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Abstract    
The game-theoretic assumption of ‘common knowledge of rationality’ leads to paradoxes 
when rationality is represented in a Bayesian framework as cautious expected utility 
maximisation with independent beliefs (ICEU).  We diagnose and resolve these paradoxes by 
presenting a new class of formal models of players’ reasoning, inspired by David Lewis’s 
account of common knowledge, in which the analogue of common knowledge is derivability 
in common reason.  We show that such models can consistently incorporate any of a wide 
range of standards of decision-theoretic practical rationality.  We investigate the implications 
arising when the standard of decision-theoretic rationality so assumed is ICEU. 

Short title 
Common reasoning in games 
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1. Introduction   

It is a fundamental assumption of standard game theory that each player of a game acts 

rationally and that this is common knowledge amongst them – in short, that there is common 

knowledge of rationality (CKR).  In most day-to-day applications of game theory, this 

assumption is not explicit; analysis is conducted using established ‘solution concepts’, such as 

Nash equilibrium or iterated deletion of dominated strategies.  But one of the core enterprises 

of standard game theory has been to investigate the implications of CKR for solution 

concepts, and there has been a long-standing presumption that acceptable solution concepts 

ought at least to be consistent with CKR. 

 Intuitively, CKR seems a meaningful idealisation, in the same sense that perfect 

competition is a meaningful idealisation in economics or frictionless surfaces are in 

theoretical mechanics.  However, attempts to formalise the assumption have sometimes 

generated paradoxical implications that appear to call into question the coherence of the 

concept.  In this paper, we offer a diagnosis of these paradoxes and, by presenting a new class 

of ‘common-reasoning models’, show how the intuitive idea of CKR can be formulated 

without creating paradoxes.   

Our approach to modelling CKR is inspired by Lewis (1969).  Although Lewis is 

widely credited with the first precise definition of common knowledge, it is less well known 

among game theorists that this definition is only one component of a detailed analysis of 

interlocking processes of individual reasoning.  Building on an analysis of Lewis’s game 

theory by Cubitt and Sugden (2003), we formalise and extend Lewis’s approach to represent 

how individual players may reason about the standards of practical – that is, decision-

theoretic – rationality that other players endorse, and in this way reach conclusions about 

whether specific strategies are or are not rationally playable.   

Although lip-service is often paid to Lewis’s historic role, the approach to modelling 

CKR now seen by most game theorists as canonical is that due to Aumann (1987); and it 

contrasts markedly with that of Lewis.1  Aumann offers a Bayesian modelling framework 

which can be used to represent CKR among the players of any given noncooperative game.  

                                                           
1 Further developments of Aumann’s Bayesian approach have been made, for example, by Tan and Werlang 
(1988), Dekel and Gul (1997) and Aumann (1999a, b).  Cubitt and Sugden (2003) is one of several recent 
analyses of Lewis’s argument.  It contrasts that approach with that of Aumann.  Other formalisations of Lewis’s 
argument, based on different understandings of what is central to it, are offered by Vanderschraaf (1998), Sillari 
(2005), Gintis (2009) and Paternotte (2010).  We discuss them further in Section 4. 
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Aumann sees this framework as providing formal foundations for a solution concept, 

correlated equilibrium, which generalises Nash equilibrium.  The central assumption of the 

model is that ‘it is common knowledge that all the players are Bayesian utility maximizers’ 

(p. 2), which Aumann treats as synonymous with there being ‘common knowledge of 

rationality’ (p.12).    Although Aumann’s model is logically consistent, apparently natural 

extensions of it, intended to introduce different conceptions of practical rationality involving 

principles of ‘caution’ or weak dominance, turn out to generate puzzles and even 

contradictions in some games (Borgers and Samuelson, 1992; Samuelson, 1992; Cubitt and 

Sugden, 1994).  Of course, one possible response to this is to reject the extensions.  However, 

to those who see the extensions as having compelling motivations, the games in which 

puzzles and contradictions arise are paradoxical and troubling exhibits for the Bayesian 

approach.  In our view, there is also a deeper conception of paradox that does not require the 

extensions to define uniquely, or even especially, compelling conceptions of practical 

rationality, but only ones that are internally consistent.  The deeper paradox is that, within the 

Bayesian approach, substituting one internally consistent conception of practical rationality 

for another seems to affect whether CKR is even possible.  

The underlying reason why the Bayesian approach runs into problems, we will argue, 

is that it seeks to represent a situation in which, in every state of the world, each player’s 

choices are expected utility maximising relative to her beliefs; and this situation is represented 

as common knowledge.  This implies a binary partition of the set of strategies: one element of 

this partition contains those strategies that are played in some state(s) of the world, while the 

other contains those that are played in none.  It also implies common knowledge that a 

strategy in the first element is played.  However, the Bayesian approach to modelling CKR 

does not attempt to describe the modes of reasoning by which the players might discover the 

partition for themselves. 

In contrast, a central feature of a Lewisian approach is that it does describe players’ 

reasoning.  In our formulation, we capture the intuitive idea of CKR by assuming that players 

have access to specific modes of reasoning that constitute the common rationality being 

modelled and that this common rationality embeds, as one of its components, some standard 

of practical rationality.  Our common-reasoning model, for a given such standard and a given 

game, gives an explicit representation of reasoning by which players can arrive at conclusions 

about the rational permissibility or impermissibility of strategies.  For a given strategy, there 
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are three possibilities: either the permissibility of the strategy can be established by reasoning; 

or its impermissibility can be so established; or neither its permissibility nor its 

impermissibility can be established.  Thus, it is intrinsic to our approach that each common-

reasoning model generates a trinary partition of the strategy set of a given game.  The 

properties of these trinary partitions and the relationship between them and the binary 

partitions arising from the corresponding Bayesian models are at the heart of our resolution of 

the paradoxes faced by the latter.  Moreover, we show that the relevant common-reasoning 

model provides a consistent rendition of CKR, for any game and any coherent standard of 

practical rationality.  By doing so, we achieve a complete separation between what it is for 

some conception of practical rationality to be common knowledge and the substantive content 

of that conception. 

Of course, the Lewisian approach is not the only way of modelling players’ reasoning 

towards conclusions about the playability or non-playability of strategies of different kinds.  

One well-known approach introduces a dynamic element into Bayesian reasoning, as in 

Harsanyi’s ‘tracing procedure’ (Harsanyi, 1975; Harsanyi and Selten, 1988) and Skyrms’s 

(1989, 1990) ‘dynamic deliberation’.  In these models, players have common knowledge of 

their Bayesian rationality and update their subjective probabilities in the light of information 

generated by their knowledge of how other players have updated theirs.  The main results 

derived from these models depend on the assumption that players’ prior probabilities are 

common knowledge.  In our approach, in contrast, there are no assumptions about priors.  

An approach somewhat more similar to ours is taken by Binmore (1987, 1988) in his 

analysis of ‘eductive reasoning’, further developed by Anderlini (1990).  In Binmore’s model, 

each player is represented by a Turing machine.  In order to make a rational choice among 

strategies, each machine attempts to simulate the reasoning of the other machines.  Binmore 

interprets the resulting infinite regress as demonstrating that ‘perfect rationality is an 

unattainable ideal’ (1987, pp. 204-209).  This analysis might be interpreted as demonstrating 

the general impossibility of justifying Bayesian binary partitions as the product of players’ 

reasoning.  Bacharach (1987) presents a related argument, questioning whether even in games 

with unique Nash equilibria, the playing of equilibrium strategies can always be justified by 

the players’ own reasoning.  We see our work as, in some respects, in a similar spirit as 

Binmore’s and Bacharach’s.  However, we focus less on negative results and more on what 

conclusions can be reached by coherent modes of reasoning that individuals might endorse. 
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One of the merits of the Lewisian approach is that it resolves the paradoxes that arise 

when the Bayesian approach is combined with principles of weak dominance or caution.  We 

do not claim that these paradoxes can be resolved in no other way, but only that the Lewisian 

resolution is both natural and general.  A different response to these paradoxes, discussed for 

example by Brandenburger (2007) and Brandenburger et al (2008), retains more features of 

Aumann’s model but uses lexicographic probability systems in place of Bayesian 

probabilities.  Whatever the merits of this rendition of CKR, the use of non-Bayesian 

probabilities is a major departure from Aumann’s explicitly Bayesian approach.  Thus, the 

viability of this modelling strategy does not compromise our claim that the Bayesian approach 

leads to paradoxes; nor does it demonstrate the possibility of modelling CKR in a way that is 

robust to different conceptions of practical rationality.     

The remainder of the paper is organised as follows: Section 2 presents the Bayesian 

approach to modelling CKR and shows by means of three exhibit games how, though that 

approach is internally consistent, it gives rise to paradoxes when extended to capture a 

conception of practical rationality in which rational individuals maximise expected utility in 

relation to beliefs that are independent and cautious, in the sense of Pearce (1984) and 

Borgers and Samuelson (1992).  By doing so, it motivates the development of our alternative 

approach to modelling CKR.   

Sections 3–5 introduce the major ingredients of our Lewisian approach.  Section 6 

presents that approach itself, by first defining the class of common-reasoning models and then 

establishing the consistency of every such model.  Section 7 introduces a sense in which a 

given common-reasoning model defines a ‘solution’ to the game and defines a 

‘recommendation algorithm’ which can be used to identify that solution, and which is 

interpretable as tracking specific steps of reasoning that lead ‘common reason’ to it. 

As the primitives of our common-reasoning models are very different from those of 

the Bayesian models introduced in Section 2, it helps to define a framework within which 

they can be compared.  We present such a framework in Section 8, exploiting concepts 

introduced in Cubitt and Sugden (2010).  Section 9 then specialises the common-reasoning 

framework to the case where common rationality embodies the conception of practical 

rationality that Section 2 showed to give rise to paradoxes within the Bayesian approach.  

Using the framework of Section 8 as a bridge, Section 9 also establishes precise relationships 
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between the corresponding Bayesian and common-reasoning models.  These relationships 

provide the ingredients for a final resolution of the paradoxes, presented in Section 10. 

Between them, two appendices provide proofs of all the formal results.  They do so in 

part by exploiting relationships between concepts presented in this paper and the concept of a 

‘categorisation procedure’ introduced in Cubitt and Sugden (2010).  These relationships are 

demonstrated in Appendix 1; Appendix 2 gives proofs of all results from the main text, 

drawing in some cases on preliminaries established in Appendix 1.  The results of Appendix 1 

are also of independent interest because they demonstrate that the common-reasoning models 

presented in Section 6 can be interpreted as formal foundations for Cubitt and Sugden 

(2010)’s categorisation procedures. 

   

2.  Common knowledge of rationality in a Bayesian model: three paradoxes 

In this section, we present three paradoxes stemming from the Bayesian approach to 

modelling games. 

We consider the class G of finite, normal-form games of complete information, 

interpreted as one-shot games.  For any such game, there is a finite set N = {1, ..., n} of 

players, with typical element i and n ≥ 2; for each player i, there is a finite, non-empty set of 

(pure) strategies Si, with typical element si; and, for each profile2 of strategies s = (s1, ..., sn), 

there is a profile u(s) = (u1[s], …, un[s]) of real-valued and finite utilities.   The set S1 × ... × Sn 

is denoted S; the set S1 × ... × Si–1 × Si+1 × ... × Sn  is denoted S–i.  We impose that, for all i, j, ∈ 

N, Si ∩ Sj = ∅.  This condition has no substantive significance, but imposes a labelling 

convention that the strategies available to different players are distinguished by player 

indices, if nothing else. This convention allows a conveniently compact notation in later 

sections, in common with that used by Cubitt and Sugden (2010). 

We define a Bayesian model, for any game in G, so that it specifies all of the 

following: a set of states of the world; players’ behaviour; players’ knowledge; players’ 

subjective beliefs; and a standard of decision-theoretic rationality. 

 Uncertainty is represented in the Bayesian model by means of a finite, non-empty, 

universal set Ω of states, whose typical element is denoted ω.  A set of states is an event. 
                                                           
2   Throughout, we use the term ‘profile’ of objects of a given type to denote a function which associates with 
each player i ∈ N an object of that type that applies to i.  For example, a strategy profile associates with each 
player i an element of Si.   
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Players’ behaviour is represented by a behaviour function b(.), which assigns a profile 

of strategies b(ω) = (b1[ω], ..., bn[ω]) to each state ω, to be interpreted as the profile of 

strategies that are chosen by the players at ω.  Stochastic choice (such as mixed strategies) is 

represented as choice that is conditioned on random events.  For each profile s of strategies 

and each strategy si, we define the events E(s) = {ω ∈ Ω | b(ω) = s} and E(si) = {ω ∈ Ω | 

bi(ω) = si}.  Let S* = {s ∈ S | E(s) ≠ ∅} and Si* = {si ∈ Si | E(si) ≠ ∅}.  S* (respectively Si*) is 

the set of strategy profiles (respectively strategies for i) included in the Bayesian model.  

Thus, a Bayesian model specifies a binary partition of each player’s strategy set Si, the 

elements of which are the set of included strategies Si* and the set of excluded strategies 

Si\Si*.  By construction, each Si* is non-empty. 

Players’ knowledge is represented by an information structure I = (I1, ..., In).  For 

each player i, Ii is an information partition of Ω, representing what i knows at each state.  

Ki(E), where E is an event, is the event {ω ∈ Ω| ∃E′ ∈ Ii: (ω ∈ E′ ) ∧ (E′ ⊆ E)}.3  If ω ∈ 

Ki(E), we say ‘i knows E at ω’.  An event E is Bayesian common knowledge at ω if ω is an 

element of all events of the finitely-nested form Ki(Kj(... Kk(E)...)).  (This is the formal 

definition of ‘common knowledge’ used in the Bayesian modelling framework.  We use the 

qualifier ‘Bayesian’ to distinguish this theoretical construct from the intuitive concept.)   

Since Ω is the universal set, then, for all i, Ki(Ω) at all ω; thus, Ω is Bayesian common 

knowledge at all states. 

For any player i, a prior is a function πi: Ω → (0, 1] satisfying Σω∈Ω πi(ω) = 1; πi(ω) is 

interpreted as a subjective probability.  We extend this notation to events by defining, for each 

event E, πi(E) = Σω∈E πi(ω).  A prior πi is independent if, for all players j, k (with j ≠ k), for all 

strategies sj ∈ Sj*, sk ∈ Sk*: πi(E[sj] ∩ E[sk]) = πi(E[sj])πi(E[sk]).  A profile π = (π1, ..., πn) of 

priors is independent if each component πi is independent.  Posterior probabilities, conditional 

on events, are defined from priors by means of Bayes’s rule.  The requirement that, for each 

player i and for each state ω, πi(ω) > 0 guarantees that posterior probabilities are well-defined 

and that the priors of different players have common support.4    

We define a choice function for player i as a function χi: Ω → ℘(Si), where ℘(Si) 

denotes the power set of Si, satisfying two restrictions.  First, χi(ω), the set of strategies that 

                                                           
3 We use the connectives ¬,  ∧, and ⇒ for negation, conjunction and material implication, respectively.  We use 
⊂  (resp. ⊆)  to denote ‘is a strict (resp. weak) subset of’. 
4  Common support is a much weaker condition than that of common priors (i.e. that, for all distinct players i and 
j, πi = πj). The latter assumption, made by Aumann (1987), has proved controversial.  See, for example, Morris 
(1995), Gul (1998) and, for a response, Aumann (1998).  We allow but do not impose the common priors 
assumption, as it is not needed for the paradoxes we present. 
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are choiceworthy for i at ω, is nonempty for all ω.  Second, for all E ∈ Ii, for all ω, ω′ ∈ E: 

χi(ω) = χi(ω′).  The interpretation is that a choice function encapsulates some normative 

standard of practical rationality; χi(ω) is the set of strategies which, according to that 

standard, may be chosen by i at ω.  The first restriction stipulates that, in every state, there is 

at least one choiceworthy strategy; the second that what is choiceworthy for a player can be 

conditioned only on events that he observes.   

A choice function is a device for representing the implications of whatever decision 

principles are taken as ‘rational’.  It is conventional to treat the maximisation of subjective 

expected utility as one of the defining characteristics of a Bayesian model, and we follow that 

convention here.  Consider any player i.  For any s ∈ S, for any si′ ∈ Si, let σi(s, si′) denote the 

strategy profile created by substituting si′ for si in s (i.e. σi[s, si′] =  [s1, ..., si – 1, si′, si + 1, ..., 

sn]).  For any prior πi, for any state ω′, for any E ∈ Ii, let πi(ω′|E) denote the posterior 

probability of ω′, given E.  For each player i, for each state ω, a strategy si is SEU-rational for 

i at ω with respect to the information partition Ii and prior πi if, for each strategy si′ ∈ Si, 

∑ω′∈E πi(ω′|E) (ui[σi(b[ω′], si)] – ui[σi(b[ω′], si′)]) ≥ 0, where E is the event such that ω ∈ E ∈ 

Ii.  Thus, si is SEU-rational for i at ω if it maximizes expected utility for i, conditional on his 

prior beliefs updated by his information at ω.5  The choice function χi is SEU-rational with 

respect to Ii and πi if, for all ω ∈ Ω, χi(ω) is the set of strategies that are SEU-rational for i at 

ω with respect to Ii  and πi. 

We define a Bayesian model of a particular game as an ordered quintuple <Ω, b(.),I, 

π, χ>, where Ω is a finite, nonempty set of states and b(ω) = (b1[ω], ..., bn[ω]),I  = (I1, ..., In), 

π = (π1, ..., πn) and χ = (χ1, ..., χn) are, respectively a behaviour function, an information 

structure, a profile of priors and a profile of choice functions defined with respect to Ω and 

the game, such that the following three conditions are satisfied:   

Choice Rationality.  For all i ∈ N, for all ω ∈ Ω: bi(ω) ∈ χi(ω). 

SEU-Maximisation.  For all i ∈ N, for all ω ∈ Ω: χi(ω) = {si ∈ Si| si is SEU-rational at 
ω with respect to Ii and πi}. 

Knowledge of Own Choice.  For all i ∈ N, for all ω ∈ Ω: ω ∈ Ki[E(bi[ω])]. 

Choice Rationality requires that, at each state, each player’s actions are consistent with 

whatever standard of decision-theoretic rationality is being modelled.  SEU-Maximisation 

                                                           
5 Note that the test of SEU-rationality of si at ω requires that si yields at least as high an expected utility as any 
other strategy in Si, not just as those in Si*. 
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stipulates that the standard of rationality is the maximisation of subjective expected utility.  

Knowledge of Own Choice imposes the obvious restriction that, at each state, every player 

knows the pure strategy that he chooses.6   

The following result is a precursor to our discussion of paradoxes: 

Theorem 1:   For every game in G, a Bayesian model exists. 

Theorem 1 is implied by the analysis of Aumann (1987).7  It shows that, for every game in G, 

the concept of a Bayesian model is an internally consistent representation of CKR.  In 

particular, in any such model, Ω is a universal set of states at each of which some profile of 

strategies is played that contains only choiceworthy strategies; and S* is the set of profiles 

played at states in Ω.  As Ω is Bayesian common knowledge at all states and Ω = ∪s∈S* E(s), 

there is Bayesian common knowledge at all states of the event that a profile in S* is played. 

Given Theorem 1, it is natural to ask whether further conditions can be imposed on 

Bayesian models.  We consider two additional requirements: 

Independence (of Priors).  The profile π of priors is independent. 

Privacy (of Tie-Breaking).  For all distinct i, j ∈ N, for all ω ∈ Ω, for all si ∈ Si: si ∈ 
χi(ω) ⇒ ω ∉ Kj(Ω\E[si]). 

Independence rules out the possibility that some player i believes that the choices of 

any two distinct players from among their included strategies are correlated with one another.  

Although Aumann’s (1987) Bayesian model of CKR allows correlation of strategies between 

players, game theory needs to be able to model situations in which the players have no 

mechanisms for achieving such correlation (or grounds for believing in it).  If the 

representation of CKR is to apply to such cases, it must be possible to impose Independence 

on the model. 

 Privacy requires that if some strategy si is choiceworthy for player i at some state ω, 

then it is not the case that some other player j knows at ω that si is not chosen.  Given that 

Choice Rationality holds, if si is choiceworthy for player i at state ω, to suppose that, at the 

                                                           
6  This is consistent with randomisation by players since, as noted above, play of random strategies is represented 
in the model by prior uncertainty about which state obtains.  
7 As the structure of our proof makes clear, Aumann’s analysis implies a stronger result in which existence of a 
Bayesian model in which players have a common prior is established for every game in G.  The proof shows 
how, for any game in G, the different components of a Bayesian model may be assembled from some correlated 
equilibrium for the game. 



 9

same state, another player j could know that si is not chosen would be to suppose that χi(ω) is 

not a singleton and that j can replicate the tie-breaking mechanism that i uses to discriminate 

between options which, according to the standard of rationality, are equally choiceworthy.  

Since tie-breaking occurs only when rationality fails to determine what should be chosen, the 

properties of a tie-breaking mechanism must be non-rational.  Hence, whether tie-breaking 

mechanisms are private or not is an empirical question, not one that can resolved by a priori 

considerations of rationality and common knowledge.  If the representation of CKR is to 

apply to cases in which tie-breaking rules are private, it must be possible to impose Privacy 

on the model.  

Privacy can also be interpreted as a principle of caution with respect to posteriors.  As 

prior probabilities are constrained to be nonzero, the proposition ω ∉ Kj(Ω\E[si]) implies that, 

at ω, j’s posterior probability for E(si) is nonzero.  Thus, Privacy requires that, if a strategy si 

is choiceworthy for player i at some state, then, at that state, other players assign nonzero 

probability to its being chosen.  Consequently, if it is choiceworthy at any state, si is an 

element of Si* (and so played at some state).8     

We interpret Bayesian models which satisfy both Independence and Privacy as 

attempting to represent common knowledge of the following standard of practical rationality: 

each player’s beliefs assign independent probabilities to other players’ strategies, zero 

probability to strategies regarded as not rationally playable, and strictly positive probability to 

all strategies regarded as rationally playable; and each player maximises expected utility 

relative to these beliefs.  We call this standard that of independent cautious expected utility 

maximization (or the ICEU standard, for short).9  Thus, a Bayesian model which satisfies 

Independence and Privacy is an ICEU Bayesian model.    

Clearly the ICEU standard is more restrictive than expected utility maximisation 

alone, but it is attractive for certain contexts for the reasons given above.  More importantly, it 

would be paradoxical if an otherwise coherent representation of CKR could not accommodate 

the view of rationality embedded in the ICEU standard without giving rise to puzzles or 

impossibility.  However, that is how matters turn out.  We use three games to illustrate this.  

                                                           
8  This conception of caution is distinct from that used by some others in the literature (e.g. Asheim and 
Dufwenberg, 2003), for whom caution requires no strategy to be regarded as entirely impossible.  It conforms 
more closely to that of Börgers and Samuelson (1992) and Pearce (1984).          
9  The ICEU standard is very closely related to that described in Section 5 of Cubitt and Sugden (2010), where an 
independence condition is added to the ‘reasoning-based expected utility’ conception of practical rationality 
introduced in Section 3 of that paper.  We use a different name here, to avoid associating the standard with any 
particular approach to modelling CKR.  
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 Our first exhibit, illustrating the Proving Too Much Paradox, is Game 1.10   

 
Game 1: 
    
    Player 2 
    left right 

 first   0, 0 0, 0 
Player 1 second           – 1, 3 2, 2 
  third            –1, 3 1, 5 

 

Proposition 1:  In every ICEU Bayesian model of Game 1, S1* = {first} and S2* = 
{left, right}. 

Proposition 1 is paradoxical as it implies that, in every ICEU Bayesian model of Game 1, 

player 1 must assign a prior probability greater than 2/3 to player 2’s choosing left (since, 

otherwise, second would be SEU-rational at every state), when player 1 knows that player 2 is 

indifferent between left and right.  If player 2 is indifferent between her strategies, which of 

them she chooses must be determined by a non-rational tie-breaking mechanism.  The 

properties of this mechanism cannot be determined by assumptions about rationality and 

common knowledge.  So, why must player 1 believe that player 2’s tie-breaking mechanism 

selects left with probability greater than 2/3?  In more general terms, the paradox is that a 

particular belief, held by a particular player, is common to all ICEU Bayesian models, with 

the apparent implication that the existence of this belief is implied merely by the assumption 

that the ICEU standard of rationality is common knowledge, when there seems to be no way 

in which the player could reason her way to that belief, given only the knowledge that is 

attributed to her by that assumption.  In this sense, we seem to have proved too much. 

 Our second exhibit illustrates another way in which a Bayesian modelling approach 

can seem to prove too much.  We call it the Three-lane Road Game in memory of a method of 

marking lanes on single-carriageway roads which was once (but fortunately is no longer) 

common in Britain.  Each curbside lane was designated for slow traffic in the direction 

consistent with the ‘keep left’ rule, while a single central lane was designated for overtaking 

in both directions.  If two drivers travelling in opposite directions in their respective slow 

lanes had simultaneous overtaking opportunities, overtaking would be safe for either of them 

if and only if the other chose not to overtake.  This can be represented as follows, where the 

                                                           
10  Game 1 is the normal-form of a simple extensive-form ‘Centipede’ game in which the initial move belongs to 
Player 1, the second move to Player 2 and the third and final move to Player 3.  Although Centipede games have 
most often been discussed in the literature using the extensive form, our analysis here uses the normal form only.   
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two strategies available to a player i correspond to staying in their curbside lane (ini) and 

pulling out into the central one (outi), and each player is indifferent between all strategy 

profiles that do not expose them to the risk of simultaneously pulling out.       

 

Game 2:  (Three-lane Road) 
    
    Player 2 
    in2 out2 
Player 1 in1   1, 1 1, 1 
  out1             1, 1 0, 0 

   
Proposition 2:  In every ICEU Bayesian model of Game 2, either (i) S1* = {in1} and 
S2* = {in2, out2} or (ii) S1* = {in1, out1} and S2* = {in2}.  

 Proposition 2 implies that, in every ICEU Bayesian model of Game 2, one of the two 

players plays the ‘risky’ strategy (out) in some states, while the other plays it in none.  The 

structure of the game is entirely symmetrical with respect to the two players.  But, if one 

player plays out in some states and the other plays it in none, there must be some asymmetry 

that tells one and only one player that they may pull out.  The apparent implication of 

Proposition 2 is that the existence of such an asymmetry is implied merely by the assumption 

that the ICEU standard of rationality is common knowledge; but there seems to be no way in 

which the players could discover that asymmetry using only the knowledge attributed to them 

by that assumption.  Of course, there is no paradox in the idea that there could be common 

knowledge of an asymmetry in what rationality requires of the players, grounded on 

information external to the formal description of the game (for example, information about 

previous play of the game in some population).  The Three-lane Road Paradox is the apparent 

demonstration that a conception of CKR implies that there must be such knowledge.  Again, 

we seem to have proved too much.   

     Neither Game 1 nor Game 2 yields an outright inconsistency in the conditions that 

define an ICEU Bayesian model.  In fact, these conditions are mutually consistent for every 

two-player game in G.11  However, an inconsistency can be shown using a game introduced 

by Cubitt and Sugden (1994), which can be thought of as a three-player extension of Game 2.  

We call the inconsistency shown by this game the Tom, Dick and Harry Paradox to match the 

                                                           
11  This can be proved by exploiting the existence proof for quasi-strict Nash equilibrium for two-player games 
due to Norde (1999).  Given a quasi-strict Nash equilibrium of a game, a Bayesian model of that game can be 
constructed, using the technique in our proof of Theorem 1.  The properties of quasi-strict Nash equilibrium 
ensure that Independence and Privacy are satisfied. 
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name given to the game by Cubitt and Sugden (1994), in view of the following story 

suggested to them by Michael Bacharach.  Tom (player 1), Dick (player 2) and Harry (player 

3) are guests in an isolated hotel.  Tom is trying to avoid Dick, Dick to avoid Harry, and 

Harry to avoid Tom; yet, there is no alternative to taking their evening meal in the hotel.  

Guests who eat in the restaurant (out) will meet each other, whereas those who eat in their 

rooms (in) will not meet any others.  Each guest is indifferent between all outcomes, provided 

he does not meet the person he is trying to avoid. 

 
Game 3 (Tom, Dick and Harry) 

 
    Player 3: in3    
 
    Player 2    
    in2  out2     
Player 1 in1  1, 1, 1  1, 1, 1 
  out1  1, 1, 1  0, 1, 1 
 
    Player 3: out3    
 
    Player 2    
    in2  out2     
Player 1 in1  1, 1, 1  1, 0, 1 
  out1  1, 1, 0  0, 0, 0 
 
 

     The paradox consists in the fact that there is no ICEU Bayesian model of Game 3, 

which constitutes a proof of the following result: 

Theorem 2: There are games in G for which no ICEU Bayesian model exists. 

 As Theorem 1 shows, some standards of rationality can be represented in Bayesian 

models without contradiction.  However, Theorem 2 is troubling for anyone who thinks that 

the Bayesian modelling framework should be able to represent common knowledge of any 

specific standard of practical rationality.  The normative issue of adjudicating between 

alternative standards of rationality seems orthogonal to the modelling issue of how to 

represent a world in which some standard of rationality is common knowledge.  Whether or 

not one thinks rationality really requires players to obey the ICEU standard, it is puzzling that 

common knowledge of ICEU cannot always be represented in a Bayesian model. 
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 As indicated in Section 1, the key to our resolution of these paradoxes is development 

of a model in which the modes of reasoning that players might use are represented explicitly.  

We now turn to that task.   

 

3.  Reasoning schemes   

As a first step, we introduce our representation of a mode of reasoning. 

 We define a mode of reasoning in relation to some domain P of propositions within 

which reasoning takes place.  This domain may be interpreted as the class of propositions 

defined within some formal structure or language.  Initially, we impose only minimal 

conditions on P, which we will state as the concepts required to do so are defined.  Later, 

when we apply our model to games, we will specify P precisely, using a particular formal 

language for game-relevant propositions that satisfies these conditions.  Until then, we use p, 

q, r, to denote particular propositions in P and use the logical connectives ¬,  ∧, and ⇒ to 

make up complex propositions from atomic ones, where those connectives are defined by the 

usual semantic rules.  We impose throughout that every proposition in P can be made up from 

some set of atomic propositions using a finite number of logical connectives.  

 We will say, for any finite subset Q = {q1, ..., qm} of P and any p ∈ P, that p is 

logically entailed by Q if  q1 ∧ ... ∧ qm ∧ ¬p is a contradiction; and that a set of propositions is 

consistent if no conjunction of its elements is a contradiction.  The conjunction of an empty 

set of propositions is the null proposition, which we treat as a tautology, denoted #.12  We 

impose that P contains #.    

An inference rule in domain P is a two-place instruction of the form «from ..., infer ... 

», where the first place is filled by a finite subset of P (whose elements are the premises of the 

rule) and the second place by an element of P (the conclusion of the rule).  An inference rule 

is valid if its conclusion is logically entailed by the set of its premises. 

An inference structure is a triple R = <P, A(R), I(R)>, where P is the domain in which 

reasoning takes place,  A(R) ⊆ P is the set of axioms of R, with # ∈ A(R), and I(R) is a set of 

inference rules in domain P.  The set T(R) of theorems of R is defined inductively as follows.  

We define T0(R) = A(R).  For k ≥ 1, Tk(R) is defined as Tk–1(R) ∪ {p ∈ P⎥ p is the conclusion 

                                                           
12  It would be possible to formulate our model without the concept of the null proposition, but only at a cost of 
unnecessary cumbersomeness in subsequent definitions.  
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of an inference rule in I(R), all of whose premises are in Tk–1(R)}.  Then T(R) = T0(R) ∪ T1(R) 

∪ ... .  Each proposition in T(R) is derivable in R.   

  We will say that I(R) includes the rules of valid inference if, for every finite Q ⊆ P 

and every p ∈ P, if p is logically entailed by Q then «from Q, infer p» ∈ I(R).  An inference 

structure R such that I(R) includes the rules of valid inference is a reasoning scheme.  Thus, if 

R is a reasoning scheme, every proposition in P that is logically entailed by the theorems of R 

is itself a theorem of R.  Note, however, that I(R) can contain inference rules other than those 

of valid inference.  This allows us to represent forms of inference which, although not 

licensed by deductive logic, are used in game-theoretic and practical reasoning.  

 We will say that a reasoning scheme R is consistent if T(R) is consistent.  If A(R) is 

consistent and all the inference rules of R are valid, it is immediate that R is consistent; but, in 

general, there are inconsistent reasoning schemes, as well as consistent ones.  Our aim is to 

model CKR in terms of reasoning schemes that are consistent.  But, to demonstrate the 

feasibility of this goal, we need to use a modelling framework in which consistency can be 

proved; such a framework must allow the possibility of inconsistency.  For this reason, we do 

not impose consistency as part of the definition of a reasoning scheme. 

 Before proceeding, it is worth highlighting an important difference between the 

Lewisian approach that we follow and the Bayesian one.  The Bayesian framework may be 

seen as a model of the world which incorporates a specification, captured by an information 

partition, of what each player knows in each state.  The conception of knowledge is objective, 

relative to what the modeller has deemed to be true.  Thus, within the Bayesian framework, it 

is true by definition that, for any event E and any player i, Ki(E) ⊆ E, so that ‘knowledge 

implies truth’.  In contrast, the Lewisian approach does not model what is really true in the 

world; instead, it models what players have reason to take to be true.  In line with this 

interpretation, we will say that a person endorses a reasoning scheme R if he takes its axioms 

to be true and accepts the authority of its inference rules; a person who endorses R has reason 

to believe each of its theorems. 

For any proposition p and for any reasoning scheme R, we use the notation R(p) as 

shorthand for the proposition that p is a theorem of R.  This notation allows us to represent 

reasoning schemes which interact, in the sense of having theorems about what is derivable in 

other reasoning schemes, or indeed in themselves.  For example, R1[R2(p)] denotes the 

proposition that ‘p is a theorem of R2’ is a theorem of R1, where R1 and R2 are (possibly 

distinct) reasoning schemes.   
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4.  Common reasoning in a population  

Our approach is to model CKR among a population of agents as the existence of a core of 

shared reasoning which is endorsed by each agent in the population and is commonly 

attributed to other such agents.  In a metaphorical sense, this core of shared reasoning can be 

thought of as a subroutine of each agent’s individual reasoning.  It allows each individual to 

maintain a distinction between (on the one hand) propositions which everyone has reason to 

believe, given the axioms and inference rules that everyone endorses and (on the other hand) 

propositions which he has reason to believe, given the axioms and inference rules that he 

endorses.  Thus, given a finite, non-empty, population N = {1, …, n} of agents, we postulate 

the existence, for each agent i, of a reasoning scheme Ri of private reason which i endorses, 

and the existence of a reasoning scheme R* of common reason. 

 We take as given a set P0 of primitive propositions, such that # ∈ P0, and such that no 

proposition in P0 can be expressed by any formula containing any of the terms R*(.), R1(.),..., 

Rn(.).  For each k ≥ 1, we define Pk to contain all of the following propositions (and no 

others): (i) every proposition which can be constructed from the elements of Pk–1 using a finite 

number of logical connectives from the set {¬,  ∧, ⇒}, (ii) every proposition of the form 

R*(p) where p ∈ Pk–1; and (iii) every proposition of the form Ri(p) where i ∈ {1, ..., n} and p 

∈ Pk–1.  We define ϕ(P0) ≡ P0 ∪ P1 ∪... .  For any given specification of P0, ϕ(P0) is the 

domain in which the reasoning schemes of our model operate. 

We now define the following concept as a representation of the links between private 

and common reason.  An interactive reasoning system among the population N = {1, …, n} is 

a triple < P0, R*, (R1, …, Rn)>, where P0 is a set of primitive propositions, R* is a reasoning 

scheme, and (R1, ..., Rn) is a profile of reasoning schemes, such that each of the (n+1) 

reasoning schemes has the domain ϕ(P0) and the following conditions hold:  

Awareness:   For all i ∈ N, for all p ∈ ϕ(P0):  R*(p) ⇒ [R*(p) ∈ A(Ri)]. 

Authority:  For all i ∈ N, for all p ∈ ϕ(P0): «from {R*(p)}, infer p» ∈ I(Ri). 

Attribution (of Common Reason):  For all i ∈ N, for all p ∈ ϕ(P0): «from {p}, infer 
Ri(p)» ∈ I(R*). 

We will say that an interactive reasoning system <P0, R*, (R1, ..., Rn)> is consistent if each of 

its component reasoning schemes is consistent. 
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 The Awareness condition represents the idea that agents know of common reason in 

the sense that, if some proposition p is a theorem of common reason, the fact that it is such a 

theorem is treated as self-evident by each agent’s private reason.  The Authority condition 

requires that each agent accepts the authority of common reason in the following sense: from 

the premise that some proposition p is a theorem of common reason, the private reason of 

each agent infers p as a conclusion.  The Attribution condition requires that, from any premise 

p, common reason infers the conclusion Ri(p) in relation to each agent i.  In this sense, 

common reason attributes its own theorems to the private reason of each agent. 

 We will say that, in population N, there is iterated reason to believe some proposition 

p if all finitely nested propositions of the form Ri(Rj(... Rk(p)...)) for i, j, ..., k ∈ N are true.  

The following theorem establishes that, in an interactive reasoning system, there is iterated 

reason to believe all propositions that are derivable in R*:  

Theorem 3:  Consider any population N of agents and any interactive reasoning 
system <P0, R*, (R1, …, Rn)> among the population N.  For every proposition p ∈ 
T(R*), there is iterated reason to believe p in population N.    

 Our method of modelling CKR in a given game will be to represent practical and 

game-theoretic rationality in terms of axioms and inference rules, and to attribute these to 

common reason in an interactive reasoning system among the population comprising the 

players of the game.  By virtue of Theorem 3, any propositions that are derivable using those 

axioms and inference rules will be the object of iterated reason to believe among the players. 

Our concept of an interactive reasoning scheme is in the spirit of Lewis’s (1969, pp. 

52–60) analysis of common knowledge, as understood by Cubitt and Sugden (2003).  Lewis 

defines a proposition p to be ‘common knowledge’ in a population N if some ‘state of affairs’ 

A holds, such that (i) everyone in N has reason to believe that A holds, (ii) A ‘indicates’ to 

everyone in N that everyone in N has reason to believe that A holds, and (iii) A ‘indicates’ to 

everyone in N that p.  (A is then the ‘basis’ for common knowledge that p.)  Lewis defines ‘A 

indicates to person i that p’ as ‘if i has reason to believe that A holds, i thereby has reason to 

believe that p’.  He sketches a proof of the theorem that if p is common knowledge in this 

sense, and given (not fully specified) premises to the effect that individuals share, and have 

reason to believe that they share, certain principles of rationality, inductive standards and 

background information, there is iterated reason to believe p in N. 
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Cubitt and Sugden (2003) reconstruct the theorem and its proof, using an explicit 

specification of the key properties of ‘indication’.   This specification is motivated by the 

ideas that ‘i has reason to believe that p’ can be interpreted as saying that p is treated as true in 

a mode of reasoning that i endorses; and that ‘A indicates to i that p’ can be interpreted as 

saying that, in that mode of reasoning, there is an inference from ‘A holds’ to p.  Our concept 

of an interactive reasoning system embodies a more direct representation of the same ideas.  It 

also allows us to represent Lewis’s postulate that certain items of information and modes of 

reasoning are common to the members of a population by specifying axioms and inference 

rules of R*.  That some state of affairs A is such that, if it occurs, its occurrence is public and 

self-evident can be represented by (A holds) ⇒ (A holds) ∈ A(R*).  That there are common 

standards of background knowledge and inductive inference such that, if there is common 

reason to believe that A holds, there is thereby common reason to believe p can be represented 

by «from (A holds), infer p» ∈ I(R*), which might be expressed in Lewisian language as ‘A 

indicates p in common reason’.  Given these two conditions, it follows immediately from 

Theorem 3 that if A holds, then there is iterated reason to believe p in N.  This result expresses 

the close affinity between Theorem 3 and Lewis’s common knowledge theorem. 

 Other authors have represented Lewis’s concept of common knowledge in different 

ways, more akin to Bayesian models.  Some theorists have represented  ‘i has reason to 

believe p’ as the Bayesian event Ki(p), and have translated the statement ‘if i has reason to 

believe that A holds, i thereby has reason to believe that p’ (i.e. Lewis’s definition of 

indication) as the Bayesian statement Ki(A holds) ⊆ Ki(p) (Vanderschraaf, 1998; Gintis, 2009, 

pp. 141–143).  Others have recognised a distinction between reason to believe and 

knowledge, while still using a set-theoretic framework in which ‘i has reason to believe that 

p’ is an event (Sillari, 2005; Paternotte, 2010).  Such frameworks are not conducive to the 

representation of processes of reasoning.  Whether or not such representation is (as we 

believe) fundamental to Lewis’s original analysis, it is central to our approach to resolving the 

paradoxes presented in Section 2.  But before we can proceed with this resolution, we must 

complete our rendition of common knowledge of practical rationality among the players of a 

game.     
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5.  Decision rules: practical rationality expressed by propositions 

In this section, we develop a general method of representing principles of practical rationality 

in the form of a particular kind of proposition, which we call a ‘decision rule’.  This concept 

does not presuppose any particular principles of practical rationality, but uses a purely formal 

notion of ‘permissibility’.  

 Here, and throughout Sections 5–8, we fix a given game in G.  Our analysis applies to 

any such game but we suppress phrases of the form ‘for all games in G’ except in formal 

results.  Differences between games become important again only in Sections 9 and 10.  

 For any player i and any si ∈ Si, pi(si) denotes the proposition ‘si  is permissible for i’, 

by which is meant that, normatively, i may choose si (but not that he must, since two or more 

strategies might be permissible for him).  The formula mi(si) denotes the descriptive 

proposition ‘si might in fact be chosen by i’ or, for short, ‘si is possible for i’. Propositions of 

the form pi(si) or ¬pi(si) are permissibility propositions.  For each permissibility proposition 

pi(si) or ¬pi(si), the corresponding possibility proposition mi(si) or ¬mi(si) is its correlate, and 

vice versa. 

 We will say of any conjunction of propositions that it asserts each of its conjuncts.  A 

recommendation to a player i is a conjunction of the elements of a consistent set of 

permissibility propositions referring to the strategies available to i, satisfying the conditions 

that not every strategy in Si is asserted to be impermissible and that, if every strategy but one 

in Si is asserted to be impermissible, the remaining strategy is asserted to be permissible.  

Analogously, a prediction about a player i is a conjunction of the elements of a consistent set 

of possibility propositions referring to i’s strategies, satisfying the conditions that not every 

strategy in Si is asserted to be impossible and that, if every strategy but one in Si is asserted to 

be impossible, the remaining strategy is asserted to be possible.  The definition of a 

prediction rests on the presumption that, as Si exhausts the options available to i, it cannot be 

the case that all its elements are impossible; and, if every element but one is impossible, that 

suffices to establish that the remaining one is possible (indeed, certain).  Given these points, 

the definition of a recommendation reflects the principle that normative requirements must be 

logically capable of being satisfied.   

 The definition of a correlate is extended to recommendations and predictions, so that 

for each recommendation there is a unique correlate prediction and vice versa.  The correlate 

of a recommendation (resp. prediction) is the conjunction of the correlates of its component 
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permissibility (resp. possibility) propositions.13  For any non-empty set of players N′ ⊆ N, a 

collective prediction about N′ is a conjunction of the elements of some set of predictions 

about individual players, where that set contains no more than one non-null prediction about 

each member of N′.  For each player i, the null proposition is both a recommendation to i and 

a prediction about i; and, for every N′ ⊆ N, the null proposition is also a collective prediction 

about N.  

 Recommendations to a player i, collective predictions about the set of players N\{i}, 

and predictions about i are propositions that have special roles to play in what follows.  To 

distinguish them from other propositions, we use yi to denote a recommendation to i, x–i to 

denote a collective prediction about N\{i}, and zi to denote a prediction about i.  Using this 

notation, a maxim for player i is a material implication x–i ⇒ yi.  The interpretation is that, 

conditional on the prediction x–i about the behaviour of players other than i, the permissibility 

propositions asserted by yi are mandated by some conception of practical rationality.  Note 

that the maxim # ⇒ yi is logically equivalent to the recommendation yi.     

A decision rule for player i is a conjunction of all elements of a set Fi of maxims for i, 

such that Fi satisfies the following conditions: (i) (Distinct Antecedents) for all x–i: Fi contains 

at most one maxim whose antecedent is logically equivalent to x–i; and (ii) (Deductive 

Closure) for all x–i′, for all non-null yi′: if the material implication x–i′ ⇒ yi′ is logically 

entailed by a conjunction of all elements of Fi, then Fi contains a maxim x–i″ ⇒ yi″ such that 

x–i″ is logically equivalent to x–i′ and yi″ logically entails yi′.   By virtue of Distinct 

Antecedents, a decision rule for i makes a set of recommendations to her that are conditional 

on logically distinct predictions about the other players.  In view of this, the Deductive 

Closure condition implies that, for any collective prediction, all the permissibility 

propositions implied by the rule, given that prediction, are summarised by a single maxim of 

the rule.  As the consequent of that maxim is a recommendation, this condition guarantees 

that the set Fi is consistent, and that Fi does not logically entail the falsity of any collective 

prediction.  In this sense, a decision rule for player i is compatible with every possible 

collective prediction about the other players.  However, it need not contain maxims covering 

all these possibilities. 

                                                           
13 As part of the definition of the correlate of a recommendation (resp: prediction), we require that the order of 
the component possibility (resp: permissibility) propositions in the correlate matches that of the component 
permissibility (resp: possibility) propositions in the recommendation (resp: prediction).  This requirement has no 
substantive content, but simplifies the presentation to follow. 
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6.   Common practical reasoning in a game 

We now use the concepts of an interactive reasoning system and of a decision rule, developed 

in Sections 4 and 5 respectively, to model CKR in a given game.  To do so, we first specify 

P0, the set of primitive propositions, so that it contains # and, for each i ∈ N and for each si ∈ 

Si, the propositions mi(si) and pi(si) (and no other propositions).  This specification implies 

that all decision rules are in ϕ(P0).  Next, we specify a particular profile of decision rules D = 

(D1, ..., Dn).  We then construct reasoning schemes R* = <ϕ(P0), A(R*), I(R*)>, R1 = <ϕ(P0), 

A(R1), I(R1)>, ... , Rn = <ϕ(P0), A(Rn), I(Rn)>  in the following way.  R* is constructed by 

using the rules: 

(1)   A(R*) = {#, D1, ..., Dn}; 

(2)    I(R*) contains the rules of valid inference and those specified below, and 
nothing else: 

 (i) for all p ∈ ϕ(P0): «from {p}, infer Ri(p)» ∈ I(R*); 

 (ii)   for all i ∈ N, for all yi, zi ∈ ϕ(P0) such that yi is a recommendation to i and 
zi is the prediction about i that is the correlate of yi: «from {Ri(yi)}, infer zi» ∈ 
I(R*).  

For each i ∈ N, Ri is constructed by using the rules: 

(3) A(Ri) = {#} ∪ {p ∈ ϕ(P0)  ⎢p = R*(q) for some q ∈ T(R*)};   

(4)  I(Ri) contains the rules of valid inference and those specified below, and 
nothing else:  

 for all p ∈ ϕ(P0): «from {R*(p)}, infer p» ∈ I(Ri). 

 By virtue of rules (2i), (3) and (4), which respectively ensure that the Attribution, 

Awareness and Authority requirements are satisfied, < P0, R*, (R1, …, Rn)> is an interactive 

reasoning system.  Rule (1) provides R* with substantive axioms, in the form of the decision 

rules in D.  Rule (2ii) provides R* with an inference rule that is specific to our modelling of 

practical rationality.  This inference rule embeds in common reason the following principle: 

from the proposition that i has reason to believe some recommendation that applies to him, it 

can be inferred that he will act on that recommendation.  In this sense, common reason 

attributes practical rationality to each player. 



 21

 An interactive reasoning system <P0, R*, (R1, …, Rn)> defined in relation to a profile 

D of decision rules and constructed according to rules (1) to (4) is a common-reasoning model 

of the game; D is its common standard of practical rationality.  

 It is immediate that, for any profile D of decision rules for any game in G, a 

corresponding (and unique) common-reasoning model exists: the model is constructed by 

following rules (1) to (4).  What is not so obvious (since rules (1) to (4) attribute substantive 

axioms, as well as some inference rules besides those of valid inference, to the component 

reasoning schemes) is whether the model so constructed is consistent.  The following theorem 

establishes this property:   

Theorem 4:  For every game in G, for every profile D of decision rules for that game, 
the common-reasoning model in which D is the common standard of practical 
rationality is consistent. 

Theorem 4 shows that our framework can represent coherently common knowledge of any 

conception of practical rationality that can be formulated as a profile of decision rules.  

Together with Theorem 3, it establishes the credentials of our Lewisian modelling approach.   

 

7. The recommendation algorithm   

We now focus on the content of common reason in the common-reasoning model defined by 

a given profile D of decision rules, in so far as that content relates to permissibility and 

impermissibility of strategies.14    

 For each player i and each strategy si, we can ask whether, in the common-reasoning 

model, it is a theorem of R* that si is permissible for i (i.e. whether R*[pi(si)] holds).  We can 

also ask whether it is such a theorem that si is impermissible for i (i.e. whether R*[¬pi(si)] 

holds).  By virtue of Theorem 4, it cannot be the case that R*[pi(si)] and R*[¬pi(si)] both hold.  

But it can be the case that neither of these propositions holds – that is, that common reason is 

silent about whether si is permissible or impermissible.  Thus, in general, a common-

reasoning model implies a trinary partition of each player’s strategy set Si, the three elements 

of which are {si ∈ Si| R*[pi(si)]}, {si ∈ Si| R*[¬pi(si)]}, and {si ∈ Si| ¬R*[pi(si)]  ∧ 

¬R*[¬pi(si)]}.  We call this partition the common-reasoning partition for player i. 

                                                           
14  From rules (3) and (4) and Theorem 4, each Ri will have the same content as common reason in relation to 
permissibility and impermissibility of strategies.   
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A corresponding argument can be made about possibility and impossibility, leading to 

the conclusion that each Si can be partitioned into {si ∈ Si| R*[mi(si)]}, {si ∈ Si| R*[¬mi(si)]}, 

and {si ∈ Si| ¬R*[mi(si)]  ∧ ¬R*[¬mi(si)]}.  It is an implication of our proofs in the appendices 

that, for each player i, this partition coincides with the common-reasoning partition.15 

   These arguments indicate that the common-reasoning model, for a given profile of 

decision rules, defines a ‘solution’ of the game that is interpretable as indicating which 

strategies are asserted by common reason to be permissible (resp. impermissible).  But, 

Theorem 4 does not in itself show how we, as analysts, can discover that solution; nor does it 

indicate a specific line of reasoning whereby common reason can reach the conclusions about 

permissibility (resp. impermissibility) of strategies that are summarised by the profile of 

common-reasoning partitions (except, of course, to the extent of indicating that any such line 

uses the axioms and inference rules of R*).  Each of these gaps can be filled by defining a 

particular algorithm, as we now explain.  

 For any profile D = (D1, ..., Dn) of decision rules, we define the recommendation 

algorithm as follows.  The algorithm has a succession of stages k = 0, 1, 2, ..., at each of 

which, for each player i, it generates as its output a recommendation to i, denoted yi
k.  As an 

initiation rule, we set yi
0 = #, for each i.  Then, for each stage k > 0, and for each player i, yi

k is 

obtained through three operations.  Operation 1 generates, for each i, a prediction about i, 

denoted zi
k, that is defined as the correlate of yi

k–1.  Operation 2 generates, for each i, a 

collective prediction about N\{i}, denoted x–i
k, that is defined as z1

k ∧ ... ∧ zi – 1
k ∧ z i + 1

k ∧ ... ∧ 

zn
k.   Operation 3 determines yi

k, for each i, as follows: if there is a component maxim of Di 

that has as its antecedent a proposition logically equivalent to x–i
k, then yi

k is the consequent of 

that maxim; otherwise, yi
k = #.   The algorithm halts if a stage k* is reached at which yi

k* = 

yi
k*–1, for all i.  If such a k* is reached, then, for each player i, yi

k* is the final output of the 

algorithm.  We can now state: 

Theorem 5:  Consider any game in G and any profile D of decision rules for the game. 

(i) The recommendation algorithm for D halts at some finite stage k* > 0. 

(ii) For each player i, let yi
k*

 be the final output of the recommendation algorithm for 
D, and R* be common reason in the common-reasoning model with D as common 
standard of practical rationality.  For each i ∈ N, and for each si ∈ Si: 

                                                           
15 Put briefly, the reason is as follows.  From rules (2i) and (2ii), for every permissibility proposition that is a 
theorem of R*, the correlate of that proposition is also such a theorem.  The converse is also true, since R* has no 
non-null possibility proposition as an axiom, and (given Theorem 4) no inference rules which allow such a 
proposition to be derived, unless the correlate permissibility theorem is a theorem of R*. 
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(a) si is asserted by yi
k*

 to be permissible if, and only if, R*[pi(si)]; and 

(b) si is asserted by yi
k*

  to be impermissible if, and only if, R*[¬pi(si)].  

This theorem establishes that, for any profile D of decision rules, the corresponding 

recommendation algorithm halts and generates, as its final output for each player i, a 

recommendation for i that conjoins exactly those permissibility propositions for i that are 

theorems of R* in the common-reasoning model with D as common standard of practical 

rationality.  Thus, the algorithm is a tool by which we, as analysts, can discover the common-

reasoning partition for each player i.   

 The recommendation algorithm can also be interpreted as indicating a specific line of 

reasoning by which R* can establish the conclusions captured by the players’ common-

reasoning partitions.  To see this, consider any profile D = (D1, ..., Dn) of decision rules.  The 

initiation rule of the recommendation algorithm for D and rule (1) for constructing the 

corresponding common-reasoning model guarantee that, for each player i, yi
0 is an axiom 

(and, therefore, a theorem) of R*.  Now consider any stage k > 0 of the recommendation 

algorithm and suppose that, for each player i, yi
k–1 is a theorem of R*.  Then, for any player i, 

the recommendation zi
k, defined by operation 1 of the recommendation algorithm, is also a 

theorem of R*; and it is obtainable from those just supposed by using the inference rules of 

R* specified by rule (2i), followed by those specified by rule (2ii).  Then, for each player i, 

the collective prediction x–i
k, defined by operation 2 of the recommendation algorithm, is also 

a theorem of R*; and it is obtainable from those just described by application of rules of valid 

inference attributed to R* by rule (2).  Finally, for each player i, the recommendation yi
k, 

defined by operation 3 of the recommendation algorithm is also a theorem of R*; and it is 

obtainable from those just described together with Di (which, by rule (1), is an axiom of R*) 

by application of rules of valid inference attributed to R* by rule (2).  Thus, by induction, for 

each player i, yi
k* is a theorem of R*; and one can read off from the recommendation 

algorithm a specific sequence in which the various inference rules of R* can be invoked to 

infer yi
k* from the axioms of R*.                  

 

8. Categorisations 

In Section 9 below, we compare our Lewisian common-reasoning approach with the Bayesian 

approach described in Section 2, for the cases where they are used to model common 

knowledge of the ICEU standard of practical rationality.  But first we define some concepts 
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introduced by Cubitt and Sugden (2010) that are useful in making the comparison, because 

they provide a convenient way to summarise binary and trinary partitions of sets of strategies.  

(Recall, from Section 2, that each Bayesian model defines a binary partition of each player’s 

strategy set whereas, from Section 7, each common-reasoning model defines a trinary 

partition.)   

For any player i, an ordered pair <Si
+, Si

–> of subsets of Si is a categorisation of Si  if it 

satisfies the following  conditions: (i) Si
+ and Si

– are disjoint;  (ii) Si
– ⊂ Si; and (iii) if Si\Si

– = 

{si} for any si ∈ Si, then Si
+ = {si}.    In general, a categorisation of Si defines a trinary 

partition of Si, whose elements are the positive component Si
+, the negative component Si

–, and 

the residual set Si\(Si
+ ∪ Si

–).   

Now consider any non-empty set N′ ⊆ N of players.  For each i ∈ N′, let <Si
+, Si

–> be 

any categorisation of Si.  In order to allow us to aggregate across players, we define a ‘union’ 

relation ∪* between such categorisations such that ∪*i∈N′
 <Si

+, Si
–> ≡ <∪ i∈N′ Si

+, ∪ i∈N′ Si
–>.  

Each such ∪* i∈N′
 <Si

+, Si
–> is a categorisation of  ∪ i∈N′ Si; its positive component is ∪ i∈N′ Si

+; 

and its negative component is ∪ i∈N′ Si
–.  For purposes of the main text, we need only the case 

where N′ = N.  For this case, we use a shorthand notation in which S denotes ∪i∈N Si and S+ 

and S– denote, respectively, the positive and negative components of a typical categorisation 

of S.  Such a categorisation is exhaustive if S+ ∪ S– = S.     

Consider any two categorisations C ′ = <S+′, S–′> and C ″ = <S+″, S–″> of S.  We 

define a binary relation ⊇* (read as has weakly more content than) between such 

categorisations such that C ″ ⊇* C ′ if and only if S+″ ⊇ S+′ and S–″ ⊇ S–′.  If, in addition, 

either S+″ ⊃ S+′ or S–″⊃ S–′ holds, we will say that C ″ has strictly more content than  C ′, 

denoted C ″ ⊃* C ′.   

 Although the Bayesian modelling framework and the framework of common-

reasoning models have very different primitives, we can relate them to each other using the 

concepts just defined as a bridge.      

Consider any Bayesian model M of the game, as defined in Section 2.  For each player 

i, the model specifies a set Si*(M) ⊆ Si of included strategies.  Equivalently, for each i, M 

specifies a categorisation Ci
M = <Si

+(M), Si
–(M)> of Si, where Si

+(M) = Si*(M) and Si
–(M) =   

Si\Si*(M).16   Thus, aggregating across all players, M specifies a single categorisation CM = 

                                                           
16  Given our definitions here and in Section 2, non-emptiness of Ω ensures that Ci

M satisfies the definition of a 
categorisation.  
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∪*i∈N
  <Si

+(M), Si
–(M)> of S.  We will say that CM is the inclusion categorisation with respect 

to Bayesian model M.  By construction, CM is exhaustive.   

 Now consider the common-reasoning model of the game, for a given profile D of 

decision rules, as defined in Section 6.  As Section 7 showed, for any player i, this model 

defines a trinary common-reasoning partition of Si, two of whose elements are {si ∈ Si| 

R*[pi(si)]} and {si ∈ Si| R*[¬pi(si)]}, where R* is common reason.  Thus, the model defines, 

for each i, a categorisation <Si
+(D), Si

–(D)> of Si, where Si
+(D)= {si ∈ Si| R*[pi(si)]} and Si

–(D) 

= {si ∈ Si| R*[¬pi(si)]}.17  Again aggregating across players, the common-reasoning model for 

the profile D specifies a single categorisation CD = ∪*i∈N
 < Si

+(D), Si
–(D)> of S.  Unlike CM, 

CD may or may not be exhaustive, depending on the common-reasoning partitions resulting 

from profile D.  As the positive (resp. negative) component of CD is the set of strategies 

whose permissibility (resp. impermissibility) is established in common reason in the common-

reasoning model, we will say that CD is the common-reasoning solution of the game, with 

respect to the profile D of decision rules.    

 

9.   ICEU Bayesian models revisited 

In this Section, we compare our approach to modelling CKR, set out in Sections 3–7, to the 

Bayesian approach, set out in Section 2.  We focus on the cases in which each approach is 

adapted to a conception of practical rationality provided by the ICEU standard. 

 We have already defined the concept of a Bayesian model which incorporates the 

ICEU standard – the ICEU Bayesian model.  For some games, as Theorem 2 shows, no such 

model exists.  Alternatively, as is evident from Game 2, a given game may have more than 

one such model. 

In contrast, the common-reasoning model is uniquely defined by the rules set out in 

Section 6, for any game and any profile D of decision rules.  But, to relate our approach to 

ICEU Bayesian models, we still need to specify a class of common-reasoning models in 

which the conception of practical rationality is ICEU.  That is, we need to define a profile D 

of ICEU decision rules.  We do this in the following way.   

                                                           
17 Since the common-reasoning partition for player i is a partition of Si, condition (i) of the definition of a 
categorisation is satisfied.  That conditions (ii) and (iii) are satisfied too follows from the facts that decision rules 
are defined in terms of predictions and recommendations, and conditions analogous with (ii) and (iii) are 
embedded in the definitions of ‘prediction’ and ‘recommendation’. 
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For any player i and for any collective prediction x–i about N\{i}, we define a 

probability distribution over S–i as ICEU-consistent with x–i if it satisfies the following three 

conditions.  First, probabilities are independent in the sense that, for each s–i ∈ S–i, the 

probability of s–i is the product of the marginal probabilities of the individual strategies 

appearing in s–i.  Second, every strategy that x–i asserts to be impermissible has zero marginal 

probability.  Third, every strategy that x–i asserts to be permissible has strictly positive 

marginal probability.  An ICEU maxim for i is a maxim x–i ⇒ yi such that (i) yi asserts pi(si) if, 

and only if, si maximises i’s expected utility relative to all probability distributions that are 

ICEU-consistent with x–i, and (ii) yi asserts ¬pi(si) if, and only if, si does not maximise i’s 

expected utility relative to any probability distribution that is ICEU-consistent with x–i.  

Because collective predictions and recommendations are conjunctions of more basic 

propositions, and because the elements of a given set of propositions can be conjoined in 

different orders, there may be collective predictions (resp. recommendations) that are formally 

distinct from, but logically equivalent to x–i (resp. yi), and so there may be more than one 

ICEU maxim with the logical content of x–i ⇒ yi.  By taking exactly one maxim from every 

set of logically equivalent ICEU maxims for i, we can construct a non-redundant set Fi of 

ICEU maxims for each player i. 

Consider any two ICEU maxims x–i′ ⇒ yi′ and x–i″ ⇒ yi″.  It follows from the 

definition of an ICEU maxim that if x–i′ and x–i″ are logically equivalent, then so too are yi′ 

and yi″.  Hence, given the definition of non-redundancy, Fi satisfies Distinct Antecedents.  It 

also follows from the definition of an ICEU maxim that if x–i′ logically entails x–i″, then yi′ 

logically entails yi″.18  Thus, Fi satisfies Deductive Closure.  So any conjunction of the 

elements of a non-redundant set Fi of ICEU maxims for i is a decision rule for that player.  

Since all such conjunctions are logically equivalent, we can fix on any one of these as ‘the’ 

ICEU decision rule Di.  In this way, we can construct ‘the’ profile D of ICEU decision rules 

and hence ‘the’ ICEU common-reasoning model.  This model implies a unique common-

reasoning solution, which we may unambiguously take as the ICEU common-reasoning 

solution (since every profile of ICEU decision rules for the game yields the same common-

                                                           
18 Intuitively: as collective predictions about N\{i} become stronger, the recommendations licensed by the ICEU 
standard of rationality cannot become weaker. The reason is that, as collective predictions become (strictly) 
stronger, the restrictions on probabilities required by ICEU-consistency with such predictions tighten (that is, 
more strategies must have zero marginal probability and/or more strategies must have strictly positive marginal 
probability), so making it ‘easier’ for a strategy to be expected utility maximising for all probability distributions 
satisfying the restrictions and also easier for it to be expected utility maximising for no such probability 
distribution. 
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reasoning solution).  In view of Section 7, the solution can be found using the 

recommendation algorithm for a profile of ICEU decision rules.  

 In broad terms, ICEU common-reasoning models and ICEU Bayesian models can be 

interpreted as alternative ways of representing a shared idea: that players are rational in the 

ICEU sense, and that this is common knowledge.  For a given game and on the (non-

innocuous) assumption that an ICEU Bayesian model exists, each ICEU Bayesian model can 

be interpreted as describing players’ knowledge in some world in which there is common 

knowledge that players’ beliefs and strategy choices are consistent with the ICEU standard.  

An ICEU common-reasoning model can be interpreted as specifying what players have reason 

to believe about the game, and the steps of reasoning by which those beliefs can be derived, 

given that the ICEU standard is axiomatic in common reason.  Given these interpretations, it 

is natural to conjecture that if some possibility proposition is a theorem of common reason in 

an ICEU common-reasoning model, there is common knowledge of its content in every ICEU 

Bayesian model; or, more precisely, that if the possibility (resp. impossibility) of some 

strategy is a theorem of common reason, then every ICEU Bayesian model includes (resp. 

does not include) that strategy.  The following theorem establishes that this conjecture is 

indeed correct. 

Theorem 6:  Consider any game in G for which an ICEU Bayesian model exists.  
Consider any such model M of the game, and let its inclusion categorisation be CM.  
Let C* be the ICEU common-reasoning solution.  Then CM ⊇* C*. 

 So far in this section, we have left open the possibility that no ICEU Bayesian model 

exists.  However, the following theorem establishes a sufficient condition for the existence of 

such a model.  

Theorem 7:  For every game in G:  If the ICEU common-reasoning solution C* is 
exhaustive, then (i) there exists an ICEU Bayesian model of the game; and (ii) for 
every such model M, the inclusion categorisation CM is identical to C*.   

 Theorem 7 establishes that, in the special case in which the ICEU common-reasoning 

solution is exhaustive, and with respect to the resulting categorisations, the Bayesian and 

common-reasoning approaches are equivalent.  In this case, as is evident from the proof of 

Theorem 7, an ICEU Bayesian model can be constructed using any profile of independent 

priors that respects the common-reasoning solution.     

 Summing up the conclusions of this Section, we have found that, for games in which 

the ICEU common-reasoning solution is exhaustive, there is nothing paradoxical in the 
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concept of an ICEU Bayesian model.  On the contrary, for such games, the ICEU common-

reasoning model may be seen as justifying ICEU Bayesian models, in the sense that it 

describes explicit steps of reasoning whereby the players could establish the rational 

permissibility (resp. impermissibility) of those strategies included in (resp. excluded from) 

each ICEU Bayesian model.  It follows that games which pose genuine paradoxes for the 

Bayesian approach to modelling common knowledge of ICEU rationality must be ones for 

which the ICEU common-reasoning solution is not exhaustive.  We turn to such cases in the 

next Section.  

 

10.  Resolving the paradoxes  

In Section 2, we presented three paradoxes, using Games 1, 2 and 3.  The results of Section 9 

imply that, for those games to be genuinely troubling exhibits for the Bayesian approach to 

modelling CKR, it would have to be the case that the ICEU common-reasoning solutions to 

these games are not exhaustive.  It is straightforward to show that this is indeed the case.   

Theorem 5 implies that, in each game, the ICEU common-reasoning solution is 

identifiable from the final output of the recommendation algorithm for ‘the’ profile of ICEU 

decision rules.   In Game 1, the outputs of this recommendation algorithm are: y1
0 = y2

0 = #; 

y1
1 = ¬p1(third), y2

1 = #; y1
2 = ¬p1(third), y2

2 = p2(left); y1
3 = y1

2, y2
3 = y2

2.  Thus, the ICEU 

common-reasoning solution for Game 1 is <{left}, {third}>.  In Games 2 and 3, the outputs of 

the algorithm are (for i = 1, 2 in the case of Game 2, and for i = 1, 2, 3 in the case of Game 3): 

yi
0 = #; yi

1 = pi(ini); yi
2 = yi

1.  Thus the ICEU common-reasoning solutions for Games 2 and 3 

are <{in1, in2}, ∅> and  <{in1, in2, in3}, ∅> respectively.  In each case, some strategies (first, 

second and right in Game 1; out1 and out2 in Game 2; and out1, out2 and out3 in Game 3) are 

neither shown to be permissible nor shown to be impermissible.   

It is an immediate corollary of Theorem 6 (as CM is exhaustive by definition) that, 

whenever the ICEU common-reasoning solution to a game is not exhaustive, one of two cases 

must hold.  The first case, the discussion of which we postpone, is that no ICEU Bayesian 

model exists.  The Tom, Dick and Harry Paradox of Game 3 illustrates this case.  

The second case is that at least one ICEU Bayesian model exists, and that for each 

such model M, the inclusion categorisation has the property CM ⊃* C*.  This implies that, for 

any such M, there is at least one player i and strategy si such that either si is included in M but 

is not shown to be permissible by common reason in the ICEU common-reasoning model, or 
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si is excluded from M but is not shown to be impermissible by common reason in the 

common-reasoning model.  In such cases we will say that the inclusion of si in (resp. the 

exclusion of si from) the Bayesian model is ungrounded.  In some games, specific ungrounded 

inclusions (resp. exclusions) are common to every ICEU Bayesian model, with the apparent 

implication that the corresponding propositions about rational playability are implied by the 

common knowledge and rationality assumptions that are common to all ICEU Bayesian 

models.  The Proving Too Much Paradox of Game 1 illustrates this case.   

The source of the Proving Too Much Paradox is that the apparent implication is 

invalid.   We take it that a Bayesian model is to be interpreted as a formal representation of 

what individuals know and believe in some conceivable  world – that is, in some world that 

could conceivably exist.  It is important to understand that, in saying this, we are using the 

concept of a conceivable world in a way that is external to the Bayesian modelling 

framework: conceivable worlds are what Bayesian models are models of.  On our 

understanding, common knowledge of a specific standard of practical rationality is a property 

of a putative conceivable world; in attempting to construct a Bayesian model which 

incorporates that standard, one is attempting to represent that world in a formal model.  In 

setting out to do this, one is not entitled to presuppose the success of one’s modelling strategy.  

Thus, from the result (Proposition 1) that every ICEU Bayesian model of Game 1 includes 

first, left and right and excludes second and third, one is not entitled to infer that the 

corresponding permissibility propositions are common knowledge in the world that is being 

modelled. 

This analysis of the Proving Too Much Paradox is supported by the Tom, Dick and 

Harry Paradox of Game 3.  That game provides an exhibit of a conceivable world in which 

there is common knowledge of a particular standard of practical rationality, namely ICEU, but 

of which no Bayesian model can be constructed.  We submit that the Tom, Dick and Harry 

Paradox does not reveal the incoherence of supposing such a world to be possible (and hence 

the incoherence of the concept of common knowledge of the ICEU standard of rationality).  

Rather, it reveals a limitation of the Bayesian modelling approach, as formulated in Section 2.    

 To make this argument convincing, one needs to show that there can be a coherent 

understanding of a world in which the players of Game 3 have common knowledge that each 

of them endorses and acts on the ICEU standard of rationality.  We submit that the ICEU 

common-reasoning model of this game provides just such an understanding.  In this model, 

for each player i = 1, 2, 3, neither the possibility nor the impossibility of outi is a theorem of 
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common reason, but the possibility of ini is such a theorem.  Thus, consistently with common 

reason, each player i may attach any non-zero probability to each of the strategies inj and ink 

of his co-players; depending on these probabilities, he may strictly prefer ini to outi, or be 

indifferent between the two.  These conclusions seem entirely coherent, despite the fact that 

they cannot be expressed in the Bayesian modelling framework. 

 The Three-lane Road Paradox illustrates a further difference between the Bayesian and 

Lewisian approaches.  Proposition 2 establishes that ICEU Bayesian models of Game 2 can 

be partitioned into two classes – those models M′ for which the inclusion categorisation is CM′ 

= <{in1, in2, out2}, {out1}>, and those models M″ for which the inclusion categorisation is CM″ 

= <{in1, out1, in2}, {out2}>.  The paradox is that every one of these models seems to represent 

a world in which the players have common knowledge of an asymmetry between what 

rationality requires of one of them and what it requires of the other.  Since the formal 

structure of the game is symmetrical between the two players, and since no other information 

has been used in deriving Proposition 2, it is puzzling that the existence of some such 

asymmetry appears to be an implication of common knowledge of the ICEU standard of 

rationality.  The paradox is resolved by understanding that there can be worlds in which 

Game 2 is played, there is common knowledge of the ICEU standard, and the implications of 

that standard are symmetrical between the players.  The ICEU common-reasoning model 

represents precisely such a world.  Proposition 2 tells us only that such worlds cannot be 

represented by ICEU Bayesian models.19 

 So we suggest that the three paradoxes of Section 2 stem from the same source, 

namely the presumption that, for any game, an ICEU Bayesian model can be constructed of 

every conceivable world in which the players of that game have common knowledge of the 

ICEU standard of rationality.  Our diagnosis of all three paradoxes is the same: it is that, when 

the ICEU common-reasoning solution of the game is not exhaustive, this presumption is 

unwarranted. 

 We can also solve the more general puzzle of why, within the Bayesian modelling 

approach formulated in Section 2, CKR is a coherent concept for some internally consistent 

conceptions of rationality (for example, SEU-maximisation without caution) but not for others 

(for example, ICEU).  The source of the problem is that the Bayesian approach to the 

modelling of CKR has a general limitation, irrespective of the conception of rationality that is 
                                                           
19 The Lewisian approach also allows one to model interactive reasoning systems in which common reason has 
axioms and inference rules in addition to those that define common-reasoning models.  Such systems can 
represent worlds in which Game 2 is played and common reason generates asymmetric recommendations.  This, 
essentially, is how Lewis models conventions (Lewis, 1969; Cubitt and Sugden, 2003).  
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taken to be common knowledge.  Since Bayesian models induce exhaustive categorisations of 

S, no such model can represent a conceivable world in which some strategy has the property 

that neither its possibility nor its impossibility is common knowledge.  For some conceptions 

of rationality and for some games, the effect of this limitation is that none of the conceivable 

worlds in which CKR holds can be given Bayesian representations. 

 The Bayesian approach rests on the implicit assumption that, by some unmodelled 

process of reasoning, players are able to arrive at common knowledge of a binary partition of 

the set of strategies into the possible and the impossible.  Our analysis of common-reasoning 

models shows that this assumption is not justified in general.  We conclude that, in the 

investigation of the implications of rationality and common knowledge in games, there is no 

substitute for explicit analysis of reasoning itself.  We believe that, by building on the 

foundations of Lewis’s account of common knowledge, we have been able to show the 

feasibility and usefulness of such an analysis.   
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Appendix 1: Categorisation procedures and recommendation algorithms 

In this appendix, we introduce the concept of a ‘categorisation procedure’, as defined and 

analysed by Cubitt and Sugden (2010) (henceforth CS10).  This enables us to demonstrate a 

relationship between that concept and that of the recommendation algorithm, introduced in 

Section 7.  The fruits of this demonstration are twofold. 

 First, it allows us to use a result from CS10, together with new results presented here, 

as ingredients for proofs presented in Appendix 2.  In relation to this objective, note that the 

ingredients which this appendix provides for Appendix 2 (in particular, Propositions A1–A3 

below) are free-standing, in the sense that their proofs draw only on definitions from CS10 

(repeated here for convenience) and from the main text of the current paper; they do not 

presuppose any of the results from the main text.  Where not drawn directly from CS10, the 

proofs of Propositions A1–A3 are presented at the end of this appendix. 

Second, by proving Proposition A3 below we establish a precise sense in which, for a 

given standard of practical rationality, the categorisation procedure generates the same 

sequence of outputs as the recommendation algorithm.  This allows a substantiation of CS10’s 

claim that the categorisation solution can be interpreted as the result of reasoning that the 

players can undertake.  

 Throughout this appendix, our analysis applies to any given game in G. We begin by 

extending the concepts introduced in Section 8, in a way that follows CS10.  Recall that 

Section 8 defined the concept of a categorisation of Si; and the concept of a categorisation of 

∪ i∈N′ Si, for any non-empty set N′ ⊆ N of players.  In what follows, we require the case where 

N′ = N\{i}, for any given player i, as well as the case (already introduced) where N′ = N.  We 

use S–i as a shorthand for ∪i∈N\{i} Si; the positive and negative components of a categorisation 

of the latter set will typically be denoted S–i
+ and S–i

–. 

We denote the set of categorisations of Si, the set of categorisations of S–i and the set 

of categorisations of S by, respectively, Φ(Si), Φ(S–i) and Φ(S).  The null categorisation <∅, 

∅> is an element of each of these sets.  Where convenient, we use Ci, Ci′, and so on, to denote 

particular categorisations in Φ(Si); C–i, C–i′, and so on, to denote particular categorisations in 

Φ(S–i); and C, C′, and so on, to denote particular categorisations in Φ(S).  We extend to 

categorisations in Φ(Si) and Φ(S–i), in the obvious way, the definitions of the relations ⊇* 

(‘has weakly more content than’) and of ⊃* (‘has strictly more content than’), introduced in 

Section 8 for categorisations in Φ(S).  (See CS10, Section 2, for details.)   
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CS10 defines a categorisation function for player i as a function fi: Φ(S–i)→Φ(Si) with 

the following Monotonicity property: for all C–i′, C–i″ ∈ Φ(S–i), if C–i″ ⊃* C–i′ then fi(C–i″) ⊇* 

fi(C–i′). 

The content of a given profile f = (f1, …, fn) of categorisation functions can be 

expressed as a single function ζ: Φ(S)→Φ(S), constructed as follows.  Let C = <S+, S–> be 

any categorisation of S. For each player i, define C–i = <S+\Si, S–\Si>.  Next, define Si
+′ and Si

–′ 

as, respectively, the positive and negative components of fi(C–i).  Finally, define ζ(C) = ∪*i∈N 

<Si
+′, Si

–′>.   We will say that ζ summarises f.  A function ζ: Φ(S)→Φ(S) that summarises 

some profile f of categorisation functions is an aggregate categorisation function. 

For any aggregate categorisation function ζ, the categorisation procedure is defined 

by CS10 by the following pair of instructions, which generate a sequence of categorisations 

C(k) ≡ <S+(k), S–(k)> of S, for successive stages k ∈ {0, 1, 2, ….}, inductively, as follows:  

(i)  Initiation rule.  Set C(0) = <∅, ∅>; 

(ii) Continuation rule.  For all k > 0, set C(k) = ζ[C(k–1)].   

The procedure halts at the lowest value of k′ for which C(k′) = C(k′–1); this value of k′ will be 

denoted by k*.  C(k*)  is the categorisation solution of the game, relative to ζ.  CS10 proves 

the following result (their Proposition 1): 

Proposition A1:  Consider any game in G and let ζ be any aggregate categorisation 
function for the game.  The categorisation procedure for ζ has the following 
properties:   

(i)  For all k ∈ {1, 2, ….}, C(k) ⊇* C(k–1). 

(ii)  The procedure halts, defining a unique categorisation solution relative to ζ. 

We are now in a position to relate these concepts from CS10 to those introduced in 

Sections 5–7.  The key to this step is a correspondence between decision rules and 

categorisation functions. 

Consider any decision rule Di for any player i.  Recall that Di is a conjunction of all 

elements of a set Fi of maxims of the form x–i ⇒ yi, where x–i is a collective prediction about 

N\{i} and yi is a recommendation to i, where Fi satisfies Distinct Antecedents and Deductive 

Closure.  The content of any recommendation yi can be expressed by specifying two subsets 

of Si: the set Si
+ of strategies which are asserted to be permissible for i, and the set Si

– of 

strategies which are asserted to be impermissible.  It follows from the definition of a 

recommendation that Ci = <Si
+, Si

–> is a categorisation of Si.  We will say that Ci encodes yi.  

For every recommendation, there is a unique categorisation that encodes it.  Similarly, the 
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content of any collective prediction x–i can be encoded as a unique categorisation C–i of  S–i, 

the positive (resp. negative) component of which contains all strategies asserted to be possible 

(resp. impossible).  (The null proposition #, whether viewed as a recommendation or as a 

collective prediction, is encoded by <∅, ∅>.)  Thus, each maxim in Fi is encoded by an 

ordered pair of the form <C–i, Ci>.  Because Di satisfies Distinct Antecedents, no two such 

ordered pairs have the same C–i.  If there is any C–i which is not the antecedent of any maxim 

asserted by Di, this fact can be encoded as the ordered pair <C–i, <∅, ∅>>.  Thus Di is 

encoded by a set of ordered pairs <C–i, Ci>.  Since each C–i ∈ Φ(S–i) appears in exactly one of 

these ordered pairs, Di is encoded by a function fi from Φ(S–i) to Φ(Si). 

The following result, the proof of which makes important use of Deductive Closure, 

establishes the correspondence between decision rules and categorisation functions.  

Proposition A2:  For every game in G, for every player i, and for every decision rule 
Di for i, the function fi that encodes Di is a categorisation function for i.  

Together with the definition of an aggregate categorisation function, Proposition A2 implies 

the following: for any profile D = (D1, ..., Dn) of decision rules, there exists a unique profile f 

= (f1, …, fn) of categorisation functions, and a unique aggregate categorisation function ζ, 

such that ζ summarises f and, for each player i, fi encodes Di.  We will say that ζ encodes D.  

It is then immediate that any profile D of decision rules defines a unique categorisation 

procedure (the categorisation procedure for the ζ that encodes D).   

 Recall, from Section 7, that any profile D of decision rules also defines a 

recommendation algorithm.  The latter algorithm generates, for each player i, an output yi
k, 

for each of its stages k = 0, 1, 2, ..., where each such output is a recommendation to i.  Since 

any such recommendation is encoded by a categorisation of Si, and such categorisations can 

be aggregated across players, the combined output of each stage k of the recommendation 

algorithm is encoded by a categorisation of S, defined as ∪*i∈N <Si
+(k), Si

–(k)> where, for 

each i, <Si
+(k), Si

–(k)> encodes yi
k. 

 Thus, any profile D of decision rules defines two sequences of categorisations of  S: 

one consisting of the outputs of successive stages of the categorisation procedure for the 

aggregate categorisation function that encodes D; and the other consisting of the 

categorisations that encode the outputs of successive stages of the recommendation 

algorithm.  The following result establishes that these sequences are one and the same: 

Proposition A3:  Consider any game in G, and any profile D of decision rules for its 
players.  Let ζ be the aggregate categorisation function that encodes D.   Let C(0), 
C(1), …. be the sequence of categorisations generated by the categorisation procedure 
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for ζ; and C′(0), C′(1), … be the sequence of categorisations that encode the combined 
outputs of successive stages of the recommendation algorithm for D.  Then, for each k 
∈ {0, 1, 2, …}, C(k) = C′(k).  

 Propositions A1 – A3 are the results from this appendix which are used as ingredients for 

Appendix 2.   

 Proposition A3 is also of independent interest, in allowing us to demonstrate a 

relationship between CS10’s concept of a categorisation solution and the concept of a 

common-reasoning solution.  Consider any profile D of decision rules.  By Theorem 4, the 

common-reasoning model with respect to D is consistent, and hence (as explained in Section 

8) induces a unique common-reasoning solution.  Theorem 5 establishes that the content of 

this solution is given by the final output of the recommendation algorithm for D.  Proposition 

A3 establishes that the sequence of categorisations generated by the recommendation 

algorithm is identical to the sequence generated by the corresponding categorisation 

procedure, and hence that the categorisation induced by the final output of the 

recommendation algorithm is identical to the categorisation solution.  Thus, the following 

result is a corollary of Proposition A3 and Theorems 4 and 5: 

Corollary:  Consider any game in G and any profile D of decision rules for that game.  
Let ζ be the aggregate categorisation function that encodes D.  Then the categorisation 
solution relative to ζ is identical to the common-reasoning solution with respect to D. 

This result shows that CS10’s concept of a categorisation solution can be justified as the 

implication of a Lewisian understanding of CKR, as represented in the concept of a common-

reasoning model.   

We end this appendix with proofs of Propositions A2 and A3: 

Proof of Proposition A2:  To show that the function fi which encodes a decision rule Di is a 

categorisation function, it suffices (since, by construction, fi has the appropriate range and 

domain) to show that fi satisfies Monotonicity.  That this condition is satisfied follows from 

the fact that Di is a conjunction of all elements of a set Fi of maxims for i, which satisfies 

Distinct Antecedents and Deductive Closure.  To see this, suppose fi does not satisfy 

Monotonicity.  Then there are C–i′, C–i″ ∈ Φ(S–i) such that C–i″ ⊃* C–i′ and not fi(C–i″) ⊇* 

fi(C–i′).  So Fi contains maxims x–i′ ⇒ yi′ and x–i″ ⇒ yi″, such that (i) x–i″ entails x–i′ and (ii) yi″ 

does not entail yi′.  Notice that (ii) implies that yi′ is non-null.  Because of (i), the conjunction 

of these maxims entails x–i″ ⇒ yi′.  So, by Deductive Closure, Fi contains a maxim x–i* ⇒ yi* 

where x–i* is logically equivalent to x–i″ and yi* entails yi′.  But because of Distinct 
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Antecedents, this requires x–i* = x–i″ and hence yi* = yi″.  Thus yi″ entails yi′, contradicting (ii).  

□ 

Proof of Proposition A3:  Consider any profile D of decision rules for any game in G and let 

ζ be the aggregate categorisation function that encodes D.  Let the sequences C(0), C(1), …. 

and C′(0), C′(1), …. be, respectively, the sequence of categorisations generated by the 

categorisation procedure for ζ and the sequence of categorisations that encode the combined 

outputs of successive stages of the recommendation algorithm for D.  Consider any k ∈ {1, 2, 

…}.  From the continuation rule of the categorisation procedure, C(k) = ζ[C(k–1)].  Now 

consider stage k of the recommendation algorithm.  As C′(k–1) encodes the combined output 

of stage k–1 of the recommendation algorithm, the specification of operations 1, 2 and 3 of 

that algorithm, together with the fact that ζ encodes D, imply that C′(k) = ζ[C′(k–1)].  Thus, if 

C(k–1) = C′(k–1), it follows that C(k) = C′(k).  The Proposition follows, by induction, if C(0) 

= C′(0).  That this condition is satisfied follows from the respective initiation rules of the 

categorisation procedure and of the recommendation algorithm (combined, in the latter case, 

with the null recommendation # being encoded by <∅, ∅>).  □   
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Appendix 2: Proofs of results from main text 

Proof of Theorem 1:    For any game in G, let ρ: S → [0, 1] be a probability distribution over 

the set S of strategy profiles.  The probability distribution ρ is a correlated equilibrium if, for 

all i ∈ N, for all functions gi: Si → Si,  ∑s∈S ρ(s) (ui[s] – ui[σi(s, gi[si])]) ≥ 0.  From Nash’s 

existence result for finite games (Nash, 1951, Theorem 1) and the fact that any Nash 

equilibrium corresponds to a correlated equilibrium, existence of a correlated equilibrium is 

guaranteed for every game in G.  Consider any such game and take any correlated equilibrium 

ρ* of the game.  We can construct a Bayesian model of the game as follows:  Define S* = {s 

∈ S | ρ*(s) > 0} and Ω so that there is a one-one mapping from S* onto Ω.  For each s ∈ S*, 

let ω(s) denote the corresponding element of Ω.  Define the behaviour function b(.) so that 

b(ω[s]) = s.  Define the information structure I such that, for each player i, for each strategy si 

∈ Si*: E(si) ∈ I i.  Define a prior π* such that, for each s ∈ S*: π*(E[s]) = ρ*(s); notice that 

this implies π*(ω) > 0 for all ω ∈ Ω.  Define the profile π of priors such that, for each player 

i: πi = π*.  Define the profile χ of choice functions such that, for each player i, at each state ω, 

χi(ω) is the set of strategies that are SEU-rational at ω with respect to I i and πi.  By 

construction, the Bayesian model <Ω, b(.),I , π, χ> satisfies SEU-Maximization and 

Knowledge of Own Choice.  Since ρ* is a correlated equilibrium, it follows that, for each 

player i, for each state ω ∈ Ω: bi(ω) is SEU-rational at ω.  Hence, bi(ω) ∈ χi(ω), which entails 

that Choice Rationality is satisfied.  □   

Preliminaries for proofs relating to ICEU Bayesian models (Propositions 1 and 2 and 

Theorems 2, 6 and 7):  For results concerning ICEU Bayesian models, it is convenient to 

begin by establishing terminology and a lemma used in several subsequent proofs.  For any 

game in G, consider a Bayesian model of the game in which the profile of priors is π = (π1, ..., 

πn).  For any distinct players i and j, and for any sj ∈ Sj, i’s marginal prior on the event E(sj) is 

given by πi[E(sj)].  A strategy si for player i is expected utility maximising with respect to 

products of marginal priors if it maximises the expected value of ui(s) under the assumption 

that, for each s–i ∈ S–i, the probability of s–i is the product of i’s marginal priors on the 

strategies comprising s–i.  For the case of Bayesian models satisfying Independence, we 

formalise an equivalent conception of expected utility maximisation as follows: Consider any 

player i, any si ∈ Si, and any event E, such that E is the union of one or more elements of i’s 

information partition I i.  Define Ui(si| E) as the expected value of ui(s), given that player i 
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chooses si and that the probability distribution over S–i is determined by conditioning i’s prior 

πi on the event E.  Given that πi satisfies Independence, we will say that si ∈ Si is marginally 

EU-maximising if, for all si′ ∈ Si, Ui(si| Ω) ≥ Ui(si′| Ω).    

Lemma A1:  For any game in G, for any ICEU Bayesian model of that game, for any 
player i, for any strategy si ∈ Si: si ∈ Si* if, and only if, si is marginally EU-
maximising. 

Proof:  Consider any game in G, any ICEU Bayesian model of that game, any player i, and 

any strategy si ∈ Si.  To prove the ‘if’ component of the lemma, suppose si ∈ Si*. By Choice 

Rationality and SEU-Maximisation, Ui(si| E) ≥ Ui(si′| E) for all si′ ∈ Si and for all E such that 

E ⊆ E(si) and E ∈ I i.  Since this inequality holds for each such E, it must also hold for their 

union.  By Knowledge of Own Choice, the union of all such events E is E(si).  Thus, for all si′ 

∈ Si, Ui(si| E[si]) ≥ Ui(si′| E[si]).  By Independence, the probability distribution over S–i that is 

determined by conditioning πi on E(si) is identical to that determined by conditioning πi on Ω.  

Thus, for all si′ ∈ Si, Ui(si| Ω) ≥ Ui(si′| Ω), i.e. si is marginally EU-maximising.  To prove the 

‘only if’ component, suppose that si is marginally EU-maximising, but si ∉ Si*.  Since Si* is 

non-empty, there must be some si′ ≠ si such that si′∈ Si*.  Consider any such si′.  By 

Knowledge of Own Choice, E(si′) is the union of elements of I i.  By Independence, and the 

fact that si is marginally EU-maximising, Ui(si| E[si′]) ≥ Ui(si′| E[si′]).  So there must be some 

event E′ ⊆ E(si′) such that E′∈ I i and Ui(si| E′) ≥ Ui(si′| E′).  Since, by Choice Rationality and 

SEU-Maximisation, si′ is SEU-rational for i at each state ω ∈ E′, the same must be true of si.  

By Privacy, it cannot be the case that, at any such state ω, some player j ≠ i knows that si will 

not be played.  Thus, si ∈ Si*, contradicting the original supposition.  □ 

Proof of Proposition 1.  Consider any ICEU Bayesian model of Game 1.  For player 1, third 

is not marginally EU-maximising with respect to any probability distribution over player 2’s 

strategies.  Thus, by Lemma A1, third ∉ S1*.  Suppose (this is Supposition 1) that second ∈ 

S1* and right ∈ S2*.  This implies that E(second) and E(right) both have strictly positive 

marginal prior probability.  Then right is not marginally EU-maximising, and so by Lemma 

A1, right ∉ S2*, contradicting Supposition 1.  Therefore Supposition 1 is false.  Now suppose 

(this is Supposition 2) that second ∈ S1*.  By the falsity of Supposition 1, right ∉ S2*.  Since 

S2* is non-empty, S2* = {left}.  Then second is not marginally EU-maximising, and so by 

Lemma A1, second ∉ S1*, contradicting Supposition 2.  Therefore Supposition 2 is false.  
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Since S1* is non-empty, S1* = {first}.  This implies that each of left and right is marginally 

EU-maximising and hence, by Lemma A1, S2* = {left, right}. □ 

Proof of Proposition 2.  Suppose there exists an ICEU Bayesian model of Game 2.  Using  

Lemma A1, it is straightforward to show that S1* = {in1} ⇒ S2* = {in2, out2}, S1* = {out1} ⇒ 

S2* = {in2}, and S1* = {in1, out1} ⇒ S2* = {in2}.  Symmetrically, S2* = {in2} ⇒ S1* = {in1, 

out1}, S2* = {out2} ⇒ S1* = {in1}, and S2* = {in2, out2} ⇒ S1* = {in1}.  Given that S1* and 

S2* are non-empty, these material implications can be satisfied simultaneously only if either 

(i) S1* = {in1} and S2* = {in2, out2} or (ii) S1* = {in1, out1} and S2* = {in2}. �  

Proof of Theorem 2.  Consider Game 3 and suppose that an ICEU Bayesian model of this 

game exists.  First, suppose (Supposition 1) that there are two distinct players i, j such that outi 

∈ Si* and outj ∈ Sj*.  Because of the symmetries of the game, there is no loss of generality in 

setting i = 1 and j = 2.  This implies that E(out2) has strictly positive marginal prior 

probability for player 1, and hence that out1 is not marginally EU-maximising.  By Lemma 

A1, out1 ∉ S1*, a contradiction.  So Supposition 1 is false.  Since there are three players, this 

entails that there are two distinct players i, j such that outi ∉ Si* and outj ∉ Sj*.  Without loss 

of generality, set i = 1 and j = 2.  Then out1 is marginally EU-maximising and so, by Lemma 

A1, out1 ∈ Si*, a contradiction.  Thus, Game 3 has no ICEU Bayesian model.  □ 

Proof of Theorem 3.  Consider any interactive reasoning system <P0, R*, (R1, …, Rn)> among 

the population N.  Suppose that, for some p ∈ ϕ(P0), R*(p) holds.  The proof works by 

repeated application of the same sequence of steps, using the three conditions of the definition 

of an interactive reasoning system, beginning as follows: 

(L1)   R*(p)     (by supposition) 
(L2)   for all i ∈ N: Ri[R*(p)]  (from (L1), using Awareness) 
(L3)   for all i ∈ N: Ri(p)  (from (L2), using Authority) 
(L4)   for all j ∈ N: R*[Rj(p)]  (from (L1), using Attribution) 
(L5)   for all i, j ∈ N: Ri[R*(Rj[p])] (from (L4), using Awareness) 
(L6)   for all i, j ∈ N: Ri[Rj(p)] (from (L5), using Authority) 
(L7)   for all i, j ∈ N: R*[Ri(Rj[p])] (from (L4), using Attribution) 

… and so on, indefinitely. 

The role played by p in (L1), (L2), (L3) is played by Rj(p) in (L4), (L5), (L6), by Ri[Rj(p)] in 

(L7), (L8), (L9), … and so on.  (L3), (L6), (L9), … establish that there is iterated reason to 

believe p in N. □   
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Proof of Theorem 4:  Consider any game in G, and any profile D = (D1, ..., Dn) of decision 

rules for its players.  Let < P0, R*, (R1, …, Rn)> be the common-reasoning model of the game, 

defined in relation to D.   

 We begin by defining, as a counterpart to R*, an inference structure R–* which has the 

same domain and axioms as R* but whose inference rules are, in a sense to be defined, 

‘weaker’ than those of R*.  To do this, we define the following sets of inference rules.  I1 

consists of the rules of valid inference.  I2 is the set of inference rules of the form «from {p}, 

infer Ri(p)», where p ∈ ϕ(P0) and i ∈ N.  I3 is the set of inference rules of the form «from 

{Ri(yi)}, infer zi», where i ∈ N, yi is a recommendation to i, and zi is the prediction about i that 

is the correlate of yi.  I4 is the set of inference rules of the form «from {yi}, infer zi», where i ∈ 

N, yi is a recommendation to i, and zi is the prediction about i that is the correlate of yi.  I5 is 

the set of inference rules of the form «from {z1, ..., zi –1, z i+1, ..., zn}, infer z1 ∧ ... ∧ zi –1 ∧ zi+1 ∧ 

... ∧ zn», where i ∈ N and each zj is a prediction about the relevant player j.  I6 is the set of 

inference rules of the form «from {Di, x–i}, infer yi», where i ∈ N, x–i is a collective prediction 

about N\{i}, x–i is logically equivalent to the antecedent of some maxim asserted by Di, and yi 

is the consequent of that maxim. 

 R* is fully specified by its domain ϕ(P0) and axiom set A(R*), and by the condition 

that it has the inference rules contained in I1 ∪ I2 ∪ I3.  We define R–* as the inference 

structure that has the domain ϕ(P0), the axiom set A(R–*) = A(R*) and the set of inference 

rules I4 ∪ I5 ∪ I6.  Note that this implies that R–* does not have all rules of valid inference.  

(Recall that the concept of an inference structure differs from that of a reasoning scheme by 

allowing this possibility.   Intuitively, R–* is endowed with just the inference rules necessary 

for it to validate the operations of the recommendation algorithm, defined in Section 7.  This 

algorithm does not feature in Theorem 4, but the relationship between it and R–* is important 

for the proof of Theorem 5.)    

As established in Appendix 1, there is a unique aggregate categorisation function ζ 

which encodes D.  Let <S+*, S–*> be the categorisation solution of the game relative to ζ, 

existence of which is established by Proposition A1. 

 The proof of Theorem 4 uses the following lemmas:   

Lemma A2:   For each i ∈ N and for each si ∈ Si: (i) si ∈ S+* if, and only if, pi(si) is 
asserted by some theorem in T(R–*); (ii) si ∈ S–* if, and only if, ¬pi(si) is asserted by 
some theorem in T(R–*); (iii) si ∈ S+* if, and only if, mi(si) is asserted by some 
theorem in T(R–*); (iv) si ∈ S–* if, and only if, ¬mi(si) is asserted by some theorem in 
T(R–*).   
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Proof:  For the purposes of this proof, we extend the definitions of ‘encoding’, given in 

Section 8 and Appendix 1, to allow consistent sets of permissibility or possibility propositions 

for the set of players N to be encoded by categorisations of S.  In the case of permissibility, a 

strategy si is assigned to the positive (resp. negative) component of the encoding 

categorisation if, and only if, pi(si) (resp. ¬pi[si]) is an element of the relevant encoded set.  

Similarly, in the case of possibility, si is assigned to the positive (resp. negative) component of 

the encoding categorisation if, and only if, mi(si) (resp. ¬mi[si]) is an element of the relevant 

encoded set.  Because of conditions (ii) and (iii) in the definition of a categorisation, it is not 

the case that all consistent sets of permissibility (resp. possibility) propositions can be 

encoded in this way.  However, whenever we use this definition of encoding, those conditions 

are satisfied. 

 We now define a proof algorithm which progressively ‘discovers’ the content of the 

set T(R–*) by following a particular sequence of steps of reasoning that are licensed by the 

axioms and inference rules of R–*.  R–* is specified so that no other reasoning is possible.  

The steps of the proof algorithm are grouped into ‘phases’ of three and numbered 1.1, 1.2, 

1.3; 2.1, 2.2, 2.3; 3.1 , … .  The set of theorems discovered up to the end of any step l is 

denoted Tl(R–*).  At the end of each phase k (i.e. at the end of step k.3), the intersection of 

Tk.3(R–*) and the set of permissibility propositions is encoded as the categorisation C(k).  The 

algorithm is initiated by defining the set of already discovered theorems as A(R–*).  Since the 

intersection of A(R–*) with the set of permissibility propositions is {#}, this set is encoded as 

C(0) = <∅, ∅>. 

 There are inference rules in each of the sets I4, I5 and I6 that can use {#} as a premise.  

Since, for each player i, # is a both a (null) recommendation to i and a (null) prediction about 

i, inference rules in I4 allow # to be inferred from {#}; but that does not lead to new theorems.  

This is step 1.1; T1.1 = A(R–*).   I5 allows the proposition # ∧ # ∧ ...∧ # ∧ which conjoins N – 1 

null propositions (and which we denote #N – 1) to be inferred from {#}.  This is step 1.2; T1.2 = 

A(R–*) ∪ {#N – 1}.  The only inference rules of R–* that can use subsets of T1.2 as premises and 

generate conclusions that are not themselves elements of T1.2 are those in I6.  Thus, the first 

step in deriving any non-null theorem must use inference rules of the form «from {Di, #}, 

infer yi», where # ⇒ yi is a maxim of Di; by this step, theorems of the form yi, i.e. 

recommendations, may be derived.  This is step 1.3.  T1.3(R–*) contains the elements of T1.2 

and all theorems that can be proved in this way.  This is the end of phase 1.  From an 

examination of the reasoning in this phase, it is evident that the set of permissibility 

propositions asserted by theorems in T1.3(R–*) is encoded by the categorisation C(1) = ζ[C(0)].  
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 The only inference rules of R–* that can use subsets of T1.3(R–*) as premises and 

generate conclusions that are not themselves elements of T1.3(R–*) are those in I4.  Thus, step 

2.1 uses inference rules of the form «from {yi}, infer zi», where {yi} ⊆ T1.3(R–*); by this step, 

propositions of the form zi, i.e. predictions, may be derived.  T2.1(R–*) contains the elements of 

T1.3(R–*) and all theorems that can be proved in this way. 

 The only inference rules of R–* that can use subsets of T2.1(R–*) as premises and 

generate conclusions that are not themselves elements of T2.1(R–*) are those in I5 and I6.  Step 

2.2 uses inference rules of the form «from {z1, ...,zi–1, z i+1, ..., zn}, infer z1 ∧ ... ∧ zi–1 ∧ zi+1 ∧ ... 

∧ zn», where {z1, ..., zi–1, zi+1, ... zn} ⊆ T2.1(R–*); by this step, propositions of the form z1 ∧ ... ∧ 

zi–1 ∧ zi+1 ∧ ... ∧ zn, i.e. collective predictions, may be derived.  T2.2(R–*) contains the elements 

of T2.1(R–*) and all theorems that can be proved in this way. 

 Step 2.3 follows the model of step 1.3, using inference rules of the form «from {Di,   

x–i}, infer yi», where i ∈ N, x–i is a collective prediction in T2.2(R–*), to arrive at T2.3(R–*), 

defined to contain the elements of T2.2(R–*) and all recommendations yi that can be proved in 

this way.  This is the end of phase 2.  From an examination of the reasoning in this phase, it is 

evident that the set of permissibility propositions asserted by theorems in T2.3(R–*) is encoded 

by the categorisation C(2) = ζ[C(1)].  

   Each succeeding phase follows the model of phase 1, using inference rules in I4 (resp. 

I5,  I6) in step k.1 (resp. k.2, k.3).  For each k > 0, the set of permissibility propositions asserted 

by theorems in Tk.3 is encoded in the categorisation C(k) = ζ[C(k–1)].  

  Note that the sequence of categorisations C(0), C(1), …. defined by the proof 

algorithm is identical to the sequence generated by the categorisation procedure for ζ, defined 

in Appendix 1.  Thus, by Proposition A1 and the definition of halting of the categorisation 

procedure, there is some finite k* such that C(k*) = C(k*–1) ⊃* ... ⊃* C(1) ⊃*C(0).  This 

implies that no new theorems can be derived from Tk*.3(R–*) by using any of the inference 

rules of R–*.  Thus, the categorisation solution C(k*) encodes all (and only) those 

permissibility propositions that are asserted by theorems of R–*.   This proves parts (i) and (ii) 

of Lemma A2.   The ‘only if’ implications of parts (iii) and (iv) follow from parts (i) and (ii), 

together with R–* having the inference rules in I4.  The ‘if’ implications of parts (iii) and (iv) 

also follow from parts (i) and (ii) because A(R–*) contains no possibility propositions other 

than #, and I(R–*) contains no inference rules which have possibility propositions as 

conclusions, other than those in I4.  □       
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 Lemma A3:  T(R–*) is consistent. 

Proof:   By inspection of the axioms and inference rules of R–*, T(R–*) can be partitioned into 

three subsets T1, T2, and T3, defined as follows: T1 = A(R–*) ∪ {#N–1}; T2 = {p ∈ T(R–*) | p is a 

conjunction of one or more predictions about players, at least one of which is non-null}; T3 = 

{p ∈ T(R–*) | p is a non-null recommendation to some i}.  From the definitions of these 

subsets, Lemma A2 implies that, for each player i, the set of strategies for i whose 

permissibility (resp. impermissibility) is asserted by some recommendation in T3 is identical 

to the set of strategies for i in the positive (resp. negative) component of the categorisation 

solution.  As that solution is a categorisation of S, it follows from the definition of a 

categorisation that T3 is consistent.  Since each element of T2 is a conjunction of a set of 

correlates of elements of T3, and since T3 is consistent, T2 is consistent.  The non-null 

elements of T1 are decision rules for different players, so that, from the definition of a 

decision rule, T1 is consistent.  Since the elements of T2 are conjunctions of predictions, since 

the non-null elements of T1 are conjunctions of material implications whose consequents are 

recommendations, and since T1 and T2 are each consistent, T1 ∪ T2 is consistent.  Finally, by 

the specification of I6 and the fact that every proposition in T3 is the conclusion of an 

application of an inference rule in that set, every proposition in T3 is logically entailed by T1 

∪ T2.  Thus, T1 ∪ T2 ∪ T3, i.e. T(R–*), is consistent.  □    

Lemma A4:  (i) T(R*) is consistent.  (ii) For each i ∈ N, and for each si ∈ Si: (a) 

R*[pi(si)] if, and only if, R–*[pi(si)]; (b) R*[¬pi(si)] if, and only if, R–*[¬pi(si)].  

Proof:  By Lemma A3, T(R–*) is consistent.  Recall that A(R*) = A(R–*).  R* differs from R–* 

only in the following respect: R* has the set of inference rules I1 ∪ I2 ∪ I3 while R–* has the 

set I4 ∪ I5 ∪ I6.  The only effect of substituting I2 ∪ I3 for I4 is to allow additional theorems of 

the form Ri(p) to be derived.  This cannot be a source of inconsistency in T(R*) because R* 

has no inference rule by which theorems of the form ¬Ri(p) can be derived.  The only effect 

of substituting I1 for I5 ∪ I6 is to give R* all (rather than only some) rules of valid inference.  

Since (by definition) all decision rules satisfy Deductive Closure, I6 allows R–* to infer, for 

any player i, from any given collective prediction x–i about the other players, a 

recommendation yi which conjoins all the permissibility propositions for i that are logically 

entailed by {Di, x–i}.  Thus, given that T(R–*) is consistent, the substitution of I1 for I5 ∪ I6 

cannot induce inconsistency in T(R*).  This proves part (i) of the lemma.  Given that T(R*) 

and T(R–*) are consistent, that A(R*) = A(R–*), and that all decision rules satisfy Deductive 
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Closure, any permissibility proposition that can be derived from A(R*) using inference rules 

in I1 ∪ I2 ∪ I3 can also be derived from A(R–*) using inference rules in I4 ∪ I5 ∪ I6, and vice 

versa.  This proves part (ii). □   

Lemma A5:  For each i ∈ N, T(Ri) is consistent. 

Proof:  By part (i) of Lemma A4, T(R*) is consistent.  Consider any i ∈ N.  It follows from 

the definition of the common-reasoning model, and specifically from the use of rules (3) and 

(4), that T(Ri) can be partitioned into the subsets T1, T2 and T3, defined as follows: T1 = {#} ∪ 

{p ∈ ϕ(P0) | p = R*(q) for some q ∈ T(R*)}; T2 = T(R*); T3 = {p ∈ ϕ(P0) | p is logically 

entailed by, but not contained in, T1 ∪ T2}.  Since T(R*) is consistent, so is T2.  Since T1 

contains only # and propositions of the form R*(.), while T2 is a consistent set which contains 

no proposition of the form ¬R*(.), T1 ∪ T2 is consistent.  Since T3 contains only propositions 

that are logically entailed by T1 ∪ T2, T1 ∪ T2 ∪ T3 is consistent.  □  

Finally, Theorem 4 follows immediately from part (i) of Lemma A4 and Lemma A5. □ 

Proof of Theorem 5:  Consider any game in G and any profile D of decision rules for the 

game.  Since S is a finite set, part (i) of Theorem 5 follows from Proposition A3, together 

with part (i) of Proposition A1.  Now, define the common-reasoning model with D as its 

common standard of practical rationality, as in Section 6, and let R* be common reason in this 

model.  To establish part (ii) of Theorem 5, we have to show that the propositions in the set {p 

∈ T(R*) | p is a permissibility proposition} are precisely those asserted by the final output of 

the recommendation algorithm for D. 

To do this, we define the corresponding inference structure R–*, as in the proof of 

Theorem 4.  By part (ii) of Lemma A4, the set {p ∈ T(R*) | p is a permissibility proposition} 

is identical to the set {p ∈ T(R–*) | p is a permissibility proposition}.   By parts (i) and (ii) of 

Lemma A2, the propositions in the latter set are encoded by the categorisation solution for the 

game relative to ζ, where ζ is the aggregate categorisation function which encodes D.  Finally, 

by Proposition A3, the categorisation solution is identical to the categorisation that encodes 

the combined final output of the recommendation algorithm.  □  

Proof of Theorem 6:  Consider any game in G for which an ICEU Bayesian model exists.  

Consider any such model M and let its inclusion categorisation be CM.  Let ζ be the aggregate 

categorisation function which encodes the profile of ICEU decision rules.  Let C(0), C(1), ... 

be the sequence of categorisations of S induced by the categorisation procedure for ζ. 
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Lemma A6:  For every categorisation C of S: [CM ⊇* C] ⇒ [CM ⊇* ζ(C)].      

Proof:  Analogously with the earlier definition of ICEU-consistency with a collective 

prediction, we first define a corresponding concept of consistency with a categorisation.  For 

any player i, a probability distribution over S–i is defined to be ICEU-consistent with a 

categorisation C of S if (i) for each strategy profile s–i ∈ S–i, the probability of s–i is the 

product of the marginal probabilities of the individual strategies appearing in s–i; (ii) for each 

player j ≠ i, for each sj ∈ Sj, if sj is in the positive (resp. negative) component of C, then sj has 

strictly positive (resp. zero) marginal probability. 

By Lemma A1, if some strategy si ∈ Si is in the positive component of CM, it is 

marginally EU-maximising for some probability distribution over S–i that is ICEU-consistent 

with CM; if it is in the negative component of CM, there is some such distribution for which it 

is not marginally EU-maximising (this is Result 1).  Now consider any categorisation C of S 

such that CM ⊇* C.  Since CM ⊇* C, every probability distribution over S–i that is ICEU-

consistent with CM is also ICEU-consistent with C (this is Result 2).   Because ζ encodes the 

profile D of ICEU decision rules, if some strategy si ∈ Si is in the positive component of ζ(C), 

it is marginally EU-maximising for every probability distribution over S–i that is ICEU-

consistent with C; if it is in the negative component of ζ(C), it is marginally EU-maximising 

for no such distribution (this is Result 3).  Now suppose Lemma A6 is false.  Then, using the 

fact that, by definition, CM is exhaustive: either (i) for some player i, some strategy si ∈ Si is in 

the positive component of CM
 and the negative component of ζ(C), or (ii) for some player i, 

some strategy si ∈ Si is in the negative component of CM
 and the positive component of ζ(C).  

Using Results 1, 2 and 3, it can be shown that each of these possibilities implies a 

contradiction.  □   

 We now complete the proof of the theorem.  Trivially, CM ⊇* <∅, ∅>.  By repeated 

application of Lemma A6, CM ⊇* ζ(<∅, ∅>), CM ⊇* ζ [ζ(<∅, ∅>)], and so on.  But, by the 

initiation and continuation rules for categorisation procedures,  <∅, ∅>, ζ(<∅, ∅>), ζ [ζ(<∅, 

∅>)], ... are respectively the categorisations C(0), C(1), C(2), ... induced by the categorisation 

procedure for ζ.  By Proposition A1, this procedure halts at some finite stage k*.  By 

Proposition A3, Theorem 5 and the definition of the ICEU common-reasoning solution C*, 

C(k*) = C*.  Thus, CM ⊇* C*. □ 
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Proof of Theorem 7:   Consider any game in G and suppose that its ICEU common-reasoning 

solution C* = <S*+, S*–> is exhaustive.  This implies that S*+ ∩ Si is non-empty and finite, 

for each player i.       

We prove part (i) of the theorem by constructing an ordered quintuple M from C* and 

then showing that this M is an ICEU Bayesian model of the game.  We construct M = <Ω, 

b(.),I , π, χ> as follows, where Ω is a set of states, and b(ω) = (b1[ω], ..., bn[ω]),I  = (I1, ..., 

In), π = (π1, ..., πn) and χ = (χ1, ..., χn) are, respectively a behaviour function, an information 

structure, a profile of priors and a profile of choice functions defined with respect to Ω.  Set 

Si* = S*+ ∩ Si, for each player i, and define S* = S1* × ... × Sn*.  Define Ω so that there is a 

one-one mapping from S* onto Ω; for each s ∈ S*, let ω(s) denote the corresponding element 

of Ω.  Thus, by construction, Ω is non-empty and finite, as required.  Now define the 

behaviour function b(.) on Ω so that b(ω[s]) = s, for each s ∈ S*.  Define the information 

structure I such that, for each player i, for each strategy si ∈ Si*: E(si) ∈ I i.  For each player 

i, fix any independent prior πi, defined on Ω.  By definition of a prior, πi(ω) > 0 for all ω ∈ Ω, 

implying that, for each player i, each strategy in Si* has strictly positive marginal probability.  

Define χ so that, for each player i, for each state ω, χi(ω) = Si*. 

By construction, M satisfies Independence, Knowledge of Own Choice and Privacy.  

Consider any player i and any strategy si ∈ Si*.  As, by Theorem 5 and Proposition A3, C* is 

identical to the categorisation solution of the game relative to the aggregate categorisation 

function ζ which encodes each profile of ICEU decision rules, si is marginally EU-

maximising with respect to all probability distributions over S–i which assign strictly positive 

probability to strategies in S*+ ∩ S–i and zero probability to strategies in S*– ∩ S–i.  Hence, si 

is marginally EU-maximising with respect to πi.  Because πi is independent, and because of 

the specification of I i, si is expected utility maximising at every state ω ∈ Ω.  Now consider 

any strategy si′ ∉ Si*.  A parallel argument shows that si′ is not expected utility maximising at 

any state ω ∈ Ω.  Putting these arguments together: at each state ω ∈ Ω, the set of strategies 

that are SEU-rational for i is Si*.  Thus, the specification that χi(ω) = Si* for each ω ensures 

that M satisfies Choice Rationality and SEU-Maximisation.  As this completes the 

requirements, M is an ICEU Bayesian model of the game, so proving part (i) of the theorem. 

To prove part (ii) of the theorem, consider any ICEU Bayesian model of the game.  

Since its inclusion categorisation CM is exhaustive by definition, it follows immediately from 

Theorem 6 that, if C* is exhaustive, CM = C*. □ 
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