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On Bayesian Measures of Evidential
Support: Theoretical and Empirical

Issues*

Vincenzo Crupi, Katya Tentori, and Michel Gonzalez†‡

Epistemologists and philosophers of science have often attempted to express formally
the impact of a piece of evidence on the credibility of a hypothesis. In this paper we
will focus on the Bayesian approach to evidential support. We will propose a new
formal treatment of the notion of degree of confirmation and we will argue that it
overcomes some limitations of the currently available approaches on two grounds: (i)
a theoretical analysis of the confirmation relation seen as an extension of logical de-
duction and (ii) an empirical comparison of competing measures in an experimental
inquiry concerning inductive reasoning in a probabilistic setting.

1. Rival Bayesian Measures of Confirmation. Judgments concerning the
support that a piece of information brings to a hypothesis are commonly
required in scientific research as well as in other domains (medicine, law),
and a major aim of a theory of inductive reasoning is to provide a proper
foundation to such judgments.

Within the Bayesian approach to inductive reasoning, an attempt to
measure degrees of confirmation, or evidential support, should reflect,
and extend, a basic qualitative view of confirmation—labeled the “clas-
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TABLE 1. ALTERNATIVE BAYESIAN MEASURES OF CONFIRMATION.

D(e, h) p p(hFe) � p(h) Carnap ([1950] 1962)
S(e, h) p p(hFe) � p(hF¬e) Christensen (1999)
M(e, h) p p(eFh) � p(e) Mortimer (1988)
N(e, h) p p(eFh) � p(eF¬h) Nozick (1981)
C(e, h) p p(e & h) � p(e) 7 p(h) Carnap ([1950] 1962)
R(e, h) p [p(hFe)/p(h)] � 1 Finch (1960)
G(e, h) p 1 � [p(¬hFe)/p(¬h)] Rips (2001)
L(e, h) p [p(eFh) � p(eF¬h)]/[p(eFh) � p(eF¬h)] Kemeny and Oppenheim (1952)

sificatory concept of confirmation” by Carnap ([1950] 1962, 21–22). This
view identifies confirmation with an increase in the probability of the
hypothesis (conclusion) h provided by the piece of information (premise)
e, neutrality with a lack of impact of e on the probability of h, and
disconfirmation with a decrease of such a probability as an effect of e. A
common way to convey this distinction is to formalize the confirmation
relation by a mathematical function c(e, h), depending on probability
values concerning e and h, such that the following condition (BC) is
satisfied (BC stands for “Bayesian confirmation”):1

1 0 if p(hFe) 1 p(h) [confirmation]
c(e, h) p 0 if p(hFe) p p(h) [neutrality] (BC){

! 0 if p(hFe) ! p(h) [disconfirmation].

Condition (BC) does not put any constraint on the values to be assigned
to confirmatory arguments (as long as such values are positive) or to
disconfirmatory arguments (as long as such values are negative). Indeed,
(BC) does not constrain the choice of one single measure of confirmation
as the most adequate (a point emphasized by Fitelson [1999]). As a matter
of fact, several nonequivalent measures can be, and have been, devised
that map relevant probability values onto a number that is positive iff

, amounts to zero iff , and is negative otherwise.p(hFe) 1 p(h) p(hFe) p p(h)
Table 1 provides a catalogue collected from the literature.

Quantitative measures of confirmation such as those in Table 1 have
the important property of allowing ordinal judgments concerning induc-
tive strength, such as “hypothesis h receives more empirical support by

1. A few remarks are in order here. First, confirmation should be properly conceived
(at least) as a three-place relation involving, beyond h and e, the relevant “background
knowledge.” However, this point will not affect the present discussion. Thus, for the
sake of simplicity and without loss of generality, we will omit background knowledge
from our notation. Second, throughout the paper we will assume that e and h are
contingent (i.e., neither logically true nor logically false) and that the probability func-
tion p is regular (i.e., that unless x is logically false and unless x isp(x) ( 0 p(x) ( 1
logically true). See Festa (1999) and Kuipers (2000) for discussions on how to handle
with Bayesian means some limiting cases that have been excluded here.
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than by ” or “e confirms to a greater extent than .” Two measurese e h h1 2 1 2

of confirmation are ordinally equivalent iff they give the same answer to
the following question: Which one, if any, has a higher confirmation value
in any given pair of arguments?2 In this respect, Table 1 provides a rep-
resentative sample, for most of the Bayesian confirmation measures that
we have been able to identify in the literature, but have not included in
our list, are ordinally equivalent to some measure that does appear in the
list.3

2. A First Adequacy Requirement. One way to handle the plurality of
Bayesian measures of confirmation is to resort to the long-standing and
traditional view of inductive logic as an “extension” of classical deductive
logic (Carnap [1950] 1962). Consider a function v construed on the basis
of classical deductive logic and such that, for any argument (e, h), v assigns
it the same positive value (e.g., �1) iff (i.e., iff e implies h), ane X h
equivalent value with opposite sign (�1) iff (i.e., iff e refutes h),e X ¬h
and value 0 otherwise. The relationships between the logical implication
or refutation of h by e and the conditional probability of h given e yield
that any Bayesian confirmation measure c agrees with v in the minimal

2. Formally, measure c is ordinally equivalent to measure c* iff, for any pair of ar-
guments ( , ) and ( , ), iff .e h e h c(e , h ) � c(e , h ) c*(e , h ) � c*(e , h )1 1 2 2 1 1 2 2 1 1 2 2

3. In particular, measures R, G, and L in our list are ordinally equivalent, respectively,
to the following well-known measures of confirmation:

R*(e, h) p p(hFe)/p(h) [Keynes 1921]

G*(e, h) p p(¬h)/p(¬hFe) [Gaifman 1979]

L*(e, h) p p(eFh)/p(eF¬h) [Good 1950].

It may be shown that , , andR(e, h) p R*(e, h) � 1 G(e, h) p 1 � [1/G*(e, h)] L p
. Notice that (unlike R, G, and L) R*, G*, and L* are always positive(L* � 1)/(L* � 1)

and identify 1 as the “neutrality” value, thus departing from condition (BC) above. A
common strategy to have such measures satisfying condition (BC) is to apply logarithms
(with base 1 1) to them. By this strategy, one again obtains measures ordinally equiv-
alent, respectively, to our R, G, and L. However, by the use of logarithms, such measures
are not defined when and/or when .p(hFe) p 1 p(hFe) p 0

Under rather weak assumptions, it can also be proved that Table 1 includes no pair
of ordinally equivalent measures. In fact, there exist quite simple probability models
such that the measures included in Table 1 yield eight mutually incompatible rankings
of inductive strength. For instance, let it be the case that , ,p(e ) p .03 p(e ) p .011 2

, , , , , ,p(e ) p .65 p(e ) p .52 p(h ) p .02 p(h ) p .15 p(h ) p .50 p(h ) p .70 p(h Fe ) p3 4 1 2 3 4 1 1

, , , and . Then the following rankings.32 p(h Fe ) p .48 p(h Fe ) p .75 p(h Fe ) p .982 2 3 3 4 4

obtain: ;D(e , h ) 1 D(e , h ) 1 D(e , h ) 1 D(e , h ) S(e , h ) 1 S(e , h ) 1 S(e , h ) 12 2 1 1 4 4 3 3 3 3 4 4 2 2

; ;S(e , h ) M(e , h ) 1 M(e , h ) 1 M(e , h ) 1 M(e , h ) N(e , h ) 1 N(e , h ) 1 N(e , h ) 11 1 1 1 3 3 4 4 2 2 4 4 3 3 1 1

; ;N(e , h ) C(e , h ) 1 C(e , h ) 1 C(e , h ) 1 C(e , h ) R(e , h ) 1 R(e , h ) 1 R(e , h ) 12 2 3 3 4 4 1 1 2 2 1 1 2 2 3 3

; ;R(e , h ) G(e , h ) 1 G(e , h ) 1 G(e , h ) 1 G(e , h ) L(e , h ) 1 L(e , h ) 1 L(e , h ) 14 4 4 4 3 3 2 2 1 1 1 1 4 4 2 2

(computational details are omitted).L(e , h )3 3
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TABLE 2.

Measure If e X h If e X ¬h

D(e, h) p(¬h) �p(h)
S(e, h) p(¬h)/p(¬e) �p(h)/p(¬e)
M(e, h) p(e) 7 [p(¬h)/p(h)] �p(e)
N(e, h) p(e)/p(h) �p(e)/p(¬h)
C(e, h) p(e) 7 p(¬h) �p(e) 7 p(h)
R(e, h) p(¬h)/p(h) �1
G(e, h) 1 �p(h)/p(¬h)

sense that if v(e, h) is positive, the same is true of c(e, h); and if v(e, h)
is negative, the same is true of c(e, h). Then, consistency with the following
principle may be posited as a plausible adequacy requirement for c (here,
“Ex” stands for the “extension” from the deductive to the inductive do-
main):

(Ex1) If , then .v(e , h ) 1 v(e , h ) c(e , h ) 1 c(e , h )1 1 2 2 1 1 2 2

Fulfillment of principle (Ex1) guarantees that, by c, any conclusively con-
firmatory argument (e, h) (i.e., such that ) is assigned a higher valuee X h
than any argument that is not conclusively confirmatory and any conclu-
sively disconfirmatory argument (e, h) (i.e., such that ) is assignede X ¬h
a lower value than any argument that is not conclusively disconfirmatory.

Remarkably, it can be proved (see below) that only one among the
measures of confirmation listed in Table 1 actually fulfills (Ex1), that is,
L.4 It turns out, however, that there is a rather simple way to obtain a
measure of confirmation that does fulfill (Ex1) from either D, S, M, N,
C, R, or G. To see this, let’s consider the formulas to which such measures
can be reduced when and when , respectively, as reportede X h e X ¬h
in Table 2.

Now, for each measure in Table 2, let’s employ the expressions ap-
pearing in the second and third columns (taken in absolute value) to

4. Fitelson (2006)—an advocate of confirmation measures ordinally equivalent to L—
has labeled “logicality” the following desideratum: is maximal (minimal) whenc(e, h)

( ). (Also see Kemeny and Oppenheim [1952] for the first proposal ofe X h e X ¬h
measure L as derived from a set of adequacy requirements including an early statement
of logicality.) Notably, logicality and (Ex1) are independent. On the one hand, logicality,
but not (Ex1), is violated by measures assigning different confirmation values to any
two deductive arguments (for both to be “maximal,” they actually have to be equal).
On the other hand, a measure assigning value, say, �1 in any case of confirmation,
�1 in any case of disconfirmation, and 0 in case of neutrality would violate (Ex1) but
not logicality. (We are indebted to an anonymous referee for the latter remark.)
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“normalize” degrees of positive and negative evidential support, respec-
tively, as follows:

D(e, h)/p(¬h) if p(hFe) ≥ p(h)
D (e, h) pnorm {D(e, h)/p(h) otherwise,

S(e, h)/[ p(¬h)/p(¬e)] if p(hFe) ≥ p(h)
S (e, h) pnorm {S(e, h)/[ p(h)/p(¬e)] otherwise,

M(e, h)/{p(e) 7 [ p(¬h)/p(h)]} if p(hFe) ≥ p(h)
M (e, h) pnorm {M(e, h)/p(e) otherwise,

N(e, h)/[ p(e)/p(h)] if p(hFe) ≥ p(h)
N (e, h) pnorm {N(e, h)/[ p(e)/p(¬h)] otherwise,

C(e, h)/[ p(e) 7 p(¬h)] if p(hFe) ≥ p(h)
C (e, h) pnorm {C(e, h)/[ p(e) 7 p(h)] otherwise,

R(e, h)/[ p(¬h)/p(h)] if p(hFe) ≥ p(h)
R (e, h) pnorm {R(e, h) otherwise,

G(e, h) if p(hFe) ≥ p(h)
G (e, h) pnorm {G(e, h)/[ p(h)/p(¬h)] otherwise.

For our present purposes, two facts deserve emphasis. First of all, stan-
dard probability calculus yields that

D p S p M p N p C p R p G .norm norm norm norm norm norm norm

In fact, at this point, we have one single (new) Bayesian measure of
confirmation. From now on, we will label it Z.

The second important fact is that Z does fulfill principle (Ex1) above.
The main formal results reported in this section are summarized in the
following theorem and demonstrated in its proof (see Appendix A):

Theorem 1. D, S, M, N, C, R, and G (and all confirmation measures
ordinally equivalent to any of these) are inconsistent with principle
(Ex1), whereas L and Z (and all confirmation measures ordinally
equivalent to any of these) satisfy principle (Ex1).

3. Z-Measures. By means of Z it is possible to define a whole set (indeed,
a continuum) of confirmation measures (we will call them “Z-measures”)
that we would like to propose as an account of evidential support within
the Bayesian framework. Z-measures are defined as follows:

aZ(e, h) if p(hFe) ≥ p(h)
Z pa a{�FZ(e, h)F otherwise,

where a is positive. By being all monotone transformations of the same
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quantity, all Z-measures are ordinally equivalent. a plays the role of a
parameter controlling curvature (see Figure 1).

As shown by the figure, when , the graphical representation ofa p 1
Za is composed of a pair of straight lines; when , Za is an S-shapeda ! 1
function, indicating a higher sensitivity of confirmation (disconfirmation)
to relatively small positive (negative) departures from the prior probability
of h; finally, when , Za is an inverse S-shaped function, indicatinga 1 1
a higher sensitivity of confirmation (disconfirmation) to relatively wide
positive (negative) departures from the prior probability of h.5

Theorem 1 above immediately implies that all Z-measures fulfill prin-
ciple (Ex1). Here are some further desirable properties of Z-measures
(which are not, however, sufficient to establish a better adequacy of Z-
measures as compared to all their major competitors):

(P1) If , then (a property involvedp(hFe ) 1 p(hFe ) Z (e , h) 1 Z (e , h)1 2 a 1 a 2

in the Bayesian solution of the “ravens paradox” provided by Hor-
wich [1982]).

(P2) If , , and , then (ah X e h X e p(h ) 1 p(h ) Z (e, h ) 1 Z (e, h )1 2 1 2 a 1 a 2

property involved in the Bayesian solution of the “grue paradox”
provided by Sober [1994]).

(P3) If e confirms h and x is an “irrelevant conjunct” to h with respect
to e (i.e., ), then (a propertyp(eFh) p p(eFh & x) Z (e, h) 1 Z (e, h & x)a a

involved in the Bayesian solution of the paradox of “irrelevant con-
junction” provided by Hawthorne and Fitelson [2004]).

(P4) If and , thenp(eFh ) 1 (eFh ) p(eF¬h ) ! (eF¬h ) c(e, h ) 1 c(e, h )1 2 1 2 1 2

(a principle known as the “weak law of likelihood” or “weak like-
lihood principle,” which arguably “must be an integral part of any

5. Here we will not discuss the plausibility of various different values of a. Notice,
however, that on a descriptive level this free parameter might be subject to empirical
investigation in the spirit of the experimental inquiry reported in the final section of
the paper. (We are indebted to an anonymous referee for raising this point.)
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Figure 1. Graphical representations of Z-measures with different values of a. On the x-axis lie posterior probability values of h.
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account of evidential relevance that deserves the title ‘Bayesian’”
[Joyce 2004]).6

4. Symmetries. Eells and Fitelson (2002) have recently proposed to nar-
row down the set of adequate Bayesian candidates for quantifying con-
firmation by considering a series of “symmetries and asymmetries.” We
will now present an extended and systematic treatment of this issue.

Consider a set of sentences G, closed under negation and conjunction,
on which a probability function p is defined.7 In what follows, by a “sym-
metry” we will mean a function j from into such that j(e,G � G G � G

h) is obtained from (e, h) by applying the negation operator (¬) to either
e or h (or both) and/or by inverting them. On the whole, there are seven
such symmetry functions:

E(e, h) p (¬e, h),

H(e, h) p (e, ¬h),

I(e, h) p (h, e),

EH(e, h) p (¬e, ¬h),

EI(e, h) p (h, ¬e),

HI(e, h) p (¬h, e),

EHI(e, h) p (¬h, ¬e).

6. Interestingly, Fitelson (2006) has argued in favor of L (and measures ordinally
equivalent to L) by noticing its “historical uniqueness” (up to ordinal equivalence) in
fulfilling his “logicality” requirement (see note 4) as well as property (P1), while dis-
missing attempts to prove the mathematical uniqueness of L (up to ordinal equivalence)
because committing “continuity assumptions” concerning the probability function p
would be involved. (By the way, Fitelson is also aware that L and ordinally equivalent
measures enjoy property (P2) [see Fitelson 2001, 18] and property (P4) [see Fitelson
2007]; also, Hawthorne and Fitelson [2004] have proved that such measures enjoy (P3).)
Now, it is an immediate corollary of the main formal result presented in this paper
(see Theorem 2 below) that Z-measures are not ordinally equivalent to L (nor, for that
matter, to any other measure in Table 1). Thus, it seems that the definition of Z-
measures (which are consistent with continuity assumptions concerning p and which
also demonstrably enjoy Fitelson’s logicality) provides an existence proof that the
uniqueness of L (up to ordinal equivalence) is indeed just historical.

7. Again, strictly speaking, in order to exclude some degenerating cases in the analysis
to follow, a few restrictions on G and p must be specified: beyond the regularity of p
and the contingency of e and h (see note 2), it is assumed that there exist e, suchh � G
that and (i.e., that e and h are not probabilisticallyp(e) ( p(h) p(e & h) ( p(e) 7 p(h)
independent).
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Here, E stands for “(negation of the) evidence,” H for “(negation of the)
hypothesis,” and I for “inversion (of evidence and hypothesis).”

Now let s (for “sign”) be a function from into {�1, 0, 1}, definedG � G

as follows: if ; if ; ands(e, h) p 1 p(hFe) 1 p(h) s(e, h) p 0 p(hFe) p p(h)
if .s(e, h) p �1 p(hFe) ! p(h)

Function s allows a distinction between convergent and divergent sym-
metries: a symmetry j is convergent iff (e, h) and j(e, h) have the same
sign, that is, iff, for any , ; a symmetry j ise, h � G s(e, h) p s[j(e, h)]
divergent iff (e, h) and j(e, h) have opposite signs, that is, iff, for any

, . It can easily be proved that H, E, HI, ande, h � G s(e, h) p �s[j(e, h)]
EI are divergent symmetries, whereas I, EH, and EHI are convergent.

By means of s, we will also state the following definition:

Definition. c mirrors a symmetry j in case of confirmation [discon-
firmation] iff, for any such that [�1],e, h � G s(e, h) p 1 s(e,

.h) 7 c(e, h) p s(j(e, h)) 7 c(j(e, h))

When a confirmation measure c mirrors a symmetry j in both cases
(confirmation and disconfirmation), then we will simply say that c mirrors
j. (Notice that any measure c trivially mirrors any symmetry j in case of
neutrality, i.e., when .)c(e, h) p 0

The conditions on which c mirrors any particular symmetry j can now
be stated as follows:

Divergent Symmetries.

c(e, h) p �c(E(e, h)) p �c(¬e, h),

c(e, h) p �c(H(e, h)) p �c(e, ¬h),

c(e, h) p �c(EI(e, h)) p �c(h, ¬e),

c(e, h) p �c(HI(e, h)) p �c(¬h, e).

Convergent Symmetries.

c(e, h) p c(I(e, h)) p c(h, e),

c(e, h) p c(EH(e, h)) p c(¬e, ¬h),

c(e, h) p c(EHI(e, h)) p c(¬h, ¬e).

5. A New Set of Adequacy Requirements. The point of Eells and Fitelson
(2002)—whose discussion is in fact limited to E, H, I, and EH8—is that
the appeal of c mirroring any particular symmetry may be assessed by

8. These are precisely the symmetries originally discussed by Carnap ([1950] 1962,
Section 67).
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some rather simple and intuitive examples, which different measures of
confirmation may or may not match.

To illustrate, take E: Should it be the case that ?c(e, h) p �c(¬e, h)
Consider a standard deck of cards. It seems that having drawn a jack

card confirms that the card is a face card to a greater extent than having
drawn a card that is not a jack disconfirms the same hypothesis. The
reason is that in the former case the available evidence conclusively es-
tablishes the hypothesis, whereas in the latter case the available evidence
does not conclusively refute the hypothesis. Conversely, having drawn an
ace card disconfirms that the card is a face card to a greater extent than
having drawn a card that is not an ace confirms the same hypothesis. On
the basis of similar examples, Eells and Fitelson (2002) argue that an
acceptable Bayesian measure of confirmation should not mirror symmetry
E.

Is there any general and simple principle to determine how a measure
of confirmation should behave as far as all symmetries are concerned?
We think there is one, which, just as (Ex1) above (see Section 2), builds
on the traditional view of inductive logic as an “extension” of classical
deductive logic. Once again, such a principle may be stated by means of
function v, defined on the basis of classical deductive logic (see Section
2):

(Ex2) c mirrors j in case of confirmation [disconfirmation] iff v mirrors
j in case of confirmation [disconfirmation].

We shall see shortly why the distinction between the two cases (confir-
mation vs. disconfirmation) is important. For now, notice that (Ex2) is a
rather strong condition and, as we shall also see, a quite powerful the-
oretical tool. We don’t know of any explicit and general treatment of it.
However, it backs up several arguments circulating in inductive logic and
in Bayesian confirmation theory in particular. For the moment, we will
posit (Ex2) as a legitimate guideline for the discussion of the symmetries
that an adequate Bayesian measure of confirmation should or should not
mirror. In what follows, we will try to establish consistency with (Ex2) as
a compelling desideratum through a detailed analysis of its consequences.

Resort to principle (Ex2) may seem more adequate to identify the sym-
metries not to be mirrored (see, e.g., the jack and the ace examples above)
rather than for the selection of those to be mirrored by c. However, the
principle can be usefully applied in the latter sense as well, for instance
as far as H is concerned. Indeed, from (Ex2) it follows that

c(e, h) p �c(e, ¬h).

In the absence of compelling counterexamples (which we were not able



BAYESIAN MEASURES OF EVIDENTIAL SUPPORT 239

to devise), the equality above can be presented as a plausible extension
of the fact that e implies h (i.e., ) iff e refutes ¬h (i.e., ).9e X h e X ¬¬h

Now consider symmetry I, that is, the following equality:

c(e, h) p c(h, e).

Should we require that a confirmation measure classify inversely sym-
metric arguments as equally strong (recall that the inverse symmetry func-
tion is convergent), that is, that it mirror I? Eells and Fitelson (2002)
argue that we should not, but interestingly in this connection they ex-
plicitly resort only to counterexamples involving pairs of confirmatory
arguments. This is noteworthy, for consider again the ace example above:
in contrast to the jack case, we see as intuitively compelling that having
drawn an ace card does disconfirm its being a face card to the same extent
that having drawn a face card disconfirms its being an ace. Thus, we
concur with Eells and Fitelson in finding unattractive the above equality
in case of confirmation but not necessarily in case of disconfirmation as
well. Indeed, c mirroring I in case of disconfirmation (but not in case of
confirmation) also follows from (Ex2) and, in the absence of compelling
counterexamples (which we were not able to devise), this seems a plausible
extension of the theorem of deductive logic according to which e X ¬h
iff , that is, a plausible inductive-theoretic counterpart of the com-h X ¬e
mutative (or “inversely symmetric”) nature of logical inconsistency.

Generalizing this line of argument, one can show that principle (Ex2)
yields a definite answer for any symmetry both in case of confirmation
and in case of disconfirmation. Table 3 reports the outcomes of such
analysis, illustrating in any single case either the relevant parallelism with
an analogous state of affairs whithin deductive logic or relevant
counterexamples.

6. Why Z-Measures Are Theoretically Appealing. We claim that Z-mea-
sures should be of interest for any Bayesian confirmation theorist who
finds principle (Ex2) compelling for the plain fact that such measures are
all consistent with (Ex2) whereas, to our knowledge, no alternative mea-
sure proposed so far is. The proof of the following theorem (see Appendix

9. Interestingly, Kemeny and Oppenheim (1952) derived their proposal of measure L
from a set of requirements that includes mirroring symmetry H. They posit such a
requirement as “natural” and seem to presuppose (Ex2) in their argument. Eells and
Fitelson (2002) take a similar position.
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TABLE 3. THE WHOLE SET OF CONSEQUENCES OF (Ex2)

In Case of Confirmation In Case of Disconfirmation

Divergent Symmetries

E No
For some confirmation (e, h)

c(e, h) ( �c(¬e, h)
e.g., c(jack, face) 1 �c(not-

jack, face)

No
For some disconfirmation (e, h)

c(e, h) ( �c(¬e, h)
e.g., c(ace, face) ! �c(not-

ace, face)
H Yes

For any confirmation (e, h)
c(e, h) p �c(e, ¬h)

e implies h iff e refutes ¬h
Yes

For any disconfirmation (e, h)
c(e, h) p �c(e, ¬h)

e refutes h iff e implies ¬h

EI No
For some confirmation (e, h)

c(e, h) ( �c(h, ¬e)
e.g., c(jack, face) 1

�c(face, not-jack)

Yes
For any disconfirmation (e, h)

c(e, h) p �c(h, ¬e)
e refutes h iff h implies ¬e

HI Yes
For any confirmation (e, h)

c(e, h) p �c(¬h, e)
e implies h iff ¬h refutes e

No
For some disconfirmation (e, h)

c(e, h) ( �c(¬h, e)

e.g., c(ace, face) ! �c(not-
face, ace)

Convergent Symmetries

I No
For some confirmation (e, h)

c(e, h) ( c(h, e)
e.g., c(jack, face) 1 c(face,

jack)

Yes
For any disconfirmation (e, h)

c(e, h) p c(h, e)
e refutes h iff h refutes e

EH No
For some confirmation (e, h)

c(e, h) ( c(¬e, ¬h)
e.g., c(jack, face) 1 c(not-

jack, not-face)

No
For some disconfirmation (e, h)

c(e, h) ( c(¬e, ¬h)
e.g., c(ace, face) ! c(not-

ace, not-face)
EHI Yes

For any confirmation (e, h)
c(e, h) p c(¬h, ¬e)

e implies h iff ¬h implies
¬e

No
For some disconfirmation (e, h)

c(e, h) ( c(¬h, ¬e)
e.g., c(ace, face) ! c(not-

face, not-ace)
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B), which is the main formal result of the present work, illustrates the
point.10

Theorem 2. Z-measures satisfy all the consequences of (Ex2), whereas
D, S, M, N, C, R, G, and L (and all confirmation measures ordinally
equivalent to any of these) are inconsistent with (Ex2).

11

The fact that measure L does fulfill principle (Ex1) but not (Ex2) shows
that the former does not imply the latter. Notably, it is also not the case
that (Ex2) implies (Ex1).

12 Thus both principles are complementary but
independent constraints stemming from the same idea of confirmation
theory as an extension of deductive logic. Arguably, however, one may
still cast doubts on this strict parallelism and question why, after all, we
should want a formal account of inductive reasoning to be consistent with
(Ex2).

Let’s take symmetry I as an example about which such doubts may
typically be raised. Suppose that you must rely on two generally accurate
but fallible devices and in order to obtain information about aA A1 2

playing card. works as follows: it classifies a submitted card as a jackA1

or a not-jack and reports the outcome with an accuracy rate of 95% (not
depending on whether the card is or is not, in fact, a jack). works asA2

follows: it classifies a submitted card as a face or not-face and reports
the outcome, again with an accuracy rate of 95% (not depending on
whether the card is or is not, in fact, a face). Now suppose that a card
is drawn from a standard deck by a genuinely random process and sub-
mitted to both and . Let e be “ reports that it is a jack card” andA A A1 2 1

h be “ reports that it is a face card.” On reflection, it seems clear toA2

us that e confirms h more than h confirms e, even if none is strictly implied
by the other. (If this example sounds unbearably artificial, let andA1

10. Here it is appropriate to mention the only previous occurrence of Z-measures that
we have been able to detect in the literature. Rescher (1958) noticed measure Z (i.e.,
Za with ) and even displayed its graphical representation. However, on the basisa p 1
of a set of adequacy requirements that did not include consistency with (Ex2), Rescher
eventually identified as the most adequate explicatum for the degree ofZ(e, h) 7 p(e)
evidential support. The difference may seem minor but is not. As a matter of fact, it
can be shown that Rescher’s measure does not share many of the properties of Z-
measures that have been discussed here and, in particular, is not consistent with (Ex2).

11. Interestingly, ordinal equivalence to Z-measures is not a sufficient condition for a
confirmation measure to be consistent with (Ex2). To see why, consider a measure
defined as follows: if and otherwise (where both aa b[Z(e, h)] p(hFe) ≥ p(h) �FZ(e, h)F
and b are positive). Whenever , such a measure is ordinally equivalent to all Z-a ( b
measures, but it also violates (Ex2) (for instance, it does not mirror symmetry H).

12. In fact, Bayesian measures of confirmation can be defined that satisfy (Ex2) but
not (Ex1), for instance, .Z(e, h)/FC(e, h)F
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be two medical tests for two diagnostic hypotheses such that the formerA2

implies the latter.)
But now consider a third device such that it classifies a card as anA3

ace or a not-ace, again with an accuracy rate of 95% (not depending on
whether the card is or is not, in fact, an ace). Suppose that a card is
selected by a new random extraction and submitted to both and .A A3 2

Let e* be “ reports that it is an ace” and h, once again, “ reportsA A3 2

that it is a face card.” Here, we see no reason why the two arguments
(e*, h) and (h, e*) should have a different (negative) strength. Sentences
e* and h are just “almost” incompatible; and, so it seems, that is all. (If
this example sounds unbearably artificial, now let and be twoA A3 2

medical tests for two mutually exclusive diagnostic hypotheses.)
The problem is that, unlike Z-measures, all the competitors violating

(Ex2) also violate intuition here by either ranking (e, h) as an equally
strong confirmatory argument as (h, e)13 or ranking one between (e*, h)
and (h, e*) as a significantly stronger disconfirmatory argument than the
other (without even agreeing on which one is the strongest!).14

Similar examples may be conceived for any row in Table 2 to underpin
the plausibility of (Ex2) and therefore of Z-measures as a theoretically
appropriate basis to assess inductive strength.

7. An Empirical Test of Competing Measures. Formal theories of rea-
soning may serve various purposes. So far, we have been concerned with
the elucidation of a central epistemological concept (confirmation) on the
basis of a set of intuitively plausible and explicitly stated constraints.
Whether or not a theoretically sound measure of confirmation may also
be employed to accurately describe (and predict) human judgment and
behavior is a distinguished question—a very intriguing one, to which we
will now turn. Our purpose is to extend the assessment of the potentiality
of the proposed approach to the empirical domain of the psychology of
reasoning and cognition, which has often widely profited from the com-
parison between actual human performance and compelling formal the-
ories such as probability theory or expected utility theory.

In a previous work (Tentori et al. 2007), an experiment has been pre-
sented aiming at an empirical test of some of the alternative Bayesian
measures of confirmation. For each of 26 participants, an urn was ran-
domly and covertly selected out of A (30 black balls plus 10 white balls)
and B (15 black balls plus 25 white balls). Participants were then asked

13. In fact, it will be the case that if c stands for either C or R (seec(e, h) p c(h, e)
Appendix B).

14. In fact, it will be the case that if c stands for D, S, G, or L, andc(e*, h) ! c(h, e*)
if c stands for M or N (computational details are omitted).c(e*, h) 1 c(h, e*)
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TABLE 4. AVERAGE CORRELATIONS FOR COMPETING

CONFIRMATION MEASURES.

Measure
(Predictor)

Average Correlation with Participants’
Confirmation Judgments for the

Hypothesis:

Urn A Selected Urn B Selected

Z .756* .775*
L .740* .754*
N .730* .745*
M .628† .588
G .549 .631
R .619 .557
S .594 .613
C .586 .605
D .573 .589
p(A[B]Fe) .488 .508

NOTE.—Reported values are the average of 26 correlations (one per participant)
between the confirmation judgments predicted by each measure (on the basis of the
randomness of the initial selection, the composition of the urns, and the outcomes
of previous draws) and the confirmation judgments expressed by each participant.
Each correlation involved 10 observations. denotes or asp(A[B]Fe) p(AFe) p(BFe)
appropriate. Comparisons by paired t-test with the average correlation for

: *p ! .001; †p p .06.p(A[B]Fe)

to judge the quantitative impact of each outcome of a series of 10 random
extractions without replacement on the two complementary hypotheses
that A versus B had been selected (see Tentori et al. [2007] for a detailed
description of the procedure). The experiment showed that, when predic-
tions about confirmation judgments were computed from the randomness
of the initial selection, the composition of the urns, and the outcomes of
previous draws, measure L outperformed several competitors (including
D, N, and C), yielding a reliably higher average correlation with the judged
impacts on both hypotheses A and B provided by the participants. In
what follows we will test all the competing confirmation measures listed
in Table 1, along with the simplest Z-measure (i.e., with ), againsta p 1
the same data.

As Table 4 shows, Z is the most descriptively accurate measure in this
experimental setting. (The table also reports a reliable superiority of the
most accurate measures in comparison with posterior probability, taken
as a predictor of confirmation judgments. Notice that this indicates that
the participants appropriately distinguished posteriors from evidential
impact.)

Consistent with these results, Table 5 shows that, by a paired t-test, Z
outperforms all competitors in predicting judged impact on both hy-
potheses A and B, with only one major exception (the lack of a statistically
reliable difference from L for hypothesis A). Moreover, a simple non-
parametric analysis consisting in counting the subjects (out of 26) for
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TABLE 5. COMPARISON OF Z WITH OTHER CONFIRMATION MEASURES.

L N M G R S C D

Hypothesis: Urn A Selected

Z t p 1,44
n.s.

t p 1,92
p p .07

t p 2,87
p p .008

t p 4,52
p p .0001

t p 3,25
p p .003

t p 3,13
p p .004

t p 3,25
p p .003

T p 3,61
p p .001

18 18 18 22 21 21 21 21

Hypothesis: Urn B Selected

Z t p 2,02
p p .05

t p 2,31
p p .03

t p 3,50
p p .002

t p 3,51
p p .002

t p 4,01
p p .0005

t p 2,84
p p .009

t p 2,96
p p .007

t p 3,28
p p .003

18 18 22 24 23 19 19 21

NOTE.—Each higher cell reports a paired t-test between the correlations obtained from the measure in the associated column and from measure Z. Each lower cell shows the
number of participants (out of 26) for whom Z predicted better than the rival measure at the top of the column.



BAYESIAN MEASURES OF EVIDENTIAL SUPPORT 245

whom Z predicted better than each rival measure shows that Z is generally
a better predictor in the majority of cases (see Table 5).

These results suggest that the virtues of Z-measures might not be con-
fined to the level of epistemological analysis, but extend to the descriptive
dimension of the psychology of confirmation.

We are not claiming that the probabilistic computations involved in the
definition of Bayesian confirmation measures should be taken literally as
models of the cognitive processes leading to confirmation judgments. We
are well aware that, when judging probabilities, subjects often depart from
the Bayesian prescriptions (Kahneman, Slovic, and Tversky 1982) and
conform to them only under specific conditions (Girotto and Gonzalez
2001). Precisely for this reason, it is noticeable that a quantitative Bayesian
account of evidential impact can reach a promising predictive accuracy
relative to naı̈ve judgments of confirmation. Whatever the routes by which
confirmation judgments are elaborated by nonexpert subjects, the exper-
iment illustrates that some salient features of such judgments may be
captured, to a significant degree, by a theoretically sound account of
confirmation. In Marr’s (1982) terms, such an account might work as an
effective, although approximated, computational-level model, compatible
with more “realistic” process-level descriptions of the cognitive bases of
ordinary inductive reasoning.

In any event, more research is needed to assess the stability and the
consequences of the present results. In a touchstone study in the psy-
chology of inductive reasoning with statements involving familiar bio-
logical categories and “blank” biological predicates (such as “robins use
serotonin as a neurotransmitter”), Osherson et al. (1990) documented that
inversely symmetric confirmatory arguments are not generally judged as
equally strong, consistent with principle (Ex2) (see Table 3). Further studies
aiming at the empirical test of various symmetries and asymmetries might
provide evidence about substantial qualitative phenomena concerning in-
ductive reasoning and play a crucial role in assessing the descriptive re-
liability of competing measures of confirmation outside the context of
our urn-based experiment.

In our opinion, the discussion presented here suggests that the inter-
action between the epistemological and the cognitive dimension might be
fruitful in this field of inquiry as it has been in many other areas of the
study of reasoning.
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Appendix A

Theorem 1. D, S, M, N, C, R, and G (and all confirmation measures
ordinally equivalent to any of these) are inconsistent with principle
(Ex1), whereas L and Z (and all confirmation measures ordinally
equivalent to any of these) satisfy principle (Ex1).

Proof

Simple probability models prove the first part of the theorem.
Suppose that x, y, and z are pairwise logically incompatible, that

, and that . (For instance, a fair die isp(x) � p(y) � p(z) p 1 p(z) 1 .5
tossed: , , z p strictly greater than 2.) Then let it be the casex p 1 y p 2
that , , , and . Notice thate p y e p (x ∨ y) h p (y ∨ z) h p x e X h1 2 1 2 1 1

while ; therefore, . Moreover, whilee X/ h v(e , h ) 1 v(e , h ) e X ¬(¬h )2 2 1 1 2 2 1 1

; therefore, .e X/ ¬(¬h ) v(e , ¬h ) ! v(e , ¬h )2 2 1 1 2 2

Now , while . ItD(e , h1) p p(x) D(e , h ) p {p(x)/[ p(x) � p(y)]} � p(x)1 2 2

follows that iff , and the latter isD(e , h ) ! D(e , h ) [ p(x) � p(y)] ! 1/21 1 2 2

(by hypothesis) the case.
Since , immediately followsS(e, h) p D(e, h)/p(¬e) S(e , h ) ! S(e , h )1 1 2 2

from and .D(e , h ) ! D(e , h ) p(¬e ) 1 p(¬e )1 1 2 2 1 2

Since and , it follows thatp(e ) ! p(e ) p(h ) 1 p(h ) p(e )/p(h ) !1 2 1 2 1 1

. And since andp(e )/p(h ) M(e, h) p D(e, h) 7 [ p(e)/p(h)] D(e , h ) !2 2 1 1

, it follows that .D(e , h ) M(e , h ) ! M(e , h )2 2 1 1 2 2

Since , , and , itC(e, h) p D(e, h) 7 p(e) p(e ) ! p(e ) D(e , h ) ! D(e , h )1 2 1 1 2 2

follows that .C(e , h ) ! C(e , h )1 1 2 2

Since and are equivalent, it follows thath ¬h p(h ) 7 p(¬h ) p1 2 1 1

. Then, since andp(h ) 7 p(¬h ) N(e, h) p C(e, h)/[ p(h) 7 p(¬h)] C(e ,2 2 1

, it follows that .h ) ! C(e , h ) N(e , h ) ! N(e , h )1 2 2 1 1 2 2

Since and , fol-p(h ) 1 p(h ) R(e, h) p D(e, h)/p(h) R(e , h ) ! R(e , h )1 2 1 1 2 2

lows from .D(e , h ) ! D(e , h )1 1 2 2

Finally, since , from it followsG(e, ¬h) p �R(e, h) R(e , h ) ! R(e , h )1 1 2 2

that .G(e , ¬h ) 1 G(e , ¬h )1 1 2 2

As far as the second part of the theorem is concerned, notice that, if
, then (assuming that p is regular) at least one of thev(e , h ) 1 v(e , h )1 1 2 2

following is true:

a. and (equivalently, andp(h Fe ) p 1 p(h Fe ) ! 1 p(e F¬h ) p 01 1 2 2 1 1

).p(e F¬h ) 1 02 2

b. and (equivalently, andp(h Fe ) 1 0 p(h Fe ) p 0 p(e Fh ) 1 01 1 2 2 1 1

).p(e Fh ) p 02 2
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Suppose that part a is true. Then andL(e , h ) p p(e Fh )/p(e Fh ) p 11 1 1 1 1 1

, whereas simple algebraic considerationsZ(e , h ) p p(¬h )/p(¬h ) p 11 1 1 1

show that and .L(e , h ) ! 1 Z(e , h ) ! 12 2 2 2

Now suppose that part b is true. Then L(e , h ) p �p(e F¬h )/p(e F2 2 2 2 2

and , whereas simple algebraic¬h ) p �1 Z(e , h ) p �p(h )/p(h ) p �12 2 2 2 2

considerations show that and .L(e , h ) 1 �1 Z(e , h ) 1 �11 1 1 1

Thus, if either part a or part b is true (which is always the case if
), then both andv(e , h ) 1 v(e , h ) L(e , h ) 1 L(e , h ) Z(e , h ) 1 Z(e ,1 1 2 2 1 1 2 2 1 1 2

.h )2

Appendix B

Theorem 2. Z-measures satisfy all the consequences of (Ex2), whereas
D, S, M, N, C, R, G, and L (and all confirmation measures ordinally
equivalent to any of these) are inconsistent with (Ex2).

Proof

In order to prove the theorem we will use three lemmas.

Lemma 1. Any confirmation measure c satisfying (BC) also satisfies
all the consequences of (Ex2) iff c mirrors H and c mirrors I in case
of confirmation but not in case of disconfirmation.

Proof. Trivially, if c satisfies all the consequences of (Ex2), then c
mirrors H and c mirrors I in case of confirmation but not in case of
disconfirmation.

On the other hand, suppose that c does mirror H and does mirror
I in case of confirmation but not in case of disconfirmation. Then,
for any such that ,e, h � G s(e, h) p 1

c(e, h) p �c(e, ¬h) [since c mirrors H ]

�c(e, ¬h) p �c(¬h, e) [since c mirrors I in case of

disconfirmation]

c(e, h) p �c(¬h, e), therefore, c mirrors HI in case of

confirmation and EI in case of

disconfirmation
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�c(¬h, e) p c(¬h, ¬e) [since c mirrors H ]

c(e, h) p c(¬h, ¬e), therefore, c mirrors EHI in case

of confirmation.

Moreover, for some such that ,e, h � G s(e, h) p 1

c(e, h) ( c(h, e) [since c does not mirror I

in case of confirmation]

c(h, e) p �c(h, ¬e) [since c mirrors H ]

�c(h, ¬e) p �c(¬e, h) [since c mirrors I in case of

disconfirmation]

�c(¬e, h) p c(¬e, ¬h) [since c mirrors H ]

c(e, h) p �c(e, ¬h) [since c mirrors H ]

c(e, h) ( �c(h, ¬e), therefore, c does not mirror

EI in case of confirmation

and does not mirror HI in

case of disconfirmation;

c(e, h) ( �c(¬e, h) therefore, c does not mirror E;

c(e, h) ( c(¬e, ¬h) therefore, c does not mirror EH;

c(e, ¬h) ( c(h, ¬e) therefore, c does not mirror EHI

in case of disconfirmation.

Lemma 2. Z mirrors H and Z mirrors I in case of confirmation but
not in case of disconfirmation.
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Proof. Z mirrors H because, for any such that ,e, h � G s(e, h) p 1

Z(e, h) p [ p(hFe) � p(h)]/p(¬h)

p [ p(¬h) � p(¬hFe)]/p(¬h)

p �[ p(¬hFe) � p(¬h)]/p(¬h)

p �Z(e, ¬h).

Moreover, Z mirrors I in case of disconfirmation because, for any
such that ,e, h � G s(e, h) p �1

Z(e, h) p [ p(hFe) � p(h)]/p(h)

p [ p(hFe)/p(h)] � 1

p [ p(eFh)/p(e)] � 1

p [ p(eFh) � p(e)]/p(e)

p Z(h, e).

Finally, Z does not mirror I in case of confirmation because, for any
such that , when we posit , ite, h � G s(e, h) p 1 Z(e, h) p Z(h, e)

follows that (computations are omitted),p(h)/p(¬h) p p(e)/p(¬e)
which implies that, whenever , .p(h) ( p(e) Z(e, h) ( Z(h, e)

Lemma 3. If a confirmation measure c satisfying (BC) is a function
f of Z (i.e., ) such that f is injective andc(e, h) p f [Z(e, h)] f(x) p

, then c also satisfies all the consequences of (Ex2).�f(�x)

Proof. If c is a function of Z, then, by definition, Z(e, h) p Z(h, e)
implies . Therefore, since Z mirrors I in case of dis-c(e, h) p c(h, e)
confirmation (Lemma 2), the same is true of c. Moreover, if c is an
injective function of Z, then by definition, impliesZ(e, h) ( Z(h, e)

. Therefore, since Z does not mirror I in case ofc(e, h) ( c(h, e)
confirmation (Lemma 2), the same is true of c. Finally, if c(e, h) p

and , then impliesf [Z(e, h)] f(x) p �f(�x) Z(e, h) p �Z(e, ¬h) c(e,
. Therefore, since Z mirrors H (Lemma 2), the sameh) p �c(e, ¬h)

is true of c.
By Lemma 1, it follows that if c is a function f of Z such that f

is injective and , then c satisfies all the consequencesf(x) p �f(�x)
of (Ex2).

To prove the theorem, we will now prove that
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a. any Z-measure is an injective function f of Z such that f(x) p
and therefore, by Lemma 3, satisfies all the consequences of�f(�x)

(Ex2);
b. D, S, M, N, C, R, G, and L (and all measures of confirmation

ordinally equivalent to any of these) are inconsistent with (Ex2).

Proof of part a. The very definition of Z-measures shows that they are
all functions of Z.

Notice that, by principle (BC), for any , , , such thate e h h � G1 2 1 2

and , ands(e , h ) p 1 s(e , h ) p �1 Z(e , h ) ( Z(e , h ) Z (e , h ) (1 1 2 2 1 1 2 2 a 1 1

. Moreover, it immediately follows from the definition of Z-Z (e , h )a 2 2

measures that, for any , , , such thate e h h � G s(e , h ) p s(e ,1 2 1 2 1 1 2

, implies and that,h ) p 1 Z(e , h ) ( Z(e , h ) Z (e , h ) ( Z (e , h )2 1 1 2 2 a 1 1 a 2 2

for any , , , such that ,e e h h � G s(e , h ) p s(e , h ) p �1 Z(e ,1 2 1 2 1 1 2 2 1

implies . This shows that any Z-h ) ( Z(e , h ) Z (e , h ) ( Z (e , h )1 2 2 a 1 1 a 2 2

measure is an injective function of Z.
Finally, let it be the case that and . It isZ(e , h ) p x Z(e , h ) p �x1 1 2 2

now sufficient to notice that . This shows thata a a[x] p F�xF p �[�F�xF ]
any Z-measure is a function f of Z such that , and completesf(x) p �f(�x)
the proof of part a.

Proof of part b. Consider first D, S, M, N, G, and L. Algebraic tran-
formations yield that, for any e, such that ,h � G s(e, h) p �1

D(e, h) p Z(e, h) 7 p(h) D(h, e) p Z(h, e) 7 p(e)

S(e, h) p Z(e, h) 7 [ p(h)/p(¬e)] S(h, e) p Z(h, e) 7 [ p(e)/p(¬h)]

M(e, h) p Z(e, h) 7 p(e) M(h, e) p Z(h, e) 7 p(h)

N(e, h) p Z(e, h) 7 [ p(e)/p(¬h)] N(h, e) p Z(h, e) 7 [ p(h)/p(¬e)]

G(e, h) p Z(e, h) 7 [ p(h))/p(¬h)] G(h, e) p Z(e, h) 7 [ p(e))/p(¬e)]

Z(e, h)
L(e, h) p

1 � [ p(h) � p(¬h)] 7 [1 � Z(e, h)]

Z(h, e)
L(e, h) p .

1 � [ p(e) � p(¬e)] 7 [1 � Z(h, e)]

By Lemma 2, for any e, such that ,h � G s(e, h) p �1 Z(e, h) p Z(h,
. Then, whenever , each of the above measures (as well ase) p(h) ( p(e)

any measure of confirmation ordinally equivalent to any of them) assigns
a higher value to either (e, h) or (h, e), thus failing to mirror I in case of
disconfirmation, contrary to (Ex2).
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Now consider the remaining measures C and R. For any e, suchh � G

that ,s(e, h) p 1

C(e, h) p p(h & e) � p(h) 7 p(e) p C(h, e)

and

R(e, h) p [ p(hFe)/p(h)] � 1 p [ p(eFh)/p(e)] � 1 p R(h, e).

Then, both C and R (as well as any measure of confirmation ordinally
equivalent to any of them) mirror I in case of confirmation, contrary to
(Ex2).

This completes the proof of part b and of the theorem.
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