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Two main weaknesses have been identified for permutation entropy (PE): the neglect of subsequence pattern differences in terms of
amplitude and the possible ambiguities introduced by equal values in the subsequences. A number of variations or customizations
to the original PE method to address these issues have been proposed in the scientific literature recently. Specifically for ties,
methods have tried to remove the ambiguity by assigning different weighted or computed orders to equal values. Although these
methods are able to circumvent such ambiguity, they can substantially increase the algorithm costs, and a general
characterization of their practical effectiveness is still lacking. This paper analyses the performance of PE using several
biomedical datasets (electroencephalogram, heartbeat interval, body temperature, and glucose records) in order to quantify the
influence of ties on its signal class segmentation capability. This capability is assessed in terms of statistical significance of the PE
differences between classes and classification sensitivity and specificity. Being obvious that ties modify the PE results, we
hypothesize that equal values are intrinsic to the acquisition process, and therefore, they impact all the classes more or less
equally. The experimental results confirm ties are often not the limiting factor for PE, even they can be beneficial as a sort of
stochastic resonance, and it can be far more effective to focus on the embedding dimension instead.

1. Introduction

Permutation entropy (PE) is a very powerful metric to cap-
ture the dynamical features of a time series based just on its
ordinality [1]. It has been used in a wide diversity of applica-
tions for signal classification or event detection [2].

The time series with equal or repeated values is a usual
scenario in many of these real-life applications of PE. If
these equal values are sufficiently close, that is, they fall
within the same subsequence used in the computation of
PE, they can introduce a significant bias in the estimation
of the ordinal pattern probability distribution [3] since
they are usually assigned an index based on their location
in the input subsequence.

A few methods have been proposed to account for ties in
PE, including the original PEmethod. In fact, in their seminal
paper [1], Bandt and Pompe already suggested to add

random perturbations to break the ties, in the unlikely case
ties were present in an otherwise continuous distribution.
This is the same recommendation in [4]. Other more recent
works, like the modified PE algorithm (mPE) described in
[5], propose to represent equal values with the same symbol,
using the smallest index at which the repetition starts, defin-
ing more states than the PE method. Another approach to
this problem, the amplitude-aware permutation entropy
(AAPE) method [6], uses a weighted approach, where all
possible permutations with equal values are considered, and
the probabilities are updated accordingly. All these methods
try to account for ties from a mathematical perspective, but
not from a conceptual perspective: what ties really represent
in a time series, since equal values may be an intrinsic part of
the dynamics of the records. Furthermore, the methods are
assessed using synthetic or a very specific type of records,
which do not provide a complete picture of the real influence
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of ties in PE: Is there a correlation with the percentage of ties
and PE performance? Is it preferable to account for ties in the
PE algorithm or try to remove them in advance? Is the time
series location of ties making any difference on their influ-
ence? Studies to address these and other related PE ties issues
are still lacking. Only in [3] did the authors study this influ-
ence and conclude that equal values introduce a PE bias,
leading to a possible misinterpretation of the regularity of
the underlying dynamics. However, this study was focused
on assessing the changes in the results of PE compared to
those obtained with no ties, in absolute terms.

In signal classification tasks, the main driver of PE perfor-
mance is not the specific PE value, but its intra- and interclass
distribution [7]. Due to equal values in subsequences, point
clouds of PE values may drift but still remain separable. Thus,
it can be hypothesized that minor changes in PE values due to
ties do not necessarily imply a degradation of the segmenta-
tion capability of PE, provided its capacity to unveil differ-
ences among signal classes is not completely lost. In other
words, PE bias may be distributed more or less uniformly
among all the classes, and therefore, the differences may still
remain apparent.

Based on this hypothesis, the present study aims to
gain a more practical insight into the real influence of
equal values in PE. In the framework of biomedical
records, specifically, using electroencephalogram, heartbeat
interval, body temperature, and glucose time series, we
assess the level of ties right after signal acquisition and
then compute the classification performance and its corre-
lation with such level. The classification performance is
quantified using the sensitivity and specificity achieved,
and the statistical significance is computed using the
Mann–Whitney test. We later add synthetic ties in order
to further characterise the possible performance deteriora-
tion of signal classification and quantify how some of the
methods proposed [5, 6] really deal with ties. Finally, a
resampling scheme is applied to remove equal values
before using PE to find out whether ties really matter or
if it is better to focus on other methodological aspects of
PE to improve its detection sensitivity. The experimental
dataset is composed of a varied group of biosignals that
exhibit a different range of ties and features and cover a
wide range of medical applications.

The structure of the paper is as follows. The next section,
Section 2.1, includes a detailed description of the PE method
as introduced in [1]. Next, in Section 2.2, the main features
of the four experimental datasets are presented. These data-
sets correspond to a varied group of real biomedical records
that include equal values due to the acquisition stage and the
resolution of the devices employed, with percentages ranging
from 3% up to 30%. They have been used in many signal
classification applications, and most of their classes have
been demonstrated to be readily separable. These records
will be corrupted with additional synthetic ties, and the pos-
sible degradation on PE performance, either in absolute or
relative terms, will be assessed as described in Section 2.3.
Quantitative results will be reported in Section 3, and their
interpretation explained in Discussion (Section 4). The final
conclusions of the study will be described in Section 5.

2. Materials and Methods

2.1. Permutation Entropy. Let xi
N−1
i=0 be a realization of a dis-

crete time stationary stochastic process, with a cardinality of
x =N , and let xji

i+n−1
ji=i

, 0 ≤ i <N − n − 1 , be a block

extracted from xi , with a cardinality of xj = n, and an asso-
ciated vector of orders o = 0, 1, 2,… , n − 1 so that xji=i is
linked to 0, xji=i+1 is linked to 1, and so on, up to xji=i+n−1,
which is linked to order n − 1.

There is a ≤ relation in xi that also applies to xji .
This relation can be used to obtain a new ordered version
of xji , termed x ji

, where x ji
≤ x ji+1 ≤ x ji+2 ≤⋯≤

x ji+n−2 ≤ x ji+n−1 . As a consequence, the order of the indi-
ces in o must be updated according to the mapping
between xji and x ji

, resulting in a new ordinal pattern
oji that represents the final arrangement of the original
generic ordered indices.

In order to obtain the PE result for xi
N−1
i=0 , the prob-

ability p of all the resulting ordinal patterns oji for all
the N − n − 1 blocks has to be estimated. This value
can be obtained by counting the oji pattern occurrences
in a list O, O = n , that contains all possible permutations
of o, so that ck = oji =Ok , ∀ji

, from which pk = ck/∑n −1
k=0 ck.

Finally,

PE = − 〠
n −1

k=0
pk log pk, if f pk ≠ 0 1

2.2. Experimental Dataset. The experimental dataset includes
biomedical records of diverse origin to avoid model over-
fitting and provide a more complete picture of the practi-
cal influence of ties in signal segmentation applications
using PE. Specifically, this experimental dataset contains
the following:

(i) Electroencephalogram (EEG) time series [8]. This
group contains 5 different classes (0–4). Class 0
includes records from healthy subjects with the eyes
open. Class 1 also corresponds to healthy subjects
but with the eyes closed. Classes 2, 3, and 4 include
records from epileptic patients using intracranial
electrodes, with class 2 including seizure activity
and 3 and 4 only seizure-free activity. The number
of records is 500, uniformly distributed among
the 5 classes. The length is also uniform, 4096
samples, for a duration of 23.6 s. This database
has been used in a number of papers [9–11],
and it is publicly available. An example of records
of each class is shown in Figure 1.

(ii) Body temperature time series (Temp) [12]. This
group contains 2 different classes (0 and 1) from
patients admitted to the internal medicine ward of
the Teaching Hospital of Móstoles, Madrid (Spain).
A total of 30 artifact-free records starting at
8:00AM were selected, with class 0 including 16
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patients with no fever peaks and class 1, 14 patients
that had a central temperature measurement above
38°C the day before they were monitored. Tempera-
ture was sampled every minute, and records of 8 h
were extracted for analysis. This database has also
been used in previous studies [12], where further
details can be found. An example of records of each
class is shown in Figure 2.

(iii) RR interval records (distance between two consecu-
tive heartbeats) available at the CAST RR-Interval
Substudy Database (RR) [13–15]. There are six
groups of records in this database corresponding to
three types of medications, acquired, pre-, and post-
medication (paired data not included in the classifi-
cation experiments, pairs 0-1, 2-3, and 4-5). The
duration of the records ranges from 21h up to
24 h. The database is available for download at
Physionet [16] and has been used extensively in
other scientific works [10, 17–19]. Since some
records had QRS detection errors, they were prepro-
cessed before computing their PE by the method
described in [20]. An example of records of each
class is shown in Figure 3.

(iv) Continuous glucose monitoring (CGM) time series
[21]. This group includes 206 glucose records of
patients with diabetes risk sampled at 5 minutes dur-
ing 24 h also acquired at the Teaching Hospital of

Móstoles, Madrid (Spain). There are 18 records out
of the 206 corresponding to patients who were diag-
nosed with diabetes. The other 188 records corre-
spond to subjects that remained healthy at the end
of the two-year study. This database has been used
to test if there are metrics capable of detecting the
subtle differences between the records [21] and
anticipate who is more likely to develop diabetes in
order to implement mitigation measures as soon as
possible. An example of records of each class is
shown in Figure 4.

All the experimental datasets include pattern ties in their
original form, but most of them have been successfully clas-
sified using a disparity of metrics and algorithms; in other
words, they are separable. Equal values are a usual issue in
many real-life time series, and any method should be robust
against them. That is why many modifications have been
devised to minimise their impact on PE computation.
Biomedical records are no exception to this universal rule.

As the baseline case, the original form, Table 1 shows
the percentage of equal values found for patterns of length
n = 3 up to 9. EEG records exhibit a low incidence of ties,
around 5% in the worst case, whereas RR records almost
achieve 40%. Although CGM had a higher percentage of
ties for n = 3, they are mainly due to consecutive equal
values, but in RRs, they are more randomly distributed.
As a consequence, when n increases, it is more likely for
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Figure 1: Example of records from each of the 5 classes of the EEG
dataset.
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Figure 2: Example of records from each of the 2 classes of the Temp
dataset.
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Figure 3: Example of records from each of the 6 classes of the RR
dataset.
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Figure 4: Example of records from each of the 2 classes of the CGM
dataset. Contiguous equal values are clearly visible at the end of the
top record featuring class 1.
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RR records to find new equal values, while for CGMs, they
were already included in the shorter subsequences.

In order to further clarify the presence of ties in the
input signals and how the pattern length n may introduce
more equal values, we illustrate this fact with real values
drawn from the time series described above. For the
EEG case, record F001.txt includes the following initial
values: 34, 33, 28, 22, 21, 22, 22, 19, 22, 18, 22,… . For n =
3, 4, and 5, there are no equal values, but for n = 6, the sub-
pattern includes two 22 values, that is, 2 out of 6 values are
equal. For n = 7, another value of 22 is included, and there-
fore, 3 out of 7 values are equal. The temperature records also
contain a lot of ties. As an example, a file from a healthy sub-
ject contains the following data: 36 31, 36 31, 36 26, 36 30,
36 37, 36 37, 36 37, 36 37, 36 30, 36 31,… .

As in the previous case, the longer the subsequence, the
more equal values it may contain. With regard to the RR
records, in file fRR000a, the following sequence can be
found: 72, 72, 73, 73, 71, 73, 72, 72, 72,… . In this case,
the number of equal values is 2 for n = 3, 4 for n = 4 (100%),
and 4 for n = 5, and then raises again with greater n. Finally,
a CGM record contains values like 119, 119, 119, 120, 121,
122, 122, 120, 119, 117, 116, 115, 115, 114, 114, 113, 111,… .
The repetitions are also very frequent but more often with
consecutive values, since glucose is a slow-varying parameter
but with clear upward or downward trends instead of a
high-frequency oscillating pattern (similar to temperature
records, and in clear contrast to RR records). The basic rule
of thumb is that the longer the subsequence is, the more
likely it is to add a value that is already contained in such
subsequence, since the set of different numbers in the time
series is finite in practical terms. Actually, that set is very
small due to the lack of resolution of the measuring devices,
specially within relatively short time windows. This is also
numerically demonstrated in Table 1.

The numerical values included in the previous examples
also illustrate why the percentage of ties in RR records grows
with n more quickly than that for CGM records. These last
records have a step shape, with a clear trend. When the size
of the step (equal values, horizontal line in a plot) is exceeded
by n, it is less likely to find in the vicinity equal values to those
in that step; they will be usually smaller or higher. In the pre-
vious CGM example, initially, the consecutive 119 values
become 120–122, there is a new higher step, and then the
values go downward following the same pattern. In other
words, the equal values in CGM records are mainly consecu-
tive or too far to be included in the same subpattern. On the
contrary, RR records oscillate around the average heart rate,

and repeated values can be found at any sample. In the previ-
ous RR numerical example, values such as 72, 73, or 71 can be
found at any point in the entire record (values more ran-
domly distributed).

2.3. Statistical Assessment. The statistical assessment was car-
ried out using an unpaired two-tailed Mann–Whitney test,
with a significance threshold of α = 0 05, to which a Bonfer-
roni correction [22] can be applied for datasets with more
than two classes (EEG and RR records), being α = 0 05/5 =
0 01 or α = 0 05/6 = 0 0083 instead. The differences between
classes were quantified using this metric, with a correction
for tied ranks. This approach was used because some experi-
ments did not satisfy the normality assumption for Student’s
t-test. Although all the classes were compared on a pair-to-
pair basis, in the case of EEG and RR records, a Kruskal–
Wallis test was also conducted to assess the separability of
the entire set. In the case of the 500 EEG records, the result
of this test was p < 0 00001, with the statistic H = 175 8541.
As for the RR records, results were p = 0 45128 and H =
3 6784. These results are in accordance with previous studies
[10, 11], where these EEG records demonstrated to be more
easily separable than the RR records [20].

2.4. Temporal Scale. As in many other metrics, the values of
PE depend on the values of its input parameters [23, 24]. In
addition to the length of the subpattern n, the PE general
method includes a time scale parameter τ. In practical terms,
this time scale parameter corresponds to a downsampling of
the block extracted from xi , without filtering [6]. In other
words, τ defines the step by which ji is increased until n sym-
bols or values are drawn from xi . Biosignals usually exhibit
a multiscale time behaviour [25]. Therefore, the τ parameter
is very useful to assess the contribution of each time scale to
the signal complexity. In this context of subpatterns with ties,
this parameter can also contribute to reduce the number of
equal values and can also have an impact on the classification
performance of PE. However, τ implies an effective reduction
of N , since the number of samples used for the computation
of PE becomes N/τ. If the time series are long enough to
guarantee n < <N/τ [26], that is not a problem, but in many
cases, biomedical records are short and the number of appli-
cable time scales is very small.

In this paper, we will mostly consider τ = 1 since the main
objective of the study is to assess the influence of ties in
relative terms, not to propose a signal classification scheme.
In addition, as ties are not usually equally distributed in time,
it is arguably reasonable to hypothesize that a nonuniform
downsampling can be more effective to reduce the number
of equal values, as illustrated by Table 2 (see Trace Segmen-
tation experiment at the end of next section) for short
biomedical records from the experimental dataset. However,
for longer time series, the EEG and RR records in this study,
we explored the possible influence of τ in a similar manner as
in [27]. A complete characterization of this influence is
beyond the scope of the paper, but in general, the classifi-
cation performance for EEG data was maximum for τ = 1
(n = 7), classes 0-1. It monotonically dropped for τ > 1, with
no significant classification for τ > 4. For the RR records, we

Table 1: Percentage of ties found in the original records of the
experimental database, computed as the number of equal values
per pattern of length n ∈ 3, 9 .

3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%)

EEG 2.54 3.29 3.91 4.44 4.91 5.35 5.75

Temp 9.26 11.71 13.81 15.55 16.88 18.02 19.48

RR 16.48 22.28 27.08 31.01 34.27 37.10 39.90

CGM 20.58 23.77 26.40 27.90 30.19 31.00 31.87
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also chose classes 0-1, which were not separable already for
τ = 1 (n = 7). For greater τ values, the performance was even
worse. Therefore, we used τ = 1 by default, except for the
experiments described at the end of Section 3.

3. Experiments and Results

From a signal classification perspective, the baseline case was
defined by the initial differences among all the groups in each

dataset, analysed in pairs. These differences have been quan-
tified in terms of the Mann–Whitney test for all the cases,
as shown in Table 3. With the exception of RR records,
the rest of the classes are distinguishable, and the differ-
ences seem to become more significant as the length of
the patterns n increases.

Each class in the experimental dataset was corrupted by
inserting synthetic equal and independent values. The num-
ber of additional ties to generate was given by percentages

Table 2: Standard PE analysis using CGM records and downsampling (nonuniform, trace segmentation and uniform, and decimation), to
lower the percentage of ties in patterns, with n = 4.

Trace segmentation Decimation
Original 95% 90% 85% 80% 75% 70% 65% 60% 50% 33% 25%

Ties (%) 31.00% 31.45% 28.95% 27.91% 25.54% 23.08% 22.18% 19.77% 19.26% 22.25% 17.98% 13.48%

p 0.0013 0.0117 0.0018 0.0011 0.0004 0.0003 0.0004 0.0007 0.0036 0.0030 0.0030 0.0619

Seb 0.72 0.72 0.72 0.72 0.72 0.72 0.66 0.66 0.66 0.83 0.77 0.61

Spb 0.67 0.63 0.66 0.71 0.73 0.73 0.74 0.72 0.68 0.60 0.62 0.69

Table 3: Baseline differences among classes within each experimental group assessed in terms of statistical significance. The length of the
patterns n ranges from 3 up to 9.

n 3 4 5 6 7 8 9

EEG

p01 = 0 0001 p01 < 0 0001 p01 < 0 0001 p01 < 0 0001 p01 < 0 0001 p01 < 0 0001 p01 < 0 0001
p02 = 0 0001 p02 = 0 0016 p02 < 0 0001 p02 = 0 0226 p02 = 0 1361 p02 = 0 5608 p02 = 0 5031
p03 < 0 0001 p03 < 0 0001 p03 < 0 0001 p03 < 0 0001 p03 < 0 0001 p03 < 0 0001 p03 < 0 0001
p04 < 0 0001 p04 < 0 0001 p04 < 0 0001 p04 < 0 0001 p04 < 0 0001 p04 < 0 0001 p04 < 0 0001
p12 < 0 0001 p12 < 0 0001 p12 < 0 0001 p12 < 0 0001 p12 < 0 0001 p12 < 0 0001 p12 < 0 0018
p13 < 0 0001 p13 < 0 0001 p13 < 0 0001 p13 < 0 0001 p13 < 0 0001 p13 < 0 0001 p13 < 0 0001
p14 = 0 6216 p14 = 0 7121 p14 < 0 0001 p14 = 0 1797 p14 = 0 0155 p14 < 0 0001 p14 < 0 0001
p23 < 0 0001 p23 < 0 0001 p23 < 0 0001 p23 < 0 0001 p23 < 0 0001 p23 < 0 0001 p23 < 0 0001
p24 < 0 0001 p24 < 0 0001 p24 < 0 0001 p24 < 0 0001 p24 < 0 0001 p24 < 0 0001 p24 < 0 0001
p34 < 0 0001 p34 < 0 0001 p34 < 0 0001 p34 < 0 0001 p34 < 0 0001 p34 < 0 0001 p34 < 0 0001

Temp p01 = 0 53287 p01 = 0 5328 p01 = 0 2986 p01 = 0 0275 p01 = 0 0053 p01 = 0 0005 p01 = 0 0001

RR

p02 = 0 4878 p02 = 0 8749 p02 = 0 9720 p02 = 0 8958 p02 = 0 7123 p02 = 0 5104 p02 = 0 3553
p03 = 0 6448 p03 = 0 2116 p03 = 0 1249 p03 = 0 0743 p03 = 0 0376 p03 = 0 0201 p03 = 0 0122
p04 = 0 1879 p04 = 0 1353 p04 = 0 1088 p04 = 0 0885 p04 = 0 1018 p04 = 0 1651 p04 = 0 2439
p05 = 0 0013 p05 = 0 0192 p05 = 0 0669 p05 = 0 1269 p05 = 0 1683 p05 = 0 2567 p05 = 0 3028
p12 = 0 8450 p12 = 0 4250 p12 = 0 3564 p12 = 0 2011 p12 = 0 1518 p12 = 0 1374 p12 = 0 1900
p13 = 0 7269 p13 = 0 6561 p13 = 0 6736 p13 = 0 8052 p13 = 0 8020 p13 = 0 8286 p13 = 0 7991
p14 = 0 6116 p14 = 0 0468 p14 = 0 0115 p14 = 0 0018 p14 = 0 0006 p14 = 0 0003 p14 = 0 0004
p15 = 0 8022 p15 = 0 0025 p15 = 0 0042 p15 = 0 0022 p15 = 0 0011 p15 = 0 0005 p15 = 0 0006
p24 = 0 0097 p24 = 0 1875 p24 = 0 1228 p24 = 0 1069 p24 = 0 0784 p24 = 0 0777 p24 = 0 0725
p25 = 0 0098 p25 = 0 0343 p25 = 0 0703 p25 = 0 1208 p25 = 0 0007 p25 = 0 1239 p25 = 0 0961
p34 = 0 4336 p34 = 0 0112 p34 = 0 0047 p34 < 0 0001 p34 = 0 0008 p34 = 0 0007 p34 = 0 0006
p35 = 0 0084 p35 = 0 0006 p35 = 0 0012 p35 = 0 0014 p35 = 0 0010 p35 = 0 0008 p35 = 0 0009

CGM p01 = 0 0030 p01 = 0 0013 p01 = 0 0016 p01 = 0 0020 p01 = 0 0013 p01 = 0 0005 p01 = 0 0003
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ranging from 5% up to 25% in 5% steps. The resulting per-
centage of equal values in subsequences is shown in Table 4.

As stated above, it is obvious that changes in the
amount of equal values will result in changes in the com-
puted PE value in absolute terms. In order to illustrate this
point, the percentage of synthetic ties was specifically
increased up to 50% for EEG and CGM records, beyond
the general levels stated in Table 4, and PE was computed
in each case with n = 4. The purpose of this experiment was
to obtain PE as a function of the level of ties and plot the
results to visually determine the degree of variation that such
changes entail. These results are depicted in Figures 5 and 6,
including a confidence band based on the standard deviation
of the results (68% confidence level). Normality in this case
was assumed since the number of records was relatively high,
100 (EEG) or 206 (CGM). PE varies in the same manner for
all the cases tested. For low percentages of ties, PE exhibits a
growing trend. As this percentage increases, PE declines. It is
important to note that, as hypothesized in this paper, if the
interclass differences of PE remain relatively constant, as
can be arguably inferred from the plots, the classification
power of PE should not be significantly affected.

In order to assess this point, the experiments in
Table 3 were repeated individually for each dataset, with
n = 4, comparing the classification performance of PE for
the baseline case (no synthetic case, only those already
present in the records), and with an additional 25% of
synthetic ties (no mitigation).

Tables 5, 6, 7, and 8 show these results for EEG, Temp,
RR, and CGM records, respectively. The results are
expressed in terms of statistical significance, sensitivity Se
and specificity Sp, for each pair, with subindices b and t
to represent the baseline and synthetic ties, respectively.
Furthermore, the analysis was repeated using random per-
turbations to break the ties, as recommended in [1], using
the modified PE algorithm described in [5] or using the
AAPE method [6] (only the part devised to account for
equal values). The purpose of this experiment was to
empirically determine if more ties always imply worse clas-
sification results and whether the methods proposed in the
scientific literature to address equal values really make a
significant difference either for original or added ties.

Finally, the effect of equal values was compared with
the other claimed drawback of PE: amplitude differences

between patterns are overlooked. The complete AAPE
method [6] includes two algorithm optimizations for each
drawback. In Table 9, the results using the amplitude part
are shown for n = 4 and n = 8 and the complete version
with n = 4 with EEG records. In this case, the results can
be compared with the previous ones where AAPE only
addressed the problem of ties and assessed the possible
influence of the two drawbacks separately.

Another approach to tackle the problem of equal values
in PE subpatterns is to avoid them in the first place. This
can be accomplished by a suitable design of the acquisition
stage, but sometimes, this is not possible either. Alternatively,
once the time series have been recorded, ties can be removed
to some extent using signal-resampling methods. We
explored this possibility by using a nonuniform resampling
method, trace segmentation [28]. This method is specially
well suited for this task since the sampling points are usually
those where maximum signal variations take place; that is,
equal values tend to be removed seamlessly but main signal
features (peaks and valleys) are kept. An example is depicted
in Figure 7.

Table 2 shows the classification results obtained using
this approach and CGM records, those with the highest level
of ties at baseline. As the input record is shortened by trace
segmentation, the percentage of ties also decreases. The
results are compared with those obtained with a classical sig-
nal decimation method. The length ranges from 95% of the
initial length N down to 60% for the trace segmentation
method and from 50% down to 25% for the decimation
method.

4. Discussion

The percentage of ties in the original records varies signifi-
cantly, as described in Table 1. As the length of the subse-
quences n increases, this percentage increases as well, but
not homogeneously across all the signal types. Specifically,
the RR percentage raises more than that of CGM. This is
due to the fact that ties in CGM mainly correspond to con-
secutive samples, whereas in RR records, they are more ran-
domly distributed. This also has important consequences in
terms of PE computation since the ordinality of patterns is
not modified by consecutive equal values. This is the same
trend when synthetic ties are introduced in the records
(Table 4). However, the percentage of ties tends to saturate
since the replacement of already existing ties becomes more
and more frequent for higher percentages.

Changes in PE results due to equal values are obvious.
They can also lead to misinterpretations of the underlying
nature of the records. However, as illustrated in Figures 5
and 6, if these changes follow a similar trend, the segmenta-
tion capability of PE might remain intact.

In principle, records that have been successfully clas-
sified by other metrics not so clearly influenced by ties
[10, 11, 21, 29] can still be classified using PE despite the high
percentage of ties, except RR records, as quantified in Table 3.
It is important to also note that, as n increases, the classifica-
tion performance also increases. This fact has also been
reported in other works [30] and suggests that the greater is

Table 4: Final percentage of equal values in each database,
specifically for n = 8. The first column, baseline, corresponds to
the level found right after signal acquisition, and the rest of
the columns correspond to the resulting percentage after
merging randomly synthetic equal values and those found
initially in the records.

n Baseline 5% 10% 15% 20% 25%

EEG 5.35% 9.67% 13.64% 17.63% 21.65% 25.82%

Temp 18.02% 22.12% 25.12% 28.42% 31.79% 32.34%

RR 37.10% 41.52% 43.24% 44.83% 46.67% 48.42%

CGM 31.00% 33.87% 35.70% 38.91% 40.28% 43.05%
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n, the better. Unfortunately, this has few practical conse-
quences since the computational cost and memory require-
ments of PE grow as n , and this prevents n > 10 from
being in widespread use.

In terms of statistical significance, in Table 3, all the
Temp, CGM, and EEG classes (except 0–2) are separable,
despite percentages of ties as high as 20%. The case of RR
records is more difficult since only half the combinations
are distinguishable. RR records have a relatively high per-
centage of ties, randomly distributed, whereas CGM and
Temp records include more consecutive equal values, and
EEG records have the lowest ratio of ties. This analysis seems
to hint that ties are not important unless found at high
percentages and not consecutive, when their influence on
ordinal patterns is maximal.

The results in Tables 5, 6, 7, and 8 correspond to an anal-
ysis employing 25% of synthetic ties, n = 4, and three
methods devised to address equal values in PE patterns.
According to the results for EEG records in Table 5, when
no mitigation algorithm was applied, average Seb was 0.725

and Spb was 0.803 for the baseline case (no synthetic ties).

With an additional 25% of ties, average Set became 0.696

and 0.773 for Spt . Despite the significant increase in tie levels,
classification was only degraded by 3%.

If random perturbations were added to break the ties,
as recommended in [1], results improve some 1%, with
less than 2% difference between baseline and synthetic
noise. With the modified PE method, there is an addi-
tional 1-2% improvement for the baseline case, but when
ties were added, the classification performance decreased
on average some 4%. Finally, with the AAPE method
(only ties considered), the classification performance was
even lower than that of the no mitigation approach. For
the other datasets, the differences were usually bigger
between the baseline and the 25% case, but there was no
method that clearly outperformed the others. It is important
to note that in some cases, the performance with more ties
was even better. It can be hypothesized that a stochastic res-
onance phenomenon [31–33] may be involved in terms of
the impact of equal values in subpatterns. Stochastic reso-
nance [34] is an effect by which an external disturbance

and the internal dynamics of a signal have a positive collabo-
rative interaction that results in enhanced signal detection,
among other possible benefits [35]. It is a counterintuitive
outcome of the addition of noise to a signal, where the detec-
tion probability increases with noise [36]. In this context,
stochastic resonance may therefore be involved since ties
appear to be beneficial in some cases, from a signal classi-
fication perspective.

Using the AAPE method with the customization that
deals with amplitude differences only [6], it does not seem
to attain the performance achieved with the specific custom-
ization for ties (Table 5). For n = 4, the average values were
Seb = 0 69 and Spb = 0 759 (Table 9), whereas Seb = 0 72 and

Spb = 0 79 in Table 5, below the performance of the no miti-
gation approach. With 25% additional ties, the results were
almost the same, Set = 0 676 and Spt = 0 755. Again, the level
of equal values in subpatterns does not seem to significantly
impact the classification performance.

For n = 8 and n = 9, the results slightly improved. The
average values became Seb = 0 72 and Spb = 0 769 and Seb =
0 736 and Spb = 0 783, respectively, comparable to the results
using the tie customization. In these cases, with synthetic
equal values, the performance even improves, Set = 0 773
and Spt = 0 773 and Set = 0 75 and Spt = 0 765. The complete
AAPE version, addressing both PE problems simulta-
neously, does not have an additive effect; that is, perfor-
mance is higher separately. In all these cases, the signal
to noise ratio in the context of PE computation does not
seem to be directly correlated to the classification perfor-
mance, even the other way round, probably becoming
another manifestation of the well-known stochastic reso-
nance phenomenon [37], as stated above.

The results in Table 2 correspond to the standard PE
method with n = 4 and CGM records. The number of ties in
the baseline case was reduced using a nonuniform downsam-
pling method, trace segmentation. Initially, the classification
performance improved as the percentage of ties decreased,
almost exclusively in terms of Spb . However, at some point,
around 75% of the original length, less ties implied poorer
performance, as in the previous experiments.

5. Conclusions

Biomedical records often include ties due to the intrinsic
nature of the records (RR records), lack of resolution of
the measuring devices (CGM), slow variations in the
underlying signal (temperature), or just by chance (EEG).
The percentage of ties in these records can vary signifi-
cantly, from 2.5% up to 20%. This interference obviously
modifies the statistical distribution of patterns and there-
fore the values obtained for PE.

However, in the context of signal classification tasks,
equal values in patterns do not seem to significantly dam-
age the segmentation capability of PE. Actually, in some
cases, ties appear to play a beneficial role, in the frame-
work of a stochastic resonance phenomenon. Moreover,
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50 100 150 200 2500
Sample

Figure 7: Example of trace segmentation application to a CGM
record. Top: original record. Bottom: resampled record (60% of
original length).
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the removal of ties before computing PE does not mark-
edly improve the results.

The methods proposed to address this problem do not
seem to improve the performance of the standard PE algo-
rithm either. The gains, if any, in classification accuracy, in
the vicinity of 2%, do not seem to outweigh the additional
costs in terms of algorithm complexity, memory require-
ments, and computational burden.

In summary, the problem of ties in PE has been probably
overrated, not in the interpretation of the nature of the
underlying signals, but in practical applications of PE for
signal classification. Differences probably lie in a few pat-
terns, and ambiguous patterns due to ties do not suffice to
blur those differences. Arguably, their influence dissolves
randomly into all the histogram bins of PE. In addition, ties
are not all equal. Those due to consecutive values seem to
exert a lower influence than those due to unconnected equal
values in the same pattern. A statistical analysis of the
changes induced in PE bins due to ties would be necessary
to better understand and mitigate their effects from a more
theoretical perspective.

When ties are involved, if PE had to be applied to a
classification task and the results were poor, we would
suggest maximising n in accordance with the computa-
tional resources available (memory and time cost) and
the classification performance achieved, using the standard
PE algorithm. In case the results were borderline and n had
been already maximised, marginal gains could probably be
achieved using some of the PE improvements tested, but no
significant changes should be expected. Which method or
which combination to use cannot be set in advance; different
alternatives will have to be assessed. If the classification
results were poor despite all the efforts in this regard, we
would recommend focusing on another metric or combina-
tion of metrics, instead of trying to remove ties or applying
another customized algorithm.
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