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abstract

According to the view of conditionals named inferentialism, a condi-
tional holds when its consequent can be inferred from its antecedent.
This paper identifies some major challenges that inferentialism has to
face, and uses them to assess three accounts of conditionals: one is the
classical strict account, the other two have recently been proposed by
Douven and Rott. As will be shown, none of the three proposals meets
all challenges in a fully satisfactory way. We argue through novel
formal results that a variation of the evidential account of conditionals
suggested by Crupi and Iacona is the most promising candidate to
develop inferentialism in a coherent formal framework.

1 history

Inferentialism, the view of conditionals investigated in this paper,
rests on the idea that conditionals express inferences: a conditional
holds when its consequent can be inferred from its antecendent, or
equivalently when the latter provides a reason to accept the former.
Although the term ‘inferentialism’ is a rather new label, which we
take from work by Douven and colleagues, the view itself is not new.1

In fact, an interesting thread of claims of a distinctive inferentialist
flavour emerges across the history of logic.

First and foremost, inferentialism is a substantial thesis from Stoic
logic. It is a key Stoic doctrine that the validity of an argument and
the truth of the corresponding conditional are correlated properties.

1. K. Krzyżanowska, Wenmackers, and Douven 2013; Douven, Elqayam, and
Krzyżanowska 2023. It should be pointed out that this work by Douven and colleagues
characterizes inferentialism via a cluster of heterogeneous inference patterns (e.g.,
deductive, inductive, and abductive). This broad view is not identical to Douven’s
specific probabilistic theory of the acceptance of conditionals that we discuss below
(section 4). Also, this use of ’inferentialism’ differs from the more widespread use to
denote the view by which the meaning of expressions is determined by their role in
inference, although it would be in line with the latter view to adopt inferentialism in
our sense. For example, Brandom 2018 seems to suggest such a convergence.
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Sextus Empiricus reports the Stoic position as follows in Against the
Logicians:

The conclusive argument is sound, then, when after we conjoin
the premises and create a conditional that begins with the con-
junction of the premises and finishes with the conclusion, this
conditional is itself found to be true.2

Scholars also agree that the Stoic notion of a valid argument was
not restricted to formal validity, and might easily have included infer-
ences that are now broadly classified as inductive rather than deduc-
tive.3 Indeed, Iacona’s phrase ‘Stoic Thesis’ is largely coextensive with
’inferentialism’ for our purposes, and much appropriate to emphasize
the historical origins of the view.4

Echoes of the Stoic Thesis appear sparsely but consistently through-
out the late antiquity and the Middle Ages. In Boethius’ De Hypotheticis
Syllogismis, for example, it is stated that in a conditional [in condition-
ali], the reason for the inference [consequentiae ratio] is taken from the
antecedent condition [ex conditione].5 So Boethius must have assumed
that conditionals somehow express inferential relations.

In Abelard’s Dialectica, his most influential logical work, one reads
that

the meaning of a conditional [sententia hypotheticae propositionis]
amounts to an inference [in consecutione est], namely to whether
one thing does or does not follow from something else.6

The example provided is ‘si est homo, est animal’, where it is im-
possible for a man to exist without being an animal. Abelard also
mentions certain authors [quidam] who acknowledge as true [veras]
not only necessary inferences, but also whatever inference that is
probable [probabiles], and accordingly take the truth of a conditional to
consist either in its necessity or in its mere probability [in sola probabili-
tate]. Abelard does not elaborate any further and rejects this proposal
rather firmly. The passage is nonetheless remarkable, for it confirms
that lost sources must have meant the Stoic Thesis as extended to
non-conclusive arguments.7

The Stoic Thesis surfaces again up to the latest developments of
medieval logic. Ockham, in his Summa Logicae, explicitly says that a

2. Sextus Empiricus, Against the Logicians, II, 417, in Sextus Empiricus 2005. Also
see Outlines of Scepticism, II, 137, in Sextus Empiricus 2000.

3. See Barnes, Bobzien, and Mignucci 2008, p. 123.
4. See Iacona 2023. Taken literally, explicit statements of the inferentialist position

usually only focus on the characterization of conditionals in terms of valid inference,
not the other way around. Yet the converse claim that a valid inference licences the
corresponding conditional is hardly ever questioned.

5. Boethius, De Hypotheticis Syllogismis, in Boethius 1847, p. 832.
6. Abelard, Dialectica, in Abelard 1956, p. 271 (our translation).
7. Abelard, Dialectica, in Abelard 1956, p. 271-2.
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conditional [condicionalis] is equivalent to an inference, so that it is true
when the antecedent entails the consequent [quando antecedens infert
consequens].8 An important anonymous treatise of the same period,
the Liber Consequentiarum, provides a sharp and unequivocal phrasing
of this equivalence:

Every inference [consequentia] is equivalent to a conditional [ae-
quivalet condicionali] composed of the antecedent and consequent
[ex antecedente et consequente] of the given inference with ’if’ put
in front of the antecedent, and conversely every conditional is
also equivalent to an inference composed of the antecedent and
consequent of the given conditional with ’therefore’ put in front
of the consequent.9

The idea that conditionals express inferences, along with the use
of the term ‘consequens’, which is closely related to ‘consequentia’,
survived for long time and remained largely undisputed until the
end of the XIX century. A clear illustration of its pervasiveness is
provided by the following description of hypothetical judgments in
Kant’s Blomberg Logic, which is based on his logic lectures in the early
1770s:

one always finds the relation of ground to consequences. Now in
conditioned judgments, that which contains the ground is called
antecedens or also prius. That which contains the consequences,
however, is called in these judgments consequens or posterius.10

Another telling example in the same spirit, drawn from Mill’s
System of Logic, is the following:

When we say "If the Koran comes from God, Mohammed is the
prophet of God", we do not intend to affirm either that the Koran
does come from God, or that Mohammed is really his prophet.
Neither of these simple propositions may be true, and yet the
truth of the hypothetical proposition may be indisputable. What
is asserted is not the truth of either of the propositions, but the
inferribility of the one from the other.11

Between the end of the XIX century and the beginning of the XX
century, the inferentialist ideas expressed in the quotations above
started losing momentum, as a new paradigm of logical analysis,
which emerged in the works of Frege, Russell, and Wittgenstein,
privileged the material account of conditionals originally defended by

8. Ockham, Summa Logicae, II.31, in Ockham 1998, p. 186.
9. Liber consequentiarum, 123.199-203, edited in Schupp 1988 (p. 109), and quoted

from King 2001, p. 132 (translation slightly modified).
10. Kant 1992 9, pp. 222-223.
11. Mill 1882, p. 102.
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Philo, the view that a conditional is true when it is not the case that
its antecedent is true and its consequent is false.12

Interestingly, this crucial historical turn also marks the origins of
the symbol ⊃, which nowadays occurs in logic textbooks. When Peano
published his Formulaire de Mathématique in 1894, he used a symbol
⊂, which looked like a ‘C’, with the intention to represent a relation
of consequence between two sentences. That is, he wrote α ⊂ β to
mean that α is a consequence of β.13 A few years later, Russell took
this symbol from Peano and reversed it, that is, he wrote β ⊃ α to
mean that β implies α, where implication was now understood as
plain material implication. This is the use of the symbol that we find
in Russell and Whitehead’s Principia Mathematica.14 Subsequently, the
latter use became standard, and the original inferentialist meaning of
Peano’s notation faded into oblivion.

As will emerge in the next sections, inferentialism has eluded a
canonical formal develoment so far, which explains at least in part
its present lack of popularity among logicians. In comparison, the
striking technical and theoretical success of the material account has
granted it a central place in the orthodoxy of the XX century, prompt-
ing the impression that, “much confusion has been produced in logic
by the attempt to identify conditional statements with expressions of
entailment”, as Kneale and Kneale once put it.15 However, in spite
of the widespread dominance of the material account, the idea that
conditionals express inferential relations has never really disappeared.
Several contemporary authors, including C.I. Lewis, Ramsey, Good-
man, Ryle, Mackie, and Strawson, have described the behaviour of
conditionals in natural language along inferentialist lines.16 This re-
silience suggests that the notion of inference is deeply rooted in our
pretheoretic understanding of conditionals, or so we are inclined to
believe.

2 three major challenges

In section 1 we presented a brief historical overview of inferentialism.
Now we will describe three major challenges that an inferentialist
account of conditionals has to face.

12. Sextus Empiricus, in Outlines of Scepticism, II, 110-11, ascribes this reading to
Philo, see Sextus Empiricus 2000, p. 96.

13. C. Peano 1894, pp. 10-11.
14. Russell and Whitehead 1910. Peano himself used the reversed symbol in the

following editions of his Formulaire, but without associating it to Russell’s reading.
15. Kneale and Kneale 1962, p. 134.
16. C. I. Lewis 1912, p. 529, Ramsey 1990, p. 156, Goodman 1947, p. 117, Ryle 1950,

Mackie 1973, p. 83, Strawson 1950, p. 233.
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Challenge 1: Key test cases. Consider the following sentences, which
concern a series of tosses of a fair coin and Real Madrid’s football
season:

(1) If the first 5 tosses are all heads, there will be at least 5 heads in
the first 1.000 tosses.

(2) If Real Madrid loses the first 10 matches, its coach will be fired.

(3) If Real Madrid loses the first 10 matches, there will be at least 5

heads in the first 1.000 tosses.

(4) If Real Madrid loses the first 10 matches, 5+5=10.

Intuitively, (1)-(4) are not all equally compelling: while (1) and
(2) seem perfectly reasonable, (3) and (4) strike as odd. The first
impression one has with (3) and (4) is that something is missing, some
sort of connection between the antecedent and the consequent. After
all, one may be tempted to say, the result of a football match has
nothing to do with the outcome of a coin toss, or with a mathematical
truth.

The intuitive difference just illustrated causes explanatory troubles
to most extant accounts of conditionals. On the material account, (1)-
(4) are all true as long as their antecedent is false, which is very likely.17

The suppositional views based on the Ramsey Test do not fare better.
On the probabilistic account suggested by Adams, which equates the
acceptability of a conditional with the conditional probability of its
consequent given its antecedent, (1)-(4) are all highly acceptable, due
to the high probability of their consequent given their antecedent.18

On the modal account developed by Stalnaker and Lewis, according
to which a conditional is true when its consequent is true in the
closest world, or worlds, in which its antecedent is true, (1)-(4) are
all true, given that they satisfy the condition required.19 A similar
result is obtained on the belief revision account due to Gärdenfors
and others, according to which a conditional is acceptable just in
case its consequent belongs to the belief state obtained by adding
the antecedent to one’s set of beliefs.20 The intuitive difference just
illustrated causes explanatory troubles to most extant accounts of
conditionals. On the material account, (1)-(4) are all true as long as
their antecedent is false, which is very likely. The suppositional views
based on the Ramsey Test do not fare better. On the probabilistic

17. Much like the material account, trivalent truth-functional treatments, such as
that offered in Égré, Rossi, and Sprenger 2020, also fails to discriminate the cases
(1)-(4).

18. Adams 1965.
19. Stalnaker 1991, D. Lewis 1973.
20. Gärdenfors 1978.
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account suggested by Adams, which equates the acceptability of a
conditional with the conditional probability of its consequent given its
antecedent, (1)-(4) are all highly acceptable, due to the high probability
of their consequent given their antecedent.21 On the modal account
developed by Stalnaker and Lewis, according to which a conditional
is true when its consequent is true in the closest world, or worlds, in
which its antecedent is true, (1)-(4) are all true, given that they satisfy
the condition required.22 A similar result is obtained on the belief
revision account due to Gärdenfors and others, according to which
a conditional is acceptable just in case its consequent belongs to the
belief state obtained by adding the antecedent to one’s set of beliefs.23

Admittedly, there may be diverse stories, including pragmatic
stories, of why (1) and (2) seem perfectly reasonable while (3) and (4)
strike as odd.24 However, if one could explain this intuitive difference
in purely semantic terms, it would be a worthwile achievement. This
is precisely the project pursued by inferentialists. In their perspective,
the correct explanation must be that (1) and (2) correspond to justified
inferences, whereas the same does not hold for (3) and (4). A formal
account of conditionals where a symbol ▷ is suitably defined in terms
of the inferential relation postulated should be able to explain the
intuitions about (1)-(4) precisely on this ground. That is, once (1)-(4)
are represented as sentences of the form p ▷ q, the account should
imply that (1) and (2) hold while (3) and (4) do not hold.

Challenge 2: Probabilistic relevance. One way to draw the line be-
tween cases like (2), in which some relation of support plausibly ties
the antecedent to the consequent, and cases like (3), in which no such
relation seems to obtain, is to resort to probabilistic considerations.
While in the case of (2) there is a clear probabilistic correlation between
antecedent and consequent, a key damning feature of (3) is that the
credibility of its antecedent and the credibility of its consequent are
unrelated, that is, the two sentences are probabilistically independent.
Arguably, an inferentialist account of conditionals should be able to
make sense of this remark, allowing for an explicit connection with
the language of probability. Ideally, the account should imply that
p ▷ q holds only if there is some degree of positive relevance between
p and q in a suitable probabilistic analysis.

Challenge 3: Logical profile. In an inferentialist perspective, p ▷ q is
meant to say that p is a reason for q. Which principles of conditional

21. Adams 1965.
22. Stalnaker 1991, D. Lewis 1973.
23. Gärdenfors 1978.
24. Douven, Elqayam, and Krzyżanowska 2023 discuss a range of alternative ap-

proaches, and find them all eventually defective. On the other hand, Lassiter 2022

and Bourlier et al. 2023 defend a pragmatic analysis on both theoretical and empirical
grounds.
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logic should be validated or violated by statements of this kind?
To serve the purposes of inferentialism, the logic of ▷ should be
plausible as a logic of reasons. Logical principles that reasons arguably
fulfil should thus be retained, whereas logical principles that reasons
arguably contradict should be rejected. A valuable guideline here is
the thought that an adequate theory of reasons should be able to model
both conclusive reasons and non-conclusive or defeasible reasons, thus
presenting a general pattern of logical results that applies to reasons
in general. In the extension from conclusive to defeasible reasons, the
loss of logical strength would ideally remain within limits: the theory
should definitely reject defective principles, but not drop ones that
seem to plausibly survive for defeasible reasons.

In the next three sections we will present three inferentialist ac-
counts of conditionals, and we will show how Challenges 1-3 can be
used to assess the plausibility of each of these accounts.

3 the strict account

The first account to be discussed is the classical strict account, which
defines p ▷ q as □(p ⊃ q), that is, p ▷ q is true just in case it is impos-
sibile that p is true and q is false. This account, which goes back to
Diodorus, was revived by C.I. Lewis at the beginning of the twentieth
century, and is still a widely discussed option in the contemporary
debate on conditionals.25

The strict account is inferentialist in a straightforward sense. As
long as a valid argument is understood as an argument in which it
is impossible that the premises are true and the conclusion is false,
the strict account implies that a conditional is true just in case the
corresponding argument is valid. This is the sense that some logicians
of the past had in mind when they made inferentialist claims. A clear
example is Abelard. As we have seen, Abelard defines a true condi-
tional as an inference in which something follows from something
else, and rejects the hypothesis that the truth of a conditional consists
in its mere probabilitas. The same equation between true conditionals
and deductively valid arguments is postulated by C.I. Lewis, Ramsey,
Goodman, and others.26

Despite its venerable tradition, however, the strict account seems
clearly unable to meet Challenges 1-3 in a satisfactory way, because the
criterion of truth it imposes on conditionals is too strong in a crucial

25. Sextus Empiricus, in Outlines of Scepticism, II, 110-11, ascribes this reading, or
at least a temporal version of it, to Diodorus, see Sextus Empiricus 2000, p. 96. C. I.
Lewis 1914 is a seminal paper on the topic. More recently, the strict account has been
developed in different ways in Lycan 2001, Gillies 2009, Kratzer 2012, among other
works.

26. C. I. Lewis 1912, p. 529, Ramsey 1990, p. 156, Goodman 1947, p. 117.
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sense as well as arguably too weak in other respects. Let us consider
these challenges one by one.

Challenge 1 causes serious troubles to the strict account. On this
account, (1) is true because it is impossible that its antecedent is true
and its consequent is false. However, (2) and (3) turn out to be both
false, given that the truth of their antecedent does not rule out the
falsity of their consequent. Moreover, (4) turns out to be vacuously
true, because its consequent expresses a necessary truth.

As to (2), an advocate of the strict account might appeal to con-
textual restrictions on the domain of quantification and claim that,
once we consider the set of worlds that are relevant in the context
of utterance, there is no world in that set in which the antecedent is
true and the consequent is false. The fact, however, is that if some
such story can be provided to accommodate (2), one may wonder
why a similar story shouldn’t apply to (3), due to the extremely high
probability of its consequent, thus again losing the intuitive difference
between (2) and (3). After all, the possibility of not having 5 heads in
1000 tosses of a fair coin is negligeable for most purposes.

Challenge 2 raises a related problem. As long as the strict account
is unable to draw a principled distinction between (2) and (3), it fails
to capture the apparent difference of probabilistic relevance between
(2) and (3). The fact is that the probabilistic counterpart of a strict con-
ditional would be a conditional that gets value 1 when the conditional
probability of its consequent given its antecedent is 1, and 0 otherwise,
which is too coarse-grained a criterion to make sense of cases like (2)
and also not fine-grained enough to retain (1) without retaining (4).

Now consider Challenge 3. The strict account definitely has some
virtues when it comes to the logical profile of ▷. Here are two princi-
ples that reasons arguably fulfill and that hold for strict conditionals.
The first is AND, the principle according to which p ▷ q and p ▷ r entail
p ▷ (q ∧ r). This inferential rule arguably holds for reasons in general:
if p is a reason for q, and p is a reason for r, it seems to follow that
p is a reason for q ∧ r. The second is OR, the principle according to
which p ▷ r and q ▷ r entail (p ∨ q) ▷ r. If each of p and q is a reason for
r, it seems to follow that p ∨ q is a reason for r. The strict account also
invalidates inference rules that reasons arguably do not fulfill, such as
Conjunctive Sufficiency, the principle according to which p ∧ q entails
p ▷ q. Clearly, it may happen that p and q both hold but are totally
unrelated, so that p is not a reason for q.27

27. Recently, whether people comply with Conjunctive Sufficiency has also been a
matter of empirical investigation in the psychology of reasoning. Cruz et al. 2016 and
Douven, Elqayam, and Hasshim, ms, have drawn quite divergent conclusions from
the available evidence.
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The main shortcoming of the strict account, however, is that it
validates Monotonicity, the principle according to which p ▷ q entails
(p ∧ r) ▷ q for any r. This principle is at odds with the very idea that
▷ represents defeasible inference: on a widespread understanding of
defeasibility, to say that p is a defeasible reason for q is to say precisely
that, for some r, p ∧ r is not a reason for q.

A related worry concerns Right Weakening, the principle according
to which p ▷ q entails p ▷ r whenever q |= r, where |= is classical logical
consequence. Although Right Weakening is very reasonable when
one restricts consideration to conclusive reasons, it becomes more
problematic as a rule for reasons in general. Arguably, it may be the
case that p is a reason for q without thereby being a reason for r, in
spite of the fact that q |= r, because by weakening the conclusion the
positive relevance of the premise can decrease or get lost.

More generally, it is arguable that in order to represent defeasible
inference as distinct from conclusive inference, some principle that
holds for the strict conditional must fail. As we will explain, the two
accounts discussed in the next two sections weaken the logic of the
strict conditional in different ways.

4 douven’s threshold/increment account

According to Douven, p ▷ q is acceptable when (i) the conditional
probability of q given p is high enough — relative to a threshold
greater than 0.5 — and (ii) p gives some amount of evidential support
to q. Following a standard probabilistic construal of evidential support,
(ii) means that the conditional probability of q given p is higher than
the unconditional probability of q itself. This requirement is intended
to capture the intuition that the antecedent of an acceptable conditional
must be relevant to its consequent.28

The threshold/increment account suggested by Douven is fully
satisfactory in addressing Challenges 1 and 2, but not as much in
addressing Challenge 3. Challenge 1 is fully met because (1) and
(2) turn out to be clearly acceptable while (3) and (4) turn out to be
clearly unacceptable. In (1) and (2), the conditional probability of
the consequent given the antecedent is high enough, and higher than
the unconditional probability of the consequent. In (3) and (4), by
constrast, despite the high conditional probability of the consequent
given the antecedent, (ii) is violated: that conditional probability
is just as high as the unconditional probability of the consequent.
In particular, Douven calls (3) and similar sentences “missing link

28. See Douven 2016, p. 108.
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conditionals”. Another label, adopted by Cruz and Over, is “Walrus
conditionals”.29

In fact Douven uses precisely examples such as (2) and (3) to make
an important point against Adams’ probabilistic account. Experiments
have shown that by and large people judge conditionals such as (3)
as significantly less plausibile than conditionals such as (2), even if
the corresponding conditional probabilities are matched.30 This fact,
known as relevance effect, shows that it would be wrong to assume, as
McGee once put it, that Adams’ probabistic account "describes what
English speakers assert and accept with unfailing accuracy".31 The
same point applies, as we have seen, to other suppositional views such
as the Stalnaker-Lewis account and the belief revision account.

Challenge 2 is also fully met. It is a straightforward consequence
of the threshold/increment account that in an acceptable conditional
the antecedent is relevant for the consequent precisely in the sense
that, assuming the former, the probability of the latter is higher than
it would be otherwise. So the connection with probabilistic relevance
is direct and general.

Now let us turn to Challenge 3. In Douven’s framework, a logic
for ▷ is developed from the idea of acceptability preservation for all
probability distributions and all thresholds. The threshold/increment
account is surely effective in avoiding principles of conditional logic
that are dubious for inferentialists. At least three cases deserve at-
tention: Conjunctive Sufficiency, Monotonicity, and Right Weakening.
These three principles are invalid according to Douven’s theory, which
we take to be a desirable result. However, the threshold/increment
account is not equally effective in preserving principles of conditional
logic that seem plausible for inferentialists. Here two key examples
are AND and OR: Douven’s theory does not validate these two princi-
ples.32

5 rott’s difference-making account

The third account, due to Rott, hinges on the notion of difference-making:
for a conditional to hold, its antecedent has to make a difference as
concerns the credibility of its consequent. More precisely, p ▷ q holds
if and only if (i) q holds in all closest worlds in which p holds, and
(ii) it is not the case that q holds in all closest worlds in which ¬p
holds. While (i) expresses the Ramsey Test, (ii) is an additional clause

29. Cruz and Over, forthcoming. The two labels are meant to overlap only partially.
In particular, according to Cruz and Over 2023, some pragmatically acceptable
conditionals would qualify as “missing-link” but are not Walrus conditionals.

30. See Skovgaard-Olsen, Singmann, and Klauer 2016.
31. McGee 1986, p. 485.
32. Douven 2016, pp. 129-130.
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devised to capture the intuition that q holds in virtue of p. Rott labels
“Relevant Ramsey Test” the combination of (i) and (ii).33

The difference-making account has good prospects for Challenge
2, but faces rather serious difficulties relative to Challenges 1 and
3. Consider Challenge 1. On this account, the intuitive difference
between (2) and (3) is explained by saying that (3), unlike (2), does not
satisfy (ii): plausibly, at least 5 heads in 1.000 tosses will arise in the
closest worlds in which Real Madrid does not lose the first 10 matches.
Moreover, (4) turns out to be unacceptable as well, given that again (ii)
is not satisfied. The problem is, however, that the difference-making
account does not make sense of the intuitive plausibility of (1). In fact,
(1) is predicted to be equally unacceptable, and for the same reason:
even in the closest worlds in which there is some tails in the first 5

coin tosses, there will still be at least 5 heads in the first 1.000 tosses.
Challenge 2 also raises a non-trivial question. Rott’s theory is

spelled out deliberately in a qualitative framework to represent dox-
astic states of acceptance and non-acceptance. While this is a totally
legitimate move, soliciting a connection with probability can be moti-
vated by analogy with the Ramsey Test. The modal interpretation of
the Ramsey Test has a counterpart in Adams’ probabilistic semantics
as a requirement that the conditional probability of the consequent
given the antecedent be high. Since Rott’s theory implies a strength-
ening of the Ramsey Test through an additional clause, one is led to
figure out what a probabilistic condition corresponding to this clause
would look like. The most natural idea is that the probability of the
consequent given the negated antecedent be low. A high value of
P(q|p) and a low value of P(q|¬p) are surely enough to represent
the positive probabilistic relevance of p for q. However, no project
has been thoroughly pursued so far to establish how such relevance
may arise from the fulfilment of the Relevant Ramsey Test. To this
extent, bridging the gap between the qualitative framework of possible
worlds and the quantitative structure of probabilities remains an open
issue for this account. In general, a systematic study of how modal
and probabilistic characterizations are coupled seems an interesting
research project of its own, regardless of whether a theory effectively
achieves all its philosophical goals. Earlier attempts in this direc-
tion have provided significant insight in the case of the suppositional
conditional.34

33. See Rott 1986 and Rott 2022. Rott relies on the AGM formalism as his favourite
technical machinery. However, framing the theory in a possible world semantics will
be immaterial for our purposes and will make subsequent comparisons easier. See
Raidl 2021 for a discussion.

34. See Adams, E. W. 1977 and Leitgeb 2017, 6.2. If one defines the acceptability of
α ▷ β as the difference between P(β|α) and P(β|¬α) in case P(β|α) ≥ P(β|¬α) (and
zero otherwise, or in case P(α) = 0), distinctive logical features of Rott’s difference-
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Let us turn to Challenge 3. In Rott’s approach, the logic is devel-
oped from the idea of acceptability preservation for all rankings of
possible worlds, where rankings of possible worlds can be understood
as belief states. The difference-making account aptly avoids some
crucial principles that are dubious for inferentialists, such as Mono-
tonicity, Conjunctive Sufficiency, and Right Weakening. However,
other principles also fail while being plausible instead, such as OR.
Moreover, some principles validated by this account appear devoid of
sound justification in an inferentialist perspective. A rather striking
example is Affirming the Consequent, the inference from p ▷ q and q to
p. Suppose that q holds in all closest worlds (which means that q is
acceptable). Then p must also hold is those worlds, for otherwise (ii)
would be violated, against the assumption that p ▷ q holds. Here is an
example:

(5) If a meteorite hits Carol’s house, her favourite mug will be broken.

It makes good sense to endorse (5) as compelling in an inferentialist
perspective. The difference-making interpretation of ▷ then implies
that, given (5) and the additional assumption that Carol’s favourite
cup of coffee has broken, one can conclude that the space rock strike
occurred. This is quite odd. After all, p ▷ q is meant to convey that
q can be inferred from p, not the other way around. So it seems that
Challenge 3 is not convincingly met, as the logic generated by the
difference-making account is both unduly weak in certain respects
and unduly strong in others.35

6 the chrysippus test

So far we have presented three main challenges that inferentialism has
to face, and we have discussed three inferentialist accounts of condi-
tionals, showing how each of them is affected by serious difficulties.
The aim of the rest of the paper is to develop an account of condition-
als that yields better results with respect to our three challenges. This
account, as we will explain, is an amended version of the evidential
account suggested by Crupi and Iacona.36

The core idea of the evidential account is that p ▷ q holds just in case
p and ¬q are incompatible, where the incompatibility between p and ¬q
is taken to define the relation of support that obtains between p and q.

making conditional are recovered. Several interesting results of this kind have now
been proved in Calderisi 2023, and Rott 2023a. The difference between acceptability
so defined and the probabilistic version of the evidential account reflects well-known
alternatives in measures of evidential support. See Brössel 2013 for an overview.

35. The relevant results for the logical profile of Rott’s difference-making conditional
are in Rott 2022

36. Crupi and Iacona 2022a, Crupi and Iacona 2022b
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Crupi and Iacona call Chrysippus Test this incompatibility condition,
because the first clear formulation of it goes back to Chrysippus, at
least according to the secondary sources.37

The Chrysippus Test implies a direct connection between condition-
als and arguments, to the extent that a valid argument is understood
as an argument in which the premises are jointly incompatible with
the negation of the conclusion. This is surely a widely accepted view
as concerns conclusive arguments, and it can work as a fruitful guide-
line to think about defeasible arguments too by suitably extending the
notion of validity.38

In fact, Crupi and Iacona identify two distinct forms of incompat-
ibility, which yield two distinct senses in which the corresponding
inference can be valid. One is absolute incompatibility, which rules out
the possibility of holding together and so qualifies as the strongest
form of incompatibility. When p and ¬q are absolutely incompatible,
the inference from p to q is concusively valid. The other is relative
incompatibility, which implies that the possibility of holding together is
remote, although it exists. When p and ¬q are relatively incompatible,
the inference from p to q is defeasibly valid.

The next two sections outline two independent ways to formally
specify the Chrysippus Test: one relies on a probabilistic semantics, the
other relies on a modal semantics. So we will provide a probabilistic
version and a modal version of the evidential account. Both versions
are based on Crupi and Iacona’s work, although they contain two
crucial amendments. The first amendment is common to both versions,
while the second only concerns the modal version.

The two versions of the evidential account will be phrased by using
a single language L defined on the basis of a propositional language
Lp constituted by a finite set Lpa of atomic formulas p, q, r, . . ., the
connectives ¬,⊃, and the brackets (, ). The alphabet of L extends the
alphabet of Lp by adding the connectives □,>, ▷. The formulas of L
are defined as follows: if α ∈ Lp, then α ∈ L; if α ∈ Lp, then □α ∈ L; if
α, β ∈ Lp, then α > β, α ▷ β ∈ L; if α ∈ L, then ¬α ∈ L. The additional
connectives ∧,∨,♢ can be introduced in the usual way.

Note that, if the formulas of Lp are called propositional, the forma-
tion rules of L do not allow non-propositional formulas to occur in the
scope of □,>, ▷, although such formulas can occur in the scope of ¬.
This limitation is functional to the probabilistic semantics. Although
adopting unrestricted formation rules would raise no technical prob-
lem in the modal semantics, here we aim at establishing a connection
between the two versions of the evidential account, which is easier
with a shared syntax.

37. Sextus Empiricus, Outlines of Scepticism, II, 111, in Sextus Empiricus 2005, p. 96.
38. Iacona 2023 develops precisely this idea under the label ‘Stoic Thesis’.
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7 evidential account : probabilistic version

In the probabilistic version of the evidential account, the acceptability
of p ▷ q is defined in terms of a probabilistic measure of incompatibility
expressed as follows for any probability distribution P:

definition 1 If P(p ∧ ¬q) ≤ P(p)P(¬q) and P(p)P(¬q) ̸= 0, the
incompatibility between p and ¬q is

1 − P(p ∧ ¬q)
P(p)P(¬q)

Otherwise, the incompatibility between p and ¬q is 0.

This definition contemplates two cases. In the first case, p and ¬q
are not positively correlated, and the formula provided represents the
mutual relative reduction of credibility according to P: it is equivalent
to (P(p)− P(p|¬q))/P(p), the proportion of the initial probability of
p that is cancelled out by the downward jump to P(p|¬q), which in
turn is identical to (P(¬q)− P(¬q|p))/P(¬q), the proportion of the
initial probability of ¬q that is cancelled out by the downward jump to
P(¬q|p). (The same quantity is also equivalent to 1 minus a popular
probabilistic measure of the "coherence" between p and ¬q, originally
introduced by Shogenji.39) In the second case, either p and ¬q are
positively correlated or P(p)P(¬q) = 0. Note that, whenever p and
¬q are incompatible to some degree greater than 0, the incompatibility
between p an q is 0, for p and q are positively correlated.40

The degree of acceptability of p ▷ q can be equated with the de-
gree of incompatibility between p and ¬q as specified by definition 1.
That is, p ▷ q intuitively holds when p ▷ q is highly acceptable, which
means that the degree of incompatibility between p and ¬q is high.
Conversely, p ▷ q intuitively does not hold when the degree of incom-
patibility between p and ¬q is low, or equivalently when p and ¬q are
only slightly incompatible, or not at all.

Since the formula in definition 1 yields a value greater than 0 only
if P(q|p) > P(q), we get that the degree of acceptability of p ▷ q is
strictly positive only if p increases the probability of q. Unlike in
Douven’s theory, however, positive probabilistic relevance per se is
not sufficient for p ▷ q to be highly acceptable, not even in case P(q|p)
itself is high. Just as it is possible for p and ¬q to be fully independent,
and thus fully compatible, while P(q|p) is high, so that p ▷ q has zero
acceptability, it is also possible that p and ¬q are only very mildly

39. Shogenji 1999.
40. This measure of the incompatibility between p and ¬q is identical to the measure

of argument strength from p to q defined in Rips 2001 and to Bayesian confirmation
as partial entailment in Crupi and Tentori 2013, Crupi and Tentori 2014.
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incompatible, so that p ▷ q is still not quite acceptable. The following is
a plausible illustration, as concerns a fair coin that is tossed 20 times:

(6) If there is at least one head out of 20, then there are at least 8

heads out of 20.

In (6), the conditional probability of the consequent given the
antecedent is demonstrably high, and slightly higher than its uncondi-
tional probability. Yet this does not seem to make (6) highly acceptable,
for the inferential connection is arguably too weak. As long as ’rea-
son’ is understood as ‘sufficient reason’, there is a plausible sense in
which the antecedent of (6) does not provide a reason for accepting its
consequent.41

Now we will show how the probabilistic analysis of incompatibility
just illustrated can be incorporated in a coherent probabilistic seman-
tics for L. In line with a tradition initiated by Adams, we will define
a valuation function for formulas based on the probability of their
propositional constituents. The function V, which can be understood
as a measure of acceptability, is defined as follows for any probability
distribution P over Lp:

definition 2

1 For every α ∈ Lp, VP(α) = P(α);

2 VP(□α) =
{ 1 i f P(α) = 1

0 otherwise;

3 VP(α > β) =
{ P(β|α) i f P(α) > 0

1 i f P(α) = 0;

4 VP(α ▷ β) =

{
1 − P(p∧¬q)

P(p)P(¬q) i f P(p ∧ ¬q) ≤ P(p)P(¬q) ̸= 0,

0 otherwise;

5 VP(¬α) = 1 − VP(α).

Clause 1 says that the degree of acceptability of any propositional
formula α relative to P amounts to the probability assigned to α by
P. Clause 2 says that □α takes either 1, the maximal value, or 0, the
minimal value, depending on whether or not P(α) = 1. Clause 3 says
that the value that VP assigns to α > β is the conditional probability
of β given α, with the proviso that VP(α > β) = 1 if P(α) = 0. This
is the suppositional conditional as defined by Adams.42 Clause 4 is

41. This is not to deny that an intelligible notion of insufficient reason can be defined,
namely, a reason that positively contributes to credibility but is not quite enough for
inference.

42. Adams 1968. About the stipulation that VP(α > β) = 1 if P(α) = 0, see Adams
1998, p. 150.
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the crucial one, as it specifies the value of α ▷ β in accordance with
definition 1. Finally, clause 5 defines negation in the classical way, as it
entails that VP(¬α) = 1 when VP(α) = 0, and that VP(¬α) = 0 when
VP(α) = 1.43

Once the function V is defined as above, one can apply the rest
of Adams’ formal machinery. In particular, one can stipulate that
the uncertainty of a formula α relative to a probability distribution
P — call it UP(α) — is 1 − VP(α), and define logical consequence —
indicated by the symbol |=p — as the relation that obtains when the
sum of the uncertainties of the premises is higher than or equal to the
uncertainty of the conclusion for any probability assignment.

definition 3

α1, ...αn |=p β iff UP(α1) + ... + UP(αn) ≥ UP(β) for any P.

This definition implies that, in a valid argument, the acceptability
of the conclusion is guaranteed to be high enough as long as the
premises are themselves highly acceptable.44

The semantics just outlined is essentially the probabilistic seman-
tics originally formulated by Crupi and Iacona except for one feature.
In their original formulation, Crupi and Iacona stipulated that, for the
limiting cases in which P(q) = 1 or P(p) = 0, and thus P(p)P(¬q) = 0,
incompatibility is maximal (i.e., 1), for then P(p ∧¬q) = 0. As a result,
p ▷ q turns out to follow from □q, as well as from ¬♢p.45 In other
words, conditionals with impossible antecedents or necessary conse-
quents are treated as vacuously acceptable, that is, as cases of absolute
incompatibility understood as P(p ∧ ¬q) = 0. This treatment is in
line with an established tradition, which includes Adams, Stalnaker,
and Lewis, and relies on the assumption that the impossibility of the
conjunction of the antecedent and the negation of the consequent is
sufficient for the truth of a conditional.

However, as (4) shows, some cases in which p ∧ ¬q is impossible
are potentially contentious in an inferentialist perspective, for they are
cases in which there is no clear intuition to the effect that p provides a
reason for q. More generally, if an inferentialist theory of conditionals
validates Necessary Consequent, the principle according to which □q
entails p ▷ q, the theory thereby implies that p — just like anything else
— is a reason for q merely in virtue of the necessity of q. Similarly, if
an inferentialist theory of conditionals validates Impossible Antecedent,
the principle according to which ¬♢p entails p ▷ q, the theory thereby

43. Note that, when VP(¬□¬α) = 1, we get that VP(□¬α) = 0, which means that
¬α is not necessary, hence that α is possible. This shows that ♢α can be defined in
the usual way as ¬□¬α.

44. Adams 1966.
45. See Crupi and Iacona 2022b and Crupi and Iacona, 2021.
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implies that p is a reason for q — or for anything else — merely in
virtue of its impossibility. For example, the conditional obtained by
contraposing (4) would be an instance of the latter principle.

In other words, Necessary Consequent and Impossible Antecedent
imply that p and ¬q can be absolutely incompatible merely in virtue
of some property — impossibility or necessity — that belongs to one
of them independently of the other. This goes against a thought that
may naturally be associated with the Chrysippus Test, namely, that the
incompatibility between p and ¬q is relational: what is wrong with the
combination of p and ¬q must somehow depend on p and ¬q taken
together, that is, it must not arise from p or ¬q taken separately.46 For
example, in (1) the antecedent and the negation of the consequent
form an impossible combination, while there is nothing wrong with
each of them taken separately. So their incompatibility is relational in
a sense that we do not find in (4).

In order to preserve relationality in this sense, absolute incompat-
ibility should not be equated with the condition that P(p ∧ ¬q) = 0.
The class of cases in which the former holds — due to the combination
of p and ¬q — should be a proper subset of the class of cases in which
the latter holds. In the probabilistic semantics outlined above, this is
obtained by not stipulating that the incompatibility between p and ¬q
is 1 when P(p) = 0 or P(q) = 1. If the incompatibility between p and
¬q is assumed to be 0 in those cases, as in definition 1, we get that
only some of the cases in which P(p ∧ ¬q) = 0 are cases of absolute
incompatibility. More precisely, p and ¬q are absolutely incompatible
when P(p ∧ ¬q) = 0 but P(p)P(¬q) ̸= 0, as in (1), so the value of the
formula in definition 1 is 1.

The rationale for this choice is somehow opposite to the rationale
that one would employ for Crupi and Iacona’s original definition.
Instead of assuming that anything is a reason for a necessary truth,
it is assumed that nothing is a reason for a necessary truth, given
that there is no interesting sense in which something can support a
necessary truth. Similarly, instead of assuming that an impossible
truth is a reason for anything, it is assumed that it is a reason for
nothing, for again there is no interesting sense in which an impossible
truth can support something.47

8 evidential account : modal version

In the modal version of the evidential account, the truth of p ▷ q is
defined in terms of a disjunctive condition that makes explicit the dis-

46. This is essentially the point made in Nelson 1930, p. 443.
47. As explained in Lenzen 2023, the claim that nothing can follow from an impos-

sible truth can be ascribed to the followers of Robert of Melun (ca 1100-1167).
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tinction between absolute incompatibility and relative incompatibility.
The definition goes as follows:

definition 4 p and ¬q are incompatible iff either there are no
worlds in which p is true and q and false, and

(a) p is true in some world;

(b) q is false in some world;

or there are worlds in which p is true and q is false and

(c) p and q have the same value in some of the closest worlds;

(d) in the closest worlds in which p is true, q is also true;

(e) in the closest worlds in which ¬q is true, ¬p is also true.

The first disjunct defines absolute incompatibility as the impossi-
bility that p and ¬q are jointly true, provided that such impossibility
does not depend on p being impossible or q being necessary. Here
(a) and (b) rule out cases of vacuous truth, thus warranting that the
incompatibility between p and ¬q essentially depends on the relation
between p and ¬q. This is in line with the amendment explained in
the previous section in connection with the probabilistic semantics.48

The second disjunct defines relative incompatibility in terms of
three conditions. (c) requires that p and q have the same value —
hence p and ¬q have different values — in some of the closest worlds.
One way to make sense of this condition is the following: if p and
¬q are relatively incompatible, meaning that their combination is a
remote possibility, p and q must be relatively compatible, meaning
that their combination is a near possibility, so it is reasonable to rule
out that p and q have different values in all the closest worlds. (d)
expresses the Ramsey Test, and implies that ¬q is false in the closest
worlds in which p is true. Note that, given (d), the only interesting
case ruled out by (c) is that in which p is false and q is true in the
closest worlds. (e) expresses what Crupi and Iacona call the Reverse
Ramsey Test, and implies that p is false in the closest worlds in which
¬q is true. To say that (c)-(e) are jointly satisfied is to say that the
combination of p and ¬q is a remote possibility.

Definition 4 thus says that p and ¬q are incompatible just in case
either they are absolutely incompatible or they are relatively incom-
patible. When the first disjunct holds, we say that p is a conclusive
reason for q. When the second disjunct holds, we say that p is a

48. Priest 1999, p. 145, considers an account of conditionals that equates their truth
conditions with the first disjunct. Lenzen 2022 ascribes such account to Chrysippus.
The same account is discussed in Gherardi and Orlandelli 2021 and advocated in
Raidl and Gomes 2023.
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defeasible reason for q. Note that the first disjunct can be satisfied
even if (c) is not fulfilled, which means that absolute incompatibility
does not entail relative incompatibility. Therefore, as far as definition
4 is concerned, being a conclusive reason for q does not entail being a
defeasible reason for q.

Now we will set out a preferential semantics for L that incorporates
the modal analysis of incompatibility just illustrated. Let us start with
the definition of model:

definition 5 A m-model for L is a quadruple ⟨W, F,≺, v⟩, where

• W is a non-empty set

• F assigns to each x ∈ W a subset Wx of W

• ≺ assigns to each x ∈ W an irreflexive and transitive relation ≺x

on Wx

• v assigns to each x ∈ W and α ∈ Lpa one element of {0, 1}

W is a set of worlds. F is a function that determines a sphere of
accessibility Wx for each x ∈ W. ≺ is a function that assigns to each
x ∈ W an order of preference. We interpret y ≺x z as saying that y is
preferred to z relative to x, or equivalently that y is strictly closer than
z relative to x. Given this order of preference one can define, for any
A ⊆ W, a set Minx(A) of x-minimal worlds as follows:

definition 6 Minx(A) is the set of all y ∈ A ∩Wx such that there is
no z ∈ A ∩ Wx such that z ≺x y.

For the sake of simplicity, it is useful to write Minx(α) for Minx(A)

when A is ||α||, the set of worlds in which α is true. When A is Wx

itself, one can simply write Minx.49

Although definitions 5 and 6 apply to a wide variety of structures,
m-models can be constrained in different ways. In particular, the
following conditions deserve attention:

(Uni) Wx = W.

(LA) If ||α|| ∩ Wx ̸= ∅, then Minx(α) ̸= ∅.

(SC) Minx = {x}.

(Uni) is Universality: every world is accessible from any world. As
long as this condition holds, one can simply write ⟨W,≺, v⟩ instead of
⟨W, F,≺, v⟩, given that F is inert. (LA) is the Limit Assumption, which
ensures that we always reach x-minimality for every α, ruling out

49. Here we follow Giordano et al. 2009, where a preferential semantics is defined
for a wide class of conditional logics.
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infinitely descending chains. (SC) is Strong Centering: it requires that
any world other than x is strictly further away from x than x itself. In
what follows, for dialectical purposes, we restrict consideration to m-
models that satisfy these three conditions, although weaker constraints
would be equally compatible with the definitions provided below. For
example (SC) could be dropped or replaced by the weaker requirement
that x ∈ Minx.

The truth of a formula in a world x in a m-model is defined as
follows:

definition 7

1 [α]x = 1 iff v(x, α) = 1, for α ∈ Lpa;

2 [¬α]x = 1 iff [α]x = 0;

3 [α ⊃ β]x = 1 iff [α]x = 0 or [β]x = 1;

4 [□α]x = 1 iff [α]y = 1 for all y ∈ Wx.

5 [α > β]x = 1 iff for every y ∈ Minx(α), [β]y = 1;

6 [α ▷ β]x = 1 iff either there is no y ∈ Wx such that [α]y = 1 and
[β]y = 0, and

(a) [α]y = 1 for some y ∈ Wx;

(b) [β]y = 0 for some y ∈ Wx;

or there is y ∈ Wx such that [α]y = 1 and [β]y = 0, and

(c) some z ∈ Minx is such that [α]z = [β]z;

(d) for every z ∈ Minx(α), [β]z = 1;

(e) for every z ∈ Minx(¬β), [¬α]z = 1.

Clauses 1-5 are standard. In particular, clause 5 defines the suppo-
sitional conditional as understood by Stalnaker and Lewis. Clause 6

is the crucial one, as it specifies the truth conditions of the evidential
conditional in accordance with definition 4.

Logical consequence, indicated by the symbol |=m, is defined in
the usual way as preservation of truth in every world in every model:

definition 8 Γ |=m α iff there is no m-model and x such that
[β]x = 1 for every β ∈ Γ and [α]x = 0.

The semantics just outlined differs in two crucial respects from the
modal semantics originally formulated by Crupi and Iacona. One is
that clause 6 of definition 7 includes (a) and (b) in the first disjunct,
as explained above, so it does not equate absolute incompatibility
with the impossibility that the antecedent is true and the consequent
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is false. The other is that clause 6 of definition 7 includes (c) in the
second disjunct, while the earlier modal definition only contains two
conditions equivalent to (d) and (e). This second difference, which
specifically concerns relative incompatibility, is motivated by the need
to overcome a problem that affects the earlier modal definition.

If one examines the original formulation of the two versions of
the evidential account, one will find a disturbing asymmetry between
them. Although this asymmetry may easily remain undetected, as
it does not affect the convergence of the two versions on several
important principles of conditional logic, it becomes evident when
one considers the suppositional conditionals p > q and ¬q > ¬p
in relation to p ▷ q. According to the earlier probabilistic definition,
p ▷ q entails each one of p > q and ¬q > ¬p, but it is not itself a
logical consequence of those conditionals taken together. If p ▷ q is
highly acceptable, then a high degree of mutual relative reduction
of credibility between p and ¬q also entails that both P(¬q|p) and
P(p|¬q) are low, so that both P(q|p) and P(¬p|¬q) are high, making
each of p > q and ¬q > ¬p highly acceptable. On the other hand,
one can have P(q|p) and P(¬p|¬q) very high and still no degree
whatsoever of mutual relative reduction of credibility between p and
¬q, simply because p and ¬q are probabilistically independent. A
conditional such as (3) is a perfect illustration of this scenario. The
situation is different with the earlier modal definition. In fact, it is a
straightforward consequence of that definition that p ▷ q does follow
from p > q and ¬q > ¬p.

The source of the problem is, we submit, that the earlier modal
definition is too weak in its characterization of relative incompatibility.
While still crucially compatible with the possible joint truth of p and
¬q, the modal criterion of relative incompatibility has to be strictly
stronger than the joint truth of p > q and ¬q > ¬p. More precisely,
it must not obtain merely because the joint falsity of p and ¬q is
distinctively likely, as in the class of examples illustrated by (3). If the
definition is amended by adding (c), as we suggest, one can prevent the
incompatibility condition from obtaining when (d) and (e) are satisfied
only because p is very unlikely and q is very likely for independent
reasons, as in the case of (3).50 Conversely, it is instructive to figure
out what, if any, would have been the probabilistic counterpart of the
earlier modal definition. As it turns out, if one takes the acceptability
of α ▷ β to be P(β|α) + P(¬α|¬β) − 1 (truncated at 0 for negative
values), then one reproduces the main relevant properties of that

50. The additional condition (c) can still be phrased in terms of suppositional
conditionals: at least one of ¬p > q and q > ¬p must be false. In this sense, the way
in which the revised semantics rectifies the old one implies a distinct anti-irrelevance
clause, namely that p makes a difference for q or ¬q makes a difference for ¬p in
Rott’s terms.
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definition in a probabilistic setting, including its key shortcoming:
α ▷ β now becomes a logical consequence of the pair of suppositional
conditionals α > β and ¬β > ¬α and, relatedly, (3) receives a very
high degree of acceptability despite being a missing-link conditional.

9 test cases and probabilistic relevance

This section shows how the evidential account, in the two versions
outlined in sections 7 and 8, meets Challenges 1-3 in a fully satisfactory
way, thus overcoming the problems raised in connection with the other
three accounts discussed.

Let us start with Challenge 1. The probabilistic version of the evi-
dential account provides correct predictions about (1)-(4). Definition 1,
given plausible background assumptions, implies that (1) and (2) are
highly acceptable while (3) and (4) are unacceptable. More precisely,
(1) has acceptability 1 because the probability of the conjunction of its
antecedent and its negated consequent is 0; (2) is highly acceptable
due to a strong mutual reduction of credibility between its antecedent
and the negation of its consequent; (3) has acceptability 0 because the
conditional probability of its consequent given its antecedent equals
the unconditional probability of its consequent; (4) has acceptability
0 because the probability of its consequent is 1. Similar results are
obtained with the modal version of the evidential account. Definition
4, given some plausible background assumptions, implies that (1) and
(2) are true while (3) and (4) are false. More precisely, (1) is true in
virtue of the first disjunct; (2) is true in virtue of the second disjunct,
for (c)-(e) are jointly satisfied; (3) is false because the first disjunct does
not hold and (c) is also not satisfied; (4) is false because its consequent
is necessarily true.

As explained in sections 7 and 8, these predictions about (1)-(4)
crucially differ from those implied by Crupi and Iacona’s original
formulation of the evidential account, for the earlier probabilistic
definition makes (4) maximally acceptable, and the earlier modal
definition makes (3) and (4) true.

Now consider Challenge 2. The probabilistic version meets this
challenge for the following reason: for a conditional to have a certain
positive degree of acceptability, the probability of the consequent given
the antecedent must be higher than it would be otherwise. In order
to show that the modal version meets this challenge as well, we will
show that if α ▷ β is true in a world in a given m-model, then α is
indeed positively relevant for β in a suitably defined probabilistic
counterpart of that model. Let us start with the following definitions:
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definition 9 A basic probability assignment B on a countable set of
worlds W is a assignment to every x ∈ W of a value greater than 0
and such that ∑x∈W B(x) = 1.

definition 10 A p-model for L is a triple ⟨W, B, v⟩, where

• W is a non-empty countable set

• B is a basic probability assignment on W

• v assigns to each x ∈ W and α ∈ Lpa one element of {0, 1}

Note that a p-model K = ⟨W, B, v⟩ induces a full probability
distribution PK on Lp (the propositional part of L) where PK(α) =

∑x∈W,V(α,x)=1 B(x) and V extends v to any propositional formula α

following standard principles, e.g., V(β ∧ γ, x) = 1 iff V(β, x) =

V(γ, x) = 1. Conditional probabilities are as usual: PK(α|β) =

PK(α ∧ β)/PK(β) for any pair of propositional formulas α and β, pro-
vided that PK(β) > 0. Conversely, given a full probability distribution
PK on Lp, one can identify a corresponding p-model as follows: let
W include all maximal sets of literals for distinct atomic formulas in
L (a literal is an atomic formula or the negation thereof), then posit
B(α) = PK(α) for each α ∈ Lpa, and v(α, x) = 1 if and only if α ∈ x.

Now we want to establish a formal connection between m-models
and p-models by relying on two stipulations. First, to preserve the
analogy with m-models, we will treat PK as a property that belongs to
formulas relative to worlds: trivially, for every formula α and every
x ∈ W, the value of PK(α) in x is nothing but PK(α). Second, we will
focus on a subclass of p-models which match the preference relation
that characterizes m-models according to an order-of-magnitude rule,
namely, such that x ≺ y if and only if P(x) ≥ rP(y) for some integer
r. Let us start by defining a distinctive kind of basic probability
assignments, which we call finite order of magnitude assignments, or
simply FOM assignments:

definition 11 B is a FOM probability assignment on a countable set
W iff B is a basic probability assignment on W and there is a relation
⪯ on W and two natural numbers n > 0 and r > 1 such that:

(i) A1, . . . , An ⊆ W and x ∼ y iff x, y ∈ Ai for some 1 ≤ i ≤ n;

(ii) x ∼ y iff B(x) = B(y);

(iii) if x ≺ y and no z is such that x ≺ z ≺ y, B(x) = r ∑w∼y B(w).

As (i) implies, the expression x ∼ y is intended to mean that x and
y are of the same level. That is, ∼ partitions W into a finite number of
equivalence classes. (ii) equates sameness of level with sameness of
probability. (iii) defines the relation between the probability of x and
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the probability of its immediate successors in terms of r, the order of
magnitude of B. We say that x immediately precedes y when x ≺ y and
there is no z such that x ≺ z ≺ y.

The following example may help to illustrate definition 11. Let
W = {x, y, z, w, k}. Let B be a basic probability assignment on W
such that B(x) = 36/50, B(y) = B(z) = 6/50, B(w) = B(k) = 1/50.
This is a FOM probability assignment on W: (i) and (ii) are satisfied
because we have three subsets of W, namely, {x}, {y, z}, {w, k}, such
that y ∼ z and w ∼ k; (iii) is satisfied for r = 3. So we get that
x ≺ y ∼ z ≺ w ∼ k.

One important structural feature of FOM probability assignments
is that any world x turns out to be at least r − 1 times more probable
than all worlds that are strictly less probable than x (equivalently,
ranked as strictly further away by ⪯) taken together.

fact 1 Let B be a FOM probability assignment. Let ⪯ be a relation
on W corresponding to B. Let r be the order of magnitude of B. Then
for any x ∈ W, B(x) > (r − 1)∑x≺y B(y).

Proof. Let x ∈ W. First consider the case in which there is no y such
that x immediately precedes y. In this case we get the result desired
because ∑x≺y B(y) = 0, hence (r − 1)∑x≺y B(y) = 0, whereas B(x) >
0. Now consider the case in which x is exactly one level below, that is,
some y is such that x immediately precedes y and no z is such that
y ≺ z. Here we have that B(x) = r ∑y∼w B(w) = r ∑x≺w B(w) > (r −
1)∑x≺w B(w). Next, suppose there are y and z such that x immediately
precedes y and y immediately precedes z, but no k is such that z ≺ k.
In this case, B(x) = r ∑y∼w B(w) = (r − 1)∑y∼w B(w) + ∑y∼w B(w).
Moreover, we have that ∑y∼w B(w) ≥ B(y), whereas B(y) > (r −
1)∑y≺w B(w), as proven in the previous case. As a consequence,
B(x) > (r − 1)∑y∼w B(w) + (r − 1)∑y≺w B(w) = (r − 1)∑x≺w B(w).
The same kind of reasoning can be reiterated until a final level is
reached.

The notion of a FOM assignment can be used to define a special
kind of p-models:

definition 12 A FOM p-model is a p-model ⟨W, B, v⟩ such that B is
a FOM assignment.

In other words, a FOM p-model is a p-model characterized by the
properties of FOM assignments. In particular, we have what follows:

fact 2 Let ⟨W, B, v⟩ be a FOM p-model. Let ⪯ be a relation on W
corresponding to B. Let r be the order of magnitude of B. Then for
any x ∈ W, B(x) > (r − 1)∑x≺y B(y).

Proof. Directly from definition 12 and fact 1.
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Now we can define a correspondence relation between FOM p-
models and m-models. More precisely, the relation holds between
the two kinds of models relative to worlds, or equivalently, it holds
between model-world pairs:

definition 13 Let K = ⟨W, B, v⟩ be a FOM p-model. Let M =

⟨W,≺, v⟩ be a m-model. For any x ∈ W, we say that ⟨K, x⟩ matches
⟨M, x⟩ iff for any y, z ∈ W, y ≺x z iff B(y) > B(z).

Given this definition, we can prove the following fact:

fact 3 Let M = ⟨W,≺, v⟩ be a m-model. Let K = ⟨W, B, w⟩ be a FOM
p-model. Let ⟨K, x⟩ match ⟨M, x⟩. If [α ▷ β]x = 1, then PK(β|α) > PK(β)

in x.

Proof. Assume that [α ▷ β]x = 1, and consider two cases.
Case 1. The first disjunct of clause 6 of definition 7 holds. In

this case, there is no y ∈ W such that [α]y = 1 and [β]y = 0, and
[α]w = 1 and [β]z = 0 for some w, z ∈ W. As a consequence, by fact 2,
PK(α) > 0, PK(β|α) = 1, and PK(β) < 1 in x. So PK(β|α) > PK(β) in x.

Case 2 The second disjunct of clause 6 of definition 7 obtains. In this
case, [α]y = 1 and [β]y = 0 for some y ∈ W. Given (SC), [α]x = [β]x = 1
or [α]x = [β]x = 0, for the possibility that [α]x ̸= [β]x is ruled out by
(c). Consider the first disjunct (the second is similar). By fact 2, we
then have that PK(α ∧ β) > PK(¬α ∧ β) in x. Moreover, by (e), any
z ∈ Minx(¬β) is such that [¬α]z = 1. Given that [¬β]w = 1 for some
w ∈ W, such z exists in W and z ≺x y for any y such that [α∧¬β]y = 1.
As a consequence, again by fact 2, PK(¬α ∧ ¬β) > PK(α ∧ ¬β) in x.
So we have that PK(α ∧ β)PK(¬α ∧ ¬β) > PK(¬α ∧ β)PK(α ∧ ¬β) in x,
which implies that PK(β|α) > PK(β) in x by the following reasoning:

PK(α ∧ β)PK(¬α ∧ ¬β) > PK(¬α ∧ β)PK(α ∧ ¬β)

PK(α ∧ β)

PK(α ∧ ¬β)
>

PK(¬α ∧ β)

PK(¬α ∧ ¬β)

PK(β|α)PK(α)

PK(¬β|α)PK(α)
>

PK(β|¬α)PK(¬α)

PK(¬β|¬α)PK(¬α)

PK(β|α)
PK(¬β|α) >

PK(β|¬α)

PK(¬β|¬α)

PK(β|α)
1 − PK(β|α) >

PK(β|¬α)

1 − PK(β|¬α)

PK(β|α)− PK(β|α)PK(β|¬α) > PK(β|¬α)− PK(β|α)PK(β|¬α)

PK(β|α) > PK(β|¬α)

PK(β|α) > PK(β)
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Fact 3 shows how the modal version meets Challenge 2. Indeed, a
formal connection between the truth of α ▷ β in the modal semantics
and the probabilistic relevance of the antecedent α for the consequent
β can be spelled out as follows: the conditional probability of β given
α is stricly higher than the probability of β in each p-model-world
pair which matches a m-model-world pair making α ▷ β true. So there
is a clear sense in which the truth of α ▷ β implies that α provides
evidential support to β in a suitable probabilistic framework.

Our revised formulation of the Chrysippus Test rectifies a crucial
mismatch between the modal and the probabilistic versions of the
evidential account as found in Crupi and Iacona’s original work. Of
course, the modal and the probabilistic frameworks are technically
and philosophically heterogeneous, so it would be unwise to expect a
perfect alignment between them. But their convergence, in our view,
supports the robustness of the core idea of incompatibility between
antecedent and negated consequent, which can survive across other
significant issues of legitimate theoretical disagreement.

10 logical profile

The evidential account has no special trouble with Challenge 3, for the
distinctive set of logical properties it delivers is particularly appealing
for inferentialism. This is already clear from the earlier formulation
of the account, so most of the relevant facts can be taken for granted.
Here we will focus on the key logical principles mentioned above in
connection with Challenge 3. As has been shown by Crupi and Iacona
on the basis of the earlier probabilistic definition, Monotonicity, Right
Weakening, and Conjunctive Sufficiency fail, while AND and OR hold,
which is exactly as it should be. Their proofs of these facts do not
essentially depend on the previous stipulation concerning vacuous
cases, and can easily be adapted to definition 2.51 The same results
are obtained with the modal semantics outlined in section 8, as the
following proofs show.

fact 4 α ▷ γ ̸|=m (α ∧ β) ▷ γ (Monotonicity ×)

Proof. Let W = {a, b, c}, a ≺a b, b ≺a c, and

[α]a = 1, [β]a = 0, [γ]a = 1

[α]b = 0, [β]b = 0, [γ]b = 0

[α]c = 1, [β]c = 1, [γ]c = 0

Then [α ▷γ]a = 1 because there is y ∈ Wx such that [α]y = 1 and [γ]y =

0, namely c, and (c)-(e) are satisfied. Note that Minx = Minx(α) = {a}

51. Crupi and Iacona 2022b, see Appendix.
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and Minx(¬γ) = {b}. Instead, [(α ∧ β) ▷ γ]a = 0. In this case (c) is
not satisfied because Minx = {a} and [α ∧ β]a ̸= [γ]a, and (d) is not
satisfied because Minx(α ∧ β) = {c} and [γ]c = 0.

fact 5 Not: α ▷ β |=m α ▷ γ whenever β |= γ (Right Weakening ×)

Proof. Let W = {a, b, c}, a ≺a b, b ≺a c, and

[α]a = 1, [β]a = 1, [γ]a = 1

[α]b = 0, [β]b = 1, [γ]b = 0

[α]c = 1, [β]c = 0, [γ]c = 1

First, note that [α ▷ (β ∧ γ)]a = 1. The reason is that [α]c = 1, [β ∧
γ]c = 0, and (c)-(e) hold. (c) holds because [α]a = [β ∧ γ]a = 1. (d)
holds because Mina(α) = {a} and [β ∧ γ]a = 1. (e) holds because
Mina(¬(β ∧ γ)) = {b} and [¬α]b = 1. Second, note that [α ▷ β]a = 0
in spite of the fact that β ∧ γ |= β. Since [α]c = 1 and [β]c = 0, (c)-(e)
must hold. However, (e) does not hold, because Mina(¬β) = {c} and
[¬α]c = 0.

fact 6 α ∧ β ̸|=m α ▷ β (Conjunctive Sufficiency ×)

Proof. Let W = {a, b}, a ≺a b, and

[α]a = 1, [β]a = 1

[α]b = 1, [β]b = 0

In this case [α ∧ β]a = 1. However, [α ▷ β]a = 0 because [α]b = 1,
[β]b = 0, but (e) does not hold.

fact 7 α ▷ β, α ▷ γ |=m α ▷ (β ∧ γ) (AND ✓)

Proof. Assume that [α ▷ β]x = [α ▷ γ]x = 1. Four cases are to be
considered.
Case 1: the first disjunct of clause 6 of definition 7 holds both for α ▷ β

and for α ▷ γ. In this case there is no y ∈ Wx such that [α]y = 1 and
[β]y = 0, there is no y ∈ Wx such that [α]y = 1 and [γ]y = 0, there is
y ∈ Wz such that [α]y = 1, there is y ∈ Wx such that [β]y = 0, and there
is y ∈ Wx such that [γ]y = 0. It follows that there is no y ∈ Wx such
that [α]y = 1 and [β ∧ γ]y = 0, there is y ∈ Wx such that [α]y = 1, and
there is y ∈ Wx such that [β ∧ γ]y = 0. Therefore, [α ▷ (β ∧ γ)]x = 1.
Case 2: the first disjunct of clause 6 of definition 7 holds only for α ▷ β.
In this case there is no y ∈ Wx such that [α]y = 1 and [β]y = 0, there
is y ∈ Wx such that [α]y = 1, there is y ∈ Wx such that [β]y = 0,
and (c)-(e) hold for α ▷ γ. From (c) we get that, for some z ∈ Minx,
either [α]z = [γ]z = 1 or [α]z = [γ]z = 0. If [α]z = [γ]z = 1, then
[α]z = [β ∧ γ]z = 1, given that there is no y ∈ Wx such that [α]y = 1
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and [β]y = 0. If [α]z = [γ]z = 0, then [α]z = [β ∧ γ]z = 0. From
(d) we get that, for every z ∈ Minx(α), [γ]z = 1. This yields that,
for every z ∈ Minx(α), [β ∧ γ]z = 1, given that there is no y ∈ Wx

such that [α]y = 1 and [β]y = 0. Moreover, from (e) we get that,
for every w ∈ Minx(¬γ), [¬α]w = 1, which entails that, for every
w ∈ Minx(¬(β ∧ γ)), [¬α]w = 1, given that there is no w ∈ Minx such
that [β]w = 0 and [α]w = 1. Therefore, [α ▷ (β ∧ γ)]x = 1.
Case 3: the first disjunct of clause 6 of definition 7 holds only for α ▷ γ.
This case is analogous to case 2.
Case 4: the first disjunct of clause 6 of definition 7 holds for neither
of the two formulas. In this case (c)-(e) hold both for α ▷ β and for
α ▷ γ. From (c) we get that there is z ∈ Minx such that [α]z = [β]z
and there is w ∈ Minx such that [α]w = [γ]w. If [α]z = [β]z = 0 or
[α]w = [γ]w = 0, then [α]z = [β ∧ γ]z = 0 or [α]w = [β ∧ γ]w = 0. If
[α]z = [β]z = 1 and [α]w = [γ]w = 1, then [α]z = [β ∧ γ]z = 1 and
[α]w = [β ∧ γ]w = 1 because (d) requires that [γ]z = 1 and [β]w = 1.
Moreover, from (d) we get that every z ∈ Minx(α) is such that [β]z = 1
and [γ]z = 1, so that [β ∧ γ]z = 1. Finally, (e) yields that for every
z ∈ Minx(¬(β ∧ γ)), [¬α]z = 1. Therefore, [α ▷ (β ∧ γ)]x = 1.

fact 8 α ▷ γ, β ▷ γ |=m (α ∨ β) ▷ γ (OR ✓)

Proof. Assume that [α ▷ γ]x = [β ▷ γ]x = 1. Four cases are to be
considered.
Case 1: the first disjunct of clause 6 of definition 4 holds both for α ▷ γ

and for β ▷ γ. In this case there is no y ∈ Wx such that [α]y = 1 and
[γ]y = 0, there is no y ∈ Wx such that [β]y = 1 and [γ]y = 0, there
is y ∈ Wx such that [α]y = 1, there is y ∈ Wx such that [β]y = 1,
and there is y ∈ Wx such that [γ]y = 0. It follows that there is no
y ∈ Wx such that [α ∨ β]y = 1 and [γ]y = 0, there is y ∈ Wx such
that [α ∨ β]y = 1, and there is y ∈ Wx such that [γ]y = 0. Therefore,
[(α ∨ β) ▷ γ]x = 1.
Case 2: the first disjunct of clause 6 of definition 7 holds only for α ▷ γ.
In this case there is no y ∈ Wx such that [α]y = 1 and [γ]y = 0, there
is y ∈ Wx such that [α]y = 1, there is y ∈ Wx such that [γ]y = 0,
and (c)-(e) hold for β ▷ γ. Note that, since there is z ∈ Wx such that
[β]z = 1 and [γ]z = 0, there is z ∈ Wx such that [α ∨ β]z = 1 and
[γ]z = 0. To see that (c) holds for (α ∨ β) ▷ γ, given that it holds for
β ▷ γ, consider z ∈ Minx such that [β]z = [γ]z. If [β]z = [γ]z = 1, then
also [α ∨ β]z = [γ]z = 1. If instead [β]z = [γ]z = 0, then [α]z = 0 by the
initial assumption about α ▷ γ. So, [α ∨ β]z = [γ]z = 0. To see that (d)
holds for (α ∨ β) ▷ γ, given that it holds for β ▷ γ, it suffices to think
that Minx(α ∨ β) ⊆ Minx(α) ∪ Minx(β) and by the initial assumption
about α ▷ γ we have that [γ]z = 1 for every z ∈ Minx(α). Finally, (e)
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holds for (α ∨ β) ▷ γ, again because it holds for β ▷ γ plus the initial
assumption about α ▷ γ. Therefore, [(α ∨ β) ▷ γ]x = 1.
Case 3: the first disjunct of clause 6 of definition 4 holds only for β ▷ γ.
This case is analogous to case 2.
Case 4: the first disjunct of clause 6 of definition 7 holds for neither
of the two formulas. In this case (c)-(e) hold both for α ▷ γ and for
β ▷ γ. To see that (c) holds for (α ∨ β) ▷ γ, suppose first that for some
z ∈ Minx, either [α]z = 1 or [β]z = 1. Then [γ]z = 1, given that (d)
holds for α ▷ γ and β ▷ γ. So, [α ∨ β]z = [γ]z = 1. Now suppose that
for all z ∈ Minx, [α]z = 0 and [β]z = 0. Then, since (c) holds for α ▷ γ

and β ▷ γ, we get that some z is such that [α ∨ β]z = [γ]z = 0. To see
that (d) holds for (α ∨ β) ▷ γ, given that it holds for α ▷ γ and β ▷ γ, it
suffices to think that Minx(α ∨ β) ⊆ Minx(α) ∪ Minx(β). Finally, also
(e) holds for (α ∨ β) ▷ γ, since it holds for α ▷ γ and β ▷ γ. Therefore,
[(α ∨ β) ▷ γ]x = 1.

In addition to the facts just considered, both versions of the eviden-
tial account validate some distinctive principles established by Crupi
and Iacona in the original framework, such as Contraposition: α ▷ β

entails ¬β ▷ ¬α. So the new definitions substantially converge with
the earlier definitions. The key difference is that the new definitions
have non-classical implications. As we have seen, they do not validate
Necessary Consequent and Impossible Antecedent. Another example
is Supraclassicality, the principle according to which α ▷ β holds when-
ever α |= β. While the earlier definitions validate this principle, the
same does not hold for the new definitions. What the latter validate is
a weaker principle that may be called Restricted Classicality: if α |= β,
♢α, and ♢¬β, then α ▷ β. What holds for Supraclassicality also holds
for closely related results, such as Identity, the principle according to
which α ▷ α. While the earlier definitions validate Identity, the new
definitions validate a weaker principle, that is, ♢α,♢¬α |= α ▷ α, as
only the latter follows from Restricted Classicality.

11 a recent critique

In a recent article by Rott, the evidential account of conditionals has
been the target of thorough scrutiny. Rott considers simplified models
in which four worlds instantiate the four possible combinations of
truth values for the antecedent and consequent of a conditional, and
uses these models to formulate two crucial objections, which we will
call the sufficiency objection and the necessity objection. Both objections
can be effectively illustrated by reference to medical scenarios.

The first scenario involves a medication and recovery from a dis-
ease. The four possibilities can be denoted as rm, rm, rm, rm, where
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r indicates that recovery occurs and m indicates that the medication
is administered. Thus, rm means recovery upon treatment, rm means
spontaneous recovery, rm means failed recovery upon treatment, and
rm means failed spontaneous recovery. In general, the ranking of such
possibilities may vary in many ways. Following Rott, however, we
will restrict consideration to a case in which rm ≺ rm ∼ rm ≺ rm.
Here, the most plausible combination is recovery upon treatment and
the least plausible combination is failed spontaneous recovery, with
the other two combinations in between. A sensible FOM probabil-
ity assignment matching this ranking is defined by P(rm) = 98/113,
P(rm) = 7/113, P(rm) = 7/113, and P(rm) = 1/113, which is a good
approximation of figures employed by Rott himself.52 This arrange-
ment reflects a situation of this kind: the disease is benign (as, say,
bronchitis), because recovery is generally probable (about 93% of the
cases); the medication (say, antibiotics) is reasonably effective, because
recovery conditional on treatment is more frequent than it is with-
out treatment (93.3% vs. 87.5%); and the medication is also widely
administered to ill patients (about 93% of the cases).

Rott’s sufficiency objection arises in this scenario considering the
following sentence:

(7) If Ann does not recover from bronchitis, she has taken antibiotics.

Since the disease is benign and the treatment is widespread, the
negated antecedent and the consequent of (7) are both very likely. As a
consequence, (7) is true according to the earlier modal definition. This
is a serious problem for that definition, for the antecedent of (7) does
not support its consequent in any intuitive sense. Rott’s conclusion is
that Crupi and Iacona’s characterization of the evidential conditional
is not sufficient to capture support.

Rott’s sufficiency objection is compelling and can only be effec-
tively overcome, we suggest, through the amendment explained in
section 8. Note that, intuitively, there is no incompatibility between
the antecedent and negated consequent of (7): failed recovery is in
agreement, if anything, with lack of treatment. Definition 4 accords
with this intuition: (7) turns out false because (c) is violated. The only
reason why the combination rm is implausible is that rm happens to
be most plausible, not because the antecedent and negated consequent
of (7) really are at odds with each other. In fact, (7) is essentially a
slightly more extreme variant of (3), where once again the new modal
semantics rectifies a mismatch between the old modal semantics and
the probabilistic analysis. For completeness, note that in the target
models the corresponding suppositional conditional and its contra-
posed are both true (because (d) and (e) in definition 4 are satisfied)

52. See example 6 in Rott 2023b.
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and both highly acceptable (because the conditional probability of the
consequent given the antecedent is 7/8 in both cases). This notwith-
standing, (7) does not pass the revised Chrysippus Test, much as it has
zero acceptability in the probabilistic version of the evidential account,
just because the probability of the consequent is slightly decreased by
the antecedent. So the sufficiency objection is met.

Let us now turn to Rott’s necessity objection. The target scenario
involves a clinical condition and a diagnostic test. The relevant pos-
sibilities can be denoted as cp, cp, cp, cp, where c indicates that the
condition is present and p indicates that the test result is positive.
In the standard medical terminology, cp amounts to a true positive
test outcome, cp to a false negative, cp to a false positive, and cp to
a true negative. Here again, in general, the ranking of such possi-
bilities may vary in many ways. Following Rott, however, we will
restrict consideration to a typical ’base-rate neglect’ arrangement. A
paradigm case of this kind arises when the condition of interest (say a
SARS-CoV-2 infection) is rare and the related diagnostic test (say the
nasal swab) is useful but fallible, thus yielding the following ranking:
cp ≺ cp ≺ cp ≺ cp. A sensible FOM probability assignment match-
ing this ranking is defined by P(cp) = 512/585, P(cp) = 64/585,
P(cp) = 8/585, and P(cp) = 1/585, which is a good approximation
of figures employed by Rott himself.53 This neatly reflects the pattern
we want to discuss: the condition of interest is quite rare, because
P(c) = 0, 2%, and the diagnostic test scores well on both sensitivity
and specificity, because P(p|c) = P(p|c) ≈ 89%.

As a preliminary remark about this kind of scenarios, consider the
following sentence:

(8) If Ann has a positive swab test, she is infected by SARS-CoV-2.

Most people in base-rate neglect scenarios tend to think (mistakenly)
that in (8) the probability of the consequent given the antecedent,
P(c|p), is high, whereas in our case it is no more than 1/9 ≈ 11%. For
similar reasons, there may be a misguided first impression that (8) is
acceptable. Interestingly, (8) turns out to be rejected in all accounts of
conditionals considered so far, including purely suppositional views.
In fact, modal theories require that cp ≺ cp, which contradicts the
model (a true positive is in fact less likely than a false positive, due to
the rarity of the condition). Similarly, probabilistic theories classify (8)
as not acceptable either in qualitative terms (as in Douven’s account,
because P(c|p) < 1/2) or by the assignment of a very low degree of
acceptability (about 0, 1 in the probabilistic version of the evidential
account).

53. See example 2 in Rott 2023b.
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Rott’s necessity objection arises in this scenario considering the
contraposed of (8), namely:

(9) If Ann is not infected, she will have a negative swab test.

The point of Rott’s second line of criticism is that a sentence like
(9) does not hold in the target model according to the evidential
account. However, he contends, the antecedent does support its
consequent here, showing that Crupi and Iacona’s characterization of
the evidential conditional is not necessary to capture support.

In this case we diverge from Rott’s conclusions, though, for we
are not willing to grant that (9) should hold. Surely (9), unlike (8),
does hold in the suppositional interpretation, but this is no reason
to conclude that it should hold on an inferentialist reading, for oth-
erwise (3) should hold as well. (9), unlike (3), involves support as an
increased probability of the consequent, but this is also not enough to
conclude that (9) must hold, for otherwise (8) should hold as well. As
pointed out in section 7, suppositional acceptability and probability
increase together may still not suffice for a conditional to hold in the
evidential sense because the support relation is too weak. Much like
(6) above, (9) illustrates such implication, for the probability of the
consequent increases from about 88% to about 89%, so that the corre-
sponding graded incompatibility (the degree to which the antecedent
actually contributes in ruling out the falsity of the consequent) is unim-
pressive. Note also that the key point why (9) fails in the evidential
account, namely the ranking cp ≺ cp, is the same that is plausibly
overlooked by someone who mistakenly regards (8) as compelling,
thereby falling to the base-rate fallacy. So there might be a common
root for the impression that (8) is sound and the intuitive appeal that
some inferentialists may perceive in (9).54

All in all, we believe that there is a plausible sense of ‘reason’ — the
sense articulated by the evidential account — in which the antecedent
of (9) is not a reason for its consequent in the situation described. Of
course, this is not to deny that there may be some other plausible
sense of ‘reason’ in which the antecedent of (9) is in fact a reason for
its consequent. After all, the pretheoretical notion of reason is vague,
so it can be made precise in more than one way. But at least it is an
open question how (9) is to be treated in an inferentialist theory of

54. One way to insist that (9) should be regarded as highly acceptable is to notice
that the difference between the conditional probability of the consequent given the
antecedent and the conditional probability of the consequent given the negated
antecedent is large (89% vs. 11%, respectively). One reason why we consider this
point inconclusive arises from the similarity between (9) and (6) above: in (6) the
difference at issue is even larger (almost 92%) and yet it is apparent, we submit, that
the inferential connection between antecedent and consequent is in a sense very weak.
We thank an anonymous reviewer for raising this issue.
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conditionals, a question that we do not regard as settled simply by an
appeal to intuitions. Perhaps the interest of examples such as (9) and
(6) is precisely that they highlight possibly diverging options within
an inferentialist framework.
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