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Abstract

Behavior may be controlled by reactive systems. In a reactive system the motor output is exclusively
driven by actual sensory input. An alternative solution to control behavior is given by “cognitive” systems
capable of planning ahead. To this end the system has to be equipped with some kind of internal world
model. A sensible basis of an internal world model might be a model of the system’s own body. I
show that a reactive system with the ability to control a body of complex geometry requires only a
slight reorganization to form a cognitive system. This implies that the assumption that the evolution of
cognitive properties requires the introduction of new, additional modules, namely internal world models,
is not justified. Rather, these modules may already have existed before the system obtained cognitive
properties. Furthermore, I discuss whether the occurrence of such world models may lead to systems
having internal perspective.
© 2002 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

There is a great variety of definitions of cognition, ranging from the traditional view that only
humans—in contrast to lower animals or machines—are cognitive systems (reviewAtkinson,
Thomas, & Cleeremans, 2000) to the other extreme that “life is cognition” (Maturana &
Varela, 1992). In this article I would like to use a more practical definition and will show a
concrete example of a system fulfilling the prerequisites required by that definition. To approach
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questions concerning cognition I would like to draw a distinction between reactive systems and
cognitive systems, but will finally argue that this distinction is not a logically exclusive one.
Being based on a holistic system the solution proposed here provides a possible explanation for
the somewhat counterintuitive observation that some cortical neurons seem to belong to both
the motor system and the perceptual system (e.g., mirror neurons:Gallese, 2000; Rizzolatti
& Arbib, 1998; bimodal neurons:Sakata, Taira, Kusunoki, Murata, & Tanaka, 1997; decision
neurons:Kast, 2001).

When investigating questions of how to control behavior, there are two types of problems.
The first is concerned with the performance of a specific behavior (e.g., navigation) or of a
specific function (e.g., pattern recognition) by the brain. Questions of this type are intensively
investigated in psychological and biological research. The second problem, however, is studied
much less frequently. This is concerned with the decision of which behavior to perform next,
i.e., the problem of selection of action. In a realistic situation, this does not concern a decision
between few, e.g., two, alternatives. Instead there is always a high number of possibilities.
Such “redundant” tasks occur, for example, in pattern recognition (Ullman, 1995), speech
production and speech recognition (Uszkoreit, 2000), or in motor control (Cruse, Brüwer, &
Dean, 1993). In all these cases, the decisions have to be made in situations characterized by a
high number of extra degrees of freedom (DoF). The property of being able to cope with such
redundant situations is often called autonomy. Experimental investigation of behavior usually
concentrates on the first type of questions, because too much autonomy of the system studied
makes the evaluation of the data intractable and should accordingly be avoided (except for
early studies in ethology, e.g.,Tinbergen, 1951). Consequently, a very important, if not the
most important, property of a brain is excluded from experimental studies, namely its property
to decide what to do next in situations characterized by a large number of DoFs (see also
Edelman & Tononi, 2000).

2. Reactive systems

The application of the research strategy to study only situations characterized by a small
number of DoFs lead to a lack of knowledge that became most obvious when, in the field
of robotics, autonomous robots were to be constructed. How should the robot decide what
to do next? As not enough detailed results from behavioral biology had been known, the
first approaches used solutions taken from traditional artificial intelligence inspired by insights
gained from introspective methods used in philosophy and psychology. This led to the proposal
that an internal, usually symbol-based, world model should be used to make these decisions.
However, this approach turned out to lead to very slow and often inflexible solutions. Therefore,
as an alternative, the behavior-based approach has been put forward (Brooks, 1991a, 1991b).
It is inspired by biology and experimental psychology, and is based on strictly sensorily driven
control of behavior, i.e., on reactive principles (e.g.,Dean, Ritter, & Cruse, 2000). Actually
there are many examples which show that this approach can lead to the construction of systems
with a considerable degree of autonomy (see the conference series on Artificial Life and on
Simulation of Adaptive Behavior, among them the work ofBeer, Chiel, Quinn, & Ritzmann,
1998; Dörner, 1999; Maes, 1991; Pollack, 1991).



H. Cruse / Cognitive Science 27 (2003) 135–155 137

As an example, Walknet, a system controlling six-legged insect-like walking shall be briefly
explained. Walknet (Cruse, Kindermann, Schumm, Dean, & Schmitz, 1998) is based on bio-
logical data and parts of it have been applied to different robots. It could be shown that this
system which has to deal with 18 DoFs, and which is based on a group of modules consisting
of simple artificial neural nets, has the following properties. The system can control walking
in curves and on irregular substrate, it can cope with obstacles of different types, and it is
tolerant with respect to sudden changes of body geometry. It also shows emergent, i.e., not
explicitly implemented properties, such as different insect-like gaits or autonomous recovery
from a fall. Like other similar approaches (Brooks, 1997), this system is characterized by a
decentralized architecture, using restricted cooperation of different modules. Computation is
extremely simplified by taking into account the loop through the world instead of using explicit
computation, a property often characterized by the terms embodiment and situatedness. There
are also “internal states” which means that a given sensory input can be responded to in dif-
ferent ways depending on the actual form of that internal or “motivational” state. These states
described as swing state or stance state are determined by competitive modules which operate
on a longer time scale than lower level modules and provide these lower level modules with
some kind of limited protection against sensory input. As these states themselves are sensory
driven, the whole system may still be termed a reactive system, however, in a broader sense
(see alsoSloman, 2000).

Furthermore, such reactive systems may be equipped with simple learning mechanisms like
Hebbian learning or reinforcement procedures (e.g.,Pfeifer, 1995; Parisi & Cecconi, 1995;
Tani & Nolfi, 1999). These and other results show that the use of a behavior-based approach,
i.e., application of reactive structures, can lead to adaptive controllers which can handle tasks
characterized by a considerable number of DoFs (18 in the above mentioned case), and which
therefore show a considerable degree of autonomy.

3. Cognitive systems

It is definitely a sensible research strategy to attempt to solve as many problems as possible by
application of reactive structures. However, it appears not to be sensible to principally exclude
the option that additional, non-reactive structures might be necessary in order to establish
properties which may be called thinking, planning ahead or the like. According to the proposal
of McFarland and Bösser (1993)andLanz and McFarland (2000), in the present article, a
system which has the ability to plan ahead will be called cognitive. Thus, systems with these
properties can be distinguished from those described so far as reactive ones. It is a sensible
assumption that for such a cognitive system some representation of the properties of the world,
or, in other words, some kind of internal world model is required. Two types of representations
will be distinguished here. The first type can be described as a “passive” representation, a
static or lexicon-like memory, a look-up table. This type of representation is sometimes called
a context-dependent world model, because, when using this representation, a given behavior
can only be elicited in a given context and by a given stimulus situation. In a perceptron-like
manner, a given stimulus triggers a specific response. Therefore, a system using such a passive
world model can still be described as a reactive system.
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The second type may be termed a “dynamic” representation, or a “manipulable” world
model. The content of this type of memory could be used to “play around with” in order to
test different and new combinations of stored representational elements with the goal to find a,
potentially new, solution to a given problem. In other words, such a world model allows to ma-
nipulate its content deliberately; the representation is “context-free.” In this case the knowledge
system should represent the mechanism underlying the content to be stored. Examples for the
first type are associative memories, or lexicon-like AI systems. Manipulation of information,
the second type, is usually performed by symbol-based AI systems (e.g.,Aleksander, 2000;
Nilsson, 1998).

In the following I would like to concentrate on the second type of world models. How could
such a world model be constructed? In order to simplify this task, we may first ask for a possible
basis, a primitive of such an internal model. What might represent such a primitive? The most
important part of the world, and also the nearest part of the outer world, seen from a “brain’s
view,” is the own body. This leads to the speculation that a basis of such a world model might
be formed by a model of the own body (Cruse, 1999). Stating that the body changes much less
than the external world does,Damasio (1999)argues along similar lines.

The necessity to assume the existence of an internal body model can also be made plausible
by a completely different consideration. For this, we have to distinguish between two different
situations occurring when a body with many DoFs is to be controlled: (i) The DoFs may be
arranged in parallel. An extreme example is given by a milliped. Although each leg has only
a small number of joints (for example, 3) the whole system is endowed with a high number
of DoFs. However, for this case, Walknet, the above mentioned reactive system for the control
of a hexapod could easily be expanded to control a milliped body. In other words, a reactive
system would be sufficient. (ii) A more difficult situation occurs when the DoFs are arranged in
serial order as in a multijointed human arm or an elephant trunk. For this case two solutions are
discussed: (a) the number of DoFs could be reduced by fixed synergies (e.g., two neighboring
joints may be controlled by a common control signal,Bernstein, 1967) or by the introduction
of cost functions (e.g., the solution which requires minimum energy is selected). Such cost
functions may vary with the task. Being fast but not flexible, these solutions are still of a reactive
type. Their advantage is to simplify the problem and to permit fast solutions for known tasks.
However, they have the drawback of lacking the possibility to exploit all geometrically possible
configurations in order to find a solution for a new task. To make this possible, i.e., to be able
to select in anad hocmanner one out of all geometrically possible configurations, some kind
of representation of all these possibilities—in other words, a representation of mechanisms
underlying the system—appears to be necessary. Therefore, if the body to be controlled has a
sufficiently complex geometry, an internal representation of the body geometry is needed or at
least would be helpful. For example,Morasso, Baratto, Capra, and Spada (1999)convincingly
argued that a body model is already necessary for the control of such a seemingly simple task
as posture control in humans. Based on studies of phantom sensations,Melzack (1990)has
postulated the existence of a neuronal representation of the geometry of the body and has
introduced the term “neuromatrix” for this hypothetical network.

Internal world models are not only essential for motor control, but are also needed to accom-
plish perceptional tasks. Generally, the sensory input provided by an actual situation does not
uniquely specify the situation. The information available might be incomplete, ambiguous or
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even contradictory. To find a unique interpretation of the sensory input, i.e., to solve the extra
degree of freedom problem, the neuronal system has to engender an internal representation,
a situation model which is constructed by application of both innate rules (e.g., Gestalt laws)
and learnt knowledge.

What could such a body model look like? In the following, I briefly describe a neural network
model which could be used for this purpose. To start with, the basic requirements to be fulfilled
by such a “manipulable” body model need to be mentioned. To be a general purpose model
it first of all must allow the representation of a system with redundant (extra) DoF. This is
already the case when an arm with three joints is free to move in a two-dimensional plane. In
this case the classical problem of inverse kinematics, namely to find three angle values such
that the hand points to a given position in the two-dimensional plane, allows for many different
solutions and the model must be able to select one of these solutions. To this end, the system
should allow the representation of, in principle, all geometrically possible solutions, so that
out of this infinite number of possibilities one can be selected. In order to adapt the model
to the geometrical conditions of a given hardware system, it must also be able to cope with
built-in constraints like, for example, joint limits. Furthermore, such a model must be capable
of dealing with external constraints like, for example, holding the hand at a fixed angle if
this is required by a specific task. Therefore, in order to allow for an explanation as simple as
possible, we restrict the description to a model of only one part of the body, namely a three-joint
arm moving in a two-dimensional plane (Fig. 1). It should, however, be stated that this model
can be easily expanded to arbitrarily complicated geometries in 3D space (Kindermann &
Cruse, 2002).

A mechanical version of such a body model has been discussed byMussa Ivaldi, Morasso,
and Zaccaria (1988). These authors pointed out that the inverse kinematic problem could be
easily solved by a mechanical model of the manipulator provided with springs to simulate
the muscles, in the following way. By simply moving the tip of the (arbitrarily complicated)
manipulator in the direction of the position of the intended target point, the joint angles of
this mechanical model automatically find their appropriate values. The angle values of this
model could then be used to control the real arm. Mussa Ivaldi et al. called this the “passive
motion paradigm.” In the form of the MMC net (Steinkühler & Cruse, 1998), this idea has

Fig. 1. An arm consisting of three segments described by vectorsL1, L2, andL3, which are connected by the three
joints. The joint angles areα, β, andγ . The position of the endeffector is described by vectorR. Furthermore, two
additional vectorsD1 andD2, describing the diagonals, are shown.
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Fig. 2. Schematic drawing of the MMC net. The output values represent the components of the vectorsR, L1, L2

andL3 (lower line, see alsoFig. 1). As input, for example, the new target position is given by the componentsRx

andRy of the vectorR (vertical column, left). Nonlinearities in the feedback loops (boxes T, P, and Q) are necessary
to keep the segment lengths constant. The symbols (squares, open and filled circles) represent different connection
weights (for details, seeSteinkühler & Cruse, 1998).

been implemented as an artificial neuronal network (Fig. 2). The architecture of this network
is based on the principle often found in biology, that a given value is determined not only once,
but simultaneously in several ways, thus exploiting redundancy. This principle is reflected
by the name MMC which stands for mean of multiple computation. In general terms, this
model consists of a recurrent network which relaxes to adopt a stable state corresponding to
a geometrically correct solution, even when the input does not fully constrain the solution
(Cruse & Steinkühler, 1993). Any special constraints of the variables (e.g., joint limits) can
be introduced. This recurrent network shows some similarities, but also important differences
to Hopfield networks (for a detailed discussion, seeCruse et al., 1998). Hopfield nets show
discrete attractor areas, whereas the MMC net has a smooth, bounded attractor space that
represents all geometrically possible configurations of the arm.
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Fig. 3. Relaxation of a three-joint arm. (a) The arm moves from a starting configuration (- - -) to the goal position of
the endeffector (+). (b) The temporal changes of the three joint anglesα, β, andγ during the relaxation. Abscissa
is number of iteration cycles (it.).

Fig. 3 gives an example of how MMC solves an underconstrained inverse kinematic task.
The movement of the manipulator starts from an arbitrary initial configuration (Fig. 3a, broken
lines) with the task to point to a given target position (Fig. 3a, cross mark). The relaxation of the
network is indicated by several intermediate arm configurations representing different iteration
steps. As can be seen, the arm approaches the target point in an approximately exponential
way. A special case is presented by the example inFig. 4. Here, the coordinates of the endpoint
cannot be reached by the manipulator because they specify a point outside its workspace.
Nevertheless, the network tries to follow the desired coordinates as well as possible. The
manipulator finally points in the direction of the desired endpoint coordinates. Although there
is no solution to the problem, the network “does do its best.”

In addition to some technical properties not mentioned here the MMC network shows the
following general properties.

1. The net is able to control systems with redundant DoF. This includes the capability to
choose one out of an infinite number of solutions possible in underconstrained situations.
The system, for example, finds a geometrically possible solution even when only one
value, for example, angleβ is prescribed. This solution can then be used to control the
actual motor output.



142 H. Cruse / Cognitive Science 27 (2003) 135–155

Fig. 4. Relaxation of the arm when the desired endpoint coordinates (+) lie outside its workspace. Starting config-
uration of the arm is shown by broken lines (- - -). Only the arm configuration of every fifth cycle is shown in (a).
(b) The temporal changes of the three joint anglesα, β, andγ during the relaxation. Abscissa is number of iteration
cycles (it.).

2. The dynamic properties of the net show qualitative parallels toFitts’s law (1954), which
describes a tradeoff between speed and exactness of a targeting movement. As shown
in Fig. 3, the manipulator meets the desired end point the better, the longer the net
has time for relaxation. If, however, time is short, an early, but then necessarily only
approximate solution could be read out from the network to control the motor output.
Therefore, if the network is interpreted as to provide the endpoint of the movement,
but velocity of the movement to be given by a separate input to the motor system, a
behavior according to Fitt’s law can be observed. The velocity of the movement might,
however, also be influenced by the network itself through variation of the damping pa-
rameters (Fig. 2, weights along the diagonal depicted as squares). For higher damping
values, movement speed is slow and the errors are the smaller the longer the net has
time for relaxation, whereas for small values of the damping parameters, the simu-
lated movement is fast and shows considerable oscillations around the target position,
leading to larger errors. Both effects contribute to a behavior corresponding to Fitt’s
law.

3. The network could be considered as forming a “dynamic map” of the arm, because it is
able to represent all geometrically possible configurations. However, it requires a very
small number of units compared to the usual topological, e.g., Kohonen type mappings
(e.g.,Walter & Ritter, 1996).
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4. Another aspect interesting for the interpretation of possible functions of neurons known
from electrophysiological recordings is that, in an MMC type system, the internal con-
nections cannot be labeled as either motor or sensory elements. As summarized byFuster
(1995, pp. 134–137) there was a discussion whether cells found in area 7 of a mon-
key which are excited when the monkey was looking at or was reaching to a given
target should be termed motor or sensor neurons. Application of the MMC type net-
work overcomes the sensorimotor ambiguity, because in this view a classification of
neurons as more sensory or more motor is not sensible. In a similar way, this holds for
the “bimodal neurons” described byIriki, Tanaka, and Iwamura (1996)in the caudal
postcentral gyrus which code body-centered extrapersonal visual space (see alsoSakata
et al., 1997). Furthermore, the below mentioned “mirror neurons” could be explained
this way. Another example of units that cannot uniquely be attributed to either the motor
system or the perceptual system are the “decision neurons” (Kast, 2001).

5. The system solves the problem of sensor fusion, occurring when different sensory in-
puts represent the same value. As an example, in the case of the three-joint arm, the
endeffector coordinates (Rx andRy in Figs. 1 and 2) could be given by visual input,
the anglesα, β, andγ by mechanoreceptor inputs. These different values are integrated
within this holistic system. In this way, the MMC net concatenates both the visual and
the mechanoreceptively given spaces to form a common, dynamic representation.

6. Similarly, an MMC type network may provide a quantitative basis for the phenom-
ena called “Gestaltkreis” byWeizsäcker (1950), “action–perception cycle” byArbib
(1981), or representation–execution continuum (Jeannerod, 1994, 1997). In a corre-
sponding way,Prinz (1997), following Lotze’s (1852)early ideas on the ideomotor
principle, proposes a “common coding of perception and action.” He states that to
perform an action, a “stimulus code” has to be related to an “action code” the latter
consisting of a “goal code” and a “motor code.” This triplet, forming an entire system,
has been termed “intention code” byPrinz (1997). Experimental evidence supporting
the common coding hypothesis is further summarized byDecety and Grèzes (1999),
in particular, for the case when the subject intends to imitate observed movements.
Thus, the MMC net can be regarded as a possible realization of the common coding of
stimulus and goal code postulated by these ideas.

4. Planning

This neuronal model can, as described, be used as a network to control movement, even in
ill-posed situations. Apart from this capability of directly controlling complex motor systems,
i.e., motor systems with many serial DoFs, the network can be interpreted in another way: When
being disconnected from the motor output and parts of the sensory input, it can be used for the
internal representation of the movement of an arm without actually performing the movement.
In this way, the network can be considered a basis of imagining a movement.Jeannerod (1999)
summarizes a number of different results of his group and of other authors supporting the
hypothesis that motor imagery and motor performance are based on similar neural substrate.
This is further supported by recent results ofLotze et al. (1999)who found that during both
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actual and imaginal movement the premotor area and supplementary motor area (SMA) are
active in a similar way. Furthermore, it has been reported (Rizzolatti & Arbib, 1998) that in
the case of mere observation of an action, a strong inhibitory influence has been found which
selectively inhibits those motoneurons in the spinal chord which would be involved in the
execution of the observed action. Similarly, specific inhibitory influences during imagined
movement has been observed (Jeannerod, 1999). Therefore, the corresponding motor output
appears to be actively inhibited during imagination of a motor act or during observation of an
action.

Thus, when being disconnected from the motor output, the MMC network might, as men-
tioned, be used as a basis to imagine movements and therefore be regarded as a possible basis
for a “mental model” of the body. Motor imagery is similar to mental rotation (Shepard &
Metzler, 1971; Georgopoulos, Lurito, Petrides, Schwartz, & Massey, 1989), but more difficult
to the extent that, in the case of controlling a redundant manipulator, the geometrical rela-
tionships between the body parts are not fixed, but, in general, have to be changed relative to
each other to find a solution. A mental model might also be used for the internal search for
the solution of a motor task. Therefore, the MMC network represents a circuit which could
serve as a neuronal basis for motor performance, motor imaging and motor planning. Using an
expression ofGallese (2000)this network comprises the ability of a motor system to “master
its own representation.” FollowingO’Regan and Noë (2002), this network allows “the mastery
of the relevant sensorimotor contingencies.” It is important to say that the network does not
represent the possible arm configurations in the form of a look-up table, but represents the
underlying mechanism instead. FollowingByrne’s (2000)terminology, the model permits a
“representational understanding of mechanism.” The network being able to construct a situa-
tion model based on sensory information, yet possibly incomplete, could well provide a basis
for the “remembered present”—a most imaginative term coined byEdelman (1989).

Thus, the MMC model can be used for the manipulation of knowledge—in this case geo-
metrical knowledge concerning the own body—it can “play around” with different possible
solutions until it has found a (new) solution for a given task. This means that, according
to the definition used here (see alsoMcFarland & Bösser, 1993), this network may be re-
garded as a basis for cognition. Should this search for a solution be described as a “decision”
performed by the network? There are two kinds of situations leading to a decision: one is
described by a continuous decision space as it occurs with the control of the arm’s move-
ment, the other refers to a discrete decision space such as the decision between fight and
flight. A discrete decision situation, however, can also occur in the arm example when the
movement of the hand is obstructed by an obstacle and a decision has to be made whether
to pass the obstacle on its left or its right. Another example is given by a reaching task in
which an object has to be pointed at with either the right or the left hand (Kim & Cruse,
2001). As far as discrete decisions are concerned, it is usually assumed that the different pos-
sible solutions have to be tested and stored separately, so that, when comparing the different
solutions, a decision can finally be made. This method corresponds to the deliberation procedure
as described bySloman (2000)who proposes the distinction between reactive and delibera-
tive systems, where I distinguish between reactive and cognitive systems. Such a deliberation
procedure, using a more or less pruned search tree (Aleksander, 2000), can only be applied to
the case of a continuous decision space with difficulty, because it is almost improbable that all
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possible solutions could be stored that finally lead to a decision. In this case, the application
of a system with a continuous attractor space appears to be more appropriate. However, also
discrete decision situations can be solved by a dynamic system without explicit storage of the
discrete solutions (e.g.,Hopfield & Tank, 1985, or, for the above mentioned decision between
right and left hand,Kim & Cruse, 2001). In such systems as in the MMC-net, which may
be considered as networks underlying Aleksander’s “depiction,” manipulation of knowledge
occurs without processing of symbols and explicit search tree. Therefore, the term cognition
is used here as the more general term (see alsoTani, 1998) for this type of “mental activity.”
As will be argued later, specific continuous dynamic systems that represent the underlying
mechanism in a holistic way appear necessary to form the basis for subjective experiences
which, I think, is not possible for deliberative procedures based on search trees. Another way
to deal with this question is the following. Referring to a decision as a discrete one appears
only to be appropriate as an a posteriori description, i.e., when looking at it after the fact. The
actual neuronal activity has to be performed in a continuous situation (see alsoEdelman &
Tononi, 2000, who consider the necessity to select a solution out of a very large number of
possibilities as an important condition for consciousness to emerge).

An MMC type network can therefore be considered as a possible basis for a sensorimotor
hypothesis of cognition. A common basis for low-level motor, and higher level cognitive
processes has also been postulated bySmith and Shadmehr (2000)who address the basal
ganglia as to play an important role in this context, however, also posterior parietal cortex,
cerebellum and motor cortices are discussed to contribute to an internal body model (Desmurget
& Grafton, 2000; Decety & Grèzes, 1999). An extremely elaborate proposal has been made
by Damasio (1999). All the brain areas he is listing as possible basis for what he names core
consciousness (i.e., sensorimotor cortex, cingulate cortex, thalamus and superior colliculi) may
be regarded as a possible anatomical basis where these networks may be found.

Several researchers argue along similar lines. Fuster summarizes his view stating that think-
ing is some kind of imagined movement (Fuster, 1995). Calvin (1996)argues that thinking
is movement which has not yet taken place (see alsoJeannerod, 1999). Ito (1993)states that
“in thought, ideas and conceptions are manipulated just as limbs are in movement.”Jeannerod
(1999)expands this view of a holistic action–perception system by stating that an observer
understands an observed action “whenever he/she becomes able to simulate it and to share
the experience of the person who performs the action.” And he summarizes an impressive
amount of own work and of others stating that “such processes as intending, imaging, observ-
ing/imitating and performing an action share, at least in part, common structural and functional
mechanisms.” In other words, even perception might be based on the same system. Therefore,
I propose that an MMC-like structure may represent the basis for a perceptual system, too (for
a stimulating discussion of a tight connection between perception and the motor system see
alsoGross, Heinze, Seiler, & Stephan, 1999). This agrees with the observation of the already
mentioned “mirror neurons.” As reviewed byRizzolatti and Arbib (1998), specific neurons in
premotor areas are activated if an individual is about to perform an action or observes another
individual performing this action. These neurons have therefore been called “mirror neurons.”
These neurons appear to be tightly coupled to the motor system and are interpreted to provide
the basis for a system that allows for action understanding (Gallese, 2000). In that sense such
an internal model might help to live in a social environment where the activities of conspecifics
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have to be recognized and understood. Recent support for a tight connection between what
is traditionally divided in a perception system and a motor system is given byBuccino et al.
(2001). Human subjects are allowed to look at videos that show kicking movements of a leg,
grasping movements of an arm, or chewing movements of a mouth. Imaging studies revealed
strong excitation of the corresponding motor areas. When the observed movement was coupled
with an adequate object, a ball, a cup, or an apple, additional excitation has been found in the
parietal cortex. Interestingly, patients with specific prefrontal lesions compulsively imitate ges-
tures or even complex actions performed by the experimenter (Lhermitte, Pillon, & Serdaru,
1986, cited fromGallese & Goldman, 1998). This can be interpreted as an impairment of the
inhibition of the connection between the internal model and the motor output.

Following these ideas, an internal body model like the MMC net could be regarded as
representing the basis for a simple form of thinking. This may be made more plausible when
we consider the possibility that the body model might be expanded by including external objects
like tools, for example, a stick held by the hand. A plausible biological basis for this may be
given by results ofIriki et al. (1996)who found bimodal neurons in the caudal postcentral gyrus
with receptive fields representing the position of the hand in space. During tool use, their visual
fields were altered to include the entire stick held by the hand of the monkey. In the MMC net,
such an expansion is easily possible by recruiting additional neurons representing the tool. In
this way, the MMC net might serve not only as an internal body model in a strict sense, but
could easily be extended to form a simple, egocentric world model. I would like to underline
here that a body model already constitutes a world model insofar as the body is part of the
world. Moreover, the MMC network does not only represent the geometry of the body. The
net also contains a small part of the external world in the form of the vectorR (Figs. 1 and 2)
which represents the position of an external object. Furthermore, the MMC net can easily be
expanded to represent additional geometrical positions in space. For example, it can be used
to represent different landmarks in order to control landmark navigation (Cruse, submitted)
or, to represent the position of a group of conspecifics. To allow for an allocentric perspective,
separate structures may be necessary (Jeannerod, 1999; Vogeley et al., 2001).

5. Internal perspective

Some people assume that “true cognition” is only possible for systems with an internal
perspective or a first person’s view (also termed phenomenal consciousness, see e.g.,Chalmers,
1996). Simple reactive systems are assumed to have no internal perspective. Humans, on the
other hand, are systems that are able to have an internal perspective. This distinction is not
immediately obvious to everybody, probably because having an internal perspective is so much
identical with being oneself that it is difficult to imagine that having an internal perspective is
a separable property. To make this clearer, I would like to introduce two terms already used
earlier (Cruse, 1999), namely the terms of HIP system and NIP system. Apparently, in this world
we can distinguish between two types of systems. There are systems, that definitely include
humans, and most probably many other animals, that are capable of subjective experience,
sometimes also called awareness or internal perspective. For short they shall be called HIP
systems (Having an Internal Perspective). There are other systems, such as a pencil, a stone,
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or a clockwork, that most probably do not have this ability. I shall call them NIP systems
(Not having an Internal Perspective). They do not feel anything. This is at least, what people
usually take for granted. Although we cannot be totally sure about it, I shall adopt this view to
simplify the following discussion. In many cases, for example, in an insect, we cannot decide
whether it belongs to the NIP systems that act like a reflex machine, or a clockwork, or whether
it belongs to the second type, the HIP systems, and consequently has subjective experiences.
Such a decision is the more difficult, the more the brain under view differs from a human brain.
(For an excellent description of this topic, seeDamasio (1999). In his terminology, a system
has to be endowed with at least “core consciousness” to belong to the realm of HIP systems.
ProbablyEdelman and Tononi’s (2000)“primary consciousness” has a similar meaning).

The following example may serve to make the distinction between HIP and NIP systems
more obvious. Imagine we were able to look inside the brain of a subject and measure all the
interesting neuronal activities, for example, when the subject judges the color of a, say green,
pencil. In this way, all details of the subject’s neuronal activities when seeing “green” could be
determined. On the other hand, the subject seeing green does not see these neuronal activities,
but experiences seeing green. The latter is called the subjective quality of experience. The
content of this subjective, or first-person, perspective is only accessible to the person himself
or herself. Nobody other than myself can judge how I see green. The characteristic of subjective
experience becomes even more obvious in the case of pain. We might consider all neuronal
activities that occur when a subject’s skin is stimulated by a needle. One might, in principle,
even examine one’s own action potentials, if oneself is the subject of this experiment. But the
experience when considering all these neuronal activities is completely different from the pain
one experiences at this moment. Thus, self-observation tells us that there are systems, namely
humans, that can experience an internal perspective. On the other hand, intuition tells us that
there are other systems, like a stone or a simple machine (including some clever present-day
robots) that may not have such an internal perspective.

Interestingly, there are at least three cases that mark a transition from a system without
internal perspective, a NIP system, to a HIP system, i.e., a system capable of an internal
perspective. At least once during biological evolution, somewhere between the state of the
simple protozoans and the state of the human being, this change must have come about. Such
a transition also occurs during the ontogeny of each individual human. A, say, four-cell human
embryo most probably does not yet have the ability to experience, because we assume that
a specific neuronal system is necessary to have subjective experience. So, somewhere during
ontogeny this change must occur. Furthermore, our everyday change from (dreamless) sleep
to the awake state shows such a transition. This means that even the brain of an adult human
can, to some extent intentionally, switch between these two states.

Using this distinction, one might ask whether there is still a principal difference between HIP
systems and systems having the property to be cognitive in the sense used here, i.e., to be able to
plan ahead? In other words, do HIP systems require additional circuits beyond those discussed
above? To approach this question we should first consider what could be said concerning the
content of our subjective experience.

According toMetzinger (2000), subjective experience does not reflect our direct sensory
input, but relies on the content of a construct. This view is supported by a number of phenomena
which here might only be mentioned briefly: we do not experience the actual image projected
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on our retina, but have the impression of a stable space. We see the 2D Necker cube as a 3D
figure. When we try to explore the world by a hand held stick as mentioned above we soon
have the impression of feeling the tip of this stick although there are definitely no sense organs.
A mechanical stimulation at the skin is felt at the stimulated site of the body, although the
neural processes forming the basis of this experience occur in the brain. The view that what
we subjectively experience is a construct is even more obvious when considering phantom
sensation where no sense organs exist. Other examples supporting this view are hemineglect,
confabulation, alien hand syndrome or mania.O’Regan and Noë (2002)summarize impressive
cases of “change blindness.”Libet, Wright, Feinstein, and Pearl (1979)experiments show that
an about 500 ms excitation of the cortex is necessary to experience a subjective sensation, but
there is a back projection in time such that we have the impression that the experience occurs
together with the beginning of the stimulation. Metzinger summarizes these results by saying
that we confuse the content of our subjective world model with the real world.

These mental constructs form a subjective world model. Above I have already discussed
recurrent networks that are assumed to represent a world model. Therefore, I would like to
speculate that the mental constructs forming a subjective world model are based on the recurrent
networks discussed earlier. Is it possible to confirm this statement? Probably the only possible
way to approach this question is an indirect one. We have to try to find parallels between
observations concerning subjective experiences of systems such as human beings, i.e., so-called
HIP systems, with properties of the neuronal system. The more parallels we find, the more the
hypothesis is supported. For example, the MMC net shows parallels to Libets experiments,
if we assume further that an approximate relaxation of the recurrent network is a necessary
condition to reach the state of subjective experience, that is the HIP state: relaxation to a stable
attractor takes some time, and Libet’s experiments reveal that some time is necessary for a
stimulation to elicit subjective experience.

According toDamasio (1999)core consciousness comes in a pulse-like fashion, and consists
of three states unfolding in time: the initial state corresponds to the actual state of the organism.
The second stands for the arrival of an object and the third for a reaction that results in a modified
state of the organism (Damasio, 1999, p. 168). The latter state is engendering the phenomenon
of subjective experience. The MMC net proceeds in the same way. At the beginning, the body
position it represents has to be updated using sensory input to correspond to the actual body
position. Second, an input is provided representing an external object that, inFigs. 1 and 2,
corresponds to vectorR, and third, after some time necessary for relaxation, the internal model
has changed its position which may, or may not, be used to control the movement of the
body. According to my above speculation, successful relaxation corresponds to this positional
change becoming subjectively experienced. Correspondigly, Damasio states that “we become
conscious, then, when. . . an organism has been changed by an object. . . .” However, unlike
Damasio’s assumption there is no two-stage representation, no “re-representation” necessary,
when using such a recurrent network. In the MMC network there is no separate representation
of object and of body. Rather, both are represented in a holistic manner within one network.
O’Regan and Noë give a nice example in order to explain the occurrence of subjective experi-
ence by asking what is it like to drive a Porsche: “The particular experience of Porsche-driving
comes from the typically Porsche-like give-and-take between you and the car when you drive
the Porsche” (O’Regan & Noë, 2002). This means there is a continuous comparison between
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the prediction of the internal “Porsche-driving” model and the sensory input. If both fit, the
recurrent network model will relax and the lucky subjective experience of Porsche-driving
will occur. Edelman and coworkers (e.g.,Edelman & Tononi, 2000) have investigated a series
of model studies based on perceptual phenomena and have used a different type of network.
However, they come to very similar general conclusions: to reach consciousness, a recurrent
network is necessary that can select one solution out of a very large number of possibilities.
This solution is influenced by the sensory input and requires some time possibly corresponding
to the psychological refractory period.Edelman and Tononi (2000)call these networks “func-
tional clusters” and offer most fascinating insights, when discussing how such clusters might
be imbedded in a larger framework, a topic not addressed here further (for an early model
referring to this topic, seeCruse, 1979).

Some further examples show parallels to the properties of the MMC net, as well. Neumann
and coworkers (Ansorge, Klotz, & Neumann, 1998) performed a series of experiments where
subjects had to press a button when a specific visual stimulus was perceived. In some experi-
ments the stimulus had been masked so that the subjects report not having seen the stimulus,
but they nevertheless react to the presentation of the stimulus as if it had been perceived. This
means that subjective experience is not necessary for the control of an action. The authors
discuss several models to explain this result. Their favorite model, the “late dissociation view”
assumes a process with dynamic properties: this hypothetical process can drive the motor out-
put already in an early phase, but requires some time of further processing until the content of
the process reaches a conscious level. Masking is assumed to interrupt this activity. An MMC
type network might well be the basis of this phenomenon, because, as mentioned above, the
motor output may be active already in an earlier state of relaxation, whereas final relaxation,
i.e., the mechanism hypothetically leading to subjective experience, can be interrupted by a new
input given to the system. This view of a tight connection between the motor control system
and the system responsible for subjective experience fits to the observation ofEkman (1992)
who states that the activation of motor commands for facial expressions showing happiness or
sadness, for example, are necessarily followed by the corresponding subjective experiences.

A spectacular case has been reported byRamachandran, Dogers–Ramachandran, and Cobb
(1995). In a patient suffering from phantom sensation in the amputated left arm, a lively
subjective experience of moving this nonexisting left arm could be elicited when the intact
right arm was both actively moved and seen in a mirror such that the mirror image of the right
arm appeared at the position where the left arm would have appeared if it had been intact. This
observation could be interpreted in the following way: usually the model of the arm is in a
relaxed and therefore subjectively experienced state, for example, pointing straight to the left.
No change of the state is possible because there is no sensory input. In the experiment, the
visual input providing information concerning the position of the arm is sufficient to activate
the model of the left arm and that this activation in turn leads to a new subjective experience.
Furthermore, it is interesting that the phantom sensation can disappear when the patient uses
the mirror for several weeks. This indicates that at least part of the body model can be unlearned
(Ramachandran & Blakeslee, 1998).

The Pinnochio illusion can be experienced when the biceps muscle of an subject’s arm is
vibrated while the hand is grasping the nose (Lackner, 1988). In this situation the nose appears
to be elongated up to 30 cm. Vibration stimulates the muscle spindles such that the elbow
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joint appears to be more extended. As the nose is still grasped by the hand, this incongruent
situation leads to a subjective experience which can be interpreted as to represent some kind of
compromise between the different, non-matching sensory signals. A corresponding behavior
can be found in the MMC model as shown inFig. 4(see alsoCruse et al., 1998, Fig. 3, which
shows the elongation of body segments). In this incongruent situation the network, too, relaxes
to some kind of compromise state. A discussion to what extent this model may further agree
with the phenomena described by philosophers as semantic transparency and perspectivalness
can be found in (Cruse, 1999).

Experiments of Povinelli and collaborators (e.g.,Povinelli, Landry, Theall, Clark, & Castille,
1999) provide information concerning the development of body models in human children.
These suggest that internal world models can be activated by sensory input—as revealed in
Ramachandran’s patient—already in 2-year-old children and in chimpanzees. When these
children or chimpanzees are filmed by a video camera and simultaneously look at the monitor,
they apparently recognize themselves. However, this is no longer the case when there is a
time delay of about 3 min between the actual behavior and the video. In this latter situation
self-recognition is only possible for children of age 4 or 5, but not for the apes. This suggests
that the ability to use the body model independently of the actual sensory input is developed
in children between age 2 and 5.

These observations do of course in no way prove that an MMC type network is a necessary
condition to form a HIP system. They allow, however, the suggestion that the neuronal system
that forms the basis of the internal model does not consist of a perceptron-like feedforward
system. Such a look-up table cannot represent the temporal dynamics nor can it represent
the underlying mechanisms of the real world system, in our example the three segment arm.
Although such an arm could be represented by a multi-layer perceptron (Brüwer & Cruse,
1990), a perceptron could not easily be adapted to any arbitrary external constraint, but re-
quired a special training session for each new type of constraint. This is not necessary for a
system that does not represent the input–output relations in the form of a look-up table, but
the underlying mechanism. Therefore, two hypotheses are formulated here. One is that our
internal world model is based on a recurrent network with attractor dynamics that is able to
represent the underlying mechanisms. The MMC network only shows one possible realization
of such a system. The second hypothesis claims that part of the content of this world model
can be subjectively experienced if the net is relaxed to a sufficient degree.Flohr (2000)ar-
gues that if such a system develops “higher-order self-reflexive representations,” this is not
only a necessary, but also a sufficient condition to be a HIP system, i.e., for the occurrence of
subjective experience. If this was true, we had to conclude that artificial systems could exist
that have subjective experience, too. According to this idea, a system, like “Deep Blue,” how-
ever, able to defeat a world chess champion, cannot reach the state of a HIP system, because
it contains a planning system that does not represent the mechanisms underlying chess in a
holistic way.

Finally, it should be mentioned that this model might be considered to explain how the
hardware basis of our ability to have an internal perspective might look like, but it does in
no way explain the really “hard problem” (Chalmers, 1996) namely to say what enables a
physical system to have subjective experience. In other words, these considerations do not
explainwhy some neuronal activities are accompanied with subjective experience whereas
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others are not. This question has not been solved yet. It has, however, been argued (Cruse,
1999) that an astonishingly simple solution will be reached in a way similar to how the question
of what life is has been answered. Today we know the essential mechanisms that make up a
living system. Therefore, nobody in science cares for a vis vitalis required by the vitalists at
the beginning of the 20th century as essential for life to exist. Similarly, in the future most
people will be satisfied with the idea that just some specific mechanisms make up a HIP
system.

6. Conclusion

Behavior may be controlled by reactive systems. In a reactive system the motor output is
exclusively driven by actual sensory input. Such a system could possibly be expanded by being
equipped with internal states. In this case the actual sensory input can be treated differently
depending on the system’s actual state. Generally, these internal states are also sensorily driven,
but this happens on a longer time scale. A further expansion of such reactive systems might
include the introduction of learning mechanisms. Even with these expansions the system might
still be termed a reactive system in a broad sense because its behavior is, on a short or a long
term basis, controlled by sensory input. There are a number of concrete examples in the form
of robots which show that such reactive architectures allow the construction of systems with a
considerable degree of autonomy.

However, in order to control bodies with a high number of DoFs, an internal representation
of the body is assumed to be necessary. An artificial neural network is described which might
form the basis of such an internal representation. Minor changes suffice that such a system can
also be used as a basis for a planning system and therefore can become a cognitive system. This
agrees with the proposal of several researchers that thinking can be understood as imagined
movement (see also S. Freud’s “Probehandeln”). Anecdotical evidence supporting this view is
given by biological examples for the control of complex kinematics: beside primate grasping
the control of the trunk by elephants, manipulation of objects with legs and the beak by parrots
or, to take an invertebrate example, the movement of the arms of an Octopus. All these animals
appear to have considerable cognitive abilities. Dolphins appear not to be an example supporting
this sensorimotor hypothesis of cognition, because they do not have a motor system with a
particularly high number of DoFs (compared to other vertebrates). However, they live in social
groups and might therefore have found a completely different way to develop a world model
which is able to represent the spatial position of the members of the group. As indicated, an
MMC type model may also be the basis for such a world model.

Concerning the evolution of cognitive systems, the view proposed here means that a cognitive
system might have been evolved on the basis of an already existing neuronal system necessary
for the control of a geometrically complex body, i.e., a body with serially redundant DoFs.
Cognition is possible when the connections between the neuronal system and the motor system
can be disconnected. Therefore, according to this proposal evolution of cognition is an example
of “exaptation” (Byrne, 2000). This means that the evolutionary development of cognitive
abilities may not have required the invention of completely new neuronal systems, but rather
the ability to disconnect already existing structures. Thus, reactive and cognitive systems should
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not be considered as logically exclusive ones. Cognitive systems should rather be regarded as a
special form of reactive systems like humans are a special form of animals. Concerning future
research strategies, these considerations suggest that the understanding of how to control a
complex kinematic system may be a prerequisite to understanding the functioning of cognitive
systems.
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