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We analyze the degree spectra of structures in which different types of immunity conditions are encoded. In par-
ticular, we give an example of a structure whose degree spectrum coincides with the hyperimmune degrees. As
a corollary, this shows the existence of an almost computable structure the complement of the degree spectrum
of which is uncountable.
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1 Introduction

Let N be a countable algebraic structure in a finite language Σ (where the equality symbol = belongs to Σ)
whose universe is a subset of ω. We denote via D(N ) the set of all atomic sentences and their negations which
are true in N (here we use some computable numbering of the sentences in the language Σ∗ = Σ ∪ ω to identify
D(N ) with a subset of ω). The degree spectrum of a countable structure M is the set of all Turing degrees of
sets D(N ) for any N ∼= M with universe ω:

Sp(M) = {deg(D(N )) : M∼= N & dom(N ) = ω}.

A structure M is computable if the zero degree, 0, belongs to Sp(M). By the following result the degree
spectrum of a computable structure is either {0}, or the class D of all Turing degrees.

Theorem 1.1 (Knight [13]). LetA be a countable structure in a finite language. Then exactly one of following
statements holds:

1. if c ∈ Sp(A) and c ≤ d, then d ∈ Sp(A);

2. Sp(A) = {0} (such structures are called trivial).

We will say that a nontrivial countable algebraic structure M is almost computable, if the measure of the
degree spectrum Sp(M) is equal to one or, equivalently, the measure of the class

C(M) = {X ∈ 2ω : deg(X) ∈ Sp(M)}

is one under the standard uniform measure on the Cantor space 2ω. Note that the last class is the countable union
of the classes

CΦ(M) = {X ∈ 2ω : ΦX is the atomic diagram of a copy of M},
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2 B. F. Csima and I. S. Kalimullin: Degree spectra and immunity properties

where Φ is any Turing operator. By the Kolmogorov 0 − 1 Law a structure is almost computable if and only if
the measure of at least one CΦ(M) is nonzero.

The first examples of almost computable structures which are not computable were constructed by Sla-
man [17], and independently, by Wehner [20]. Namely, they found structures M such that Sp(M) = D− {0},
or equivalently,

C(M) = {X ∈ 2ω : X is not computable}.

It follows from the paper [4] that for any computable ordinal α there is a structure with the degree spec-
trum {x∈D |∆0

α+1(x) 6⊆ ∆0
α+1}. In particular, there are almost computable structures without arithmetical

copies. For arithmetical structures, it is known that there are structures whose degree spectra have the form
{x ∈ D | x 6≤ a}, where a is any low [10] or computably enumerable [11] degree. In particular, there are
arithmetical almost computable structures without ∆0

2 copies. Note also, that by [12] there is a degree a ≤ 0′′

such that the collection {x ∈ D | x 6≤ a} is not the degree spectrum of a structure.
Note that all structures mentioned above are almost computable because the set 2ω − C(M) is countable. In

this paper we will give examples of almost computable structuresM for which the set 2ω−C(M) is uncountable.
Moreover, we will construct a structure G such that Sp(G) coincides with the hyperimmune degrees.

We now recall the definitions of various immunity properties.

Definition 1.2 1. An infinite set X is immune if it has no infinite computable subset.

2. An infinite set X is hyperimmune if there is no computable function f such that {Df(n)}n∈ω is a disjoint
strong array and for all n ∈ ω, Df(n) ∩X 6= ∅.

3. An infinite set X is hyperhyperimmune if there is no computable function f such that {Wf(n)}n∈ω is a
disjoint weak array and for all n ∈ ω, Wf(n) ∩X 6= ∅.

Here {Dn}n∈ω is a computable list of the finite sets, and {Wn}n∈ω is a uniform enumeration of the c.e. sets.
By a disjoint strong array {Df(n)}n∈ω we mean a sequence of disjoint sets given by a computable function f .
By a disjoint weak array {Wf(n)}n∈ω we mean a sequence of disjoint finite sets given by a computable function
f .

We have a very nice characterization of the hyperimmune sets. Recall that for X = {x0 < x1 < x2 < · · · },
the principal function for X is defined by pX(n) = xn. We say the function f dominates the function g if for all
but finitely many x, f(x) > g(x).

Theorem 1.3 (Kuznecov, Medvedev [15], Uspenskii [19]) An infinite set X is hyperimmune if and only if no
computable function dominates pX .

We say a Turing degree d is immune (hyperimmune, hyperhyperimmune) if it contains an immune (hyperim-
mune, hyperhyperimmune) set.

The immune degrees are exactly the noncomputable degrees (see [1]). The characterization of hyperimmune
sets passes to degrees, in the sense that a degree d is hyperimmune if and only if there exists a d-computable
function that is not dominated by any computable function.

A general theorem of Jockusch [8] shows that the immune, hyperimmune, and hyperhyperimmune degrees
are all upward closed in the Turing degrees. The proof makes strong use of the fact that any infinite subset of an
immune (hyperimmune, hyperhyperimmune) set is also immune (hyperimmune, hyperhyperimmune).

An infinite set X is bi-immune (bi-hyperimmune, bi-hyperhyperimmune) if both it and its complement are
immune (hyperimmune, hyperhyperimmune). A Turing degree is said to have any of these properties if it contains
a set with the corresponding property.

It is known that all hyperimmune degrees are bi-hyperimmune (see e.g. Kurtz [14]). Jockusch [6] showed
the existence of a degree d that is immune but not bi-immune. Also, the bi-hyperhyperimmune degrees are
properly contained in the hyperhyperimmune degrees. This was communicated to the authors by Jockusch,
who pointed out that since all ∆0

2 hyperhyperimmune sets are in fact strongly hyperhyperimmune, and since bi-
strongly hyperhyperimmune sets do not exist, there can be no ∆0

2 bi-hyperhyperimmune sets. On another hand,
it is known that there are ∆0

2 hyperhyperimmune sets, for example comaximal sets. Thus, the containment is
proper.
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Note that an infinite subset of a bi-immune set need not be bi-immune, so Jockusch’s general theorem does
not give upward closure of the bi-immune degrees. However, in [7] Jockusch gave a non-uniform proof that
the bi-immune degrees are upward closed in the Turing degrees. Since the bi-hyperimmune degrees coincide
with the hyperimmune degrees, they are upward closed in the Turing degrees. It is not known to us whether the
bi-hyperhyperimmune degrees are upward closed in the Turing degrees.

Since the degree classes of bi-immune, hyperimmune, and hyperhyperimmune degrees are all upward closed,
it is natural to ask whether they can be realized as the degree spectra of a structure. In this paper, we will succeed
for the class of the hyperimmune degrees, and suggest some structures the degree spectra of which in one case
might be the bi-immune degrees and in another case might be the bi-hyperhyperimmune degrees.

2 Notation

We follow standard notation for Computability Theory, as found in Cooper [1] and Soare [18]. For a survey of
Computable Model Theory, we recommend Harizanov [5].

Definition 2.1 For a set F ⊆ ω and n ∈ ω, we let {n} ⊕ F denote the following infinite graph. It is an
ω-chain (edges between m and m+ 1), with an n+ 5-cycle linked to 0, and a 3-cycle linked to m if m ∈ F and
a 4-cycle linked to m if m 6∈ F .

Definition 2.2 To each σ ∈ 2<ω and n ∈ ω, we let {n} ⊕ σ denote the following graph. It is a lh(σ)-chain,
with an n+ 5-cycle linked to 0, and a 3-cycle linked to m if σ(m) = 1 and a 4-cycle linked to m if σ(m) = 0.

Definition 2.3 For any e ∈ ω and any set X ⊆ ω, let X [e] = {x | 〈e, x〉 ∈ X}.

Definition 2.4 For any e ∈ ω and any set X ⊆ ω, let X + e = {x+ e | x ∈ X}.

Notation 2.5 For σ ∈ 2<ω, we let lh(σ) denote the length of σ, i.e., lh(σ) = µn{n 6∈ dom(σ)}.
To each σ ∈ 2<ω we associate the finite set Fσ = {n | σ(n) = 1}.

3 Noncomputable

We begin by recounting an example of Wehner, of a structure with degree spectrum exactly the noncomputable
Turing degrees.

For Wehner’s example, let J = {{n} ⊕ F | n ∈ ω ∧ |F | < ∞ ∧ F 6= Wn}. That is, let J be the disjoint
union of one copy each of graphs of the form {n} ⊕ F where F is finite and F 6= Wn.

Wehner actually used a more universal coding, including infinitely many copies of each component of the
form {n} ⊕ F , but for our purposes it is enough to use exactly one of each. Note also that this leads to a rigid
structure.

Before showing that this structure has the desired degree spectrum, we begin on a theme and re-characterize
the degrees that compute J .

Lemma 3.1 There is an X-computable copy of J if and only if there exists a set Y ≡T X such that
(∀e)[|Y [e]| <∞] and (∀e)[Y [e] 6= We].

P r o o f. Suppose we have an X-computable copy of J . We build Y ≡T X with the required property. To
code X into Y we will ensure that e ∈ X iff 0 ∈ Y [e]. We X-computably search through the copy of J until
we find an e+ 5 cycle that corresponds to a component of the form {e} ⊕ F where 0 ∈ F iff e ∈ X . There are
finite sets that disagree with We that contain 0 and ones that do not contain 0, so we will certainly find such a
component. We let Y [e] = F .

Now suppose Y is a set such that (∀e)[|Y [e]| < ∞] and (∀e)[Y [e] 6= We]. We describe how to build a
Y -computable copy of J by stages as follows.

Stage 0: J0 is empty.
Stage s+1: For uncommitted {n}⊕σ ∈ Js, if for all x ∈ dom(σ) we have x ∈Wn,s+1 ⇐⇒ σ(x) = 1, then

compute k such thatWk +s = Wn−{0, ..., s}, and make the commitment to extend {n}⊕σ to {n}⊕ σ̂ χY [k]+s.
For all other uncommitted {n} ⊕ σ ∈ Js, extend to {n} ⊕ σ̂ 0 in Js+1. For committed {n} ⊕ σ ∈ Js, extend
one place towards their commitment. For all n ≤ s + 1, for all σ ∈ 2s+1, place a copy of {n} ⊕ σ into Js+1 if
no such copy yet exists.
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4 B. F. Csima and I. S. Kalimullin: Degree spectra and immunity properties

This completes the construction.
Verification: It is easy to see by induction on s that at the end of each stage s, all components in Js have the

form {n} ⊕ σ, with lh(σ) = s, and that if {n} ⊕ σ 6= {n} ⊕ τ then σ and τ are incomparable. Thus for each set
F and each n ∈ ω, there can be at most one copy of {n} ⊕ F in J .

Once a component of the form {n} ⊕ σ is introduced into ∪sJs, it is either extended to {n} ⊕ σ̂ 0∞ or
{n} ⊕ σ̂ 0m χ̂Y [k]+s for some m, k, and s. In either case the resulting component is of the form {n} ⊕ F where
|F | <∞.

If F is finite and F 6= Wn then there exists a stage s, an initial segment σ ∈ 2<ω, and a number x such that
χF = σ̂ 0∞, and such that for all t ≥ s, x ∈ dom(σ) ∧ [(x ∈ Wn,t ∧ σ(x) = 0) ∨ (x 6∈ Wn,t ∧ σ(x) = 1)].
Thus {n} ⊕ F ∈ ∪sJs.

Now suppose {n} ⊕ F ∈ ∪sJs. We have already seen that |F | < ∞. It remains to show that F 6= Wn.
Assume for a contradiction that F = Wn. Then there exists a stage s and an initial segment σ ⊂ χF such that
{n} ⊕ σ ∈ Js and x ∈ Wn,s+1 ⇐⇒ σ(x) = 1. At stage s + 1 in the construction, we would have made the
commitment to extend {n} ⊕ σ to {n} ⊕ σ̂ χY [k]+s for k such that Wk + s = Wn − {0, ..., s}. Now

Wn = F ⇒ χWn = σ̂ χY [k]+s

⇒Wn − {0, ..., s} = Y [k] + s

⇒Wk + s = Y [k] + s

⇒Wk = Y [k]

a contradiction.

Theorem 3.2 (Wehner) Sp(J ) = D− {0}.

P r o o f. Suppose there is anX-computable copy of J . Then there exists Y ≤T X such that (∀e)[|Y [e]| <∞]
and (∀e)[Y [e] 6= We]. If Y were computable, then we could define a computable function g by Wg(x) = Y [x].
By the Recursion Theorem, there exists n such that Wn = Y [n], a contradiction. Hence Y is not computable, and
so neither is X .

Now suppose that X is not computable. We will find Y ≤T X satisfying the conditions of Lemma 3.1 as
follows1.

Since the degree of X is immune, we may assume without loss of generality that X is immune (for example,
we can replace a noncomputable set X by the immune set X1 = {σ ∈ 2<ω | σ ⊂ X}). For all e ∈ ω let

Y [e] = {pX(0)} ∪ {pX(n+ 1) | n ∈ ω ∧We,n 6= We,n+1 ∧We,n+1 ⊆ X}

where pX is the principal function for X . Clearly Y ≤T X (since pX ≤T X and pX(n) ≥ n for all n ∈ ω). Let
e ∈ ω be given.

Suppose at first that We ∩X 6= ∅. Then Y [e] is finite because there are only finitely many n with We,n ⊆ X .
Also Y [e] 6= We since Y [e] ⊆ X and We ∩X 6= ∅.

Suppose now that We ⊆ X . Then We is finite because X is immune. It follows that Y [e] is finite because
there are only finitely many n with We,n 6= We,n+1. Let m be the least integer such that We = We,n for all
n ≥ m. Then pX(m) ∈ Y [e] −We since y ∈We,m implies y < m by the standard assumption on We,s, s ∈ ω.

In both cases, Y [e] is finite and not equal to We.

4 At least bi-immune, but not hyperimmune

For our next example, let F = {{n} ⊕ F | n ∈ ω ∧ |F | <∞∧ (|Wn| = ∞→Wn ∩ F 6= ∅)}.

Lemma 4.1 There exists anX-computable copy ofF if and only if there exists Y ≡T X such that (∀e)[|Y [e]| <
∞] and (∀e)[|We| = ∞→ Y [e] ∩We 6= ∅].

1 The authors are very grateful to the referee for simplifying this proof.
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P r o o f. Suppose we have an X-computable copy of F . To define Y [e], search for a component of the form
{e} ⊕ F where 0 ∈ F iff e ∈ X , and let Y [e] = F .

Conversely, suppose Y ≡T X is such that (∀e)[|Y [e]| < ∞] and (∀e)[|We| = ∞ → Y [e] ∩We 6= ∅]. We
describe how to build a Y -computable copy of F by stages as follows.

Stage 0: F0 is empty.
Stage s + 1: For uncommitted {n} ⊕ σ ∈ Fs, if Fσ ∩Wn,s+1 = ∅ and Wn,s+1 6= Wn,s, then compute k

such that Wk + s = Wn − {0, ..., s}, and make the commitment to extend {n} ⊕ σ to {n} ⊕ σ̂ χY [k]+s. For all
other uncommitted {n}⊕ σ ∈ Fs, extend to {n}⊕ σ̂ 0 in Fs+1. For committed {n}⊕ σ ∈ Fs, extend one place
towards their commitment. For all n ≤ s + 1, for all σ ∈ 2s+1, place a copy of {n} ⊕ σ into Fs+1 if no such
copy yet exists.

This completes the construction.
Verification: It is easy to see by induction on s that at the end of each stage s, all components in Fs have the

form {n} ⊕ σ, with lh(σ) = s, and that if {n} ⊕ σ 6= {n} ⊕ τ then σ and τ are incomparable. Thus for each set
F and each n ∈ ω, there can be at most one copy of {n} ⊕ F in F .

Once a component of the form {n} ⊕ σ is introduced into ∪sFs, it is either extended to {n} ⊕ σ̂ 0∞ or
{n} ⊕ σ̂ 0m χ̂Y [k]+s for some m, k, and s. In either case the resulting component is of the form {n} ⊕ F where
|F | <∞.

If |Wn| < ∞, then there is some stage s after which Wn gains no more members. Any {n} ⊕ σ introduced
into ∪sFs after stage s will be extended to {n} ⊕ σ̂ 0∞. Hence for every finite set F , a component of the form
{n} ⊕ F will appear in ∪sFs.

Similarly, if F is finite and Wn ∩ F 6= ∅, then there is a stage s and a finite initial segment σ ⊂ χF such that
Wn,t ∩ Fσ̂ 0̂ m 6= ∅ for all m and all t ≥ s, and hence there is a component of the form {n} ⊕ F in ∪sFs.

Now suppose |Wn| = ∞ and {n} ⊕ F ∈ ∪sFs. There must have been some σ ⊂ χF such that {n} ⊕ σ
was introduced into F . Then at the next stage when Wn gained a new member, if Fσ ∩Wn,s+1 = ∅, we made
the commitment to extended to {n} ⊕ σ̂ χY [k]+s, where Wk + s = Wn − {0, ..., s}. Since Y [k] ∩Wk 6= ∅, we
have Y [k] + s ∩Wk + s 6= ∅. But since χF = σ̂ χY [k]+s, we have F ⊇ Y [k] + s. Also Wn = Wk + s. Hence
F ∩Wn 6= ∅.

Theorem 4.2 If X has hyperimmune degree, then there is an X-computable copy of F .

P r o o f. Since X is hyperimmune, there exists a function g ≤T X such that g is not dominated by any
computable function. That is, for any computable function f , (∃∞x)[f(x) < g(x)].

We construct Y ≤T X such that (∀e)[|Y [e]| <∞] and (∀e)[|We| = ∞→ Y [e]∩We 6= ∅], by finite extensions
using g as follows.

Let σ[e]
s denote the initial segment of the characteristic function of Y [e] that has been defined at the end of

stage s.
Stage 0: Let σ[e]

0 = ∅.
Stage s+1: For all e ≤ s, do as follows. If F

σ
[e]
s
∩We,s = ∅ and there is some x > s with x ∈ We,g(s), let

σ
[e]
s+1 ⊃ σ

[e]
s be such that x ∈ F

σ
[e]
s+1

. For all other e ≤ s, let σ[e]
s+1 = σ

[e]
s 0̂.

This completes the construction.
Verification:
If We is infinite then the function ψe(s) = µt(∃x > s)[x ∈ We,t] is total, and hence (∃∞s)[g(s) > ψe(s)].

At the least stage s such that g(s) > ψe(s), the construction guarantees that We ∩ Y [e] 6= ∅.

Theorem 4.3 If there is an X-computable copy of F then X has bi-immune degree.

P r o o f. Suppose there is anX-computable copy of F . Then there exists Y ≡T X such that (∀e)[|Y [e]| <∞]
and (∀e)[|We| = ∞ → Y [e] ∩We 6= ∅]. We will build a bi-immune set Z ≤T Y . Since the bi-immune degrees
are upward closed [7], this will show that X has bi-immune degree.

We meet for all e ∈ ω the requirements:

Re : |We| = ∞→We ∩ Z 6= ∅
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Se : |We| = ∞→We ∩ Z 6= ∅

We construct Z by stages as follows. At stage s + 1, we decide whether or not s ∈ Z. In order to meet the
requirement R0, we will ensure that the finite set Y [0] ⊆ Z. This will satisfy R0 since if W0 is infinite then
Y [0] ∩W0 6= ∅. In order to satisfy S0, we will similarly choose a finite set that is guaranteed to intersect W0

if W0 is infinite, and this time keep this finite set out of Z. Naturally, we cannot choose Y [0] to be this set, as
(unless it is empty) it cannot be both a subset of Z and Z. In fact, we will continue with the plan to keep Y [0] out
of Z until we find the first member of Y [0]. This is the moment when there is conflict between the desires of R0

and S0. Since R0 has highest priority, we will choose a new set to keep out of Z for the sake of S0. Indeed, if k
is the greatest member of Y [0] that we’ve seen so far, then we will compute n such that Wn = W0 − {0, ..., k},
and S0 will desire to keep Y [n] out of Z. Since Y [0] is finite, S0 will only have to change its set finitely often.

In the construction, we will make use of functions fs(e) and gs(e) that keep track of the witness sets for Re

and Se.
Stage 0: Let f0(e) = g0(e) = e for all e ∈ ω.
Stage s+ 1: Choose the least e ≤ s such that s ∈ Y [fs(e)] ∨ s ∈ Y [gs(e)]. If s ∈ Y [fs(e)], then declare s ∈ Z;

for i > e set Wfs+1(i) = Wi − {0, ..., s}; and for i ≥ e set Wgs+1(i) = Wi − {0, ..., s}. If s ∈ Y [gs(e)], then
declare s 6∈ Z; for i > e set Wfs+1(i) = Wi−{0, ..., s}; and for i > e set Wgs+1(i) = Wi−{0, ..., s}. If no such
e exists, then declare e ∈ Z and leave fs+1 = fs and gs+1 = gs.

Verification: Since each Y [k] is finite, it follows by induction that f(e) = lims fs(e) and g(e) = lims gs(e)
exist for all e. Moreover, for each e, Y [f(e)] ⊆ Z and Y [g(e)] ⊆ Z. Suppose We is infinite. Since Wf(e) =
We − {0, ..., s} for some s, Wf(e) is also infinite. So Wf(e) ∩ Y [f(e)] 6= ∅. But since We ⊇ Wf(e) and
Z ⊃ Y [f(e)], we have We ∩ Z 6= ∅. Similarly, We ∩ Z 6= ∅.

Corollary 4.4 The graph F is almost computable but the class of degrees D− Sp(F) is uncountable.

P r o o f. Martin (see [2]) showed that the measure of the members of hyperimmune degrees is equal to one.
By Theorem 4.2, F is almost computable.

Jockusch [6] proved the existence of nonzero bi-immune free degrees. His construction can be adapted to
prove that there exist uncountably many bi-immune free degrees. Hence, Theorem 4.3 ensures that D− Sp(F)
is also uncountable.

Note that this Theorem cannot be strengthened to state that any X that can compute a copy of F must have
hyperimmune degree. Indeed, it is possible to build a non-empty Π0

1-class, all of whose members compute a copy
of F . But then, since every non-empty Π0

1 class contains a member of hyperimmune-free degree [9], there is a
hyperimmune-free degree computing a copy of F .

Lemma 4.5 There is a non-empty Π0
1 class, all of whose members compute a copy of F .

P r o o f. Let ψ be a selector function for {We}e∈ω. That is, let ψ be a partial computable function such that
for all e ∈ ω:

We 6= ∅ ⇐⇒ ψ(e) is defined ⇐⇒ ψ(e) ∈We.

Define

C = {X ⊆ ω|(∀e)[|X [e]| ≤ 1 & (We 6= ∅ =⇒ ψ(e) ∈ X [e])]}.

It is easy to see that C forms a non-empty Π0
1 class, and by Lemma 4.1, every X ∈ C computes a copy of F .

Question 4.6 Is Sp(F) exactly the bi-immune degrees?
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5 Hyperimmune

Now consider

G = {{n}⊕F | n ∈ ω ∧ |F | <∞ ∧ ({Dϕn(m)}m∈ω is a disjoint strong array → (∃m)[Dϕn(m) ⊆ F ])}.

Lemma 5.1 There exists anX-computable copy of G if and only if there exists Y ≡T X such that (∀e)[|Y [e]| <
∞] and (∀e)[{Dϕe(m)}m∈ω is a disjoint strong array → (∃m)[Dϕe(m) ⊆ Y [e]]].

P r o o f. Suppose we have an X-computable copy of G. To define Y [e], search for a component of the form
{e} ⊕ F with e ∈ X iff 0 ∈ F , and let Y [e] = F .

Conversely, suppose Y ≡T X is such that (∀e)[|Y [e]| <∞] and (∀e)[{Dϕe(m)}m∈ω is a disjoint strong array
→ (∃m)[Dϕe(m) ⊆ Y [e]]]. We describe how to build a Y -computable copy of G by stages as follows.

Stage 0: G0 is empty.
Stage s+1: For uncommitted {n}⊕σ ∈ Gs, if ϕn,s+1(m) ↓ for somem on which ϕn,s(m) ↑ and ifDϕn(p)∩

Dϕn(q) = ∅ for all p 6= q on which ϕn,s+1(p) ↓ and ϕn,s+1(q) ↓, and if ¬(∃m)[Dϕe,s+1(m)↓ ⊆ Fσ], then do as
follows. We can certainly compute k such that if ϕn is total then so is ϕk and {ϕk(x)}x∈ω = {ϕn(x)|Dϕn(x) ∩
{0, ..., s} = ∅}x∈ω. We then make the commitment to extend {n}⊕σ to {n}⊕χ(Y [k]−{0,...,s})∪Fσ

. For all other
uncommitted {n} ⊕ σ ∈ Gs, extend to {n} ⊕ σ̂ 0 in Gs+1. For all n ≤ s + 1, for all σ ∈ 2s+1, place a copy of
{n} ⊕ σ into Gs+1 if no such copy yet exists.

This completes the construction.
Verification: It is easy to see by induction on s that at the end of each stage s, all components in Gs have the

form {n} ⊕ σ, with lh(σ) = s, and that if {n} ⊕ σ 6= {n} ⊕ τ then σ and τ are incomparable. Thus for each set
F and each n ∈ ω, there can be at most one copy of {n} ⊕ F in G.

Since each Y [k] is finite, it is clear that all components of ∪sGs have the form {n} ⊕ F where |F | <∞.
If ϕn does not code a disjoint strong array, then there is some stage s after which it never appears to. Hence

for any finite set F , a copy of {n} ⊕ F appears in ∪sGs.
Similarly, if F is finite and Dϕn(m) ⊆ F for some m, then there is a stage s such that ϕn,s(m) ↓ and

max{x | x ∈ F} < s. Thus the component of the form {n} ⊕ σ with σ ⊂ χF present in Gs will always be
extended by 0 at future stages of the construction, and hence there is a component of the form {n} ⊕ F in ∪sGs.

Suppose {n} ⊕ F ∈ ∪sGs, and ϕn codes a disjoint strong array. Some {n} ⊕ σ with σ ⊂ χF was introduced
into ∪sGs. at some stage, and there must have been some later stage when ϕn converged on one more number.
At such a stage, we made the commitment to extend {n}⊕σ to {n}⊕χ(Y [k]−{0,...,s})∪Fσ

, where k was such that
if ϕn is total then so is ϕk and {ϕk(x)}x∈ω = {ϕn(x)|Dϕn(x) ∩ {0, ..., s} = ∅}x∈ω. Since ϕn coded a disjoint
strong array, so did ϕk. So (∃m)[Dϕk(m) ⊆ Y [k]]. By definition of ϕk, there exists l such that ϕk(m) = ϕn(l),
and Dϕn(l) ∩ {0, ...s} = ∅. Thus Dϕn(l) ⊆ Y [k] − {0, ..., s} = F − {0, ..., s} ⊆ F , as desired.

For this graph, we have a complete characterization that the degrees that can compute a copy are exactly the
hyperimmune degrees.

Theorem 5.2 There exists an X-computable copy of G if and only if X has hyperimmune degree.

P r o o f. Suppose X has hyperimmune degree. Then there exists a function g ≤T X such that g is not
dominated by any computable function.

We construct Y ≤T X such that (∀e)[|Y [e]| < ∞] and (∀e)[{Dϕe(m)}m∈ω is a disjoint strong array →
(∃m)[Dϕe(m) ⊆ Y [e]]], by finite extensions using g as follows.

Let σ[e]
s denote the initial segment of the characteristic function of Y [e] that has been defined at the end of

stage s.
Stage 0: Let σ[e]

0 = ∅.
Stage s+1: For all e ≤ s, do as follows. If ¬(∃m)[Dϕe,s+1(m)↓ ⊆ F

Y
[e]

s
], then if ϕe,g(s)(m) ↓ for some

m ≤ g(s) with min{Dϕe(m)} > s, let σ[e]
s+1 ⊃ σ

[e]
s be such that Dϕe(m) ⊆ Y

[e]
s+1. For all other e ≤ s, let

σ
[e]
s+1 = σ

[e]
s 0̂.

Copyright line will be provided by the publisher



8 B. F. Csima and I. S. Kalimullin: Degree spectra and immunity properties

Note that if ϕe codes a strong array, then the function ψe(s) = µt∃m[Dϕe,t(m)↓ ≥ s] is computable, and
hence there are infinitely many s where g(s) ≥ ψe(s). At the first stage s such that g(s) ≥ ψe(s) we guarantee
that (∃m)[Dϕe(m) ⊆ Y [e]].

The converse is as in Theorem 4.3. Suppose there is an X-computable copy of G. Then there exists Y ≤T X
such that (∀e)[|Y [e]| < ∞] and (∀e)[{Dϕe(m)}m∈ω is a disjoint strong array → (∃m)[Dϕe(m) ⊆ Y [e]]]. We
will build a bi-hyperimmune set Z ≤T Y . Since the hyperimmune degrees are upward closed, this will show that
X has hyperimmune degree.

We meet for all e ∈ ω the requirements:

Re : {Dϕe(m)}m∈ω is a disjoint strong array → (∃m)[Dϕe(m) ⊆ Z]

Se : {Dϕe(m)}m∈ω is a disjoint strong array → (∃m)[Dϕe(m) ⊆ Z]

Let h(i, s) be a computable function of two variables such that ifϕi is total then so isϕh(i,s) and {ϕh(i,s)(x)}x∈ω =
{ϕi(x)|Dϕi(x) ∩ {0, ..., s} = ∅}x∈ω.

The proof then follows exactly as in Theorem 4.3, where instead of defining fs+1(i) by letting Wfs+1(i) =
Wi − {0, ..., s}, we let fs+1(i) = h(i, s+ 1), and similarly for g.

Corollary 5.3 For the graph G we have

Sp(G) = {x ∈ D : x is hyperimmune}.

Hence, G is almost computable but the class of degrees D− Sp(G) is uncountable.

6 At least bi-hyperhyperimmune

Now consider

H = {{n}⊕F | n ∈ ω ∧ |F | <∞ ∧ ({Wϕn(m)}m∈ω is a disjoint weak array → (∃m)[Wϕn(m) ⊆ F ])}.

Lemma 6.1 If there exists an X-computable copy of H then there exists Y ≡T X such that (∀e)|Y [e]| < ∞
and (∀e)[{Wϕe(m)}m∈ω is a disjoint weak array → (∃m)[Wϕe(m) ⊆ Y [e]]].

P r o o f. Suppose we have an X-computable copy of H. To define Y [e], search for a component of the form
{e} ⊕ F with e ∈ X iff 0 ∈ F , and let Y [e] = F .

Lemma 6.2 For any partial computable function ϕn and any finite set Dy , we can compute effectively from n
and y an index k such that if {Wϕn(m)}m∈ω is a disjoint weak array, then {Wϕk(m)}m∈ω is also a disjoint weak
array, for all m ∈ ω Wϕk(m) ∩Dy = ∅, and for all l ∈ ω there exists m ∈ ω such that Wϕn(m) ⊆Wϕk(l).

P r o o f. Stage 0: Let α(m, 0) = m for all m ∈ ω. Let β(0) = 1.
Stage s+ 1: For the least m ≤ s such that Wϕn(α(m,s))[s+ 1] ∩Dy 6= ∅, let α(m+ l, s+ 1) = β(s) + l for

all l ∈ ω. Let α(r, s+ 1) = α(r, s) for all r < m. Let β(s+ 1) = β(s) + s+ 1.
For all x ≤ s, let Wϕk(x),s+1 = Wϕk(x),s ∪Wϕn(α(x))[s+ 1].
If {Wϕn(m)}m∈ω is a disjoint weak array, then since Dy is finite, α(m) = lims α(m, s) exists and is finite

for all m. Thus for all m ∈ ω, Wϕn(α(m)) ⊆ Wϕk(m). The array {Wϕk(m)}m∈ω is also a disjoint weak array
because whenever we redefine α(m, s+ 1) we choose a new index that we haven’t started copying yet.

Theorem 6.3 If there exists an X-computable copy of H then X has bi-hyperhyperimmune degree.
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P r o o f. To show that everyX-computable copy ofH computes a bi-hyperhyperimmune set is as in Theorems
4.3 and 5.2, using Lemma 6.2 to redefine the functions fs and gs. However, we do not know whether the bi-hyper-
hyperimmune degrees are upward closed. Thus we will combine the method of Theorem 4.3 with a coding of X
back into the bi-hyperhyperimmune set that we build.

Suppose there is an X-computable copy of F . Then there exists Y ≡T X such that (∀e)[|Y [e]| < ∞] and
(∀e)[{Wϕe(m)}m∈ω is a disjoint weak array → (∃m)[Wϕe(m) ⊆ Y [e]]]. We will build a bi-hyperhyperimmune
set Z ≤T Y , and code Y back into Z.

To ensure bi-hyperhyperimmunity, we meet for all e ∈ ω the requirements:

Re : {Wϕe(m)}m∈ω is a disjoint weak array → (∃m)[Wϕe(m) ⊆ Z]

Se : {Wϕe(m)}m∈ω is a disjoint weak array → (∃m)[Wϕe(m) ⊆ Z]

To code Y into Z, we meet for all e ∈ ω the requirements:

Ce : 0(01)e+31 is a substring of χZ ⇐⇒ e ∈ Y

Moreover, for m ∈ Y , n ∈ Y , if m < n then the string 0(01)m+31 will occur before the string 0(01)n+31 in
χZ .

In the construction, we will make use of functions fs(e) and gs(e) that keep track of the witness sets Y [fs(e)]

and Y [gs(e)]that we are attempting to keep in or out of Z to meet the requirements Re and Se, respectively. For
coding Y into Z, first note that Y is infinite. We will code the members of Y into the characteristic function χZ ,
in increasing order. We will use the function h(s) to keep track of the next member of Y that is to be coded into
χZ .

Let k(e, s) be a computable function such that if {Wϕe(m)}m∈ω is a disjoint weak array, then {Wϕk(e,s)(m)}m∈ω

is also a disjoint weak array, for all m ∈ ω Wϕk(e,s)(m) ∩ {0, ..., s} = ∅, and for all l ∈ ω there exists m ∈ ω
such that Wϕe(m) ⊆Wϕk(e,s)(l). Such a function exists by Lemma 6.2.

Stage 0: Let f0(e) = g0(e) = e for all e ∈ ω. Let h(0) = µy[y ∈ Y ].
Stage s + 1: Choose the least e ≤ h(s) such that [[s ∈ Y [fs(e)] ∨ s + 1 ∈ Y [fs(e)]] ∧ (∀i < e)[s, s + 1 6∈

Y [fs(i)]∪Y [gs(i)]]]∨[[s ∈ Y [gs(e)]∨s+1 ∈ Y [gs(e)]]∧(∀i ≤ e)[s, s+1 6∈ Y [fs(i)]]∧(∀i < e)[s, s+1 6∈ Y [gs(i)]]].
If s ∈ Y [fs(e)] or s+1 ∈ Y [fs(e)], then declare s, s+1 ∈ Z; for i > e set fs+2(i) = k(i, s+1); and for i ≥ e set
gs+2(i) = k(i, s+ 1). Move to stage s+ 3 of the construction. If s ∈ Y [gs(e)] or s+ 1 ∈ Y [gs(e)], then declare
s, s+ 1 6∈ Z; for i > e set fs+2(i) = k(i, s+ 1); and for i > e set gs+2(i) = k(i, s+ 1). Move to stage s+ 3 of
the construction.

If no such e exists, then we attempt to code h(s) into Z. If for all e ≤ h(s), Y [fs(e)] ∩ [s, s+ 2h(s) + 7] = ∅
and Y [gs(e)] ∩ [s, s+ 2h(s) + 7] = ∅, then extend the characteristic function of Z by 0(01)h(s)1; for i > h(s) set
fs+2h(s)+7(i) = k(i, s+ 2h(s) + 7); for i > e set gs+2h(s)+7(i) = k(i, s+ 2h(s) + 7); set h(s+ 2h(s) + 7) =
µy[y > h(s) ∧ y ∈ Y ]. Move to stage s+ 2h(s) + 8 of the construction.

Otherwise, declare s, s+ 1 ∈ Z and leave fs+2 = fs, gs+2 = gs, h(s+ 2) = h(s), and move to stage s+ 3
of the construction.

Verification: The construction worked by having a global requirement that for n 6∈ Y , 0(01)n+31 is not a
substring of χZ , and by meeting the other requirements in the priority order Re, Se, Ce.

Lemma 6.4 For n 6∈ Y , 0(01)n+31 is not a substring of χZ .

P r o o f. Towards meeting requirements for Re and Se, the characteristic function of Z is always extended
by pairs, 00 or 11, since when taking action for such a requirement at a stage s + 1, either both s and s + 1
are enumerated into Z, or neither is. Hence working towards meeting Re or Se cannot result in the introduction
of a string of the form 0(01)n+31. When coding in some e ∈ Y , we ensure that we introduce the entire string
0(01)e+31 at once, which is not an extension or substring of 0(01)n+31 for any n 6= e.

Lemma 6.5 For all e, f(e) = lims fs(e) exists and Y [f(e)] ⊆ Z, g(e) = lims gs(e) exists and Y [g(e)] ⊆ Z,
and (∃s)[h(s) > e].
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P r o o f. Suppose the lemma holds for all i < e.
Let s0 be a stage by which, for all i < e, fs0(i) = f(i), gs0(i) = g(i), h(s0) > i, s0 > max{Y [f(i)]}, and

s0 > max{Y [g(i)]}.
Since h is a non-decreasing function and e ≤ h(s0), we have e ≤ h(t) for all t ≥ s0. Thus it is easy to

see from the construction, that for any t ≥ s0, if t ∈ Y [ft(e)] then t ∈ Z. It is also easy to see that f(e) =
lims fs(e) = fs0(e). Hence Y [f(e)] ⊆ Z.

Let s1 > s0 be such that s1 > max{Y [f(e)]}. Then, again, it is easy to see from the construction that
g(e) = gs1(e) and that Y [g(e)] ⊆ Z.

Let s2 > s1 be such that s2 > max{Y [g(e)]}, and such that we visit stage s2 of the construction. If h(s2) > e,
then we are done, so suppose h(s2) = e. Then at stage s2 of the construction we will code e into the characteristic
function of Z, and set h(s2 + 2h(s2) + 7) > e.

Since the construction is Y -computable, we have Z ≤T Y . By Lemma 6.5, for each e, Y [f(e)] ⊆ Z. Let
s be such that f(e) = k(e, s). Then if {Wϕe(m)}m∈ω is a disjoint weak array, then {Wϕk(e,s)(m)}m∈ω is also
a disjoint weak array. Hence there exists l such that Wϕk(e,s)(l) ⊆ Y [k(e,s)] = Y [f(e)] ⊆ Z. So there exists
m ∈ ω such that Wϕe(m) ⊆ Wϕk(e,s)(l) ⊆ Z. Similarly, since Y [g(e)] ⊆ Z, if {Wϕe(m)}m∈ω is a disjoint weak
array, then there exists m ∈ ω such that Wϕe(m) ⊆ Z. Hence Z is bi-hyperhyperimmune. To see that Y ≤T Z,
recall that we’ve shown that the characteristic function of Z contains a string of the form 0(01)n+31 if and only
if n ∈ Y , and that these strings occur in order as n increases. Hence, to Z-compute whether n ∈ Y , we search
for the first string of the form 0(01)m+31 in the characteristic function of Z with m ≥ n. Then n ∈ Y iff m = n.

Question 6.6 Is Sp(H) exactly the bi-hyperhyperimmune degrees?

7 Summary

The bi-noncomputable degrees are exactly the noncomputable degrees. Wehner’s example constructs a structure
whose degree spectrum is exactly the (bi)-noncomputable degrees.

The bi-hyperimmune degrees are exactly the hyperimmune degrees. We have an example of a structure with
degree spectrum exactly the (bi)-hyperimmune degrees.

The bi-immune degrees are a proper subset of the immune degrees. We have a candidate whose degree
spectrum might be the bi-immune degrees, but we do not know.

The bi-hyperhyperimmune degrees are a proper subset of the hyperhyperimmune degrees. We have a can-
didate whose degree spectrum might be the bi-hyperhyperimmune degrees, but we don’t even know if the bi-
hyperhyperimmune degrees are upward closed.

Does there exist a structure the degree spectrum of which is exactly the hyperhyperimmune degrees? The
“obvious” method that we tried to use to force hyperhyperimmunity actually did more and forced bi-hyperhyper-
immunity. Of course, we are able to realize exactly the immune degrees as a degree spectrum, since these are
just the noncomputable degrees, even though the “obvious” method of trying to force immunity actually forces
bi-immunity.

8 Question

We close with a question about the possible degree spectra of linear orderings. Miller [16] constructed a linear
order whose degree spectrum when restricted to the ∆0

2 degrees coincides exactly with the noncomputable ∆0
2

degrees. Later Downey and independently Chisholm noticed and communicated to Miller that the linear ordering
Miller constructed is computable in every hyperimmune degree. Now it is natural to ask whether Miller’s linear
order (or indeed any other linear order) realizes any of the following spectra:

1. the immune degrees (all noncomputable degrees),

2. the bi-immune degrees,
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3. the hyperimmune degrees?

The first case would give an affirmative answer to Downey’s question [3] on the existence of a noncomputable
linear ordering which is computable in every noncomputable degree.
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