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Abstract

The principle of ‘information causality’ can be used to derive an upper bound—

known as the ‘Tsirelson bound’—on the strength of quantum mechanical correlations,

and has been conjectured to be a foundational principle of nature. In this paper, how-

ever, I argue that the principle has not to date been sufficiently motivated to play this

role; the motivations that have so far been given are either unsatisfactorily vague or

else amount to little more than an appeal to intuition. I then consider how one might

begin to successfully motivate the principle. I argue that a compelling way of so do-

ing is to understand it as a generalisation of Einstein’s principle of the mutually inde-

pendent existence—the ‘being-thus’—of spatially distant things, (re-)interpreted as a

special methodological principle. More specifically: I describe an argument, due to

Demopoulos, to the effect that the quantum-mechanical no-signalling condition can be

viewed as a generalisation, appropriate to an irreducibly statistical theory such as quan-

tum mechanics, of the Einsteinian principle. And I then argue that a compelling way to

motivate information causality is to in turn consider it as a further generalisation of the

Einsteinian principle that is appropriate to a theory of communication. I nevertheless

describe important obstacles that must yet be overcome if the project of establishing

information causality as a foundational principle of nature is to succeed.

1 Introduction

Answering the question of precisely what distinguishes our experience with quantum as op-

posed to classical physical phenomena has historically been a central element of the overall

project of interpreting quantum theory. For Schrödinger (1935), for instance, the sole distin-

guishing feature of quantum theory was none other than entanglement, while for Feynman
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the one and only quantum mystery was self-interference (Feynman et al., 1964, vol. 3, 1-1).

The question continues to occupy many. However in much of the more recent literature it

has taken on a different form. That is, it has become one of specifying a set of appropri-

ately motivated constraints or ‘principles’ that serve to distinguish quantum from classical

theory. Clifton, Bub, & Halvorson (2003), for instance, prove a theorem which they argue

shows quantum mechanics to be essentially characterisable in terms of a small number of

information-theoretic constraints. Spekkens (2007), meanwhile, shows that features often

thought of as distinctively quantum can be manifested in a toy classical theory to which one

adds a principled restriction on the maximal obtainable knowledge of a system.1

One feature that quantum and classical theory have in common is that the correlations

manifested between the subsystems of a combined system satisfy the condition that the

marginal probabilities associated with local experiments on a subsystem are independent of

which particular experiments are performed on the other subsystems. It is a consequence

of this condition that it is impossible to use either a classically correlated or entangled

quantum system to signal faster than light. For this reason the condition is referred to

as the ‘no-signalling’ condition or principle, even though the condition is not a relativistic

constraint per se.

Quantum and classical theory do not exhaust the conceivable ways in which the world

could be. The world could be such that neither quantum nor classical theory are capable of

adequately describing the correlations between subsystems of combined systems. In partic-

ular the world could be such that correlations stronger than quantum correlations—those

that exceed the so-called ‘Tsirelson bound’ (Cirel’son, 1980)—are possible within it. In a

landmark paper, Popescu & Rohrlich (1994) asked the question of whether all such correla-

tions must violate the no-signalling condition. The surprising answer to this question is no.

As they showed, there do indeed exist conceivable correlations between the subsystems of

combined systems that are stronger than quantum and yet non-signalling.

Popescu & Rohrlich’s result raises the question of whether some motivated principle or

principles can be given which would pick out quantum theory—or at least some restricted

subset of theories which includes quantum theory—from among the space of conceivable

non-signalling physical theories in which correlations at or above the Tsirelson bound occur.

This question has developed into an active research program. A particularly important

result emerging from it is that of Pawłowski et al. (2009), who show that one can in fact

derive the Tsirelson bound from a principle they call ‘information causality’, which they

describe as a generalisation of no-signalling applicable to experimental setups in which

the subsystems of a combined system (e.g. spatially separated labs) may be subluminally

communicating classical information with one another. Pawłowski et al. conjecture that

information causality may be a foundational principle of nature.

Below I will argue that, suitably interpreted (Bub, 2012), the principle can be regarded

as a useful and illuminating answer to the question of what the Tsirelson bound expresses

about correlations which exceed it. However I will argue that if one wishes to think of in-

formation causality as a fundamental principle of nature—in the sense that theories which

violate the principle should thereby be regarded as unphysical or in some other sense

impossible—then it requires more in the way of motivation than has hitherto been given.

What has typically been appealed to previously to motivate the principle is the intuition

that a world in which information causality is not satisfied would be ‘too simple’ (Pawłowski

et al., 2009, p. 1101), or ‘too good to be true’ (Bub 2012, p. 180, Bub 2016, p. 187); that

1For a discussion of both Clifton et al.’s and Spekkens’ results, and of the project in general, see Myrvold

(2010); and see also Felline (2016).
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it would allow one to “implausibly” access remote data (Pawłowski et al., 2009, ibid.), and

that “things like this should not happen” (Pawłowski & Scarani, 2016, p. 429). I will

argue below that these statements are unsatisfactorily vague. Nevertheless I will argue that

they gesture at something that is importantly right; although they are right in, perhaps, a

different sense than their authors envision.

More specifically, in contrast to Bub (2012), who in his otherwise illuminating analysis

of information causality argues that it is misleadingly characterised as a generalisation of

the no-signalling principle, I will argue that information causality can indeed be regarded

as generalising no-signalling in a sense. To clarify this sense I will draw on the work of

Demopoulos,2 who convincingly shows that no-signalling can itself be thought of as a gen-

eralisation, appropriate for an irreducibly statistical theory such as quantum mechanics, of

Einstein’s principle of the mutually independent existence of spatially distant things. Ein-

stein regarded this principle as necessary for the very possibility of ‘physical thought’, and

argued that it is violated by quantum mechanics (Howard, 1985, p. 187). However, suit-

ably generalised and interpreted methodologically, Demopoulos convincingly argues that

Einstein’s principle is satisfied both in Newtonian mechanics (despite its being an action-

at-a-distance theory), and indeed (somewhat ironically) that it is satisfied in quantum me-

chanics, wherein it is expressed by none other than the no-signalling condition.

Coming back to information causality, I will then argue that it can likewise be thought of

as a further generalisation of Einstein’s principle that is appropriate for a theory of commu-

nication. As I will clarify, in the context of the experimental setups to which the principle

is applicable, a failure of information causality would imply an ambiguity in the way one

distinguishes conceptually between a sender and a receiver of information. This ambigu-

ity (arguably) makes communication theory as we know it in the context of such setups

impossible, similarly to the way in which a failure of the principle of the mutually indepen-

dent existence of spatially distant things (arguably) makes physical theory as we know it

impossible.

Before beginning let me note that the general approach represented by the investigation

into information causality is only one of a number of principle-theoretic approaches that one

can take regarding the question of how to distinguish quantum from super-quantum theo-

ries. In the kind of approach exemplified by the investigation into information causality, one

focuses on sets of static correlation tables associated with quantum and super-quantum the-

ories, and in particular one disregards the dynamics of (super-)quantum systems. There is

another family of principle-theoretic approaches to the question, however, wherein a richer

framework is considered that does include dynamics.3 Popescu & Rohrlich’s seminal (1994)

investigation is an example of the former type of approach, though they themselves con-

sider the latter, dynamical, approach to have the potential for deeper insight. For my part

I do not consider any particular approach to be superior. Principle-theoretic approaches to

the characterisation of quantum theory augment our understanding of the world by illumi-

nating various aspects of it to us. Which particular aspect of the world is illuminated by an

investigation will depend upon the particular question—and the framework which defines

it—that is asked. I am highly skeptical of the idea that any one framework is sufficient by

itself to illuminate all.

The rest of this paper will proceed as follows: I will introduce Popescu-Rohrlich (PR)

2I am referring to the chapter “Quantum Reality” of Demopoulos’s monograph On Theories, which is cur-

rently being prepared for posthumous publication.
3For further references, as well as an accessible description of one of these reconstructions of quantum

theory, see Koberinski & Müller (forthcoming).
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correlations in §2. In §3 I will introduce the ‘guessing game’ by which the principle of infor-

mation causality is standardly operationally defined. The principle of information causality

itself will be introduced in §4, wherein I will also describe how it can be used to derive

the Tsirelson bound. I will argue in that section that information causality has not been

sufficiently motivated to play the role of a foundational principle of nature, and in the

remainder of the paper I will consider how one might begin to provide it with such a mo-

tivation. This analysis begins in §5 where I describe an argument, due to Demopoulos, to

the effect that the no-signalling condition can be viewed as a generalisation, appropriate to

an irreducibly statistical theory, of Einstein’s principle of mutually independent existence

interpreted methodologically. Then in §6 I argue that a promising route toward success-

fully motivating information causality is to in turn consider it as a further generalisation of

no-signalling that is appropriate to a theory of communication. I describe, however, some

important obstacles that must yet be overcome if the project of establishing information

causality as a foundational principle of nature is to succeed.

2 Popescu-Rohrlich correlations

Consider a correlated state σ of two two-level subsystems.4 Let Alice and Bob each be

given one of the subsystems, and instruct them to travel to distinct distant locations. Let

p(A, B|a, b) be the probability that Alice and Bob obtain outcomes A and B, respectively,

after measuring their local subsystems with the respective settings a and b. If A, B ∈ {±1},
the expectation value of the outcome of their combined measurement is given by:

〈a, b〉 =
∑

i, j∈{1,−1}
(i · j) · p(i, j|a, b),

where A= i and B = j. Less concisely, this is:

〈a, b〉 = 1 · p(1, 1|a, b)− 1 · p(1, -1|a, b)− 1 · p(-1, 1|a, b) + 1 · p(-1, -1|a, b)

= p(same|a, b)− p(different|a, b).

Since p(same|a, b) + p(different|a, b) = 1, it follows that 〈a, b〉 + 2 · p(different|a, b) = 1,

so that:

p(different|a, b) =
1− 〈a, b〉

2
.

Similarly, we have that

p(same|a, b) =
1+ 〈a, b〉

2
.

Now imagine that σ is such that the probabilities for the results of experiments with

settings a, b, a′, b′, where a′ and b′ are different from a and b but arbitrary (Popescu &

Rohrlich, 1994, p. 382), are:

p(1, 1|a, b) = p(-1, -1|a, b) = 1/2,

p(1, 1|a, b′) = p(-1, -1|a, b′) = 1/2,

p(1, 1|a′, b) = p(-1, -1|a′, b) = 1/2,

p(1, -1|a′, b′) = p(-1, 1|a′, b′) = 1/2. (2.1)

4Elements of the exposition in this and the next section have been adapted from Bub (2012, 2016) and

Pawłowski et al. (2009).
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In other words, if at least one of their settings is one of a or b, then Alice’s and Bob’s results

are guaranteed to be the same. Otherwise they are guaranteed to be different. These

correlations are called ‘PR’ correlations after Popescu & Rohrlich (1994).

Alice’s marginal probability p(1A|a, b) of obtaining the outcome 1 given that she mea-

sures a and Bob measures b is defined as: p(1A, 1B|a, b) + p(1A, -1B|a, b). The no-signalling

condition requires that her marginal probability of obtaining 1 is the same irrespective of

whether Bob measures b or b′, i.e. that p(1A|a, b) = p(1A|a, b′), in which case we can write

her marginal probability simply as p(1A|a). In general, no-signalling requires that

p(A|a, b) = p(A|a, b′), p(A|a′, b) = p(A|a′, b′),

p(B|a, b) = p(B|a′, b), p(B|a, b′) = p(B|a′, b′). (2.2)

The reader can verify that the PR correlations (2.1) satisfy the no-signalling condition (2.2).

If we imagine trying to simulate the PR correlations (2.1) with some bipartite general

non-signalling system η, then the probability of a successful simulation (assuming a uniform

probability distribution over the possible joint measurements (a, b), (a, b′), (a′, b), and

(a′, b′)) is given by:

1

4

�

p(same|a, b) + p(same|a, b′) + p(same|a′, b) + p(different|a′, b′)
�

=
1

4

�

1+ 〈a, b〉
2

+
1+ 〈a, b′〉

2
+

1+ 〈a′, b〉
2

+
1− 〈a′, b′〉

2

�

=
1

2

�

1+
〈a, b〉+ 〈a, b′〉+ 〈a′, b〉 − 〈a′, b′〉

4

�

.

Notice that 〈a, b〉+〈a, b′〉+〈a′, b〉−〈a′, b′〉 is just the Clauser-Horne-Shimony-Holt (CHSH)

correlation expression (Clauser et al., 1969). So the probability of a successful simulation

of the PR correlations by η is:

p(successful sim) =
1

2

�

1+
CHSH

4

�

, (2.3)

with CHSH = 4 if η is itself a PR-system.5 As is well known, classically correlated systems

are bounded by |CHSH| ≤ 2. Thus the optimum probability of simulating PR correlations

with a bipartite classical system is given by 1/2(1 + 2/4) = 3/4. Quantum correlations are

bounded by |CHSH| ≤ 2
p

2.

3 Alice and Bob play a guessing game

At this point it will be convenient to change our notation. From now on I will refer to the

measurement settings a and a′ as 0 and 1, respectively, and likewise for b and b′. The

outcomes 1 and -1 will also be respectively relabelled as 0 and 1. This will allow us to

5The reader may be familiar with the use of the term ‘PR-box’ to refer to systems whose subsystems are

correlated as in (2.1). I find the term ‘box’ to be misleading since it conveys the idea of a spatially contiguous

region occupied by a combined system. Bub’s (2016) banana imagery is far less misleading in this sense.

Below I will not use figurative language at all, but will (boringly) refer merely to such entities as ‘PR-systems’,

‘PR-correlated systems’, and so on.
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describe PR correlations more abstractly using the exclusive-or (alternately: modulo two

addition) operator as follows:

M1 ⊕M2 = m1 ·m2 (3.1)

where capital letters refer to measurement outcomes and small letters to measurement

settings. To illustrate, for a given 01-experiment (formerly (a, b′)) there are two possible

outcomes: 00 and 11 (formerly: (1,1) and (-1,-1)), and we have: 0⊕0 = 0·1 and 1⊕1 = 0·1,

respectively.

Now imagine the following game. At the start of each round of the game, Alice and

Bob receive random and independently generated bit strings a = aN−1, aN−2, . . . , a0 and

b = bn−1, bn−2, . . . , b0, respectively, with N = 2n. They win a round if Bob is able to

guess the value of the bth bit in Alice’s list. For example, suppose Alice receives the string

a7a6a5a4a3a2a1a0, and Bob receives the string 110. Then Bob must guess the value of a6.

They win the game if Bob is able to guess correctly over any sequence of rounds.

Besides this the rules of the game are as follows. Before the game starts, Alice and

Bob are allowed to determine a mutual strategy and to prepare and share non-signalling

physical resources such as classically correlated systems, or quantum systems in entangled

states, or PR-systems, or other (bipartite) systems manifesting non-signalling correlations.

They then go off to distinct distant locations, taking with them their portions of whatever

systems were previously prepared. Once separated, Alice receives her bit string a and Bob

his bit string b. She is then allowed to send Bob one additional classical bit c, upon receipt

of which Bob must guess the value of Alice’s bth bit.

Alice and Bob can be certain to win the game if they share a number of PR-systems. I

will illustrate the case of N = 4, which requires three PR-systems (per round) labelled I,

II, and III. Upon receiving the bit string a = a3a2a1a0, Alice measures a0 ⊕ a1 on her part

of system I and gets the result AI . She then measures a2 ⊕ a3 on her part of system II and

gets the outcome AI I . She then measures (ao⊕AI)⊕ (a2⊕AI I) on her part of system III and

gets the result AI I I . She finally sends c = a0 ⊕ AI ⊕ AI I I to Bob. Meanwhile, Bob, who has

previously received b = b1 b0, measures b0 on his parts of systems I and II, and gets back

the results BI and BI I . He also measures b1 on system III with the result BI I I .

Bob’s next step depends on the value of b, i.e. on which of Alice’s bits he has to guess.

When b = b1 b0 = 00 (i.e. when Bob must guess the 0th bit) or b = b1 b0 = 01 (i.e. when

Bob must guess the 1st bit) his guess should be:

c ⊕ BI I I ⊕ BI = a0 ⊕ AI ⊕ AI I I ⊕ BI I I ⊕ BI . (3.2)

For since AI I I ⊕ BI I I =
�

(a0 ⊕ AI)⊕ (a2 ⊕ AI I)
�

· b1, we have:

a0 ⊕AI ⊕ AI I I ⊕ BI I I ⊕ BI

= a0 ⊕AI ⊕ b1(a0 ⊕ AI)⊕ b1(a2 ⊕ AI I)⊕ BI

= a0 ⊕AI ⊕ BI

= a0 ⊕ b0(a0 ⊕ a1). (3.3)

If b = 00 then (3.3) correctly yields a0. If b = 01 then (3.3) correctly yields a1.

Suppose instead that b = 10 or b= 11. In this case, Bob’s guess should be

c ⊕ BI I I ⊕ BI I = a0 ⊕ AI ⊕ AI I I ⊕ BI I I ⊕ BI I . (3.4)
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This is

= a0 ⊕ AI ⊕ b1(a0 ⊕ AI)⊕ b1(a2 ⊕ AI I)⊕ BI I

= (a0 ⊕AI)⊕ (a0 ⊕ AI)⊕ (a2 ⊕ AI I)⊕ BI I

= a2 ⊕ AI I ⊕ BI I

= a2 ⊕ b0(a2 ⊕ a3). (3.5)

If b = 11 then (3.5) correctly yields a3. If b = 10 then (3.5) correctly yields a2.

In general, given N − 1 PR-correlated systems per round,6 and a single classical bit per

round communicated by Alice to Bob, Alice and Bob can be certain to win the game for any

value of N . In other words, given these resources and a single classical bit communicated

to him by Alice, Bob can access the value of any single bit from her data set, however large

that data set is. This result further generalises to the case where Alice is allowed to send

not just one but m bits cm−1 . . . c0 to Bob in a given round, and Bob is required to guess

an arbitrary set of m bits from Alice’s data set. Note that if Alice is not allowed to send

anything to Bob, i.e., when m = 0, then Bob will not be able to access the values of any of

Alice’s bits irrespective of how many PR-systems they share. This is a consequence of the

fact that PR-correlations satisfy the no-signalling principle (2.2).

4 Information causality and the Tsirelson bound

As we saw in the last section, Alice and Bob can be certain to win the guessing game de-

scribed there if they share a number of PR-correlated systems prior to going off to their

respective locations. Note that if they do not use any correlated resources, they can still be

sure to win the occasional round if Alice always sends Bob the value of whatever bit is at

a previously agreed-upon fixed position ak in her list. In this case, Bob will be guaranteed

to guess correctly whenever b = k (but only then; otherwise he must rely on blind luck).

If Alice and Bob share a sequence of classically correlated random bits, on the other hand,

then Bob will be able to access the value of a single in general different ai in Alice’s list on

each round.

Now consider the case where Alice and Bob share general no-signalling systems, i.e. bi-

partite systems such that the correlations between their subsystems satisfy the no-signalling

condition. Recall that the probability that a non-signalling system simulates a PR-system

on a given run depends on the value of CHSH in (2.3) that is associated with it. For conve-

nience we will define E =df CHSH/4 so that (2.3) becomes:

p(successful sim) =
1

2
(1+ E). (4.1)

When E = 1 for a given non-signalling system, then it just is a PR-system, and the probability

of a successful simulation is 1. When E < 1, then for given settings m1, m2, the values of the

outputs M1, M2, will in general not satisfy the relation (3.1), i.e. M1 ⊕ M2 will not always

equal m1 ·m2. For a given attempted simulation, let us say that M2 is ‘correct’ whenever

(3.1) holds, and ‘incorrect’ otherwise.7

6These are to be arranged in an inverted pyramid so that the results of Alice’s (respectively, Bob’s) local

measurements on the first 2n−1 PR-systems are used to determine the local settings for her (his) next 2n−2

measurements, and so on, for (n − i) ≥ 0. Note that the cost in the number of PR-systems needed scales

exponentially with respect to the length of b. I will return to this point later.
7There is of course no reason why we should not say that M1 rather than M2 is incorrect, but for the

analysis that follows it is convenient to take Bob’s point of view.
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Recall that in the N = 4 game above, at the end of each round, Bob guesses either (i)

c ⊕ BI I I ⊕ BI , or (ii) c ⊕ BI I I ⊕ BI I , depending on the value of b. We will consider only case

(i), as the analysis is similar for (ii). If both BI and BI I I are ‘correct’, then for that particular

round, the non-signalling systems will have yielded the same guess for Bob as PR-systems

would have yielded:

(c ⊕ BI I I ⊕ BI)NS = (c ⊕ BI I I ⊕ BI)PR. (4.2)

Note that if both BI and BI I I are incorrect, (4.2) will still hold, since in general x1 ⊕ x2 =

x1 ⊕ x2. So either way Bob will guess right. The probability of an unsuccessful simulation

is

1− 1

2
(1+ E) =

1

2
(1− E).

Thus the probability that Bob makes the right guess on a given round in the N = 4 game is:

�

1

2
(1+ E)

�2

+

�

1

2
(1− E)

�2

=
1

2
(1+ E2).

In the general case, for N = 2n, one can show (Pawłowski et al., 2009; Bub, 2012, 2016)

that the probability that Bob correctly guesses Alice’s bth bit is

pb =
1

2
(1+ En). (4.3)

The binary entropy h(pb) associated with pb is given by

h(pb) = -pb log2 pb − (1− pb) log2 (1− pb).

In the case where Bob has no information about Alice’s bth bit, pb = 1/2 and h(pb) = 1. If

Alice then sends Bob m bits, then in general Bob’s information about that bit will increase

by some non-zero amount. Pawłowski et al. (2009) propose the following constraint on

this quantity, which they call the ‘information causality’ principle:

The information gain that Bob can reach about a previously unknown to him

data set of Alice, by using all his local resources and m classical bits communi-

cated by Alice, is at most m bits (2009, p. 1101).

For example, assuming that the N = 2n bits in Alice’s bit string a are unbiased and inde-

pendently distributed, then if Alice sends Bob a single bit (i.e. when m = 1), information

causality asserts that Bob’s information about the bth bit in Alice’s string may increase by

no more than 1/2n, i.e.,

h(pb)≥ 1− 1

2n
. (4.4)

As Pawłowski et al. (2009) show,8 the principle is satisfied within quantum mechanics. But

within any theory which permits correlations with a value of E exceeding 1/
p

2 (i.e. any

theory which allows correlations above the Tsirelson bound), one can find an n such that

for a given m the principle is violated (for example, let E = .72, m = 1, and n = 10).

Given that any correlations above the Tsirelson bound will demonstrably violate the

principle in this sense, it is tempting to view information causality as the answer to the

8See also Pawłowski & Scarani (2016).
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question (i) of why nature does not allow correlations above this bound. And since the

Tsirelson bound represents the maximum value of the CHSH expression for quantum corre-

lations, one is further tempted to view information causality as the answer to the question

(ii) of why only quantum correlations are allowable in nature. Indeed, Pawłowski et al.

suggest that information causality “might be one of the foundational properties of nature”

(2009, p. 1101).

There is a subtlety here, however. The set of (bipartite) quantum correlations forms a

convex set which can be represented as a multi-dimensional region of points such that the

points within this region that are furthest from the centre are at the Tsirelson bound (Bub,

2016, §5.1). Information causality disallows correlations beyond this bound, as we saw. It

also disallows some correlations below the bound that are outside of the quantum convex

set (for a discussion, see Pawłowski & Scarani, 2016). However there is numerical evidence

that there exist correlations within the bound but outside of the quantum convex set that

satisfy the information causality principle (Navascués et al., 2015). So it appears unlikely

(though this was not known in 2009) that information causality can provide an answer

to question (ii). It nevertheless remains promising as a principle with which to answer

question (i) and can arguably still be thought of as a fundamental principle in that sense.

Analogously, the fact that super-quantum no-signalling correlations are possible does not,

in itself, undermine the status of no-signalling as a fundamental principle.

The information causality principle must be given some independent motivation if it is

to play this explanatory role, however. Of course, the statement that the communication

of m bits can yield no more than m bits of additional information to a receiver about a

data set unknown to him is an intuitive one. But foundational principles of nature should

require more for their motivation than such bare appeals to intuition. After all, quantum

mechanics, which the principle aims to legitimate, arguably already violates many of our

most basic intuitions. Pawłowski et al. (2009) unfortunately do not say very much to mo-

tivate information causality. But two ideas can be gleaned from statements made in their

paper. The first is that in a world in which violations of information causality could occur,

“certain tasks [would be] ‘too simple”’ (p. 1101). The second is that in such a world there

would be “implausible accessibility of remote data” (ibid.). The former idea has been ex-

pressed in this general context before. Van Dam (2013 [2005]), notably, shows that in a

world in which PR-correlations exist and can be taken advantage of, only a trivial amount

of communication is required to perform any distributed computational task. Van Dam ar-

gues (ibid., p. 12) that this is a reason to believe that such correlations cannot exist, for

they violate the principle that “Nature does not allow a computational ‘free lunch”’ (ibid., p.

9).9 Bub (2012, pp. 180-181) echoes this thought by listing examples of distributed tasks

(‘the dating game’ and ‘one-out-of-two’ oblivious transfer) which would become implausibly

trivial if PR-correlated systems could be used.

Later in this paper I will argue that although such statements are unsatisfactorily vague,

they nevertheless get at something that is importantly right; although they are right in, per-

haps, a different sense than their authors envision. For now let me just say that even if

one accepts van Dam’s argument that trivial communication complexity is implausible and

should be ruled out—and that this should constitute a constraint on physical theory—not

all correlations above the Tsirelson bound in fact result in trivial communication complexity.

Brassard et al. (2006) have extended van Dam’s result by showing that (probabilistic) triv-

ial communication complexity can be achieved for values of E >
p

6/3. But this still leaves

a range of values for E open; physical correlations with associated values of E between the

9Cf. Aaronson (2005).
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quantum mechanical maximum of 1/
p

2 and
p

6/3 have not been shown to result in trivial

communication complexity and cannot—at least not yet—be ruled out on those grounds.

Thus the avoidance of trivial communication complexity cannot be used to motivate infor-

mation causality in the way suggested by the statements of Pawłowski et al. (2009). In

fairness, to say as they do that certain tasks would be ‘too simple’ in a world in which infor-

mation causality is violated is not the same as saying that they would be trivial. The task

remains, then, of expressing more precisely what is meant by ‘too simple’ in a way that is

sufficient to motivate ruling out theories which violate the information causality principle

in a less than maximal way (in particular with a value of E ≤
p

6/3). We will return to this

point later.

Regarding their second idea—that a world in which information causality is violated will

lead to the “implausible accessibility of remote data” (p. 1101)—Pawłowski et al. again

do not say enough,10 although the idea is perhaps alluded to implicitly in another assertion

they (too briefly) make, namely that information causality generalises the no-signalling

principle (ibid., p. 1103). Fortunately the idea of implausible accessibility is expanded

upon by Bub (2012), who motivates it in the following way:

the intuition is that if the correlations can be exploited to distribute one bit

of communicated information among the N unknown bits in Alice’s data set,

the amount of information distributed should be no more than 1
N

bits, because

there can be no information about the bits in Alice’s data set in the previously

established correlations themselves (p. 180).

Partly for this reason, Bub argues that the principle is misnamed. Drawing on the idea of

implausible accessibility he argues that ‘information causality’ should rather be referred to

as information neutrality: “The principle really has nothing to do with causality and is better

understood as a constraint on the ability of correlations to enhance the information content

of communication in a distributed task” (ibid., emphasis in original). Bub reformulates the

principle as follows:

Correlations are informationally neutral: insofar as they can be exploited to

allow Bob to distribute information communicated by Alice among the bits in

an unknown data set held by Alice in such a way as to increase Bob’s ability

to correctly guess an arbitrary bit in the data set, they cannot increase Bob’s

information about the data set by more than the number of bits communicated

by Alice to Bob (ibid.).

Stated in this way the principle sounds plausible and seems, intuitively, to be correct.

However if the principle is to be of aid in ruling out classes of physical theory then it should

be more than just intuitively plausible. If the goal of answering the question ‘Why the

Tsirelson bound?’ is to give a convincing reason why correlations that are above the bound

should be regarded as impossible, then if the fact that such correlations violate informa-

tional neutrality is to be one’s answer, one should give an independent motivation for why

correlations must be informationally neutral. One might, for instance, motivate informa-

tion neutrality by showing how it generalises or gives expression in some sense to a deeper

10Pawłowski & Scarani (2016, p. 429) do expand on the idea of implausible accessibility slightly: “we have

transmitted only a single bit and the PR-boxes are supposed to be no-signalling so they cannot be used to

transmit the other. Somehow the amount of information that the lab of Bob has is larger than the amount

it received. Things like this should not happen.” I do not think this adds anything substantial to the idea

expressed by Pawłowski et al. (2009) that such a situation is ‘implausible’.
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underlying principle that is already well-motivated, or by pointing to ‘undesirable conse-

quences’ of its failure. The consequence of a ‘free computational lunch’ given the existence

of correlations above the bound, if it could be demonstrated, could (perhaps) constitute an

example of the latter kind of motivation.

This said, there is a different way to think of the question ‘Why the Tsirelson bound?’

for which Bub’s explication of information causality in terms of informational neutrality is

both a full answer and indeed an illuminating and useful one. In this sense the question

represents a desire to understand what the Tsirelson bound expresses about correlations

which violate it. Information neutrality answers this question by directing attention to a

feature that no correlations above the bound can have. This feature, moreover, is one that

we can easily grasp and explicitly connect operationally with our experience of correlated

physical systems. On such a reading of the question, to answer ‘information neutrality’ is

not of course to rule out that the world could contain non-informationally-neutral physical

correlations. But on this view ruling out such a possibility is not the point, which is rather

to provide a physically meaningful principle to help us to understand what our current

physical theories, assuming they are to be believed, are telling us about the structure of the

world.

In the remainder of this paper, however, I will continue to consider the information

causality/neutrality principle as a possible answer in the first sense to the question ‘Why

the Tsirelson bound?’. I will continue to consider, that is, whether there is some independent

way of motivating the conclusion that correlations which violate the condition should be

ruled out.

5 The ‘being-thus’ of spatially distant things

Our goal is to determine whether there is some sense in which we can motivate the idea

that information causality must be satisfied by all physical theories which treat of corre-

lated systems. I will now argue that some insight into this question can be gained if we

consider the analogous question regarding no-signalling. As I mentioned earlier, the no-

signalling condition (2.2) is not a relativistic constraint per se—in itself it is merely a re-

striction on the marginal probabilities associated with experiments on the subsystems of

combined systems—but its violation entails the ability to instantaneously signal, which is

in tension if not in outright violation of the constraints imposed by relativistic theory.11

Indeed, the independently confirmed relativity theory can in this sense be thought of as

an external motivation for thinking of the no-signalling principle as a constraint on the

marginal probabilities allowable in any physical theory.

There is an arguably deeper way to motivate no-signalling, however, that can be drawn

from the work of Einstein and which has been expanded upon by Demopoulos.12 In the

course of expressing his dissatisfaction with the ‘orthodox’ interpretation of quantum theory,

Einstein described two foundational ideas—what Demopoulos calls local realism and local

action. Realism in general, for Einstein, is a basic presupposition of any physical theory.

It amounts to the claim that things in the world exist independently of our capability of

knowing them; i.e.

the concepts of physics refer to a real external world, i.e., ideas are posited of

things that claim a ‘real existence’ independent of the perceiving subject (bodies,

11For a discussion of signalling in the context of special and general relativity see Maudlin (2011, Ch. 4).
12This is done in Demopoulos’s monograph On Theories; see fn. 2.
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fields, etc.), and these ideas are, on the other hand, brought into as secure a

relationship as possible with sense impressions (Einstein 1948, as translated by

Howard 1985, p. 187).

Local realism—alternately: the ‘mutually independent existence’ of spatially distant

things—is the idea that things claim independent existence from one another insofar as

at a given time they are located in different parts of space. Regarding this idea, Einstein

writes:

Without such an assumption of the mutually independent existence (the ‘being

thus’) of spatially distant things, an assumption which originates in everyday

thought, physical thought in the sense familiar to us would not be possible

(ibid.)

In the concrete context of a physical system made up of two correlated subsystems S1

and S2 (such as that described in the thought experiment of Einstein et al. 1935), local

realism requires that

every statement regarding S2 which we are able to make on the basis of a com-

plete measurement on S1 must also hold for the system S2 if, after all, no mea-

surement whatsoever ensued on S1 (Einstein 1948, as translated by Howard

1985, p. 187).

In other words the value of a measurable theoretical parameter of S2 must not depend

on whether a measurement is made on a system S1 that is located in some distant region of

space. (And of course it must also not depend upon the kind of measurement performed on

S1; cf. Howard 1985, p. 186.) Demopoulos notes that local realism as it is applied in such

a context is a condition imposed on the measurable properties of the theory and hence it is

a condition that is imposed at a theory’s ‘surface’ or operational level. This is an important

point that I will return to later.

In the same Dialectica article Einstein also formulated a second principle:

For the relative independence of spatially distant things (A and B), this idea is

characteristic: an external influence on A has no immediate effect on B; this is

known as the ‘principle of local action’ ... The complete suspension of this basic

principle would make impossible the idea of the existence of (quasi-) closed

systems and, thereby, the establishment of empirically testable laws in the sense

familiar to us (ibid., p. 188).

The thought expressed in the second part of this statement seems similar to Einstein’s

earlier assertion that ‘physical thought’ would not be possible without the assumption of

local realism. However Demopoulos convincingly argues that the principle of local real-

ism, though it receives support from the principle of local action, is a conceptually more

fundamental principle than the latter. For conceivably the principle of local realism—i.e.

of ‘mutually independent existence’—could be assumed to hold, Demopoulos argues, even

in the absence of local action. Indeed this is so in Newtonian mechanics. For example,

Corollary VI to the laws of motion (Newton, 1999, p. 423) states that a system of bodies

moving in any way whatsoever with respect to one another will continue to do so in the

presence of equal accelerative forces acting on the system along parallel lines. This makes it
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possible to treat the system of Jupiter and its moons, for example, as a quasi-closed system

with respect to the sun. For owing to the sun’s great distance, the forces exerted by it upon

the Jovian system will be approximately equal and parallel. Thus despite its violation of

local action, Demopoulos argues convincingly that Einstein would not (or anyway should

not) have regarded a theory such as Newtonian mechanics as unphysical. It is still a basic

methodological presupposition of Newtonian mechanics that spatially distant systems have

their own individual ‘being thus-ness’, the description of which is made possible via the the-

ory’s characteristic methodological tool of successive approximation, in turn made possible

by, for example, Corollary VI and the notion of quasi-closed system implied by it.13

Einstein’s principle of local realism or mutually independent existence presupposes the

framework of classical physics, which itself presupposes the framework of classical proba-

bility theory. Demopoulos argues, however, that the conceptual novelty of quantum theory

consists in the fact that it is an ‘irreducibly statistical theory’, precisely in the sense that

its probability assignments, unlike those described by classical probability theory, cannot

in general be represented as weighted averages of two-valued measures over the Boolean

algebra of all possible properties of a physical system (see also Pitowsky, 1989, 2006; Dick-

son, 2011). This raises the question of whether one can formulate a generalisation of the

mutually independent existence condition that is appropriate for an irreducibly statistical

theory such as quantum mechanics.14

Recall that Einstein’s mutually independent existence condition, in the context of pre-

viously interacting but now spatially separated systems, is a condition that is imposed on

the level of the measurable parameters of a theory and hence at its ‘surface’ or operational

level. It requires, in particular, that the value of a measurable property of a system S1 in

some region of physical space R1 is independent of what kind of measurement (or whether

any measurement) is performed on some system S2 in a distant region of space R2.

Demopoulos argues that in the context of an irreducibly statistical theory such as quan-

tum mechanics, it is in fact the no-signalling condition which generalises the mutually

independent existence condition. It does so in the sense that like mutually independent

existence, no-signalling is a surface-level constraint on the local facts associated with a

particular system, requiring that these facts be independent of the local surface-level facts

associated with other spatially distant systems. Unlike the mutually independent existence

condition, however, these local facts refer to the marginal probabilities associated with a

system’s measurable properties rather than with what one might regard as those proper-

ties themselves. Specifically, no-signalling asserts that the marginal probability associated

with a measurement on a system S1 at a given location R1 is independent of what kind

of measurement (or whether any measurement) is performed on some system S2 in a dis-

tant region of space R2.15 In this way no-signalling allows us to coherently treat systems

in different regions of physical space as if they had mutually independent existences—i.e.

as quasi-closed systems in the sense described above—and thus allows for the possibility

of ‘physical thought’ in a methodological sense and for “the establishment of empirically

testable laws in the sense familiar to us” (Einstein 1948, as translated by Howard 1985, p.

188). Demopoulos argues that quantum mechanics may in this way be thought of as a local

13For a detailed discussion of Newton’s method of successive approximations and the methodological role

therein played by Corollary VI, see Harper (2011). For a discussion of Corollary VI in the context of general

relativity, see DiSalle (2006).
14I am not claiming here that Einstein himself would have been inclined to follow this line of reasoning.
15It is worth noting that the parameter independence condition (Shimony 1993) is just the no-signalling

condition extended to include a hypothetical, possibly hidden, set of underlying parameters.
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b0 a2 a3 a2 ⊕ a3 G

0 0 0 0 0

0 0 1 1 0

0 1 0 1 1

0 1 1 0 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1

Figure 1: A summary of the possible outcomes associated with Bob’s measurement G (his ‘guess’)

in the guessing game of §3, based on Eq. (3.5). If all atomic variables are assumed to be equally

likely to take on a value of 0 or 1, then G is probabilistically independent of Alice’s measurement

setting a2 ⊕ a3, but not of its components a2 and a3, since, for example, p(G = 0|a2 = 0) = 3/4 6=
p(G = 0|a2 = 1), and p(G = 0|a3 = 0) = 3/4 6= p(G = 0|a3 = 1).

theory of nonlocal correlations.

6 Mutually independent existence and communication

In the previous section we saw that no-signalling can be regarded as generalising a cri-

terion for the possibility of ‘physical thought’ originally put forward by Einstein. Since

quantum mechanics satisfies no-signalling, one may think of the theory, even under its or-

thodox interpretation, as in this sense legitimated methodologically by the principle. As

we saw in §§2-4, however, other conceivable physical theories—some of which allow for

stronger-than-quantum correlations—satisfy the condition as well. In light of this, ‘infor-

mation causality’ (or ‘information neutrality’, in Bub’s terminology) was put forward by

Pawłowski et al. (2009) as an additional foundational principle for more narrowly circum-

scribing the class of physically sensible theories. But in §4 I argued that the principle re-

quires further motivation before it can legitimately be seen as playing this role. With our

recent discussion of no-signalling in mind, let us now consider the proposal of Pawłowski

et al. again.

No-signalling asserts that the marginal probabilities associated with Alice’s local mea-

surements on a system SA in a region RA are independent of what kind of measurement (or

whether any measurement) is performed by Bob locally on a system SB in a distant region

RB. Information causality asserts that Bob can gain no more than m bits of information

about Alice’s data set if she sends him only m bits. Pawłowski et al. (2009, p. 1101) remark

that “The standard no-signalling condition is just information causality for m = 0”. Bub

(2012, p. 180) considers this remark to be misleading, but presumably all that Pawłowski

et al. intend is that if Alice and Bob share signalling correlations, then Alice may provide

Bob with information about her data set merely by measuring it, i.e. without actually send-

ing him any bits. The information causality principle disallows this for any value of E, as

does no-signalling.

On the other hand when (for instance) m = 1, then in the case where they have previ-

ously shared PR-correlated systems (i.e. systems such that E = 1), one might argue that

there arises a subtle sense in which the probabilities of Bob’s measurement outcomes can

be influenced by Alice’s remote measurement settings. Consider the outcome of Bob’s com-

bined measurement G =df c ⊕ BI I I ⊕ BI I , i.e. his ‘guess’ (3.4). From (3.5) it would appear
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that Bob’s outcome is in part determined by the setting of Alice’s measurement on system

II, a2 ⊕ a3, since this appears explicitly in the equation. However in this case appearances

are misleading, for the reader can verify that G is probabilistically independent of a2 ⊕ a3

(see figure 1). G is nevertheless probabilistically dependent on both of a2 and a3 consid-

ered individually. So one might say that although the outcome of G is not influenced by

any of Alice’s measurement settings per se, it does seem to be influenced by the particular

way in which those settings have been determined (despite the fact that neither a2 nor a3

are directly used by Alice to determine the value of the bit that she sends to Bob, c). Put a

different way, the constituents of Alice’s measurement setting on system II respectively de-

termine the two possible outcomes of Bob’s guess whenever he performs the measurement

G (for a given b0). Likewise in the case where Bob measures G′ = c⊕BI I I⊕BI (i.e. his guess

(3.2)); the two possible outcomes of G′ are, respectively, determined by the constituents of

Alice’s measurement settings on system I, a0 and a1 (for a given b0).

Note that since a2 and a3 (respectively: a0 and a1), besides being the constituents of

Alice’s measurement settings on II (respectively: I), are also in fact the values of bits in

Alice’s list a, the above considerations resonate with Bub’s remark (quoted above) that

stronger-than-quantum correlations are such that they may themselves include information

about Alice’s data set in the context of a game like that described in §3. These considerations

further suggest a sense, pace Bub, in which it could be argued that the name ‘information

causality’ is indeed apt. For the bit of information c that Alice sends to Bob can be thought

of as the ‘enabler’ or ‘cause’, at least in a metaphorical sense, of Bob’s ability to use this

aspect of the correlations to his advantage (cf. Pawłowski & Scarani, 2016, §3.4).16

Now we saw in the last section that Einstein’s principle of mutually independent ex-

istence can be thought of as a methodological principle such that it (arguably) must be

presupposed if ‘physical thought’ is to be possible. We saw that this principle holds in the

context of Newtonian mechanics, which one may think of as in that sense a local theory

of nonlocal forces. We also saw that a generalisation of mutually independent existence

appropriate for an irreducibly statistical theory—i.e. the no-signalling principle—holds in

the context of quantum mechanics, and that it may thus be thought of analogously as a

local theory of nonlocal correlations.

The context of our current investigation is one which involves considering communi-

cating agents capable of building and manipulating physical systems—thought of now as

resources—for their own particular purposes. Our context, that is, is the ‘practical’ one as-

sociated with quantum computation and information theory, recently described by Cuffaro

(2017, forthcominga). As Cuffaro has argued, this context of investigation is in fact distinct

from the more familiar ‘theoretical’ context that is associated with more traditional founda-

tional investigations of quantum mechanics. A different way of putting this is that quantum

computation and information theory, like the science of thermodynamics, is a ‘resource’ or

‘control’ theory (Myrvold, 2011; Wallace, 2014; Ladyman, forthcoming).

Without the methodological presupposition of mutually independent existence—

according to which systems that occupy distinct regions of space are to be regarded as

existing independently of one another—the idea of a quasi-closed system that can be sub-

jected to empirical test, and in this sense ‘physical thought’, would (arguably) not be pos-

sible. Analogously, one might argue that in the context of a theory of communication—i.e.

of the various resource costs associated with different communicational protocols and their

interrelations—that it is necessary to presuppose that some significant operational distinc-

tion can be made between the parties involved in a communicational protocol. One might

16Perhaps, though, a better name would be the ‘no information causality’ principle.
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argue, that is, that it is constitutive of the very idea of communication that it is an activity

that takes place between what can be effectively regarded as two mutually independently

existing entities for the purposes of quantifying the complexity of a particular protocol.17

Without the ability to make such an effective distinction between the sender and the re-

ceiver of information, it is not at all obvious how one should begin to quantify the amount

of information that is required to be sent from Alice to Bob in the context of a particular

protocol. Arguably this is the situation one is confronted with in the context of the game

described above when it is played with super-quantum correlated systems. For the correla-

tions, shared prior to the beginning of the game, upon being ‘activated’ by Alice’s classical

message c to Bob, can be said to contribute something over and above c to the information

Bob then gains about Alice’s data set. Indeed when Alice and Bob share maximally super-

quantum systems (i.e. PR-systems), then after receiving c there is a sense in which Alice

and her system can be said to be ‘a part’ of Bob and his system in the context of the game

being played. Indeed from this point of view the fact that the complexity associated with

any distributed computational task is trivial when PR-correlations are used seems natural.

For after receiving c Bob has immediate access to the value of any single bit of Alice’s that

he would like.

One might object that something similar could be said in the case where Alice and Bob

share an entangled quantum system. Could not one say, that is, that Alice and Bob become

likewise inseparable or ‘nonlocally joined’ (cf. Howard, 1989) upon sharing such a system in

the context of the information causality game? And yet no one imagines the very possibility

of the sciences of quantum information theory and quantum communication complexity to

have been undermined as a result. This objection, however, appeals to a characterisation

of the situation involving the sharing of an entangled quantum system that pertains to the

metaphysical level of description. It therefore does not undermine the considerations of

the previous paragraph. Consider the description of a classical bipartite communicational

protocol. Both before and after communication has taken place, such a description may be

regarded as decomposable into three parts: a sender, a receiver, and something commu-

nicated between them. In the case of a quantum protocol which utilises entangled states

the situation regarding the possibility of this decomposition is more complex as a result of

the well-known conceptual intricacies associated with entangled quantum states. However

whether or not Alice and her system, and Bob and his system, are ‘in reality’ inseparably en-

tangled with one another, it remains the case, both before (because of quantum mechanics’

satisfaction of the no-signalling condition) and after the communication of a classical mes-

sage (because of quantum mechanics’ satisfaction of the information causality condition),

that Alice, Bob, and the message c may be operationally distinguished from one another in

the sense that Bob cannot take advantage of the underlying connection he has with Alice

and her system via the correlations he shares with her to gain information about her data

set over and above what has been provided to him via c. It is true that previously shared

quantum correlations enable one to communicate with greater efficiency than is possible

using only previously shared classical correlations. As (4.3) shows, Bob has a higher proba-

bility of guessing correctly in the information causality game if he and Alice have previously

shared quantum as opposed to classical correlations.18 And the question arises regarding

the source of this increased communicational power. But whatever that source is, it is not

17Cf. Hushilevitz & Nisan (1997, p. x). Cf. also Maroney & Timpson’s (forthcoming) emphasis on the

initialisation and readout stages of an information processing task.
18This is true in other contexts besides that of the information causality game. See, e.g., Buhrman et al.

(2001); Brukner et al. (2002, 2004).
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the case that it manifests itself in nonlocality or nonseparability at the operational level.19

But the game described by Pawłowski et al. (2009) involves the communication of clas-

sical bits from Alice to Bob. Might not this limitation in Bob’s ability to take advantage

of his underlying connection with Alice be overcome if we allow her to send him qubits

rather than only classical bits? Indeed, it is well known that if Alice sends a qubit to Bob

that is entangled with a qubit that is already in his possession, then Alice and Bob can im-

plement the ‘superdense coding’ protocol (Nielsen & Chuang, 2000, §2.3); Alice’s sending

of a single qubit to Bob according to this protocol will allow him to learn two bits’ worth

of classical information.20 Does this not undermine the claim that quantum correlations

contribute nothing over and above whatever message is sent between Alice and Bob to the

information gained by him?

It does not. On the one hand, before the transmission of the qubit(s) from Alice to

Bob, no-signalling implies that Alice and Bob can be considered as operationally separable

despite their sharing an entangled system, as we have seen above. On the other hand, in the

superdense coding protocol, after Alice transmits her message to Bob, all of the correlated

quantum system that was initially shared is now in Bob’s possession. So after transmission

there is no sense in which Bob can take advantage of correlations shared with Alice at that

time. In a sense Alice’s message to Bob ‘just is’ information regarding the correlations that

exist between them at the time at which she sends it.21

As we have seen, when Alice and Bob share PR-correlated systems, they can win a round

with certainty in the m= 1 game for any N by exchanging a single classical bit. Earlier I also

mentioned van Dam’s (2013 [2005]) result to the effect that PR-correlated systems allow

one to perform any distributed computational task with only a trivial amount of commu-

nication. These results are striking. However the reader may nevertheless feel somewhat

suspicious of them for the following reason: the number of PR-correlated systems required

to implement these protocols, as we have seen, is great. With respect to the length n of

Bob’s bit string b (arguably the most appropriate measure of input size for the game), im-

plementing the solution described above requires that they share 2n−1 PR-systems; i.e. the

number of PR-systems required grows exponentially with the input size. Likewise for van

Dam’s protocol.22 A reduction in communication complexity has therefore been achieved

only at the expense of an increase in computational complexity. One might argue that it

is in this sense misleading to consider the complexity of implementing the protocol with

PR-correlated systems to be trivial—that they provide us with a ‘free lunch’.

I will return to this point later. But for now let me say that, arguably, this is not a

relevant consideration in this context. The theories of communication complexity and com-

putational complexity are distinct sub-disciplines of computer science. The goal of commu-

nication complexity is to quantify the amount of communication necessary to implement

19Compare this with Buhrman et al. (2001), who writes that entanglement enables one to “circumvent

(rather than simulate) communication” (p. 1831, emphasis in original), and also with Bub (2010)’s discus-

sion of entanglement in the context of quantum computation, which he argues allows a quantum computer

to compute a global property of a function by performing fewer, not more, computations than classical com-

puters.
20In the context of a suitably generalised version of the information causality game, it turns out that a

two-bit information gain per qubit constitutes an upper bound (Pitalúa-García, 2013).
21This conclusion is essentially that of Spekkens (2007, p. 032110-20). Fascinatingly, Spekkens also shows

that the superdense coding protocol can be implemented in his toy classical theory.
22Specifically, van Dam’s (2013 [2005]) protocol requires a number of systems that can grow exponentially

with respect to the input size of an instance of the Inner Product problem, after which the solution can be

efficiently converted into a solution to any other distributed computational problem.
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various communicational protocols. For this purpose one abstracts away from any consid-

eration of how complicated a computational system must be in other respects (Hushilevitz

& Nisan, 1997). The question addressed in van Dam (2013 [2005]) and in Pawłowski et al.

(2009); Pawłowski & Scarani (2016) concerns whether the availability of PR-correlated

systems would make communicational, not computational, complexity theory superfluous.

From this point of view any previously prepared PR-correlated systems are viewed as ‘free

resources’ for the purposes of the analysis.

This said, one could imagine that the subsystems of PR-correlated systems employ some

hidden means of communication with one another, and argue that this must be included in

the complexity one ascribes to the protocol. To do so, however, would constitute a descent

below the empirically verifiable level. Obviously this is not in itself objectionable. But it is

hard to see what use this would be to a theory of communicational complexity, which after

all, like computational complexity (Cuffaro, forthcomingb), aims to be a practical science

whose goal is to guide us in making distinctions in practice between real problems related

to data transmission that are of varying levels of difficulty. In this sense appealing to an

underlying communication that takes place between the subsystems of PR-systems does not

help with the conclusion that complexity theory, at least in an operational sense, becomes

superfluous if PR-correlated systems are available. The objection described in the previous

paragraph is nevertheless an important one that I will return to.

Above I have motivated the idea, of Pawłowski et al. (2009, p. 1101), that the kind of

accessibility of remote data that is possible given the existence of super-quantum correlated

systems is “implausible”. I have done so by describing, pace Bub (2012), the sense in which

information causality can be taken to generalise no-signalling. In so doing I have gestured at

a connection between the idea of implausible accessibility and the prima facie separate idea

that a world in which super-quantum correlated systems exist would be ‘too good to be true’

in a communicational complexity-theoretic sense. My arguments have been mainly concep-

tual. I have argued, that is, that a kind of conceptual ambiguity at the operational level

between the parties to a communicational protocol may result if stronger-than-quantum

correlations are available to use. When the stronger-than-quantum correlations are strong

enough (i.e. when E >
p

6/3), this results in the trivial communicational complexity of any

distributed computational task. But trivial communicational complexity does not result, or

anyway has not yet been shown to result, for values of E above the Tsirelson bounded value

of 1/
p

2 that are below
p

6/3. This is despite the fact that the conceptual ambiguity I have

described is present for all such values of E.

Thus one may wonder whether ‘a little’ ambiguity may be tolerable for practical

purposes—whether, that is, a theory which admits correlations which only ‘weakly’ violate

the Tsirelson bound should be admitted within the space of possible physical theories from

the point of view of the principle. The situation could be seen as analogous to the situation

one is faced with in Newtonian Mechanics, in fact, for Corollary VI (which I described in

§5) only guarantees that a given system can be treated as (quasi-) closed when it is acted

upon by forces which are exactly equal in magnitude and exactly parallel. Clearly this is

not the case for the Jovian system vis-á-vis the sun, for example. Corollary VI nevertheless

functions as a methodological tool in that it allows us to maintain the idea of the mutually

independent existence of spatially distant things as a methodological principle and treat

the Jovian system, for the practical purpose of analysing its internal motions, as unaffected

by the forces exerted upon it by the sun.

There is much work to be done before information causality can be considered as suc-

cessful in ruling out—in the conceptual sense described in the previous paragraph—all
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theories whose correlations violate the Tsirelson bound. Irrespective of whether this goal

can be achieved, however, this does not (necessarily) undermine the status of information

causality motivated as a methodological principle in something like the way that I have

done in this paper. In particular, information causality would be especially compelling if

one could draw a relation between the degree of violation of the principle and the degree

of ‘superfluousness’ of the resulting theory of communication complexity with an eye to

distinguishing ‘weak’ violations of the Tsirelson bound from more objectionable violations.

Thus there is much work to do in any case.

I will close with the following more fundamental objection. Why should nature care

whether beings such as us are able to engage in communication complexity theory? In fact

there is no fundamental reason why nature should care. Analogously, there is no funda-

mental reason why nature should care whether beings such as us can do physics. But the

goal of empirical science is not to derive the structure of the world or its constituent entities

by way of a priori or ‘self-evident’ principles. It is rather to make sense of and explain our

experience of and in the world. In fact we have a science which is called physics. And

in fact we have a science which we refer to as communicational complexity theory. The

principle of mutually independent existence, and analogously the principle of information

causality, may be thought of as answers to the question: ‘how are such facts possible?’ (cf.

Kant, 1998 [1781], pp. B20-B21).

That said, these may not be definitive answers. The necessity of presupposing Einstein’s

mutual independence and local action principles for the purposes of theory testing has been

questioned by Howard (1989). In a similar way, one might argue that it is misleading to

think that the existence of correlated systems which ‘strongly’ violate the Tsirelson bound

makes a science of communication complexity impossible. Rather, one might conclude

instead that the idea of a science of communication complexity that is wholly independent of

computational complexity-theoretic considerations is unachievable. This, one might argue,

is the real lesson of the fact that an exponential number of PR-correlated systems is required

to implement Alice’s and Bob’s solution to their guessing game. Yet even if this were all

that we learned from information causality, it would still represent a significant advance in

our understanding of the structure of our theoretical knowledge—an understanding of the

physically motivated constraints under which two mathematical theories may be regarded

as mutually independent.

7 Summary

Above I have argued that the principle of information causality has not yet been sufficiently

motivated to play the role of a foundational principle of nature, and I have described a

way in which one might begin to provide it with such a motivation. More specifically I

described an argument, due to Demopoulos, to the effect that the no-signalling condition

can be viewed as a generalisation, appropriate to an irreducibly statistical theory, of Ein-

stein’s principle of mutually independent existence interpreted methodologically. I then

argued that information causality can in turn be motivated as a further generalisation of

no-signalling that is appropriate to a theory of communication. I closed by describing a

number of important obstacles that are required to be overcome if the project of establish-

ing information causality as a foundational principle is to succeed.
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Brukner, Č., Żukowski, M., Pan, J.-W., & Zeilinger, A. (2004). BellâĂŹs inequalities and
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