
Research Article
The Spiral Discovery Network as an Automated
General-Purpose Optimization Tool

Adam B. Csapo

Department of Informatics, Széchenyi István University, Győr, Hungary

Correspondence should be addressed to Adam B. Csapo; csapo.adam@sze.hu

Received 29 September 2017; Accepted 22 January 2018; Published 12 March 2018

Academic Editor: Kevin Wong

Copyright © 2018 Adam B. Csapo. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Spiral Discovery Method (SDM) was originally proposed as a cognitive artifact for dealing with black-box models that are
dependent onmultiple inputs with nonlinear and/ormultiplicative interaction effects. Besides directly helping to identify functional
patterns in such systems, SDMalso simplifies their control through its characteristic spiral structure. In this paper, a neural network-
based formulation of SDM is proposed together with a set of automatic update rules that makes it suitable for both semiautomated
and automated forms of optimization. The behavior of the generalized SDM model, referred to as the Spiral Discovery Network
(SDN), and its applicability to nondifferentiable nonconvex optimization problems are elucidated through simulation. Based on the
simulation, the case is made that its applicability would be worth investigating in all areas where the default approach of gradient-
based backpropagation is used today.

1. Introduction

The question of how to gain an understanding of the opera-
tion of a system arises naturally in a wide range of application
areas. However, this question is not always easy to answer, in
part because different use cases favor different approaches.
While a set of closed formulae might be useful when it
comes to predicting exactly how the system will operate
under specific conditions, they may be difficult to formulate
when the conditions themselves and/or their effects are hard
to characterize. In such cases, black-box identification and
heuristic modelling approaches are often used.

The neural network presented in this paper, referred to as
the Spiral Discovery Network (SDN), is a generalized version
of the Spiral Discovery Method, which is a semiautomated
cognitive artifact [1, 2]. SDM originally served the purpose
of helping users to discover systematic relationships between
multiple inputs to a system and the system’s output behavior,
even when the inputs have nonlinear effects and multiplica-
tive cross-effects on the output. The goal in extending the
SDMmodel is to extend its applicability to automated settings
in which neural networks (or other parametric black-box
models) tune their behavior based on a set of functional

constraints, such as requirements on the structure of their
output or other external error feedback signals.

Through the formulation proposed in this paper, it turns
out that SDM is applicable whenever a data-driven approach
is available to the identification of a system and whenever
the effects of various changes in its inputs can be evaluated
in a reasonable amount of time. When the evaluations
are performed by humans, SDM shows motivations and
characteristics similar to those of the paradigm of interactive
evolutionary computation [3, 4]; however, it shows differ-
ences in terms of the logic through which it helps to discover
parametric spaces. Its extended version, SDN, is also more
generally applicable by allowing for automated evaluations.
As discussed in the conclusions of the paper, SDN is note-
worthy in that it does not rely on gradient information, a
feature that can be seen to reduce the complexity of the
required computations, as well as being potentially helpful in
cases where the performance of gradient-based solutions is
far from optimal (for a detailed discussion on such cases, the
reader is referred to [5]).

The paper is structured as follows. Section 2 provides a
short overview of the literature on nonconvex optimization
in order to position the relevance of this work with respect to

Hindawi
Complexity
Volume 2018, Article ID 1947250, 8 pages
https://doi.org/10.1155/2018/1947250

http://orcid.org/0000-0001-9885-137X
https://doi.org/10.1155/2018/1947250

2 Complexity

earlier results. Section 3 then briefly reviews the background
of the original Spiral Discovery Method (SDM). Section 4
introduces the tensor-algebra based numerical structures
behind the original SDM formulation. In Section 5, the
neural network-based Spiral Discovery Network (SDN) is
introduced. A simulation example is provided in Section 6 in
order to demonstrate the viability of the model in handling
nonconvex and nondifferentiable optimization problems.
Finally, Section 7 concludes the paper.

2. Historical Overview

Nonconvex optimization is a broad field of mathematics that
findsmany applications in engineering tasks where the goal is
to find sufficiently good solutions on high-dimensional para-
metric manifolds. One of the most relevant examples today
is finding useful architectures for (deep) neural networks or
other kinds of graphical models, as well as finding the right
set of parameters with which to operate them. The common
approach in solving such problems is to iteratively refine a
candidate solution in away that incrementally improves upon
it in terms of a globally defined loss function: this is known
as gradient descent [6].

The general idea of gradient descent can be highly
successful on parametric landscapes that are associatedwith a
clearly defined cost function and contain no more than a
small number of localminima in terms of that function.How-
ever, as soon as the value of a cost function becomes difficult
to interpret or the cost function becomes so intractable that it
is computationally difficult to determine its gradients and/or
it produces an intractably large number of local minima, the
naive solution of gradient-based iterative optimization often
starts to break down.

The problem of dealing with local minima can be ad-
dressed to some degree by finding good trade-offs between
exploration and exploitation, that is, by modifying the gradi-
ent descent approach slightly to counteract situations where
the optimization process might slow down or stop. This
approach is reflected in a host of existing solutions. One
fruitful idea was to experiment with the scaling factor of the
gradient, for example, by making it adaptive to changes in
sign via the concept of “momentum” [7–9] or by making it
specific to the different dimensions in the parameter space
[10, 11]. Other ideas include the normalization of inputs across
layers and batches (specifically in training neural network
models) [12] or by simply adding noise to the gradients [13].

The above solutions notwithstanding, the general idea
of modifying a candidate solution in the direction of the
negative gradient of a loss function has largely remained
unchallenged. Only recently have the remarks of G. Hinton
and other highly regarded researchers become widely
publicized, which suggest that gradient descent, at least
based on backpropagation, may prove not to be the ulti-
mate solution for training neural networks (see, e.g., the
article entitled “Why We Should Be Deeply Suspicious of
BackPropagation” by C. E. Perez on https://medium.com/
intuitionmachine/the-deeply-suspicious-nature-of-backprop-
agation-9bed5e2b085e).

In this paper, the earlier idea of the Spiral Discovery
Method is extended to the domain of automatic training in
neural networks through a neural architecture. Instead of
relying on gradients to update its search location, the method
follows a hierarchical hyperspiral structure within the para-
metric space, thus gaining insight into search directions that
may be fruitful.

3. Original Problem Formulation Behind SDM

In this section, we consider a generic formulation of the class
of problems to which the original Spiral Discovery Method
(SDM) can be applied. To this end, we will make use of the
following concepts and notations:

(i) A vector of generation parameters g ∈ R𝐺

(ii) A perceptually accessible output 𝑜 ∈ R

(iii) A system transfer function 𝑆 : R𝐺 → R, which
evaluates generation parameter vectors to produce
perceptually accessible outputs

(iv) An evaluation function 𝐸 : R → R, which associates
perceptually accessible outputs with a real number
referred to as the perceptual value of a given output

(v) A set D = {(g1, k1), (g𝑚, k𝑀)} referred to as the data
set, which contains tuples of generation parameter
vectors and perceptual values.

In the original problem formulation, the goal is to find a
set of generation parameter vectors that are suitable for the
generation of a controlled set of outputs, controlled, that is,
from the perspective of the perceptually driven evaluation
function.Most often, the problemwould present itself in such
a form that a user is given a perceptual value, V󸀠, and the goal
is to find a generation parameter vector, g󸀠, suitable for the
generation of an output that yields k󸀠 as its perceptual value.
In general, solving this problem amounts to more than just
inverting the system transfer function (if such an inversion
were even possible to begin with), as the relationship between
systemoutput and its perception value, which is usuallymuch
too complex to be formulated analytically, also must be taken
into account.

Application areas in which the above formulation is of
interest include the following:

(i) Tuning a set of parameters to a uni- or multimodal
synthesis algorithm for perceptual continuity: for
example, in a virtual reality with object-to-sound and
object-to-vibration mappings, given a set of param-
eters used to generate audio signals and vibration
patterns for spherical and block-like objects, the goal
might be to find an appropriate set of generation
parameters for certain kinds of polyhedra, concep-
tually situated “somewhere between” spheres and
blocks.

(ii) Controlling inputs to complex black-box models
based on derived quantifications of success: for exam-
ple, inputs to a multispeaker system or a distributed

https://medium.com/intuitionmachine/the-deeply-suspicious-nature-of-backpropagation-9bed5e2b085e
https://medium.com/intuitionmachine/the-deeply-suspicious-nature-of-backpropagation-9bed5e2b085e
https://medium.com/intuitionmachine/the-deeply-suspicious-nature-of-backpropagation-9bed5e2b085e

Complexity 3

Fixed values

Variables

Original tensor

HOSVD decomposition Tensor algebraic SDM structure

(based on HOSVD and HOOI)

B

B
c

X1 | R

X2

X3 | E

X1

X2

X3

P1

P2

P3

P2

P3

I2

P1

I2

I3

P3

K

I3

P3

P2

I2

P1

I1

I1

I2

I3

S

P3

I3

P1 + 1

P1 + 1

==

1 1
1

. . .

⏞�㷠
�㷠�㷠
�㷠�㷠
�㷠
�㷠�㷠
�㷠�㷠
�㷠⏞

(S
| 3
K) | k

B
c

Figure 1: Tensor algebraic formulation of the Spiral DiscoveryMethod based on higher-order singular value decomposition and higher-order
orthogonal iteration (figure adapted from [2]).

heating system in a large auditorium might be fine-
tuned in order to accommodate extrinsic require-
ments of comfort and cost-effectiveness.

The overall characteristic of the problem formulation is
that it encompasses problems where a set of parameters can
be used to control a model, usually a black-boxmodel, whose
functionality can best be evaluated indirectly through effects
that are not well understood, for example, perceptual effects,
qualitativemeasures such as comfort, or aggregatedmeasures
such as cost-effectiveness.

It is clear that such formulation can be easily generalized
to cases where the evaluation is performed not by humans,
but by any kind of automatic process extrinsic to the system.
Suchprocessesmight still involve aweaker link to humanper-
ception or more generally to qualitative cognitive measures
but would nevertheless be directly or indirectly measureable
and interpretable.

4. Tensor Algebraic Formulation of the
Spiral Discovery Method

The original formulation of SDM is in a tensor algebraic
form, shown in Figure 1. It is based on the discretization of a
hypothetical function that maps vectors of perceptual values
k𝑖 to generation parameters g𝑖. In most cases, this function
cannot be expressed analytically and might even be different
depending on various circumstances, such as the user per-
forming the evaluation. At the same time, a discretized form
of the function can often be sampled through experiments
(this idea is inspired by the Tensor Product model [14–
16]). The discretization is stored in a tensor, F, such that
all dimensions, save for the last one, correspond to discrete
gradations along perceptual scales (e.g., “roughness,” “soft-
ness,” “degree of comfort,” or “cost-effectiveness”), while the
last dimension stores 𝐺-dimensional generation parameter
vectors corresponding to the perceptual configurations.

4 Complexity

The above described tensor, F, is first decomposed into
a core tensor and a set of weighting matrices based on the
higher-order singular value decomposition (HOSVD) [17].
This is followed by an iterative rank-reduction step, known as
higher-order orthogonal iteration (HOOI) [18], which creates
a rank-reduced approximation of the complete system, such
that its outputs are controlled by only a single parameter
in the perceptual dimension of interest. The twist in the
approach is that the “meaning” of this parameter, in other
words, the hyperplane alongwhich it influences the system, is
cyclically changed through a numerical reconstruction of the
system and the systematic manipulation of the core tensor.

The conceptual background of SDMcan bewell described
through a 2-dimensional numerical example. Consider the
function described by F:

F = (5 23 310 5) (1)

in which there are 2 generative parameters for 3 different
perceptual gradations. Using singular value decomposition
(SVD, instead of HOSVD because we are in case of two
dimensions), we obtain

F = S×1U×2V
= (13.04 00 1.4)×1(0.41 −0.390.31 0.910.86 −0.14)

×2 (0.89 −0.460.46 0.89) .
(2)

Optimal rank-reduction in the 2-dimensional case con-
sists simply of removing the second column of S and the
second row of V or setting S(2, 2) = 0 (thus, in this simple
case of two dimensions, HOOI needs not be used). Once
S(2, 2) = 0, the second row of the core tensor consists of all
zeros and can be removed (as a result, the second column of
U is also removed).

After augmenting the matrix of singular values and the
weighting matrices as specified by SDM, we obtain

S̃ = (13.04 0 𝑎 𝑏𝑑11 𝑑12 𝑑13 𝑑14𝑑21 𝑑22 𝑑23 𝑑24𝑑31 𝑑32 𝑑33 𝑑34)
Ũ = (0.41 𝑟11 𝑟12 𝑟130.31 𝑟21 𝑟22 𝑟230.86 𝑟31 𝑟32 𝑟33)
Ṽ = (0.89 −0.46 1 00.46 0.89 0 1) .

(3)

If 𝑎 and 𝑏 and the random values in the second, third,
and fourth columns of Ũ are specified, the second, third,
and fourth rows of S̃ can be calculated such that the original
system is reconstructed. Then, by modifying just the first
column of weighting matrix Ũ, a linear subspace of the
original 2-dimensional space can be explored, starting from
any of the three perceptual gradations. By separating what is
constant from the parts of the equation that are changed, we
obtain

F̃ = [[[
𝑢̃11𝑢̃21𝑢̃31]]] [13.04 0 𝑎 𝑏] Ṽ𝑇 + RDṼ𝑇. (4)

Because the second term is a constant and the first one
only depends on the first columnof Ũ, the “slope” of the equa-
tion, that is, the ratio of change between the second and first
output (as the first column of weighting matrix Ũ is modi-
fied), can be written as

slope𝑥𝑦 = (13.04 0 𝑎 𝑏) k̃𝑇2(13.04 0 𝑎 𝑏) k̃𝑇1 = 13.04 ⋅ 0.46 + 𝑏13.04 ⋅ 0.89 + 𝑎 . (5)

It is clear that based on (5) the slope can be set to any
value just bymodifying the values of 𝑎 and 𝑏. If the values of 𝑎
and 𝑏 are changed systematically between two extreme values,
the slope of discovery will also oscillate along the principal
component of the original matrix.

5. The Spiral Discovery Network Cell: A Neural
Network-Based Formulation of SDM

The key observation of this paper is that SDM can be formu-
lated in much simpler and at the same time more powerful
terms using neural networks. The recurrent model shown
in Figure 2 is capable of producing systematic, cyclic patterns
similar to the original formulation, but at the same time it is
adaptive based on a set of external feedback signals. The cell
consists of the following modules:

(i) A timer that functions as a modulo counter for
updating the state of the cell at discrete time steps

(ii) A perturbation module that determines the direction
in which and the extent to which the slope of explo-
ration is to be modified at each time step

(iii) A hypervisor module that refreshes the hyperparam-
eters of the perturbation module based on feedback
signals

A graphical representation of an SDN cell and itsmodules
is shown in Figure 2. The updated activation at time 𝑡 is

a(𝑡) = 𝛼(𝑡)x + 𝛽p(𝑡), (6)

Complexity 5

Perturbations

Reset

Hypervisor

Step

Feedback

x1

x2

xD

p(0)
2

, pmax
2

p(0)
1

, pmax
1

p(t)
1

p(t)
2

a(t)
1

a(t)
2

a(t)
D

p(t)
D

p(0)
D

, pmax
D

Figure 2: Neural network inspired formulation of an SDN cell.
The cell includes a timer neuron, hypervisor neurons, perturbation
neurons, and output neurons providing activation at each time step𝑡.
where 𝛼(0) = 1𝛼(𝑡) = 𝛼(𝑡−1) + step sz

p(𝑡) = sgn (cycle dir(𝑡)) ⋅ pmax − p(0)

cycle len

cycle dir(𝑡)

= {{{1, if
cycle len4 ≤ 𝑡 < 3 ∗ cycle len4−1 otherwise

.
(7)

Generally speaking, the state of the SDN cell is updated in
a series of timesteps which together constitute optimization
cycles. In the update equations, x refers to the (normalized)
principal component vector, the general direction in the
parametric space that is being explored by the cell, while p
refers to the perturbation vector that is added to the principal
component. The relationship between the two is governed by
the hyperparameter step sz. The value of 𝛼 is incremented
by step sz at each timestep to ensure that the path of
parametric discovery expands in the general direction of
the principal component (hence, step sz represents the
degree of exploitation in the optimization process and can
be calibrated based on the cycle length alone, owing to the

fact that the principal component x is normalized to begin
with). The direction and norm of p(𝑡), by contrast, which
ultimately depends on the relationship between p(0) and
p(max), determine how far from the principal component the
exploration will deviate (therefore, it is directly related to the
concept of degree of exploration in the optimization process).
cycle dir governs the direction in which the perturbations
are changed and is dependent on the length of the cycle as
well as the current phase within the cycle. The values of p(0),
pmax, and x are dependent on the cycle (or more precisely
on the discoveries made during the previous cycle) and are
initialized as follows:𝑝(0)𝑖,unnormed [𝑐] = 𝑝(argmin𝑡 ℎ𝑡𝑖 [𝑐−1])

𝑖 [𝑐 − 1]𝑝max
𝑖,unnormed [𝑐]= 𝑝(0)𝑖 [𝑐] + softmax (𝜎ℎ𝑖 [𝑐 − 1]) (𝜎ℎ𝑖 [𝑐 − 1] + 1)

= 𝑝(0)𝑖 [𝑐] + exp𝜎ℎ𝑖 [𝑐 − 1]∑𝐼 exp𝜎ℎ𝐼 [𝑐 − 1] [𝜎ℎ𝑖 [𝑐 − 1] + 1]
p(0) [𝑐] = 󵄩󵄩󵄩󵄩󵄩p(0)unnormed [𝑐]󵄩󵄩󵄩󵄩󵄩
pmax [𝑐] = 󵄩󵄩󵄩󵄩pmax

unnormed [𝑐]󵄩󵄩󵄩󵄩𝑥𝑖 [𝑐] = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 [𝑐 − 1] + 𝑝(0)𝑖 [𝑐]󵄩󵄩󵄩󵄩p(0) [𝑐]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(8)

Here, the value of a parameter within a cycle 𝑐 is represented
using square brackets, so that, for example, ℎ𝑡𝑖[𝑐 − 1] refers to
the value of the 𝑖th hypervisor cell at time 𝑡 of cycle 𝑐 − 1. 𝜎ℎ𝑖
denotes the standard deviation of value of the 𝑖th hypervisor
cell. Both p update equations ensure the following:

(i) The perturbations in the new cycle are centered, in
each dimension, around the perturbation that was
associated with the lowest cost function value in the
previous cycle (note that ℎ𝑖 refers to the 𝑖th hypervisor
cell).

(ii) The maximum values of the perturbations are set to
their starting value, plus a value that depends on the
standard deviation of the corresponding hypervisor
cell in the previous cycle, as well as its relation to the
standard deviations of other hypervisor cells.

(iii) The principal component, x, is set to the initial
principal component plus the normalized value of the
perturbation.

It is worth noting that the way in which SDN cells encap-
sulate a complex set of functions with a specific functional
logic is reminiscent of how long short-termmemories reduce
the complexity of backpropagation through time [19, 20]. In
the case of SDN cells, the effects of a complete cycle are stored
within the cell. Although these effects are deterministic, it
would be worth investigating how the hyperparameters like
step sz might themselves be learned.

Another approach that can be mentioned in connection
with SDN cells is Particle SwarmOptimization (PSO) [21, 22]

6 Complexity

and other metaheuristic approaches, such as genetic algo-
rithms [23–25]. PSO and genetic algorithms are somewhat
similar to SDN cells in the sense that exploration evolves
towards more promising areas of the parametric space. How-
ever, the two categories of approaches are also different in the
way that they make a compromise between exploration and
exploitation: even when evolving towards more promising
regions, SDN cells still represent alternative regions to an
extent that depends on how varied the obtained feedback
values were (exploration); it is the principal direction of the
next cycle that in turn influences exploitation.

6. Simulation Example

As a simulation example, we consider a surface described by
two parameters, 𝑥 and 𝑦, that can take values of (0, 10]. The
surface is expressed through the following relationship (see
also Figure 3):𝑧

=
{{{{{{{{{{{{{{{{{{{{{{{{{{{

500 if 𝑥, 𝑦 ∉ (0, 10] × (0, 10]70 if 𝑥, 𝑦 ∈ [1, 1.5] × [2.75, 4.5]−10 if 𝑥, 𝑦 ∈ [3.25, 3.5] × [3.5, 4.25](𝑥 − 5)2 + ⋅ ⋅ ⋅−2 (𝑦 − 2) + ⋅ ⋅ ⋅𝑥 + 𝑒1/(𝑥+𝑦) otherwise.
(9)

Figure 4 shows that the minimum location of the search
(and parameters thereof) was found as early as in the 7th
cycle, without recourse to any kind of gradient information.
Although no location for the exact minimum (−10) was
found, it can be argued that the obtained results come quite
close to achieving this, for two reasons:

(i) The range of values of the loss function was between70 and −10; hence the value of −8.44 falls within 2%
of error.

(ii) The search itself was unconstrained (i.e., was not
guided by the knowledge that only values between 0
and 10 were to be considered on the 𝑥- and 𝑦-axes):
of course, as expected, the fact that locations outside
of the specified range had a loss value of 500 helped
to guide the search.

Although rudimentary, the example shows the potential
value of SDM in dealing with optimization problems that are
nonconvex and nondifferentiable.

7. Conclusions

In this paper, an extended, automated variant of the Spiral
DiscoveryMethod is proposed.The variant is formulated as a
neural network, or rather as a component thereof, and is
referred to as the Spiral Discovery Network (SDN) cell. The
model of SDN cells incorporates several beneficial properties.

0

0

2
24 4

6

6

8

8

10

10
0.00
11.11
22.22
33.33
44.44
55.56
66.67
77.78
88.89
100.00

0

0

2

2

4

4
6

68 8
10

10 0.00
11.11
22.22
33.33
44.44
55.56
66.67
77.78
88.89
100.00

Figure 3: Two views of the complex surface to be minimized in
simulation example.

First, it is capable of exploring large areas of parametric spaces
through a parametric hyperspiral structure, such that the
hyperspiral structure itself changes through adaptive cycles.
Second, it can rely on any kind of quantitative (perhaps
even qualitative) feedback, not only gradient information,
to achieve its adaptivity. These properties combined make
SDN cells a candidate solution for optimization problems
in which the parametric space is nonconvex and poten-
tially even nondifferentiable. A rudimentary simulation was
described in the paper to demonstrate the capabilities of
SDN cells. One possible avenue of investigation as part of
future work would be to consider how SDN cells might be
used as part of a network to further improve optimization
performance.

Conflicts of Interest

The author declares that they have no conflicts of interest.

Acknowledgments

This work was supported by the FIEK program (Center for
Cooperation betweenHigher Education and the Industries at
Széchenyi István University, GINOP-2.3.4-15-2016-00003).

Complexity 7

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0 Best evaluation: 500.00 (19.20, 8.00)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0 Best evaluation: 1.00 (5.10, 4.61)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0 Best evaluation: −0.30 (4.85, 5.14)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0 Best evaluation: −0.85 (4.66, 5.36)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Best evaluation: −3.99 (6.88, 9.73)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Best evaluation: −6.88 (3.20, 9.20)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0 Best evaluation: −8.44 (5.82, 9.99)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0 Best evaluation: −4.54 (5.57, 7.76)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0

Figure 4: Cycles of SDN from left to right, top to bottom. Performance is indicated at the top of the plots, with the sizes of the evaluated
locations inversely proportional to the value of the loss function (and scaled per plot). The figure shows that the smallest loss value, in a 2%
vicinity of the minimum, was found as early as in the 7th cycle, without recourse to any kind of gradient value.

8 Complexity

References

[1] P. Baranyi, A. Csapo, and G. Sallai, “Cognitive infocommunica-
tions (CogInfoCom),” Cognitive Infocommunications (CogInfo-
Com), pp. 1–219, 2015.

[2] A. Csapo and P. Baranyi, “The spiral discovery method: An
interpretable tuning model for CogInfoCom channels,” Journal
of AdvancedComputational Intelligence and Intelligent Informat-
ics, vol. 16, no. 2, pp. 358–367, 2012.

[3] H. Takagi, “Interactive evolutionary computation: fusion of
the capabilities of EC optimization and human evaluation,”
Proceedings of the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[4] H. Takagi and H. Iba, “Preface interactive evolutionary compu-
tation,” New Generation Computing, vol. 23, no. 2, pp. 113-114,
2005.

[5] S. Shalev-Shwartz, O. Shamir, and S. Shammah, Failures of deep
learning, 2017, arXiv preprint arXiv:1703.07950.

[6] Y. Nesterov, Introductory Lectures on Convex Optimization: A
Basic Course, vol. 87 of Applied Optimization, Springer, Ams-
terdam, The Netherlands, 2004.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[8] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, 1999.

[9] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the
importance of initialization and momentum in deep learning,”
in Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, pp. 2176–2184, usa, June 2013.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,” Journal of
Machine Learning Research (JMLR), vol. 12, pp. 2121–2159, 2011.

[11] D. Kingma and J. Ba, Adam: A method for stochastic optimiza-
tion, 2014, arXiv preprint arXiv:1412.6980.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning (ICML ’15), pp. 448–456, July 2015.

[13] A. Neelakantan, L. Vilnis, Q. V. Le et al., Adding gradient noise
improves learning for very deep networks, 2015, arXiv preprint
arXiv:1511.06807.

[14] P. Baranyi, “TP model transformation as a way to LMI-based
controller design,” IEEE Transactions on Industrial Electronics,
vol. 51, no. 2, pp. 387–400, 2004.

[15] P. Baranyi, Y. Yam, and P. Várlaki, Tensor product model
transformation in polytopic model-based control, CRC Press,
2013.

[16] P. Baranyi, TP-Model Transformation-Based-Control Design
Frameworks, Springer International Publishing, 2016.

[17] L. de Lathauwer, B. de Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM Journal on Matrix Analy-
sis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[18] M. Ishteva, L. De Lathauwer, P.-A. Absil, and S. Van Huffel,
“Dimensionality reduction for higher-order tensors: algorithms
and applications,” International Journal of Pure and Applied
Mathematics, vol. 42, no. 3, pp. 337–343, 2008.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] N. Kalchbrenner, I. Danihelka, and A. Graves, Grid long short-
term memory, 2015, arXiv preprint arXiv:1507.01526.

[21] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, pp. 760–766, Springer US, Boston, MA,
USA, 2011.

[22] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimiza-
tion,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[23] L. Davis, Handbook of genetic algorithms, 1991.
[24] M. Gen and R. Cheng, Genetic algorithms and engineering

optimization, John Wiley & Sons, 2000.
[25] J. H. Holland, Complexity: A Very Short Introduction, Oxford

University Press, 2014.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

