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Abstract

The terms of the upper and lower central series of a nilpotent computable group
have computably enumerable Turing degree. We show that the Turing degrees of these
terms are independent even when restricted to groups which admit computable orders.

1 Introduction

There are at least two general types of questions that are considered in computable algebra.
One set of questions arises from thinking of computable algebra as the study of computable
model theory restricted to a particular class of structures. From this point of view, it is natural
to consider various computable model theoretic notions such as computable dimension, degree
spectra of structures, degree spectra of relations, etc., and to ask how these notions behave
within the specified class of structures.

In this sense, the computable algebraic behavior of nilpotent groups is well understood.
Hirschfeldt, Khoussainov, Shore and Slinko [5] proved that for the commonly considered
computable model theoretic notions (such as those mentioned above), any behavior which
occurs in some model also occurs in a nilpotent group. To prove this result, they used a
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coding of integral domains into class 2 nilpotent groups (specifically into Heisenberg groups)
originally described by Mal’cev.

A second set of questions arises from thinking of computable algebra as the study of
the effectiveness of the basic theorems, constructions and structural properties within the
specified class of structures. In the case of nilpotent groups, this perspective leads to the
following sorts of questions. How complex is the center or the commutator subgroup of a
nilpotent computable group? More generally, how complex are the terms in the upper and
lower central series of a nilpotent computable group?

Before discussing these questions further, we give some background on nilpotent groups.
Nilpotent groups can be defined in a number of ways and we begin with a definition using the
lower central series. Let G be a group written multiplicatively. For x, y ∈ G, the commutator
of x and y is [x, y] = x−1y−1xy. If H and K are subgroups of G, then [H,K] is the subgroup
generated by the commutators [h, k] with h ∈ H and k ∈ K.

Definition 1.1. The lower central series of a group G is

G = γ1G D γ2G D γ3G D · · ·

defined inductively by γ1G = G and γi+1G = [γiG,G]. A group G is nilpotent if there is an
r such that γr+1G = 1. More specifically, G is a class r nilpotent group if r is the least such
that γr+1G = 1.

Nilpotent groups can also be defined by the upper central series. For any normal subgroup
H of a group G, there is a natural projection π : G→ G/H given by π(g) = gH. The center
of G, denoted C(G), is defined by g ∈ C(G) if and only if gh = hg for all h ∈ G. C(G) is a
normal subgroup, so we have the associated projection π : G → G/C(G). Taking the center
of G/C(G) and pulling back to G by π−1, one gets another normal subgroup of G. Continuing
in this spirit yields the upper central series of G.

Definition 1.2. The upper central series of a group G is

1 = ζ0G E ζ1G E ζ2G E · · ·

defined inductively by ζ0G = 1 and ζi+1 = π−1(C(G/ζi(G)) for π : G→ G/ζiG. A group G is
nilpotent if there is an r such that ζrG = G. More specifically, G is a class r nilpotent group
if r is the least such that ζrG = G.

These two definitions are equivalent in the sense that a group G is class r nilpotent under
the lower central series definition if and only if it is class r nilpotent under the upper central
series definition. The class 1 nilpotent groups are exactly the abelian groups so the nilpotent
class can be thought of as giving a measure of closeness to being abelian.

We will be concerned with the complexity of computing the terms in the upper and lower
central series of a nilpotent computable group. A group G is computable if its set of elements
is a computable subset of N and the group operation is a partial computable function whose
domain includes this set of elements. Because the word problem for finitely generated nilpotent
groups is solvable, such groups are computable. (See Miller [9] for a general discussion of the
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word problem within various classes of groups.) Furthermore, Baumslag, Cannonito, Robinson
and Segal [1] proved that the terms in the upper and lower central series can be effectively
calculated in such groups. Therefore, we focus our attention on infinitely generated nilpotent
computable groups.

If H and K are computably enumerable subgroups of a computable group G, then the
commutator subgroup [H,K] is easily seen to be computably enumerable. It follows by
induction that the terms of the lower central series of a computable group must be computably
enumerable.

It is easy to see that the terms in the upper central series are Π0
1.

g ∈ ζ1G⇔ ∀h (gh = hg)

g ∈ ζi+1G⇔ ∀h (gh = hgmod ζiG)⇔ ∀h ([g, h] ∈ ζiG)

Therefore, the terms in the upper and lower central series of a computable group have c.e. Tur-
ing degree. If G is a computable group which is class n nilpotent (for n ≥ 2), then there are
2n − 2 many nontrivial terms in these series: γiG for 2 ≤ i ≤ n, and ζiG for 1 ≤ i ≤ n − 1.
Our main theorem shows that the degrees of these terms are computationally independent in
the following sense.

Theorem 1.3. Fix n ≥ 2 and c.e. Turing degrees d1, . . . ,dn−1 and e2, . . . , en. There is
a computable group G which is class n nilpotent with deg(ζiG) = di for 1 ≤ i ≤ n − 1 and
deg(γiG) = ei for 2 ≤ i ≤ n. Furthermore, G admits a computable order so this computational
independence property holds for computable ordered nilpotent groups as well.

Latkin [7] considered similar questions with respect to the lower central series and proved
the following theorem. (See Section 6 for addition results from Latkin [7] and a list of related
open questions.)

Theorem 1.4 (Latkin [7]). Fix n ≥ 2 and c.e. Turing degrees e2, . . . , en. There is a torsion
free class n nilpotent group G such that deg(γiG) = ei for 2 ≤ i ≤ n.

As in [7], we break the proof of Theorem 1.3 into smaller steps using the fact that the
terms in the upper and lower central series interact nicely with direct products. (This lemma
follows directly from the definitions.)

Lemma 1.5. For any groups G and H, ζi(G×H) = ζiG× ζiH and γi(G×H) = γiG× γiH.

If G = G1 × · · · ×Gk, then the degree of each term in the lower and upper central series
is the join of the corresponding terms in the Gi groups. Therefore, to prove Theorem 1.3, it
suffices to establish the following two theorems.

Theorem 1.6. For any n ≥ 2 and c.e. Turing degree d, there is a class n nilpotent computable
group G such that the upper central terms are computable, γiG is computable for 1 ≤ i ≤ n−1
and deg(γnG) = d.

Theorem 1.7. For any n ≥ 2 and c.e. Turing degree d, there is a class n nilpotent computable
group G such that the lower central terms are computable, ζiG is computable for 0 ≤ i ≤ n−2
and deg(ζn−1G) = d.
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In Section 2, we describe a collection procedure due to Marshall Hall Jr. [2] for reducing
words in a free nilpotent group to a normal form. In Section 3, we sketch Latkin’s proof
of Theorem 1.4 and we prove Theorem 1.6 by establishing additional properties of Latkin’s
construction. In Section 4, we prove Theorem 1.7. In Section 5, we give the basic definitions
and properties of ordered groups, and we prove that the groups constructed for Theorem 1.3
are computably orderable. Finally, in Section 6 we list some open questions.

Note that by necessity our constructions differ from those used in Hirschfeldt, Khoussainov,
Shore and Slinko [5] to code integral domains into Heisenberg groups. The Heisenberg groups
G in [5] have the property that ζ1G = γ2G and hence (since ζ1G is Π0

1 and γ2G is Σ0
1), the

center of G is computable in every computable presentation of G.

2 Normal forms and the collection process

In this section, we describe a normal form theorem for free nilpotent groups due to Marshall
Hall, Jr. and we sketch the collection process that reduces a given word to its normal form.
Additional information, including a proof of the uniqueness of the normal forms, can be found
in [2] as well as [3], [4], [8] and [10]. Because of our interest in computable groups, we restrict
our attention to countable groups throughout this paper.

To define a free nilpotent group, it is useful to characterize nilpotent groups as vari-
eties in combinatorial group theory. We extend the definition of commutators inductively by
[x1, x2, . . . , xn+1] = [[x1, x2, . . . , xn], xn+1]. A group G is nilpotent if and only if there is a
r ≥ 1 such that [x1, x2, . . . , xr+1] = 1 for all x1, . . . , xr+1 ∈ G. For the least such r, G is class
r nilpotent. The free class r nilpotent group on a set X is the group G/N where G is the free
group on X and N is the subgroup generated by {[g1, . . . , gr+1] | g1, . . . , gr+1 ∈ G}.

Let F be a free class r nilpotent group on the set X. Fix an order ≤X on X. We generate
a set of basic commutators, assign weights to these basic commutators and define an order
on them. The weight of a basic commutator c is denoted by w(c).

Definition 2.1. The letters in X are the basic commutators of weight 1 and they are ordered
by ≤1=≤X . Assume that the basic commutators of weight ≤ k have been defined and we
have produced an order ≤k of them. A commutator [c, d] is a basic commutator of weight
k + 1 if and only if

1. c and d are basic commutators of weight ≤ k and w(c) + w(d) = k + 1,

2. d <k c, and

3. if the basic commutator c has the form [u, v], then v ≤k d.

We define the order ≤k+1 on the basic commutators of weight ≤ k + 1 by x ≤k+1 y if and
only if

1. w(x), w(y) ≤ k and x ≤k y, or

2. w(x) ≤ k and w(y) = k + 1, or
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3. w(x) = w(y) = k + 1, x = [c, d], y = [u, v] and 〈c, d〉 ≤lex
k 〈u, v〉 where ≤lex

k is the
lexicographic order.

Since F has class r, all commutators of weight > r are equivalent to the identity, so we
consider only basic commutators of weight ≤ r and we use ≤ to denote the order ≤r. The
normal form theorem is as follows. (In its original form, it was stated for finitely generated
free nilpotent groups, but it holds for infinitely generated groups as well.)

Theorem 2.2 (M.Hall, Jr. [2]). Let F be a free class r nilpotent group on the (possibly finite)
set of generators x0, x1, . . . with a fixed order on the basic commutators as above. Each y ∈ F
can be uniquely written as a finite product

cm0
0 cm1

1 · · · c
ml
l

where ci is a basic commutator, ci < ci+1, and mi ∈ Z \ {0}. Furthermore, each lower central
factor γiF/γi+1F is a free abelian group on the basic commutators of weight i, so y ∈ γiF if
and only if the normal form contains only basic commutators of weight ≥ i.

It follows from Theorem 2.2 that a free class r nilpotent group on a computable set of
generators has a computable presentation in which the lower central terms are all computable.
Furthermore, since ζiG = γr−i+1G in a free class r nilpotent group, it follows that the terms in
the upper central series are computable in this presentation as well. Therefore, in the proofs
of Theorems 1.6 and 1.7, we can restrict to the case when the c.e. degree is noncomputable.

The details for proving uniqueness in Theorem 2.2 will not play a role in the later sections,
but the details of reducing a word over the generators to its normal form will be useful. This
process relies on the following definition and lemma. (Whenever a group is described as a
free nilpotent group on a set of generators X, the set X comes equipped with an order and
this order gives rise to the order on the basic commutators used in the normal forms.)

Definition 2.3. We define the commutator [x, y(n)] by induction on n: [x, y(0)] = x and
[x, y(n+1)] = [[x, y(n)], y].

Note that if [x, y(1)] is a basic commutator in a free class r nilpotent group, then [x, y(n)] is
a basic commutator for all 0 ≤ n < r and [x, y(n)] = 1 for all n ≥ r. The following commutator
rules can be found in Section 11.1 of Hall [3].

Lemma 2.4. The following equations hold for any elements x, y of a nilpotent group.

x · y = y · x · [x, y]

x−1 · y = y · [x, y]−1 · x−1

x · y−1 = y−1 · x · [x, y(2)] · [x, y(4)] · · · [x, y(3)]−1 · [x, y]−1

x−1 · y−1 = y−1 · [x, y] · [x, y(3)] · · · [x, y(4)]−1 · [x, y(2)]−1 · x−1

(The products in the third and fourth equations are finite because [x, y(k)] = 1 for all k ≥ the
class of the nilpotent group.)

5



We can now describe the collection process to reduce a word w on the generators X of
a free class r nilpotent group to its normal form. We begin by viewing w as a word over X
(that is, as a word over the basic commutators of weight 1, allowing each such commutator
to occur either positively or negatively). Pick the least generator y (in the fixed order on the
basic commutators) such that y or y−1 occurs in w and consider the leftmost occurrence of
this basic commutator in w. The commutator rules in Lemma 2.4 allow us to pass this basic
commutator left across each generator x (that is, across each basic commutator of weight 1)
until it reaches the front of w.

Note that since y < x, anything of the form [x, y(k)] is a basic commutator. Hence our
word has been rewritten in the form yε0w′ where ε0 is 1 or −1 and w′ is a word over our basic
commutators. (That is, we keep the basic commutators generated by this process together as
single units.) The basic commutators introduced in this process all have weight ≥ 2 and hence
come after y in the order on the basic commutators. Furthermore, every new commutator of
the form [u, v] generated by this process has v = y. We pick the least basic commutator c
such that c or c−1 occurs in w′ and repeat this process to form an equivalent word yε0cε1w′′.
Notice that if we need to move c or c−1 past a basic commutator of the form [u, v] generated
in the first step of this process, then v = y ≤ c, so the commutators generated by our rules
are all basic. Continuing in this fashion eventually reduces w to its normal form.

We apply this reduction procedure in the context of free nilpotent groups in Section 3. In
Section 4, we apply the same procedure in the context of a slightly different set of reduction
rules to give normal forms for elements of a nilpotent group which is not free. The following
lemma will be a useful calculation tool in Section 4.

Lemma 2.5. Let G be a group and let N be a normal subgroup of G. For all i ≥ 1,

(1) if gN ∈ γi(G/N), then there is a g′ ∈ γiG such that g = g′modN , and

(2) if there is an h ∈ N such that gh ∈ γiG, then gN ∈ γi(G/N).

Therefore, for any g ∈ G,

gN ∈ γi(G/N) ⇔ gN ∩ γiG 6= ∅.

Proof. Both statements follow by induction on i using the fact that [aN, bN ] = [a, b]N . The
base cases when i = 1 are trivial since γ1G = G and γ1(G/N) = G/N .

For the induction case in (1), assume that gN ∈ γi+1(G/N). We write gN as a product
of commutators [aN, bN ] (or their inverses) for which aN ∈ γi(G/N) and bN ∈ G/N . By the
inductive hypothesis, we can assume that a ∈ γiG. We obtain (1) since [aN, bN ] = [a, b]N
and [a, b] ∈ γi+1G. The induction case for (2) is similar.

3 Latkin’s construction

In this section, we prove Theorem 1.6 which is restated here for convenience.

Theorem 3.1. For any n ≥ 2 and c.e. Turing degree d, there is a class n nilpotent computable
group G such that the upper central terms are computable, γiG is computable for 1 ≤ i ≤ n−1
and deg(γnG) = d.
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The remainder of this section is devoted to proving Theorem 3.1. We use the original
construction from Latkin [7] and prove that the upper central terms in the group constructed
there are computable. Without loss of generality, we assume that d is a noncomputable
c.e. degree.

We begin with a description of Latkin’s construction. Fix a c.e. set A of degree d and let
f be a computable 1-to-1 function such that A = range(f). Let Y denote the ordered set of
generators

a < y0 < y1 < · · ·

and let Fn−1(Y ) be the free class n − 1 nilpotent group on the ordered generators Y . Let
DA = {[yr, a(n−2)] | ∃t (f(t) = r)}. DA is c.e. and contained in the center of Fn−1(Y ).

Let X = {b} ∪ {xrt | r, t ∈ ω} be a set of generators ordered by b < xrt for all r, t ∈ ω and
xrt < xuv if and only if 〈r, t〉 < 〈u, v〉 in a fixed computable order on ω2. Let Fn(X) be the free
class n nilpotent group on this ordered set of generators and let EA = {[xrt, b(n−1)] | f(t) = r}.
EA is computable and contained in the center of Fn(X).

Let G = Fn−1(Y )× Fn(X)/〈DA ◦ EA〉 where DA ◦ EA is the computable set

DA ◦ EA = {[yr, a(n−2)]−1 · [xrt, b(n−1)] | f(t) = r}.

Since the elements of DA ◦EA are contained in the center of Fn−1(Y )×Fn(X), the subgroup
〈DA ◦ EA〉 generated by DA ◦ EA is normal. Furthermore, it is computable since an element
〈g, h〉 of Fn−1(Y )×Fn(X) is in this subgroup if and only if when g and h are written in normal
form in Fn−1(Y ) and Fn(X) respectively, we meet the following conditions:

• the normal form of g contains only basic commutators of the form [yr, a
(n−2)] and the

normal form of h contains only basic commutators from EA,

• for every power of a basic commutator [xrt, b
(n−1)]k in the normal form of h, the basic

commutator [yr, a
(n−2)] occurs in the normal form of g with power −k, and

• for every power of a basic commutator [yr, a
(n−2)]k in the normal form of g, the basic

commutator [xrt, b
(n−1)] with f(t) = r occurs in the normal form of h with power −k.

Moreover, G is a computable group. Latkin [7] proves (see Lemma 2.1 in [7]) that one
can effectively obtain normal forms for the elements of G, which we will call G-normal forms,
as follows. Take an element 〈g, h〉 ∈ Fn−1(Y ) × Fn(X). Write g in Fn−1(Y )-normal form
and write h in Fn(X)-normal form. For each power of a basic commutator [xrt, b

(n−1)]k from
EA in the normal form of h, convert [xrt, b

(n−1)]k into [yr, a
(n−2)]−k by removing [xrt, b

(n−1)]k

from the normal form of h and placing [yr, a
(n−2)]−k onto the end of the normal form of g.

Finally, move the basic commutators [yr, a
(n−2)] into the correct position in the normal form

of g. Notice that the converting process does not generate new basic commutators in these
normal forms as the basic commutators in DA and EA lie in the center of Fn−1(Y ) and Fn(X)
respectively.

We think of the process of converting a pair 〈g, h〉 in Fn−1(Y ) × Fn(X)-normal form
into a pair 〈g′, h′〉 in G-normal form in terms of group multiplication. That is, from the
description above, it is clear that when we view 〈g′, h′〉 as a product of basic commutators
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in Fn−1(Y )× Fn(X)-normal form, the conversion process yields 〈g′, h′〉 = 〈g, h〉 · 〈c, d〉 where
c is in the center of Fn−1(Y ) and d is in the center of Fn(X). (That is, d is an appropriate
product of basic commutators of the form [xrt, b

(n−1)]−k and c is an appropriate product
of basic commutators of the form [yr, a

(n−2)]k.) Latkin shows that for each pair 〈g, h〉 in
Fn−1(Y ) × Fn(X), there is a unique pair 〈g′, h′〉 in G-normal form such that 〈g, h〉 = 〈g′, h′〉
mod 〈DA ◦ EA〉. This, together with the fact that the procedure for finding an equivalent
G-normal form is effective, shows that G is a computable group. From now on, we represent
the elements of G by the unique member of their coset that is in G-normal form and use the
fact that this G-normal form is also a Fn−1(Y )× Fn(X)-normal form. (That is, we can view
any G-normal form as an element of Fn−1(Y )× Fn(X) when convenient.)

Latkin [7] uses these normal forms to prove that the terms γ1G, . . . , γn−1G are computable
and that γnG has the same Turing degree as A. It remains to show that the terms in the
upper central series of G are computable.

Lemma 3.2. ζ1G is computable.

Proof. Let 〈g, h〉 ∈ G. We will show that 〈g, h〉 ∈ ζ1G ⇐⇒ 〈g, h〉 ∈ ζ1(Fn−1(Y ) × Fn(X)).
Since ζ1(Fn−1(Y )× Fn(X)) is computable, this will show that ζ1G is computable.

As G is a quotient of Fn−1(Y )×Fn(X), we certainly have 〈g, h〉 ∈ ζ1(Fn−1(Y )×Fn(X))⇒
〈g, h〉 ∈ ζ1G. For the other direction, assume for a contradiction that 〈g, h〉 ∈ ζ1G but
〈g, h〉 6∈ ζ1(Fn−1(Y )× Fn(X)).

The condition 〈g, h〉 6∈ ζ1(Fn−1(Y ) × Fn(X)) implies that either g 6∈ ζ1Fn−1(Y ) or h 6∈
ζ1Fn(X). Therefore, there are two cases to consider. First suppose that g 6∈ ζ1Fn−1(Y ) and
fix an element z ∈ Fn−1(Y ) such that gz 6= zg. Let w denote the Fn−1(Y )-normal form of gz
and let v denote the Fn−1(Y ) normal form of zg. Then v 6= w in Fn−1(Y ). However, 〈w, h〉
and 〈v, h〉 are both in G-normal form because h does not contain any basic commutators of
the form [xrt, b

(n−1)] that need to be converted to obtain the G-normal form. Therefore, we
have the following calculations in G between words in G-normal form.

〈g, h〉 · 〈z, 1〉 = 〈w, h〉
〈z, 1〉 · 〈g, h〉 = 〈v, h〉

Since 〈w, h〉 6= 〈v, h〉 in G, we have a contradiction to the assumption that 〈g, h〉 ∈ ζ1G.
Second, assume that h 6∈ ζ1Fn(X). Fix z ∈ Fn(X) such that hz 6= zh. Let w denote the

Fn(X)-normal form of hz and write w as w′c where c is the product of the elements of EA
occurring in w. (Since the elements of EA are in the center of Fn(X) we do not generate new
basic commutators when we pull these elements to the end of w.) Let c′ denote the product
of basic commutators in Fn−1(Y ) formed by converting the basic commutators in c from the
form [xrt, b

(n−1)]k (in Fn(X)) to the form [yr, a
(n−2)]−k (in Fn−1(Y )). That is, the G-normal

form of 〈1, hz〉 and 〈1, w′c〉 is 〈c′, w′〉.
Similarly, let v denote the Fn(X)-normal form of zh and write v as v′d where d is the

product of the elements of EA occurring in v. Let d′ denote the product of basic commutators
in Fn−1(Y ) formed by converting the basic commutators in d from the form [xrt, b

(n−1)]k to
the form [yr, a

(n−2)]−k. That is, the G-normal form of 〈1, zh〉 and 〈1, v′d〉 is 〈d′, v′〉.
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Since 〈g, h〉 ∈ ζ1G, we know that 〈g, h〉 · 〈1, z〉 = 〈1, z〉 · 〈g, h〉 in G, so that 〈g−1, 1〉 ·
〈g, h〉 · 〈1, z〉 = 〈g−1, 1〉 · 〈1, z〉 · 〈g, h〉 mod 〈DA ◦EA〉. Simplifying, this gives 〈1, hz〉 = 〈1, zh〉
mod 〈DA ◦EA〉. By the uniqueness of G-normal form representatives, we have that 〈c′, w′〉 =
〈d′, v′〉 in Fn−1(Y )× Fn(X). So c′ = d′ and w′ = v′. Note that from the definitions of c′ and
d′ it follows that we must also have c = d. Hence hz = w = w′c = v′d = v = zh in Fn(X),
contradicting our assumption that hz 6= zh.

Lemma 3.3. The upper central series terms in G are computable.

Proof. This lemma follows immediately from the proof of Lemma 3.2. Since the canonical
map π : Fn−1(Y )× Fn(X)→ G maps ζ1(Fn−1(Y )× Fn(X)) onto ζ1G and since 〈DA ◦ EA〉 is
contained in ζ1(Fn−1(Y )× Fn(X)), it follows that projections map each of the upper central
terms of Fn−1(Y )×Fn(X) onto the corresponding upper central term of G. Because the upper
central terms of Fn−1(Y )× Fn(X) are computable, it follows that the upper central terms of
G are computable.

This completes the proof of Theorem 1.7. The next lemma will be used in Section 5 to
show that G admits a computable order.

Lemma 3.4. The groups ζ1G and ζi+1G/ζiG (for 1 ≤ i ≤ n) are free abelian groups on a
computable set of generators.

Proof. By the proof of Lemma 3.2, ζ1G is a free abelian group with generators 〈g, 1〉 and
〈1, h〉 where g is a basic commutator in Fn−1(Y ) of weight n− 1 and h is a basic commutator
in Fn(X) of weight n which is not of the form [xrt, b

(n−1)] with f(t) = r. The quotient groups
ζi+1G/ζi(G) are free abelian groups on the generators 〈g, 1〉 and 〈1, h〉 where g is a basic
commutator in Fn−1(Y ) of weight n − i and h is a basic commutator in Fn(X) of weight
n− i+ 1.

4 Upper central series

In this section, we prove Theorem 1.7 which is restated here for convenience.

Theorem 4.1. For any n ≥ 2 and c.e. Turing degree d, there is a class n nilpotent computable
group G such that the lower central terms are computable, ζiG is computable for 0 ≤ i ≤ n−2
and deg(ζn−1G) = d.

Before constructing our group G, we build an auxiliary group H. Rather than describe H
as the quotient of a free class n nilpotent group, we explicitly describe the elements and the
multiplication operation on this group. (Alternately, one can give a description of H in terms
of an appropriate quotient of a free class n nilpotent group. However, that approach requires
a series of lemmas which are somewhat longer and more technical than those used here.)

H is generated by d and yi, i ∈ ω, ordered by d < y0 < y1 < · · · . We stipulate that the
only nontrivial basic commutators are the generators (which each have weight 1) and those
of the form [yi, d

(l)] (which have weight l + 1) for 1 ≤ l ≤ n − 1. (Recall the convention

9



that [yi, d
(0)] = yi which we use frequently below and that w(c) denotes the weight of a

basic commutator c.) Any commutator of the form [yi, d
(l)] for l ≥ n is trivial. The basic

commutators are ordered by c1 < c2 if and only if w(c1) < w(c2), or w(c1) = w(c2) = 1 and
c1 < c2 in the order on generators, or w(c1) = w(c2) > 1 and c1 = [yi, d

(l)], c2 = [yj, d
(l)] with

i < j.
A word over the basic commutators is a sequence cα1

1 c
α2
2 ...c

αk
k in which each ci is a basic

commutator, αi ∈ Z \ {0} and cαii is an abbreviation for ci (or c−1
i ) repeated |αi| times

(depending on whether αi is positive or negative). Such a word is in H-normal form if
c1 < c2 < · · · < ck in our order on the basic commutators. We typically write an H-normal
form word as dαX where α ∈ Z (allowing the possibility of α = 0 if d does not appear in
the normal form) and X is a word in normal form over the basic commutators [yi, d

(l)] with
0 ≤ l ≤ n− 1.

The elements of H are the H-normal form words. We multiply two elements h1, h2 ∈ H
by concatenating h1h2 and reducing the resulting word to H-normal form using the following
procedure. To begin, consider the basic commutators in the H-normal forms of h1 and h2 as
single entities, and let x be the word h1h2. If x is not in H-normal form, choose the least
basic commutator in x that is out of position, and bring it forward past commutators of
greater weight using the following reduction rules. Reset x to be the resulting word viewing
all newly generated basic commutators as single entities, and repeat the procedure until x is
in H-normal form.

(R1) [yi, d
(k)]α [yj, d

(l)]β = [yj, d
(l)]β [yi, d

(k)]α for all i, j ∈ ω, 0 ≤ k, l ≤ n− 1 and α, β ∈ Z

(R2) [yi, d
(l)] d = d [yi, d

(l)] [yi, d
(l+1)]

(R3) [yi, d
(l)]−1 d = d [yi, d

(l)]−1 [yi, d
(l+1)]−1

(R4) [yi, d
(l)] d−1 = d−1 [yi, d

(l)] [yi, d
(l+1)]−1 [yi, d

(l+2)] [yi, d
(l+3)]−1 ...

(R5) [yi, d
(l)]−1 d−1 = d−1 [yi, d

(l)]−1 [yi, d
(l+1)] [yi, d

(l+2)]−1 [yi, d
(l+3)] ...

The products in (R4) and (R5) are finite because the commutators [yi, d
(k)] for k ≥ n

are trivial. Since new commutators generated by (R2)–(R5) are of strictly greater weight
than the basic commutators that generated them, and since there is a maximum weight for
the commutators, this procedure must halt. The reduction rules (R2)–(R5) are exactly the
reduction rules for basic commutators in a free nilpotent group (as described in Section 2)
given that all basic commutators of the form [yi, d

(k)] commute with each other by (R1).
The only nontrivial interaction between basic commutators is between d and [yi, d

(l)]. If
h1 = dαX and h2 = dβY , then the process of reducing h1h2 = dαX dβ Y involves moving
dβ leftward across X to form dα+β (which will generate new basic commutators according
to (R2)-(R5)) and rearranging the remaining basic commutators in order (which will not
generate new basic commutators by (R1)). If c = [yi, d

(l)] or c−1 = [yi, d
(l)]−1 appears in X,

then moving d or d−1 leftward across this basic commutator will generate basic commutators of
the form [yi, d

(l+k)] for various values of k ≥ 1 (depending on whether d and c occur positively
or negatively). Since [yi, d

(l+k)] = [c, y(k)], we typically describe the new basic commutators
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generated by moving dβ across X as having the form [c, d(k)] where c occurs in X and k ≥ 1
with the understanding that these new basic commutators may occur positively or negatively.

This describes our group H – the elements are the H-normal form words over the basic
commutators, multiplication is given by concatenation followed by reduction and the identity
element is the trivial word. We must still show that what we have described is indeed a group
– that the group operation is associative and that inverses exist. Once we have shown that
the operation is associative, we will know that, given a word over {d, y0, y1, ...}, if it is brought
into normal form using the rules (R1) - (R5), it will always have the same result, no matter
the order in which the rules were applied. Thus once we have proved associativity, it will
immediately follow that inverse of cα1

1 c
α2
2 ...c

αk
k ∈ H is the normal form of c−αkk · · · c−α2

2 · c−α1
1 ,

as expected. We defer proof of associativity of the group operation to the end of this section,
and proceed with the proof of Theorem 1.7.

The next lemma gives an algorithm for calculating the lower central terms of H.

Lemma 4.2. For x ∈ H and 1 ≤ j ≤ n, x ∈ γj+1H if and only if x contains only basic
commutators from Aj = {[yi, d(l)] | i ∈ ω and l ≥ j}.

Proof. The elements of Aj are clearly in γj+1H and hence any product of them is in γj+1H.
Therefore, it suffices to show that γj+1H ⊆ 〈Aj〉 for 1 ≤ j ≤ n. Since j ≥ 1, the elements
of Aj commute with each other by (R1) and therefore, for x ∈ H (i.e. a word in H-normal
form), x ∈ 〈Aj〉 if and only if each of the basic commutators occurring in x is in Aj.

We show that γj+1H ⊆ 〈Aj〉 by induction on j. When j = 1, an arbitrary generator of
γ2H has the form [g, h] where g, h ∈ H. Write g and h in H-normal form as g = dβ · Y and
h = dδ · Z where Y and Z are products of basic commutators [yi, d

(l)] for l ≥ 0. Note that
the basic commutators in Y and Z commute with each other.

By definition [g, h] = Y −1 · d−β · Z−1 · d−δ · dβ · Y · dδ · Z. Each basic commutator of the
form yi occurring in [g, h] has the property that the sum of its powers in this product is 0. To
put this product into normal form, pass the powers of d left to the front of this word. This
process generates new basic commutators of the form [c, d(l)] where c is a basic commutator
occurring in Y or Z and l ≥ 1. The powers of d cancel after being passed to the front of
the word and we are left with a word over the basic commutators in Y and Z and new basic
commutators of the form [c, d(l)] where c occurred in Y or Z and l ≥ 1. The remaining basic
commutators commute with each other by (R1) and hence the remaining product can be put
into H-normal form without generating any new basic commutators. Any basic commutators
of the form yi occurring in Y or Z cancel out because their powers summed to 0 in the original
product and we have not generated any new basic commutators of this form. Therefore, the
resulting H-normal form contains (possibly a subset of the) basic commutators from Y and
Z of the form [yi, d

(l)] with l ≥ 1 and the newly generated basic commutators. Since the
newly generated basic commutators also have the form [yi, d

(l)] with l ≥ 1, they all lie in A1

as required. This completes the base case.
The induction case is similar. Assume j ≥ 1 and γj+1H ⊆ 〈Aj〉. We show γj+2H ⊆ 〈Aj+1〉.

An arbitrary generator of γj+2H has the form [g, h] where g ∈ γj+1H and h ∈ H. Since
γj+1H = 〈Aj〉, we write g in H-normal form as a product of basic commutators [xi, d

(l)] for
l ≥ j ≥ 1. We write h in H-normal form as dδ ·Z where Z is a product of basic commutators
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of the form [xi, d
(l)] for l ≥ 0. Then [g, h] = g−1 · Z−1 · d−δ · g · dδ · Z. Bringing dδ left across

g to cancel with d−δ yields new basic commutators of the form [c, d(l)] where c is a basic
commutator in g and l ≥ 1. Since c ∈ Aj, these new basic commutators lie in Aj+1.

Since the powers of d sum to 0, we are left with a product consisting of the basic commu-
tators in g, the basic commutators in Z and the newly generated basic commutators. These
basic commutators commute with each other and hence we can put this product in normal
form without generating any new basic commutators. The basic commutators in g and Z
cancel (since they occur with opposite powers in g and g−1 and in Z and Z−1) leaving us with
only the newly generated basic commutators (some of which may cancel as well). However,
the newly generated basic commutators are all in Aj+1 and hence the resulting H-normal
form is in 〈Aj+1〉 as required.

Since An = {[yi, d(l)] | i ∈ ω and l ≥ n} and each [yi, d
(n)] is trivial, Lemma 4.2 implies

that γn+1H = 1 and therefore H is a class n nilpotent group. To prove Theorem 1.7, we
construct G out of infinitely many copies of H. For each k ∈ ω, let Hk be a copy of H.
To distinguish the generators of these groups, we denote the generators of Hk by dk and yi,k
for i ∈ ω. The elements of Hk are words over the basic commutators dk and [yi,k, d

(l)
k ] for

0 ≤ l ≤ n− 1 in Hk-normal form.
Let f be a one-to-one function with infinite and coinfinite range such that range(f) has

degree d. We use a quotient of Hk to code whether k is in the range of f and then we take a
direct sum of the resulting quotient groups to code the entire range of f . Let Tk ⊆ Hk be

Tk = {[yi,k, d(n−1)
k ] | ¬∃j ≤ i (f(j) = k)}

Since Tk is contained in the center of Hk, the subgroup 〈Tk〉 is normal. Let Gk = Hk/〈Tk〉.
We define Gk-normal forms as follows. A word over the basic commutators of Hk is in Gk-
normal form if it is in Hk-normal form and does not contain any basic commutators in Tk.
We effectively reduce an arbitrary word over the basic commutators to one in Gk-normal
form by reducing it to a word in Hk-normal form and removing all basic commutators in Tk.
(Because Tk is in the center of Hk, this process picks out a unique representative of each 〈Tk〉
equivalence class.) The elements of Gk are the Gk-normal form words with multiplication
given by concatenation followed by reduction. Thus the Gk groups are computable uniformly
in k.

We let G =
⊕

k∈ω Gk, the direct sum of the groups Gk. That is, members of G are infinite
sequences where the kth term is from Gk, cofinitely many terms are the identity, and the group
operation is inherited componentwise from the Gk. We view G as a computable group by
viewing its members as arbitrarily large finite tuples, where the componentwise multiplication
is computable since the Gk are uniformly computable.

We claim that G is the desired group. To show that the lower central terms γjG for
1 ≤ j ≤ n and the upper central terms ζuG for 1 ≤ u < n − 1 are computable, it suffices to
show that the corresponding central terms of Gk are computable uniformly in k. We do this
below in Lemmas 4.3, 4.4 and 4.5.

It remains to show deg(ζn−1G) = d. If k 6∈ range(f), then Tk = {[yi,k, d(n−1)
k ] | i ≥ 0}

and hence Gk is a class n− 1 nilpotent group. Therefore, dk ∈ ζn−1Gk because ζn−1Gk = Gk.
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However, if k ∈ range(f), then fix j such that f(j) = k. For any i ≥ j, [yi,k, d
(n−1)] 6∈ Tk

and hence Gk is a properly class n nilpotent group. We show in Lemma 4.6 that in this case,
dk 6∈ ζn−1Gk. Therefore, k ∈ range(f) if and only if dk 6∈ ζn−1Gk, which holds if and only if
〈1G0 , ..., 1Gk−1

, dk〉 6∈ ζn−1G.

Lemma 4.3. For 1 ≤ j ≤ n − 1, an element g ∈ Gk (written in Gk-normal form) satisfies

g ∈ γj+1Gk if and only if all the basic commutators in g have the form [yi,k, d
(l)
k ] for l ≥ j.

(The other lower central terms γ1Gk = Gk and γn+1Gk = 1Gk are trivially computable.)

Proof. Fix g ∈ Gk and view it both as an element of Gk and as an element of Hk representing
the coset g〈Tk〉. (Note that g is in both Gk and Hk-normal form.) By Lemma 2.5, g ∈ γj+1Gk

if and only if g〈Tk〉 ∩ γj+1Hk 6= ∅. By Lemma 4.2, g ∈ γj+1Hk if and only if g contains only

basic commutators from Aj = {[yi,k, d(l)
k ] | i ∈ ω and l ≥ j}. Thus if g contains only basic

commutators of the form [yi,k, d
(l)
k ] for l ≥ j, then g ∈ g〈Tk〉 ∩ γj+1Hk and hence g ∈ γj+1Gk.

For the other direction, assume g ∈ γj+1Gk and fix h ∈ Hk such that h ∈ g〈Tk〉 ∩ γj+1Hk.
Because h ∈ γj+1Hk, Lemma 4.2 implies that the basic commutators in h have the form

[yi,k, d
(l)
k ] for l ≥ j. Since h ∈ g〈Tk〉, the normal forms of g and h differ only by basic

commutators in Tk. Thus the basic commutators in g must have the form [yi,k, d
(l)
k ] for l ≥ j

as required.

We calculate the terms in the upper central series of Gk. For 0 ≤ u < n− 1, let

Cu = {[yi,k, d(l)
k ] | l ≥ n− u} ∪ {[yi,k, d(l)

k ] | l ≥ n− 1− u and ¬∃j ≤ i (f(j) = k)}

We show 〈Cu〉 = ζuGk for 0 ≤ u < n− 1. Note that 〈C0〉 = 1Gk since the basic commutators
in C0 are either [yi,k, d

(n)] or are in Tk. In either case, they are the identity in Gk. Also, note
that since the elements of Cu commute with each other, a word in Gk-normal form is in 〈Cu〉
if and only if each of the basic commutators in the word is in Cu.

Lemma 4.4. For 0 ≤ u < n− 1, 〈Cu〉 ⊆ ζuGk.

Proof. We proceed by induction on u, using 〈C0〉 = 1Gk as the base case. For the induction
case, assume that u < n− 2, and 〈Cu〉 ⊆ ζuGk. We show that 〈Cu+1〉 ⊆ ζu+1Gk. Recall that
basic commutators in Gk commute with each other, with the exception of dk. So is suffices
to show that for all c ∈ Cu+1 and all α, β ∈ {+1,−1}, we have cα · dβk = dβk · cα mod ζuGk.

The basic commutator c is either of the form c = [yi,k, d
(l)
k ] for some fixed l ≥ n− (u+1) =

n − u − 1, or c is of the form c = [yi,k, d
(l)
k ] for some fixed l ≥ n − 1 − (u + 1) = n − u − 2

and ¬∃j ≤ i (f(j) = k). We break into cases depending on the form of c and the values of α
and β. We restrict ourselves to two representative cases and leave the remaining cases to the
reader.

First, consider the case when c = [yi,k, d
(l)] for l ≥ n− u− 1 and α = β = 1. By (R2),

[yi,k, d
(l)] · d = d · [yi,k, d(l)] · [yi,k, d(l+1)]

Because l ≥ n− u− 1, we have l+ 1 ≥ n− u and hence [yi,k, d
(l+1)] ∈ Cu ⊆ ζuGk as required.
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Second, consider the case when α = β = −1 and c = [yi,k, d
(l)
k ] for l ≥ n − u − 2 and

¬∃j ≤ i (f(j) = k). By (R5),

[yi,k, d
(l)
k ]−1 · d−1

k = d−1
k · [yi,k, d

(l)
k ]−1 · [yi,k, d(l+1)

k ] · [yi,k, d(l+2)
k ]−1 · [yi,k, d(l+3)

k ] · · ·

Since l ≥ n − u − 2, we have l + p ≥ n − 1 − u for each p ≥ 1. Since ¬∃j ≤ i (f(j) = k),

each of the basic commutators [yi,k, d
(l+p)
k ] for p ≥ 1 is in Cu ⊆ ζuGk. Therefore, the product

[yi,k, d
(l+1)
k ] · [yi,k, d(l+2)

k ]−1 · [yi,k, d(l+3)
k ] · · · is in 〈Cu〉 ⊆ ζuGk as required.

Lemma 4.5. For 0 ≤ u < n− 1, 〈Cu〉 = ζuGk.

Proof. By the previous lemma, it suffices to show ζuGk ⊆ 〈Cu〉. Since we have already noted
this fact for u = 0, we proceed by induction using u = 0 as the base case. For the induction
case, assume u < n− 2 and 〈Cu〉 = ζuGk. We show ζu+1Gk ⊆ 〈Cu+1〉. Consider an arbitrary
element g ∈ ζu+1Gk written in Gk-normal form as dδk · c

α1
1 · · · cαmm . We show that g ∈ 〈Cu+1〉.

First, we show that δ = 0. Suppose for a contradiction that δ 6= 0. Because g ∈ ζu+1Gk

and 〈Cu〉 = ζuGk, we have

y0,k · dδk · c
α1
1 · · · cαmm = dδk · c

α1
1 · · · cαmm · y0,k mod 〈Cu〉

(That is, by the definition of the upper central series, elements of ζu+1Gk commute with all
elements of Gk, in particular with y0,k, modulo ζuG.) Putting the element of the right side of
this equation in Gk-normal form yields

dδk · y0,k · cα1
1 · · · cαmm

because y0,k commutes with all basic commutators except dk. To put the element on the left
side of this equation into Gk-normal form, we move dδk across y0,k. If δ > 0, then by (R2) and
induction on δ we have

y0,k · dδk = dδk · y0,k · [y0,k, dk]
δ ·X

where X is a Gk-normal form word over the basic commutators of the form [y0,k, d
(l)
k ] for l ≥ 2.

Similarly, if δ < 0, then by (R4) and induction on |δ|, we have

y0,k · dδk = dδk · y0,k · [y0,k, dk]
δ ·X

where X is a Gk-normal form word over the basic commutators of the form [y0,k, d
(l)
k ] with

l ≥ 2. In either case, the newly generated commutators (which have the form [y0,k, d
(l)]

for l ≥ 1) commute with the ci elements. It follows from y0,k · g = g · y0,k mod 〈Cu〉 that
[y0,k, dk]

δ ·X ∈ 〈Cu〉. However, since a normal form word is in 〈Cu〉 if and only if each basic
commutator in the normal form is in Cu, we conclude that [y0,k, dk] ∈ Cu.

Recall that u < n− 2 and hence 3 ≤ n− u and 2 ≤ n− 1− u. By definition, the elements
of Cu have the form [yi,k, d

(l)] for l ≥ n − u ≥ 3 or the form [yi,k, d
(l)] for l ≥ n − 1 − u ≥ 2

and ¬∃j ≤ i(f(j) = k). Therefore, [y0,k, dk] 6∈ Cu for the desired contradiction.
We now know that g must have the form cα1

1 · · · cαmm where each ci > d. Since g ∈ ζu+1Gk

and 〈Cu〉 = ζuGk, we have

dk · cα1
1 · · · cαmm = cα1

1 · · · cαmm · dk mod 〈Cu〉
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By (R2), (R3) and induction on |α|, it follows that cαii · dk = dk · cαii · [ci, dk]αi . Since the
[ci, dk] basic commutators commute with each other as well as with the cj commutators, this
equation is equivalent to

dk · cα1
1 · · · cαmm = dk · cα1

1 · · · cαmm · [c1, dk]α1 · · · [cm, dk]αm mod 〈Cu〉

which is true if and only if [ci, dk] ∈ Cu for 1 ≤ i ≤ m. However, by the definitions of
Cu and Cu+1, we have that if [ci, dk] ∈ Cu, then ci ∈ Cu+1. Therefore, g ∈ ζu+1Gk implies
that the Gk-normal form of g is a product of basic commutators from Cu+1. In other words,
ζu+1Gk ⊆ 〈Cu+1〉 as required.

Lemma 4.6. For any k ∈ range(f) and w ∈ Gk (in Gk-normal form), w ∈ ζn−1Gk if and

only if the basic commutators in w have the form [yi,k, d
(l)
k ] for l ≥ 1 or the form yi,k and

¬∃j ≤ i(f(j) = k). In particular, dk 6∈ ζn−1Gk.

Proof. Fix k ∈ range(f) and let

Cn−1 = {[yi,k, d(l)
k ] | l ≥ 1} ∪ {yi,k | ¬∃j ≤ i (f(j) = k)}

We have 〈Cn−1〉 ⊆ ζn−1Gk exactly as in the proof of Lemma 4.4. To show that ζn−1Gk ⊆
〈Cn−1〉, we need to modify the proof of Lemma 4.5 to use the hypothesis that k ∈ range(f)
when showing that δ = 0 for the potential dδ term. To do this, rather than looking at a
calculation involving y0,k, we let i be such that ∃j ≤ i (f(j) = k). Now, the fact that

yi,k · dδk · c
α1
1 · · · cαmm = dδk · c

α1
1 · · · cαmm · yi,k mod 〈Cn−2〉

implies that [yi,k, dk] ∈ Cn−2. Since we know that ∃j ≤ i (f(j) = k), this means that [yi,k, dk]

has the form [yi,k, d
(l)
k ] for some l ≥ n − (n − 2) = 2, which gives the desired contradiction.

The remainder of the proof is the same.

This completes the proof of Theorem 1.7 with the exception of showing that the multipli-
cation in the original definition of the group H is associative, which we now establish.

Recall that the elements of H are the H-normal form words. We will write elements of H
as dαX, where X is an H-normal form word that does not contain (any non-zero power of)
the basic commutator d. To show this multiplication is associative, we need to show that, for
dαX, dβY , and dγZ in H,

(dαX · dβY ) · dγZ = dαX · (dβY · dγZ).

For X an H-normal form word not containing the basic commutator d, and for any α ∈ Z,
it is easy to see that X · dα has H-normal form dαY , where Y does not contain the basic
commutator d. We introduce the notation Xα = Y .

The proof of associativity relies on two lemmas: That for all X and Y not containing the
basic commutator d, and all α, β ∈ Z, we have (X · Y )α = Xα · Yα and (Xα)β = Xα+β.
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By (R1), it is easy to see that the members of H not containing the basic commutator d
form an abelian subgroup of H. Now, given these facts and our rules for multiplication, for
arbitrary dαX, dβY and dγZ ∈ H, we have

(dαX · dβY ) · dγZ = (dα+β(Xβ · Y )) · dγZ
= dα+β+γ((Xβ · Y )γ · Z)

= dα+β+γ(((Xβ)γ · Yγ) · Z)

= dα+β+γ((Xβ+γ · Yγ) · Z)

= dα+β+γ(Xβ+γ · (Yγ · Z))

= dαX · dβ+γ(Yγ · Z)

= dαX · (dβY · dγZ)

as desired. It remains to prove the lemmas.
We begin by giving two extensions of the commutator rules for H. Applying (R2) and

(R3) with induction on |α| we obtain (R6), and applying (R4) and (R5) with induction on
|α| we obtain (R7).

(R6) For all α ∈ Z and c = [yi, d
(l)] for l ≥ 0,

cα d = d (c
α
|α| [c, d]

α
|α| )|α|

(R7) For all α ∈ Z and c = [yi, d
(l)] for l ≥ 0,

cα d−1 = d−1 (c
α
|α| [c, d]−

α
|α| [c, d(2)]

α
|α| [c, d(3)]−

α
|α| · · · )|α|

Lemma 4.7. For all H-normal forms X and Y not containing the basic commutator d,
(X · Y ) · d = X · (Y · d) and (X · Y ) · d−1 = X · (Y · d−1). In other words, (X · Y )1 = X1 · Y1

and (X · Y )−1 = X−1 · Y−1.

Proof. Let c1, ..., cn denote the basic commutators occurring in both X and Y . Let X be some
arrangement of aα1

1 , ..., a
αk
k , c

δ1
1 , ..., c

δn
n , and let Y be some arrangement of bβ1

1 ...b
βl
l c

γ1
1 ...c

γn
n . Here

all the ai, bj and cm are distinct basic commutators, and only the cm occur in both X and Y .
Since all basic commutators occurring in X and Y commute with one another, and since all
basic commutators generated by (R2)-(R5) commute with one another, the particular order
in which the basic commutators occur in X and Y is not important for this discussion.

To compute (X · Y ) · d, we first use (R1) to bring X · Y into H-normal form. So
X · Y is some arrangement of aα1

1 , ..., a
αk
k , b

β1

1 , ..., b
βl
l , c

δ1+γ1
1 , ..., cδn+γn

n . We then move d to
the front of the word. By (R6), the resulting word is dw, where w is some arrangement

of the words (a
α1
|α1|
1 [a1, d]

α1
|α1| )|α1|,..., (a

αk
|αk|
k [ak, d]

αk
|αk| )|αk|, (b

β1
|β1|
1 [b1, d]

β1
|β1| )|β1|,..., (b

βl
|βl|
l [bl, d]

βl
|βl| )|βl|,

(c
δ1+γ1
|δ1+γ1|
1 [c1, d]

δ1+γ1
|δ1+γ1| )|δ1+γ1|,...,(c

δn+γn
|δn+γn|
n [cn, d]

δn+γn
|δn+γn| )|δn+γn|. The terms in w are then commuted

using (R1) into H-normal form. Because all of the terms in w commute without generat-
ing new basic commutators, we end up with an appropriate rearrangement (with possible
cancelation) of aαii , [ai, d]αi , bβii , [bi, d]βi , cδi+γii and [ci, d]δi+γi .
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To compute X · (Y · d), we first bring d to the front of Y . By (R6), the resulting

word is dv, where v is some arrangement of the words (b
β1
|β1|
1 [b1, d]

β1
|β1| )|β1|,..., (b

βl
|βl|
l [bl, d]

βl
|βl| )|βl|,

(c
δ1
|δ1|
1 [c1, d]

δ1
|δ1| )|δ1|,...,(c

δn
|δn|
n [cn, d]

δn
|δn| )|δn|. We then commute the terms in v, using (R1), to

get its normal form v′. Next, we bring d to the front of X. The resulting word is

duv′, where u is some arrangement of the words (a
α1
|α1|
1 [a1, d]

α1
|α1| )|α1|,..., (a

αk
|αk|
k [ak, d]

αk
|αk| )|αk|,

(c
γ1
|γ1|
1 [c1, d]

γ1
|γ1| )|γ1|,...,(c

γn
|γn|
n [cn, d]

γn
|γn| )|γn|. Finally we commute all terms in uv′ using (R1). As

the terms in v rearrange to those in v′ without generating new basic commutators, and the
terms in uv′ rearrange without generating new basic commutators, the result of these rear-
rangements yields an appropriate rearrangement (with possible cancelation) of aαii , [ai, d]αi ,
bβii , [bi, d]βi , cδii , [ci, d]δi , cγii and [ci, d]γi . Thus the two processes give the same H-normal form.

The key point in the above argument is the symmetry in rules (R2) and (R3) as expressed
in (R6). Since we have the same symmetry in (R4) and (R5), as expressed in (R7), we obtain
(X · Y ) · d−1 = X · (Y · d−1) in a similar fashion.

Corollary 4.8. For all X1, X2,...,Xk not containing the basic commutator d, and for α ∈
{−1, 1}, we have (X1 ·X2 · · ·Xk)α = (X1)α · (X2)α · · · (Xk)α.

Proof. We note that since, X1, X2,...,Xk, and (X1)α, (X2)α,...,(Xk)α are all part of the same
abelian subgroup of H (by (R1)), there is no harm in omitting brackets in the products –
they can be reinserted in any way. The Corollary follows immediately from Lemma 4.7 by
induction on k.

We use Corollary 4.8 in the following manner. Let w be a word over the basic commutators
other than d and let Y be the H-normal form of w. By Corollary 4.8, reducing the string
w dα (i.e. passing dα across w to obtain dα v and then reducing v using (R1)) gives the same
H-normal form as reducing Y dα. In other words, for a string w over the basic commutators
other than d, we obtain the same H-normal form either by first reducing w to Y with (R1),
then passing dα across Y and reducing again with (R1), or by first passing dα across w and
then reducing the resulting string with (R1).

Lemma 4.9. For all H-normal forms X not containing the basic commutator d and for all
n ∈ N, (X · dn) · d = X · dn+1 and (X · d−n) · d−1 = X · d−n−1. In other words, (Xn)1 = Xn+1

and (X−n)−1 = X−n−1.

Proof. To calculate the H-normal form of (X · dn) · d, we pass n copies of d across X to
obtain (dnw) · d where w is not necessarily in H-normal form but does not contain the basic
commutator d. Then we reduce w to H-normal form Y using (R1). Finally, we reduce the
string dn Y d by passing d across Y and reducing the result to H-normal form using (R1).

To calculate the H-normal form of X · dn+1, we pass n copies of d across X to obtain the
string dnw d. Before combining terms, we pass the final copy of d across w and then reduce
using (R1). However, by Corollary 4.8, the H-normal forms of Y d and w d are the same and
hence we obtain the same H-normal form in each case. The case for d−n is similar.

We now prove the two lemmas required for the associativity of multiplication in H.
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Lemma 4.10. For all H-normal forms X and Y not containing the basic commutator d and
all α ∈ Z, (X · Y ) · dα = X · (Y · dα). In other words, (X · Y )α = Xα · Yα.

Proof. We proceed by induction on |α|. The base case when |α| = 1 is given by Lemma 4.7.
For the induction case, consider when α = n+ 1 is positive.

(X · Y )n+1 = ((X · Y )n)1 = (Xn · Yn)1 = (Xn)1 · (Yn)1 = Xn+1 · Yn+1

The first equality is from Lemma 4.9, the second equality is from the inductive hypothesis, the
third equality is from Lemma 4.7 and the last equality is from Lemma 4.9. The calculation
when α = −n− 1 is similar.

Lemma 4.11. For all X not containing the basic commutator d, and all α, β ∈ Z, we have
(Xα)β = Xα+β. That is, (X · dα) · dβ = X · dα+β.

Proof. If α and β are both positive or both negative, this holds by Lemma 4.9 and induction.
Consider the case when α is positive and β is negative. We first show by induction on

n ≥ 1 that for all X, (X · dn) · d−1 = X · dn−1. When n = 1, it suffices to show (by repeated
applications of Lemma 4.7) that for all basic commutators c = [yi, d

(l)] and all k ∈ Z we have
(ck · d) · d−1 = ck. Now

(ck · d) · d−1 = (d (c
k
|k| [c, d]

k
|k| )|k|) · d−1

= (d ck [c, d]k) · d−1

= d ck d−1 ([c, d]
k
|k| [c, d(2)]−

k
|k| [c, d(3)]

k
|k| · · · )|k|

= d d−1 (c
k
|k| [c, d]−

k
|k| [c, d(2)]

k
|k| [c, d(3)]−

k
|k| · · · )|k|([c, d]

k
|k| [c, d(2)]−

k
|k| [c, d(3)]

k
|k| · · · )|k|

Since the d’s cancel and the remaining terms commute by (R1), this product reduces to
ck as required. For the induction case, we have (X · dn+1) · d−1 = ((X · dn) · d) · d−1 by Lemma
4.9. By the base case, this is equal to X · dn.

Next we show by induction on m ≥ 1 that for all X, (X · dn) · d−m = X · dn−m. The base
case is the result for the previous paragraph. For the induction case,

(X · dn) · d−m−1 = ((X · dn) · d−m) · d−1 = (X · dn−m) · d−1 = X · dn−m−1

The first and third equalities follow from Lemma 4.9 and the second equality is the induction
hypothesis. This completes the proof of the lemma in the case when α is positive and β is
negative. The remaining case (when α is negative and β is positive) is similar.

5 Computable orders

In this section, we show that the groups constructed in this paper admit computable orders.
It follows that our independence result on the complexity of terms in the upper and lower
central series holds within the class of computable ordered nilpotent groups. We begin by
reviewing some basic definitions and facts about ordered groups.
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Definition 5.1. An ordered group consists of a group G and a linear order ≤G on G such
that for all g, h, k ∈ G, if g ≤G h, then gk ≤G hk and kg ≤G kh.

Lemma 5.2. If G is a computable group which is free abelian on a computable set of gener-
ators, then G admits a computable order.

Proof. Fix any computable order on the set of generators and extend this order lexicograph-
ically to the group.

Lemma 5.3. Let (Gi,≤i) be a (possibly infinite) uniform sequence of computable ordered
groups. The direct sum

⊕
iGi admits a computable order.

Proof. Order G lexicographically using the computable order ≤i on component Gi.

To show that the groups in Theorem 1.3 admit computable orders, it suffices by Lemma
5.3 to show that the groups constructed for Theorems 1.6 and 1.7 admit computable orders.
Proofs of the classical versions of Lemmas 5.4 and 5.5 can be found in standard texts on
ordered groups such as Kokorin and Kopytov [6] and are easily seen to be effective.

Lemma 5.4. Let G be a class r nilpotent computable group for which the terms in the lower
central series are computable, γrG admits a computable order and each factor γiG/γi+1G for
1 ≤ i < r admits a computable order. Then G admits a computable order.

Lemma 5.5. Let G be a class r nilpotent computable group for which the terms in the upper
central series are computable, ζ1G admits a computable order and each factor ζi+1G/ζiG for
1 ≤ i < r admits a computable order. Then G admits a computable order.

Theorem 5.6. The group G constructed in Section 3 to satisfy Theorem 1.6 admits a com-
putable order.

Proof. By Lemmas 3.4 and 5.2, ζ1G admits a computable order and each upper central factor
ζi+1G/ζiG admits a computable order. Therefore, by Lemma 5.5, G admits a computable
order.

Theorem 5.7. The group G constructed in Section 4 to satisfy Theorem 1.7 admits a com-
putable order.

Proof. By Lemma 5.3, it suffices to show that the groups Gk admit a uniformly computable
sequence of orders. Each Gk is a nilpotent computable group with computable lower central
series. The subgroup γnGk is free abelian on the basic commutators [yi,k, d

(n−1)
k ] for which

∃j ≤ i (f(j) = k). (Note that we do not need to know whether there are any such commutators
to produce the computable order on γnGk. Given any pair of elements in γnGk we can order
them lexicographically by declaring that [ya,k, d

(n−1)
k ] < [yb,k, d

(n−1)
k ] whenever both of these

commutators are in Gk and a < b.) The factor γ1Gk/γ2Gk is a free abelian group on the
generators dk and yi,k. The remaining factors γjGk/γj+1Gk are free abelian groups on the

generators [yi,k, d
(j)
k ]. Therefore, by Lemmas 5.2 and 5.4, Gk admits a computable order,

uniformly in k.
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6 Open questions

In addition to proving Theorem 1.4, Latkin [7] proves the following theorem showing that one
can fix the c.e. Turing degrees of the terms in the lower central series in every computable
copy of a class n nilpotent group in any desired way.

Theorem 6.1 (Latkin [7]). For each n ≥ 2 and c.e. degrees e2, . . . , en, there is a class n
nilpotent computable group G such that in every computable copy H ∼= G, deg(γiH) = ei for
2 ≤ i ≤ n.

The construction of G in Theorem 6.1 uses torsion elements and hence G does not admit
an order (computable or otherwise). This observation raises the question of whether one can
obtain a similar result using a torsion-free nilpotent group, and if so, whether such a group
could admit a computable order (in some or possibly all computable copies).

Theorem 6.1 also raises the natural question of whether one can obtain a similar result
for the terms in the upper central series, and if so, whether one can do it with a torsion-free
(or possibly computably orderable) nilpotent computable group.
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