�wÞ:

Suppose there exist x1; x2 ∈Df such that x1 > x2 and f ðx1Þ ≤ f ðx2Þ.
Then, by lemma 1.2 and the definition ofDf , there exist e; h1; h2 ∈ Lc and
P″∈ P such that P″ðh1jeÞ=P″ðh1j:eÞ ¼ x1 and P″ðh2jeÞ=P″ðh2j:eÞ ¼ x2.
By the probability calculus, if the latter equalities hold, then P″ðejh1Þ >
P″ðejh2Þ. Thus, there exist e; h1; h2 ∈ Lc and P″∈ P such that EP″ðe;
h1Þ ¼ f ðx1Þ ≤ f ðx2Þ ¼ EP″ðe; h2Þ, even if P″ðejh1Þ > P″ðejh2Þ, contra-
dicting E1. Conversely, E1 implies that, for any x1; x2 ∈Df , if x1 > x2
then f ðx1Þ > f ðx2Þ. By a similar argument, E1 also implies that, for any
x1; x2 ∈Df , if x1 ¼ x2 then f ðx1Þ ¼ f ðx2Þ. So, for E1 to hold, it must be
that, for any e; h ∈ Lc and anyP ∈ P,EPðe; hÞ ¼ f ½PðhjeÞ=Pðhj:eÞ�, and f
is a strictly increasing function. This completes the proof of theorem 1.
Appendix B

Theorem 2. E0, E1, E2*, and E3 hold iff there exists a strictly in-
creasing function f such that, for any e; h ∈ Lc and any P ∈ P, EPðe; hÞ ¼
f ½ε*ðe; hÞ�, where
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ε*ðe; hÞ ¼
PðejhÞ�PðeÞ

1�PðeÞ if PðejhÞ ≥ PðeÞ
PðejhÞ�PðeÞ

PðeÞ if PðejhÞ < PðeÞ
:

8>><
>>:
Proof.

Right-to-Left Implication.

E0. If there exists a strictly increasing function f such that EPðe; hÞ ¼
f ½ε*ðe; hÞ�, then E0 is trivially satisfied.

E1. Let e; h1; h2 ∈ Lc be given. Three classes of cases can obtain.
(i) Let P ∈ P be such that Pðejh1Þ⋛PðeÞ and Pðejh2Þ⋚PðeÞ. It is easy to
verify that, for any e; h ∈ Lc, PðejhÞ⋛PðeÞ iff ε*ðe; hÞ⋛0. So we have
that, for any e; h1; h2 ∈ Lc, Pðejh1Þ⋛PðeÞ iff ε*ðe; h1Þ⋛0 and Pðejh2Þ⋚
PðeÞ iff ε*ðe; h2Þ⋚0. It follows that, for any e; h1; h2 ∈ Lc, Pðejh1Þ⋛
Pðejh2Þ iff ε*ðe; h1Þ⋛ε*ðe; h2Þ. (ii) Let P ∈ P be such that Pðejh1Þ ≥
PðeÞ and Pðejh2Þ ≥ PðeÞ. Then we have that, for any e; h1; h2 ∈ Lc,
Pðe jh1Þ ⋛ Pðe jh2Þ iff Pð:ejh1Þ ⋚ Pð:ejh2Þ iff Pð:ejh1Þ=Pð:eÞ ⋚
Pð:e jh2Þ=Pð:eÞ iff 1�Pð:e jh1Þ=Pð:eÞ⋛1�Pð:e jh2Þ=Pð:eÞ iff
ε*ðe; h1Þ ⋛ ε*ðe; h2Þ. (iii) Finally, let P ∈ P be such that Pðejh1Þ ≤
PðeÞ and Pðejh2Þ ≤ PðeÞ. Then we have that, for any e; h1; h2 ∈ Lc,
Pðejh1Þ ⋛Pðejh2Þ iff Pðejh1Þ=PðeÞ⋛ Pðejh2Þ=PðeÞ iff Pðejh1Þ=PðeÞ
�1⋛Pðejh2Þ=PðeÞ�1 iff ε*ðe; h1Þ⋛ ε*ðe; h2Þ. As i–iii are exhaustive,
for any e; h1; h2 ∈ Lc and any P ∈ P, Pðejh1Þ⋛Pðejh2Þ iff ε*ðe; h1Þ⋛
ε*ðe; h2Þ. By ordinal equivalence, if there exists a strictly increasing
function f such that EPðe; hÞ ¼ f ½ε*ðe; hÞ�, then E1 follows.
E2*. Let e; e*; h ∈ Lc be given. (i) Let P ∈ P be given so that PðejhÞ
>PðeÞ. Then, for any e; e*h ∈ Lc, if e* is probabilistically independent
from e, h, and their conjunction, PðhjeÞ ¼ Pðhje ∧ e*Þ iff PðhjeÞ� PðhÞ
¼ Pðhje ∧ e*Þ�PðhÞ, by which ½PðhjeÞ�PðhÞ�PðeÞ>½Pðhje ∧ e*Þ�
PðhÞ�Pðe ∧ e*Þ, which obtains iff Pðh ∧ eÞ�PðhÞPðeÞ>Pðh ∧ e ∧ e*Þ
�PðhÞPðe ∧ e*Þ iff PðejhÞ�PðeÞ >Pðe ∧ e*jhÞ�Pðe ∧ e*Þ, by which
½PðejhÞ � PðeÞ�=½1�PðeÞ� > ½Pðe ∧ e*jhÞ�Pðe ∧ e*Þ�=½1�Pðe ∧ e*Þ�,
which obtains iff ε*ðe; hÞ>ε*ðe ∧ e*; hÞ. By ordinal equivalence, if
there exists a strictly increasing function f such that EPðe; hÞ ¼
f ½ε*ðe; hÞ�, then E2*i follows. (ii) Let P ∈ P be given so that PðejhÞ ≤
PðeÞ. Then, for any e; e*h ∈ Lc, if e* is probabilistically independent
from e, h, and their conjunction,PðejhÞ=PðeÞ¼Pðe∧e*jhÞ=Pðe∧e*Þ iff
PðejhÞ=PðeÞ�1¼Pðe ∧ e*jhÞ=Pðe∧ e*Þ�1 iff ε*ðe; hÞ¼ ε*ðe ∧ e*; hÞ.
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By ordinal equivalence, if there exists a strictly increasing function f
such that EPðe; hÞ ¼ f ½ε*ðe; hÞ�, then E2*ii follows.
E3. Let e1; e2; h ∈ Lc and P ∈ P be given. Three classes of cases can
obtain. (i) Let P ∈ P be such that Pðe1jhÞ⋛Pðe1Þ and Pðe2jhÞ⋚Pðe2Þ. It
is easy to verify that, for any e; h ∈ Lc, PðejhÞ⋛PðeÞ iff ε*ðe; hÞ⋛0 iff
Pð:ejhÞ⋚Pð:eÞ iff ε*ð:e; hÞ⋚0. So we have that, for any e1; e2; h ∈ Lc,
Pðe1jhÞ⋛Pðe1Þ iff ε*ðe1; hÞ⋛0 iff Pð:e1jhÞ⋚Pð:e1Þ iff ε*ð:e1; hÞ⋚0
and P ðe2 j hÞ ⋛ Pðe2Þ iff ε*ðe2; hÞ ⋛ 0 :Pð:e2 j hÞ ⋚ P ð:e2 Þ iff
ε*ð:e2; hÞ⋚ 0. It follows that, for any e1; e2; h∈Lc, ε*ðe1; hÞ⋛ε*ðe2; hÞ iff
ε*ð:e1; hÞ ⋚ε*ð:e2; hÞ. (ii) LetP ∈ P be such that Pðe1jhÞ ≥ Pðe1Þ and
Pðe2jhÞ ≥ Pðe2Þ. Then we have that, for any e1; e2; h ∈ Lc, ε*ðe1; hÞ⋛
ε*ðe2; hÞ iff 1�Pð:e1jhÞ=Pð:e1Þ⋛1�Pð:e2jhÞ=Pð:e2Þ iff Pð:e1jhÞ=
Pð:e1Þ⋚Pð:e2jhÞ=Pð:e2Þ iff Pð:e1jhÞ=Pð:e1Þ�1⋚Pð:e2jhÞ=Pð:e2Þ�1
iff ε*ð:e1; hÞ⋚ε*ð:e2; hÞ. (iii) Finally, let P ∈ P be such that Pðe1jhÞ ≤
Pðe1Þ and Pðe2jhÞ ≤ Pðe2Þ. Then we have that, for any e1; e2; h ∈ Lc,
ε*ðe1; hÞ⋛ε*ðe2; hÞ iffPðe1jhÞ=Pðe1Þ�1⋛Pðe2jhÞ=Pðe2Þ�1 iff Pðe1jhÞ=
Pðe1Þ ⋛ Pðe2 jhÞ=Pðe2Þ iff 1�Pðe1 j hÞ=Pðe1Þ ⋚ 1�Pðe2 jhÞ=Pðe2Þ iff
ε*ð:e1; hÞ⋚ε*ð:e2; hÞ. As i–iii are exhaustive, for any e1; e2; h ∈ Lc and
any P ∈ P, ε*ðe1; hÞ⋛ε*ðe2; hÞ iff ε*ð:e1; hÞ⋚ ε*ð:e2; hÞ. By ordinal
equivalence, if there exists a strictly increasing function f such that
EPðe; hÞ ¼ f ½ε*ðe; hÞ�, then E3 follows.

Left-to-Right Implication.

The Case of Explanatory Failure ðPðejhÞÞ ≤ PðeÞÞ. Note that Pðe ∧
hÞ ¼ ½PðejhÞ=PðeÞ�PðeÞPðhÞ. As a consequence, by E0, there exists a
function j such that, for any e; h ∈ Lc and any P ∈ P, EPðe; hÞ ¼
j½PðejhÞ=PðeÞ;PðeÞ;PðhÞ�. With no loss of generality, we will convey
probabilistic coherence, regularity, and explanatory failure by con-
straining the domain of j to include triplets of values (x, y, w) such
that the following conditions are jointly satisfied:

• 0 < y;w < 1;
• x ≥ 0, by which x ¼ PðejhÞ=PðeÞ ≥ 0, so that PðejhÞ ≥ 0, and thus

Pðe ∧ hÞ ≥ 0;
• x ≤ 1 (conveying explanatory failure; that is, PðejhÞ ≤ PðeÞ), by

which xy ¼ PðejhÞ < 1, so that Pðe ∧ hÞ < PðhÞ, and thus Pð:e ∧
hÞ> 0, and xw ¼ PðhjeÞ < 1, so that Pðe ∧ hÞ < PðeÞ, and thus
Pð:e ∧ hÞ > 0;

• x ≥ ðy þ w�1Þ=yw, by which xyw ¼ Pðe ∧ hÞ ≥ PðeÞ þ PðhÞ�
1 ¼ y þ w�1, and thus Pðe ∧ hÞ þ Pð:e ∧ hÞ þ Pðe ∧ :hÞ ≤ 1.



380 VINCENZO CRUPI AND KATYA TENTORI
We thus posit j : fðx; y;wÞ ∈ ½0; 1�� ð0; 1Þ2jx ≥ ðy þ w�1Þ=ywg→<
and denote the domain of j as Dj.
Lemma 2.1. For any x; y;w1;w2 such that x ∈ ½0;1�, y;w1;w2 ∈ ð0; 1Þ,
and x ≥ ðy þ w1�1Þ=yw1;ðy þ w2�1Þ=yw2, there exist e; h1; h2 ∈ Lc
and P′∈ P such that P′ðejh1Þ=P′ðeÞ ¼ P′ðejh2Þ=P′ðeÞ ¼ x, P′ðeÞ ¼ y,
P′ðh1Þ ¼ w1, and P′ðh2Þ ¼ w2.
Proof. The equalities in lemma 2.1 arise from the following scheme of
probability assignments:

P′ðh1 ∧ h2 ∧ eÞ ¼ ðxw1Þðxw2Þy;
P′ðh1 ∧ h2:eÞ ¼ ð1�xyÞ2w1w2

ð1�yÞ ;

P′ðh1 ∧:h2 ∧ eÞ ¼ ðxw1Þð1�xw2Þy;
P′ðh1 ∧:h2 ∧:eÞ ¼ ð1�xyÞw1 1� ð1�xyÞw2

ð1�yÞ
� �

;

P′ð:h1 ∧ h2 ∧ eÞ ¼ ð1�xw1Þðxw2Þy;
P′ð:h1 ∧ h2 ∧:eÞ ¼ 1� ð1�xyÞw1

ð1�yÞ
� �

ð1�xyÞw2;

P′ð:h1 ∧:h2 ∧ eÞ ¼ ð1�xw1Þð1�xw2Þy;
P′ð:h1 ∧:h2 ∧ :eÞ ¼ 1� ð1�xyÞw1

ð1�yÞ
� �

1� ð1�xyÞw2

ð1�yÞ
� �

ð1�yÞ:

Suppose there exist ðx; y;w1Þ; ðx; y;w2Þ ∈Dj such that jðx; y;w1Þ ≠
jðx; y;w2Þ. Then, by lemma 2.1 and the definition of Dj, there exist
e; h1; h2 ∈ Lc and P′∈ P such that P′ðejh1Þ=P′ðeÞ ¼ P′ðejh2Þ=P′ðeÞ ¼ x,
P′ðeÞ ¼ y, P′ðh1Þ ¼ w1, and P′ðh2Þ ¼ w2. Clearly, if the latter equalities
hold, then P′ðejh1Þ ¼ P′ðejh2Þ. Thus, there exist e; h1; h2 ∈ Lc and
P′∈ P such that Ep′ðe; h1Þ ¼ jðx; y;w1Þ ≠ jðx; y;w2Þ ¼ Ep′ðe; h2Þ, even if
P′ðejh1Þ ¼ P′ðejh2Þ, contradicting E1. Conversely, E1 implies that, for any
ðx; y;w1Þ; ðx; y;w2Þ ∈Dj, jðx; y;w1Þ ¼ jðx; y;w2Þ. So, for E1 to hold,
there must exist k such that, for any e; h ∈ Lc and any P ∈ P, if PðejhÞ ≤
PðeÞ, then Epðe; hÞ ¼ k½PðejhÞ=PðeÞ;PðeÞ�, and kðx; yÞ ¼ jðx; y;wÞ. We
thus posit k : fðx; yÞ ∈ ½0; 1�� ð0; 1Þg→< and denote the domain of k
as Dk.
Lemma 2.2. For any x; y1; y2 such that x ∈ ½0; 1�, y1; y2 ∈ ð0; 1Þ, and
y1 > y2, there exist e; e∗; h ∈ Lc and P″∈ P such that P″ðejhÞ=P″ðeÞ ¼ x,
P″ðeÞ ¼ y1, P″ðe ∧ e∗Þ ¼ y2, P″ðe ∧ e∗Þ ¼ P″ðeÞP″ðe∗Þ, P″ðh ∧ e∗Þ ¼
P″ðhÞP″ðe∗Þ, and P″ðh ∧ e ∧ e∗Þ ¼ P″ðh ∧ eÞP″ðe∗Þ.
Proof. Let w ∈ ð0; 1Þ be given so that w ≤ ð1�y1Þ=ð1�xy1Þ (as the latter
quantity must be positive, w exists). The equalities in lemma 2.2 arise
from the following scheme of probability assignments:

P″ðh ∧ e ∧ e*Þ ¼ xwy2;
P″ðh ∧ e ∧:e*Þ ¼ xwðy1 �y2Þ;
P″ðh ∧:e ∧ e*Þ ¼ ð1�xy1Þw

ð1�y1Þ
� � ð1�y1Þy2

y1

� �
;

P″ðh1 ∧ :e ∧ :e*Þ ¼ ð1�xy1Þw
ð1�y1Þ

� � ð1�y1Þðy1�y2Þ
y1

� �
;

P″ð:h ∧ e ∧ e*Þ ¼ ð1�xwÞy2;
P″ð:h ∧ e ∧:e*Þ ¼ ð1�xwÞðy1�y2Þ;
P″ð:h ∧:e ∧ :e*Þ ¼ 1� ð1�xy1Þw

ð1�y1Þ
� � ð1�y1Þy2

y1

� �
;

P″ð:h ∧:e ∧ :e*Þ ¼ 1� ð1�xy1Þw
ð1�y1Þ

� � ð1�y1Þðy1 �y2Þ
y1

� �
:
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Suppose there exist ðx; y1Þ; ðx; y2Þ ∈Dk such that kðx; y1Þ ≠ kðx; y2Þ.
Assume y1 > y2 with no loss of generality. Then, by lemma 2.2 and the
definition of Dk, there exist e; e∗; h ∈ Lc and P″∈ P such that P″ðejhÞ=
P″ðeÞ ¼ x, P″ðeÞ ¼ y1, P″ðe ∧ e∗ Þ ¼ y2, P″ðe ∧ e∗ Þ ¼ P″ðeÞP″ðe∗ Þ,
P″ðh ∧ e∗Þ ¼ P″ðhÞPðeÞ, and P″ðh ∧ e ∧ e∗Þ ¼ P″ðh ∧ eÞP″ðe∗Þ. If the
latter equalities hold, then P″ðejhÞ≤ P″ðeÞ, and e* is probabilistically
independent from e, h, and their conjunction. Thus, there exist e; e∗;
h ∈ Lc andP″∈ P such thatEp″ðe; hÞ ¼ kðx; y1Þ ≠ kðx; y2Þ ¼ Ep″ðe ∧ e∗; hÞ,
even if P″ðejhÞ≤ P″ðeÞ and e* is probabilistically independent from e, h,
and their conjunction, contradicting E2*ii. Conversely, E2* implies that,
for any ðx; y1Þ; ðx; y2Þ ∈Dk, kðx; y1Þ ¼ kðx; y2Þ. So, for E2* to hold, there
must exist m such that, for any e; h; ∈ Lc and any P ∈ P, if PðejhÞ≤ PðeÞ,
then Epðe; hÞ ¼ m½Pðe jhÞ=PðeÞ �, and mðxÞ ¼ kðx; yÞ. We thus posit
m : ½0; 1�→< and denote the domain of m as Dm.
Lemma 2.3. For any x1; x2 ∈ ½0; 1�, there exist e; h1; h2 ∈ Lc and P‴∈ P
such that P‴ðejh1Þ=P‴ðeÞ ¼ x1 and P‴ðejh2Þ=P‴ðeÞ ¼ x2.
Proof. Let y;w1;w2 ∈ ð0; 1Þ be given so that w1 ≤ ð1�yÞ=ð1�x1yÞ (as
the latter quantity must be positive,w1 exists) andw2 ≤ ð1�yÞ=ð1�x2yÞ
(as the latter quantity must be positive, w2 exists). The equalities in
lemma 2.3 arise from the following scheme of probability assignments:

P‴ðh1 ∧ h2 ∧ eÞ ¼ ðx1w1Þðx2w2Þy;
P‴ðh1 ∧ h2 ∧ :eÞ ¼ ð1�x1yÞð1� 2yÞw1w2

ð1�yÞ ;

P‴ðh1 ∧ :h2 ∧ eÞ ¼ ðx1w1Þðx2w2Þy;
P‴ðh1 ∧ :h2 ∧ :eÞ ¼ ð1�x1yÞw1 1� ð1�x2yÞw2

ð1�yÞ
� �

;

P‴ð:h1 ∧ h2 ∧ eÞ ¼ ð1�x1w1Þðx2w2Þy;
P‴ð:h1 ∧ h2 ∧ :eÞ ¼ 1� ð1�x1yÞw1

ð1�yÞ
� �

ð1�x2yÞw2;

P‴ð:h1 ∧ :h2 ∧ eÞ ¼ ð1�x1w1Þðx2w2Þy;
P‴ð:h1 ∧ :h2 ∧ :eÞ ¼ 1� ð1�x1yÞw1

ð1�yÞ
� �

1� ð1�x2yÞw2

ð1�yÞ
� �

ð1�yÞ:

Suppose there exist x1; x2 ∈Dm such that x1>x2 and mðx1Þ≤ mðx2Þ.
Then, by lemma 2.3 and the definition of Dm, there exist e; h1; h2 ∈ Lc
and P‴∈ P such that P‴ðejh1Þ=P‴ðeÞ ¼ x1 and P‴ðejh2Þ=P‴ðeÞ ¼ x2.
Clearly, if the latter equalities hold, then P‴ðejh1Þ>P‴ðejh2Þ. Thus, there
exist e; h1; h2 ∈ Lc and P‴∈ P such that Ep‴ðe; h1Þ ¼ mðx1Þ≤mðx2Þ ¼
Ep‴ðe; h2Þ, even if P‴ðejh1Þ>P‴ðejh2Þ, contradicting E1. Conversely, E1
implies that, for any x1; x2 ∈ Dm, if x1 > x2, then mðx1Þ> mðx2Þ. By a
similar argument, E1 also implies that, for any x1; x2 ∈Dm, if x1 ¼ x2,
thenmðx1Þ ¼ mðx2Þ. So, for E1 to hold, it must be that, for any e; h; ∈ Lc
and any P ∈ P, if PðejhÞ≤ PðeÞ, then Epðe; hÞ ¼ m½PðejhÞ= PðeÞ�, and m
is a strictly increasing function.
The Case of Explanatory Success ðPðejhÞ>PðeÞÞ. Notice that Pðe ∧
hÞ ¼ f1�½Pð:ejhÞ=Pð:eÞ�Pð:eÞgPðhÞ and PðeÞ ¼ 1�Pð:eÞ. As a
consequence, by E0, there exists a function r such that, for any e;
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h; ∈ Lc and any P ∈ P, Epðe; hÞ ¼ r½Pð:ejhÞ=Pð:eÞ;Pð:eÞ;PðhÞ�.
With no loss of generality, we will convey probabilistic coherence,
regularity, and explanatory success by constraining the domain of r to
include triplets of values ðx; y;wÞ such that the following conditions are
jointly satisfied:

• 0<y;w<1;
• x ≥ 0, by which x ¼ Pð:ejhÞ=Pð:eÞ ≥ 0, so that Pð:ejhÞ ≥ 0, and

thus Pð:e ∧ hÞ ≥ 0;
• x<1 (conveying explanatory success; that is, PðejhÞ>PðeÞ), by

which xy ¼ Pð:ejhÞ<1, so that Pð:e ∧ hÞ< PðhÞ, and thus Pðe ∧
hÞ>0, and xw ¼ Pðhj:eÞ<1, so that Pð:e ∧ hÞ< Pð:eÞ, and thus
Pð:e ∧ :hÞ>0;

• x ≥ ðy þ w�1Þ=yw, by which xyw ¼ Pð:e ∧ hÞ ≥ Pð:eÞ þ PðhÞ
�1 ¼ y þ w�1, and thus Pð:e ∧ hÞ þ Pðe ∧ hÞ þ Pð:e ∧ :hÞ
≤1.

We thus posit r : fðx; y;wÞ ∈ ½0; 1Þ� ð0; 1Þ2jx ≥ ðy þ w�1g=ywg→<
and denote the domain of r as Dr.
Lemma 2.4. For any x; y;w1;w2 such that x ∈ ½0; 1Þ, y;w1;w2 ∈ ð0; 1Þ,
and x ≥ ðy þ w1�1Þ=yw1; ðy þ w2�1Þ=yw2, there exist e; h1; h2 ∈ Lc
and P′∈ P such that P′ð:e jh1Þ=P′ð:eÞ ¼ P′ð:e jh2Þ=P′ð:eÞ ¼ x,
P′ð:eÞ ¼ y, P′ðh1Þ ¼ w1, and P′ðh2Þ ¼ w2.
Proof. The equalities in lemma 2.4 arise from the following scheme of
probability assignments:

P′ðh1 ∧ h2 ∧ eÞ ¼ ð1�xyÞ2w1w2

ð1�yÞ ;

P′ðh1 ∧ h2 ∧ :eÞ ¼ ðxw1Þðxw2Þy;
P′ðh1 ∧ :h2 ∧ eÞ ¼ ð1�xyÞw1 1� ð1�xyÞw2

ð1�yÞ
� �

;

P′ðh1 ∧ :h2 ∧ :eÞ ¼ ðxw1Þð1�xw2Þy;

P′ð:h1 ∧ h2 ∧ eÞ ¼ 1� ð1�xyÞw1

ð1�yÞ
� �

ð1�xyÞw2;

P′ð:h1 ∧ h2 ∧ :eÞ ¼ ð1�xw1Þðxw2Þy;
P′ð:h1 ∧ :h2 ∧ eÞ ¼ 1� ð1�xyÞw1

ð1�yÞ
� �

1� ð1�xyÞw2

ð1�yÞ
� �

ð1�yÞ;
P′ð:h1 ∧ :h2 ∧ :eÞ ¼ ð1�xw1Þð1�xw2Þy:

Suppose there exist ðx; y;w1Þ; ðx; y;w2Þ ∈Dr such that rðx; y;w1Þ ≠
rðx; y;w2Þ. Then, by lemma 2.4 and the definition of Dr, there exist
e; h1; h2 ∈ Lc and P′∈ P such that P′ð:ejh1Þ=P′ð:eÞ ¼ P′ð:ejh2Þ=
P′ð:eÞ ¼ x, P′ð:eÞ ¼ y, P′ðh1Þ ¼ w1, and P′ðh2Þ ¼ w2. By the probabi-
lity calculus, if the latter equalities hold, then P′ðejh1Þ ¼ P′ðejh2Þ. Thus,
there exist e; h1; h2 ∈ Lc and P′∈ P such that Ep′ðe; h1Þ ¼ rðx; y;w1Þ ≠
rðx; y;w2Þ ¼ Ep′ðe; h2Þ, even if P′ðejh1Þ ¼ P′ðejh2Þ, contradicting E1.
Conversely, E1 implies that, for any ðx; y;w1Þ; ðw; y;w2Þ ∈Dr, rðx; y;
w1Þ ¼ rðx; y;w2Þ. So, for E1 to hold, there must exist s such that, for any
e; h; ∈ Lc and any P ∈ P, if PðejhÞ>PðeÞ, then Epðe; hÞ ¼ s½Pð:ejhÞ=
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Pð:eÞ;Pð:eÞ�, and sðx; yÞ ¼ rðx; y;wÞ. We thus posit s : fðx; yÞ ∈ ½0; 1Þ
� ð0; 1Þg→< and denote the domain of s as Ds.
Lemma 2.5. For any x; y1; y2 such that x ∈ ½0; 1Þ and y1; y2 ∈ ð0; 1Þ,
there exist e1; e2; h ∈ Lc and P″∈ P such that P″ð:e1jhÞ=P″ð:e1Þ ¼
P″ð:e2jhÞ=P″ð:e2Þ ¼ x, P″ð:e1Þ ¼ y1, and P″ð:e2Þ ¼ y2.
Proof. Let w ∈ ð0; 1Þ be given so that w ≤ ð1�y1Þ=ð1�xy1Þ (as the latter
quantity must be positive, w exists) and w ≤ ð1�y2Þ=ð1�xy2Þ (as the
latter quantity must be positive, w exists). The equalities in lemma 2.5
arise from the following scheme of probability assignments:

P″ðh ∧ e1 ∧ e2Þ ¼ ð1� xy1Þð1� xy2Þw; P″ð:h ∧ e1 ∧ e2Þ ¼ 1� ð1�xwÞy1
ð1�wÞ

� �
1� ð1� xwÞy2

ð1�wÞ
� �

ð1�wÞ;

P″ðh ∧ e1 ∧:e2Þ ¼ ð1� xy1Þðxy2Þw; P″ð:h ∧ e1 ∧ :e2Þ ¼ 1� ð1�xwÞy1
ð1�wÞ

� �
ð1�xwÞy2;

P″ðh ∧ :e1 ∧ e2Þ ¼ ðxy1Þð1�xy2Þw; P″ð:h ∧ e1 ∧ e2Þ ¼ ð1� xwÞy1 1� ð1�xwÞy2
ð1�wÞ

� �
;

P″ðh ∧:e1 ∧ :e2Þ ¼ ðxy1Þðxy2Þw; P″ð:h ∧ :e1 ∧:e2Þ ¼ ð1�xwÞ2y1y2
ð1�wÞ :

Suppose there exist ðx; y1Þðx; y2Þ ∈Ds such that sðx; y1Þ ≠ sðx; y2Þ. Then,
by lemma 2.5 and the definition of Ds, there exist e1; e2; h ∈ Lc and P″∈
P such that P″ð:e1jhÞ=P″ð:e1Þ ¼ P″ð:e2jhÞ=P″ð:e2Þ ¼ x, P″ð:e1Þ ¼
y1, and P″ð:e2Þ ¼ y2. If the latter equalities hold, then EP″ð:e1; hÞ ¼
m½P″ð:e1jhÞ=P″ð:e1Þ� ¼ m½P″ð:e2jhÞ=P″ð:e2Þ� ¼ EP″ð:e2; hÞ. Thus,
there exist e1; e2; h ∈ Lc and P″∈ P such that EP″ðe1; hÞ ¼ sðx; y1Þ ≠
sðx; y2Þ ¼ EP″ðe2; hÞ, even if EP″ð:e1; hÞ ¼ EP″ð:e2; hÞ, contradicting
E3. So, for E3 to hold, there must exist t such that, for any e; h ∈ Lc
and any P ∈ P, if PðejhÞ>PðeÞ, then EPðe; hÞ ¼ t½Pð:ejhÞ=P ð:eÞ�, and
tðxÞ ¼ sðx; yÞ. We thus posit t : ½0; 1Þ→< and denote the domain of t
as Dt.
Lemma 2.6. For any x1; x2 ∈ ½0; 1Þ, there exist e; h1; h2 ∈ Lc and P‴∈ P
such that P‴ð:ejh1Þ=P‴ð:eÞ ¼ x1, and P‴ð:ejh2Þ=P‴ð:eÞ ¼ x2.
Proof. Let y;w1;w2 ∈ ð0; 1Þ be given so that w1 ≤ ð1�yÞ=ð1�x; yÞ (as
the latter quantity must be positive,w1 exists) andw2 ≤ ð1�yÞ=ð1�x2yÞ
(as the latter quantity must be positive, w2 exists). The equalities in
lemma 2.6 arise from the following scheme of probability assignments:

P‴ðh1 ∧ 2 ∧ eÞ ¼ ð1�x1yÞð1�x2yÞw1w2

ð1�yÞ
P‴ðh1 ∧ h2 ∧ :eÞ ¼ ðx1w1Þðx2w2Þy;
P‴ðh1 ∧:h2 ∧ eÞ ¼ ð1�x1yÞw1 1� ð1�x2yÞw2

ð1�yÞ
� �

;

P‴ðh1 ∧:h2 ∧ :eÞ ¼ ðx1w1Þðx2w2Þy;

P‴ðh1 ∧ h2 ∧ e ¼ 1� ð1�x1yÞw1

ð1�yÞ
� �

ð1�x2yÞw2;

P‴ð:h1 ∧ h2 ∧ :eÞ ¼ ð1�x1w1Þðx2w2Þy;
P‴ð:h1 ∧ :h2 ∧ eÞ ¼ 1� ð1�x1yÞw1

ð1�yÞ
� �

1� ð1�x2yÞw2

ð1�yÞ
� �

ð1�yÞ;
P‴ð:h1 ∧ :h2 ∧:eÞ ¼ ð1�x1w1Þðx2w2Þy:
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Suppose there exist x1; x2 ∈Dt such that x1>x2 and tðx1Þ ≥ tðx2Þ. Then,
by lemma 2.6 and the definition of Dt, there exist e; h1; h2 ∈ Lc and
P‴∈ P such that P‴ð:ejh1Þ=P‴ð:eÞ ¼ x1 and P‴ð:ejh2Þ=P‴ð:eÞ ¼ x2.
By the probability calculus, if the latter equalities hold, then P‴ðejh1Þ<
P‴ðejh2Þ. Thus, there exist e; h1; h2 ∈ Lc and P‴∈ P such that EP‴ðe;
h1Þ ¼ tðx1Þ ≥ tðx2Þ ¼ EP‴ðe; h2Þ, even if P‴ðejh1Þ< P‴ðejh2Þ, contradict-
ing E1. Conversely, E1 implies that, for any x1; x2 ∈Dt, if x1 > x2, then
tðx1Þ< tðx2Þ. By a similar argument, E1 also implies that, for any x1;
x2 ∈Dt, if x1 ¼ x2, then tðx1Þ ¼ tðx2Þ. So, for E1 to hold, it must be
that, for any e; h ∈ Lc and any P ∈ P, if PðejhÞ>PðeÞ, then EPðe; hÞ ¼
t½ Pð:ejhÞ=Pð:eÞ�, and t is a strictly decreasing function.

Summing up, if E0, E1, E2*, and E3 hold, then for any e; h ∈ Lc
and any P ∈ P, (i) if PðejhÞ ≤ PðeÞ, then EPðe; hÞ ¼ m½PðejhÞ=PðeÞ�
and m is a strictly increasing function, thus EPðe; hÞ is a strictly increas-
ing function of ε*ðe; hÞ, and (ii) if PðejhÞ>PðeÞ, then EPðe; hÞ ¼
t½Pð:ejhÞ=Pð:eÞ� and t is a strictly decreasing function, thus EPðe; hÞ
is a strictly increasing function of ε*ðe; hÞ. As i and ii are exhaustive, for
E0, E1, E2*, and E3 to hold, it must be that, for any e; h ∈ Lc and any
P ∈ P, EPðe; hÞ ¼ f ½ε*ðe; hÞ�, and f is a strictly increasing function. This
completes the proof of theorem 2.
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