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ABSTRACT 13 
The extent to which the linguistic system—its architecture, the representations it operates on, 14 
the constraints it is subject to—is specific to language has broad implications for cognitive 15 
science and its relation to evolutionary biology. Importantly, a given property of the linguistic 16 
system can be “specific” to the domain of language in several ways. For example, if the property 17 
evolved by natural selection under the pressure of the linguistic function it serves then the 18 
property is domain--specific in the sense that its design is tailored for language. Equally though, 19 
if that property evolved to serve a different function or if that property is domain-general, it may 20 
nevertheless interact with the linguistic system in a way that is unique. This gives a second 21 
sense in which a property can be thought of as specific to language. An evolutionary approach 22 
to the language faculty might at first blush appear to favor domain--specificity in the first sense, 23 
with individual properties of the language faculty being specifically linguistic adaptations. 24 
However, we argue that interactions between learning, culture and biological evolution mean 25 
any domain-specific adaptations that evolve will take the form of weak biases rather than hard 26 
constraints. Turning to the latter sense of domain-specificity, we highlight a very general bias, 27 
simplicity, which operates widely in cognition and yet interacts with linguistic representations in 28 
domain--specific ways. 29 
 30 
keywords: language evolution, domain-specificity, simplicity, typological universals, 31 
compositionality, word order, regularization 32 
 33 
 34 
 35 
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 36 
1    INTRODUCTION 37 
  38 
One of the fundamental issues in cognitive science is the extent to which specifically linguistic 39 
mechanisms and representations underpin our knowledge of language and the way it is learned. 40 
This is in part because this issue has deep implications for the underlying uniqueness of a 41 
system we typically consider exclusive to humans. It has also been highly divisive in the sense 42 
that researchers from distinct traditions often have polar starting assumptions as to the 43 
likelihood of domain-specific properties of the language system. Here we will suggest that there 44 
are in fact (at least) two ways in which a given feature of the linguistic system may be 45 
considered to have domain-specific properties: 46 
 47 

(1) If that feature evolved by natural selection under the pressure of the linguistic function it 48 
serves. 49 

(2) If that feature is domain-general but interacts with the linguistic system and its 50 
representations in a way that is unique.  51 

 52 
These two types of domain-specificity are quite different in terms of their implications for the 53 
evolution of language, and below we will discuss a set of results from computational models 54 
suggesting that domain specificity of the first kind is unlikely to take the form of hard constraints 55 
on the linguistic system. Rather, if such constraints exist, they are likely to be weak biases, 56 
amplified through cultural evolution. This has important implications for linguistic theory, since, 57 
as we discuss below, many mainstream frameworks explicit argue for hard domain-specific 58 
constraints and reject the notion of weak bias. The second type of domain-specificity, on the 59 
other hand, is likely to be widespread, and highlights the importance of collaborative efforts 60 
between experts in linguistic theory–who study the architecture and representations of 61 
language–and experts studying cognition across domains and species.   62 
 63 
2    DOMAIN SPECIFICITY AND EVOLUTION 64 
 65 
In this section, we focus on the first sense of domain-specificity set out above, which interprets 66 
the issue in functional terms. This is perhaps the most obvious sense in which a particular 67 
aspect of the cognitive system might be specific to language, and it is the one which places a 68 
heavier burden on biological evolution. Importantly, it is the ultimate rather than proximate 69 
function that is relevant here; knowing that some feature of the cognitive system is used in 70 
processing or acquiring language is not, in and of itself, an argument for domain-specificity. We 71 
can no more argue that such a feature is language specific because it is active in language 72 
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processing than we can argue for an aspect of cognition being chess-specific simply because it 73 
is active in the brain of a chess player. Rather, we need to consider the ultimate function of the 74 
cognitive architecture in question by looking to its evolutionary history. An aspect of our 75 
cognitive architecture is specific to language if it arose as an adaptive response to the problem 76 
of learning or using language.1  77 

This argument places evolution right at the core of the question of the existence of 78 
language-specific features of our cognitive architecture. While some cross-species comparative 79 
data exist to help us trace the functional sources of various cognitive capacities (see Fitch, 2010 80 
for review), these data are limited by the degree to which the relevant aspects of language are 81 
autapomorphies (completely novel traits that are not found in any other species). Recent 82 
research has turned to computational modelling to provide a more direct testing ground for 83 
specific hypotheses about how the capacities involved in language may have evolved. In 84 
particular, a number of papers have looked at whether domain-specific hard constraints on 85 
language can evolve from a prior stage where biases were less strong or not present at all (e.g., 86 
Kirby & Hurford, 1997; Briscoe, 2000; Chater, Reali & Christiansen, 2008; Smith & Kirby, 2008; 87 
Thompson, 2015). This is important, since many linguistic theories conceive of the language 88 
capacity as including a set of constraints of this kind: for example, Biberauer, Holmberg & 89 
Roberts (2014), working in the Minimalist framework (Chomsky, 1993), argue for a constraint 90 
which places a hard (inviolable) restriction on the distribution of the feature triggering movement 91 
(they call it the ‘Final-Over-Final’ constraint, in a nod to the structural description of word orders 92 
the constraint rules out). Similarly, in Optimality Theory (Prince & Smolensky, 1993/2004), 93 
although a particular constraint may be violated in a given language, the standard mechanism 94 
for explaining typological data is to restrict the set of constraints. For example Culbertson, 95 
Smolensky & Wilson (2013) describe an OT grammar for word order in the noun phrase which 96 
completely rules out particular patterns by using a limited set of so-called alignment constraints 97 
(see also Steddy & Samek-Lodovici, 2011). 98 

To investigate how hard domain-specific constraints of this type might evolve, Chater, 99 
Reali & Christiansen (2009) describe a simulation of a population of language-learning agents. 100 
The genes of these agents specify whether learning of different aspects of language is tightly 101 
constrained or highly flexible. Agents in the simulation that successfully communicate are more 102 
likely to pass on their genes to future generations. The question that Chater et al., (2009) ask is 103 
whether genes encoding constraints evolve in populations which start out highly flexible under 104 
the selection pressure for communication. If they do, then this would support a language faculty 105 
in which language acquisition is constrained by domain-specific principles. This process, 106 
                                                
1 Note this is true even if we then happen to use this aspect of our cognitive system for other, 
additional purposes. The fact that we use our language faculty for solving crosswords does not 
constitute an argument against domain specificity of that faculty. 
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whereby traits that were previously acquired through experience become nativised, is known as 107 
the Baldwin Effect (Baldwin, 1896; Maynard Smith, 1987; Hinton & Nowlan, 1987), and a 108 
number of authors have suggested it played a role in the evolution of the language faculty 109 
(Turkel, 2002; Kirby & Hurford, 1997; Jackendoff, 2002). However, Chater et al., (2009) argue 110 
that the fact that languages change over time makes the situation of language evolution quite 111 
different from that of other learned traits. In their simulations, if the rate of language change is 112 
high enough, it is impossible for genetic evolution to keep up–language presents a moving 113 
target, and domain-specific constraints cannot evolve.  114 

Chater et al.’s (2009) model is a critique of a particular view of the language faculty in 115 
which hard innate constraints are placed on the form languages can take. Because of this they 116 
do not model a scenario in which the strength of bias is allowed to evolve freely (although they 117 
do show that their model gives similar results whether genes encode hard constraints, or very 118 
strong biases). However, there is growing support for a more nuanced view of language 119 
acquisition in which learners have biases that come in a range of strengths (e.g., Morgan, Meier 120 
& Newport, 1989; Wilson, 2006; Hudson Kam & Newport, 2009; Smith & Wonnacott, 2010; 121 
Culbertson & Smolensky, 2012; Culbertson et al., 2013; Chater, Clark, Goldsmith & Perfors, 122 
2015). If the genes underpinning the language faculty were able to specify everything from a 123 
very weak bias all the way to a hard constraint, then perhaps this would allow evolution to take a 124 
gradual path from an unbiased learner to a strongly-constraining, domain-specific language 125 
faculty. To find out if this is the case, we need a model that shows how bias strength affects the 126 
nature of the languages that emerge in a population. 127 

 128 
Figure 1. The link between genes and the universal properties of language is mediated by 129 
development and cultural transmission. The extent to which these two processes have non-130 
trivial dynamics is an important consideration when proposing evolutionary accounts of 131 
language. Fitness does not depend directly on the genes underpinning the language faculty, but 132 
rather the linguistic phenotype (i.e. languages). This opens up the possibility for development 133 
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and cultural transmission to shield genetic variation from the view of natural selection. (Figure 134 
adapted from Kirby et al, 2007). 135 
 136 

The iterated learning model (Kirby, Dowman & Griffiths, 2007) starts from the 137 
observation that the way languages evolve culturally is driven by the way in which languages 138 
are learned.2 This model of cultural evolution suggests that the languages spoken by a 139 
population will not necessarily directly reflect the learning biases of that population (Figure 1). In 140 
particular, in many cases, cultural evolution will tend to amplify weak learning biases. This has 141 
important implications for how constraints on the language faculty actually come to be reflected 142 
in properties of language. For example, the observation that some property of language is 143 
universally, or near universally, present in language is not sufficient for us to infer that there is a 144 
corresponding strong constraint in our language faculty. Indeed, if Kirby et al., (2007) are 145 
correct, then the strength of any constraint in the language faculty may be unrelated to the 146 
strength of reflection of that constraint cross-linguistically. Weak learning biases may be 147 
sufficient to give rise to exceptionless, or near exceptionless, universals. 148 

Smith & Kirby (2008) examine the implications of iterated learning for the biological 149 
evolution of the language faculty. Their simulation explicitly models three processes involved in 150 
the origins of linguistic structure: individual learning of languages from data; cultural evolution of 151 
languages in a population through iterated learning; and biological evolution of learning biases 152 
themselves. They show that neither hard constraints nor strong biases emerge from the 153 
evolutionary process even when agents are being selected for their ability to communicate using 154 
a shared language. This is a consequence of the amplifying effect of cultural evolution; the 155 
fitness of an organism is not derived directly from that organism’s genes, but rather from the 156 
organism’s phenotype. In the case of language evolution this is the actual language an 157 
individual has learned. If weak learning biases are amplified by cultural evolution, then the 158 
difference between a weak bias and a hard constraint is neutralised: both can lead to strong 159 
effects on the distribution of languages. What this means is that iterated learning effectively 160 
masks the genes underpinning the language faculty from the view of natural selection. They are 161 
free to drift; strongly-constraining domain-specific constraints on language learning are likely to 162 

                                                
2 Our emphasis in this article will be on learning, but there are other mechanisms that operate at the 
individual level but whose effect is felt at the population level. For example, the way in which hearers 
process input, and the way in which speakers produce output is likely to have a significant impact. See 
Kirby (1999) for an extended treatment of precisely how processing and learning interact with cultural 
transmission to give rise to language universals, and Futrell et al., (2015), Fedzechkina et al., (2012), and 
Jaeger & Tily (2011) for recent accounts of specific links between processing and language structure. 
However, the debate about domain generality/specificity plays out differently for processing than for 
learning, and as such will not be the focus of this review. In particular, here we discuss simplicity as a 
highly general learning bias that unifies a range of different domains both within and beyond language, 
and it is not clear that an equivalent notion of simplicity exists for processing. 
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be lost due to mutation, or not arise in the first place (see also, Thompson, 2015 for a detailed 163 
analysis of the evolutionary dynamics in this case). 164 

Taken together these modelling results show that domain-specific hard constraints on 165 
language learning are unlikely to evolve, because languages change too fast (Chater et al., 166 
2009) and because cultural evolution amplifies the effect of weak biases (Kirby, Dowman & 167 
Griffiths, 2007). However, the results of this latter model suggest a further conclusion: weak 168 
biases for language learning are more evolvable by virtue of cultural evolution’s amplifying 169 
effect. Any tiny change from neutrality in learning can lead to big changes in the language that 170 
the population uses. Just as culture masks the strength of bias from the view of natural 171 
selection, it unmasks non-neutrality. We argue that linguists should not shy away from 172 
formulating domain-specific aspects of the language faculty in terms of weak, defeasible biases. 173 
This is the type of language faculty that is most likely to evolve. 174 

Although we propose that strong domain-specific biases on language should be avoided 175 
on evolutionary grounds, this does not mean that strong domain-general biases are impossible. 176 
These may be the result of very general architectural or computational considerations that 177 
govern the way cognition operates, for example (falling under the third of Chomsky’s (2005) 178 
three factors in language design). Equally, the way we learn language might be shaped by 179 
relatively strong domain-general biases that arise as a result of evolution for something other 180 
than language, for which the amplifying effect of culture does not apply. Biases such as these 181 
may nevertheless interact with language and linguistic representations in domain-specific ways. 182 
In the next section we will examine a learning bias that is arguably the most domain-general of 183 
all–simplicity–and show how its application in a range of different aspects of language leads to 184 
domain-specific outcomes. 185 
 186 
3 SIMPLICITY 187 
 188 
Simplicity has been proposed as a unifying principle of cognitive science (Chater & Vitanyi, 189 
2003). The tradition of arguing for a general simplicity bias has a long history in the context of 190 
scientific reasoning dating back to William of Occam in the 14th century who stated that we 191 
should prefer the simplest explanation for some phenomenon all other things being equal. In 192 
other words, when choosing among hypotheses that explain data equally well, the simpler one 193 
should be chosen.  194 

This principle can be extended straightforwardly from scientific reasoning to cognitive 195 
systems. When faced with an induction problem we must have some way of dealing with the 196 
fact that there are many candidate hypotheses that are consistent with the observed data 197 
(typically an infinite number). So, for example, in a function learning task how do we interpolate 198 
from seen to unseen points when there are an infinite number of possible functions that could 199 
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relate the two (Figure 2)? Or, to give a more trivial example, why is it that we assume that the 200 
sun will continue to rise every day  when there are an infinite range of hypotheses available to 201 
us which predict it won’t. 202 

 203 
 204 

 205 
Figure 2. There are an infinite set of possible functions interpolating from seen points to unseen 206 
points in these graphs. Our intuition is that the linear function on the left represents a more 207 
reasonable hypothesis than the one on the right, despite the fact that both fit the data perfectly 208 
well. In other words, we have prior expectations about what functions are more likely than 209 
others. In this case, the prior includes a preference for linearity (cf. Kalish, Griffiths & 210 
Lewandowsky, 2007). 211 

 212 
Here again the simplicity bias provides an answer by giving us a way to distinguish between 213 
otherwise equally explanatory hypotheses. While a full treatment of why simplicity rather than 214 
some other bias is the correct way to solve this problem is beyond the scope of this article 215 
(accessible introductions are given in Mitchell, 1997; Chater et al., 2015), we can give an 216 
intuitive flavour in terms of Bayesian inference. According to Bayes rule, induction involves 217 
combining the probability distribution over hypotheses defined by the data with a prior 218 
probability distribution over these hypotheses.  More formally, the best hypothesis, �, for  some 219 
data, D, will maximize �(�|�)�(�). 220 
����� = �������∈��(�|�) = �������∈��(�|�)�(�) 
 221 
What can this tell us about simplicity? We can express this equivalently by taking logs of these 222 
probabilities. The best hypothesis is the one that minimises the sum of negative log probabilities 223 
of the data given that hypothesis, −���2�(�|�), and the prior probability of the hypothesis 224 
itself, −���2�(�). 225 
����� = �������∈� − ���2�(�|�) = �������∈� − ���2�(�|�) − ���2�(�) 

 226 
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Information theory (Shannon & Weaver, 1948) tells us that this last quantity, −���2�(�), is the 227 
description length of � in bits (assuming an optimal encoding scheme for our space of 228 
hypotheses). So, all other things being equal, learners will choose hypotheses that can be 229 
described more concisely–hypotheses that are simpler.  230 
 Importantly, an information theoretic view of the equation above also suggests learners 231 
will prefer representations that provide (to a greater or lesser extent) some compression of the 232 
data they have seen. What does this mean for the nature of language? It suggests that 233 
languages will be more prevalent to the extent that they are compressible. In general, a 234 
language will be compressible if there are patterns within the set of sentences of that language 235 
that can be captured by a grammatical description. More precisely, a compressible set of 236 
sentences is one whose minimum description length is short. The description length is simply 237 
the sum of the length of the grammar ( −𝑙𝑜𝑔!𝑃(ℎ) in the equation above) and the length of the 238 
data when described using that grammar (given by the −𝑙𝑜𝑔!𝑃(𝐷|ℎ) term). 239 

This argument has allowed us to relate our intuitive understanding of simplicity–as a 240 
reasonable heuristic in choosing between explanations–to a rational model of statistical 241 
inference in a relatively straightforward way. Of course, there are a lot of practical questions that 242 
this leaves unanswered. How, for example, can we tell in a given domain what counts as a 243 
simpler hypothesis? Unfortunately, there is no computable general measure of complexity (Li & 244 
Vitanyi, 1997), nevertheless we propose that notions of relative simplicity should guide our 245 
search for domain general biases underpinning phenomena of interest in language. 246 
So, we argue that–whatever other biases learners have when they face some learning problem–247 
they are also likely to be applying an overarching simplicity bias (Chomsky, 1957; Clark, 2001; 248 
Brighton, 2002; Kemp & Regier, 2012; Chater et al., 2015).  249 

It is important to note that when we talk about simplicity in the context of language, it is 250 
in terms of the overall compressibility of that language, e.g. how much redundancy and 251 
systematicity does it exhibit that can be captured simply in a grammatical description, and how 252 
much irreducible unpredictability remains in the data. We might also be interested in ways in 253 
which languages differ in the length of their utterances, but this is a largely orthogonal issue. 254 
Indeed, it is possible for a language with shorter strings to have a longer grammar–consider 255 
cases of irregular morphology in which regularization might simplify a paradigm at the cost of 256 
removal of short irregulars.  257 

The generality of the bias for simplicity suggests there will be many linguistic 258 
phenomena affected by it. Below, we discuss cases which have been documented both in 259 
linguistic typological and experimental studies, with an emphasis on morphology and syntax (for 260 
discussion of experimental findings related to phonological simplicity, see Moreton & Pater 261 
2012a,b). We will begin with a basic design feature of language–compositionality–that can be 262 
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characterized by the interaction of simplicity with a competing pressures for expressivity. We 263 
then move on to three additional examples of increasingly narrow phenomena: regularization of 264 
unconditioned variation, consistent head ordering or word order harmony, and isomorphic 265 
mapping from semantic structure to linear order.  Each example illustrates a slightly different 266 
way in which this domain-general bias interacts with features that are particular to the linguistic 267 
domain. 268 
 269 
3.1    Compositionality 270 
For our first example we will consider a basic property of language, often called a “design 271 
feature” (Hockett, 1960): the compositional nature of the mapping between meanings and 272 
forms. Language is arguably unique among naturally occurring communication systems in 273 
consisting of utterances whose meaning is a function of the meaning of its sub-parts and the 274 
way they are put together. For example, the meaning of the word ‘stars’ is derived from the 275 
meaning of the root star combined with the meaning of the plural morpheme -s. Similarly, the 276 
meaning of a larger unit like ‘visible stars’ is a function of the meanings of the individual parts of 277 
the phrase. Switching the order to ‘stars visible’ changes the meaning of the unit in a predictable 278 
way.3 279 

This ubiquitous feature of language makes it arguably unique among naturally occurring 280 
communication systems, the vast majority–perhaps all–of which are holistic rather than 281 
compositional (Smith & Kirby, 2012). The striking divergence from holism that we see in 282 
language (above the level of the word) is therefore of great interest to those studying the 283 
evolution of language. The fact that human communication is also highly unusual in consisting 284 
of learned rather than innate mappings between meanings and signals suggests that relating 285 
the origins of compositionality to learning biases is a good place to start in the search for an 286 
explanation. 287 

A language that maps meanings onto signals randomly (see Figure 3A) will be less 288 
compressible–and hence, less simple in our terms–than one which maps them onto signals in a 289 
predictable way (see Figure 3B). Where both signals and meanings have internal, recombinable 290 
structure, then this predictability will be realised as compositional mappings. To see why this is, 291 
consider representing language as a transducer relating meanings and signals. The transducer 292 
in Figure 4A gives the most concise representation of an example holistic language, whereas 293 
                                                
3 In this case, placing the adjective after the noun leads to the interpretation ‘‘the stars visible 
(tonight)’’. This is a systematic rule of English: post-nominal attributive adjectives are stage-level 
predicates, denoting temporary properties (Cinque, 1993).  
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the transducer in Figure 4B gives the most concise representation of an equivalent 294 
compositional language in which subparts of the signals map onto subparts of the meanings. 295 
What should be immediately apparent is that compositional languages are more compressible. 296 

 297 

 298 
Figure 3. A simplified geometric sketch of possible mappings between two domains, for 299 
example meanings and signals. These mappings can be unstructured, random and 300 
incompressible (A), or highly structured and compressible (B). An individual attempting to learn 301 
the latter could use similarity structure in one domain to predict what the appropriate 302 
generalisation should be for unseen points. A further possibility is a degenerate mapping, which 303 
is the simplest and most compressible of all (C). 304 
 305 

 306 
Figure 4. Two simple transducers that map between a subset of the English verbs and their 307 
meanings, where “S” is the start symbol for the transducers and meanings are given in caps 308 
after a colon in each rule. Transducers can be holistic, essentially a dictionary of meaning-signal 309 
pairs (A); or compositional, in which the meaning of a signal is composed of the meaning of 310 
parts of that signal (B). 311 
 312 
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Brighton (2002) uses this contrast to model the cultural evolution of compositionality in 313 
an iterated learning framework (Kirby et al., 2007). Individual agents in their simulation learn 314 
transducers to map between a structured set of meanings and signals made up of sequences of 315 
elements. Crucially, the learners have a prior bias in favour of simpler transducers. In fact, the 316 
prior probability of a particular transducer is inversely related to its coding length in bits in 317 
precisely the way outlined in our discussion of simplicity above. Each agent learns their 318 
language by observing meaning-signal pairs produced by the previous agent in the simulation, 319 
and then goes on to produce meaning-signal pairs for transmission to the next generation. As 320 
the language in these simulations is repeatedly learned and reproduced, the bias of the agents 321 
in favour of simplicity shapes the evolutionary dynamic. Despite the fact that these models 322 
involve no biological evolution, the grammars adapt gradually over cultural generations from 323 
ones that are random and holistic to ones that are compositional.4  324 

This result makes intuitive sense if you think about the process of transmission from the 325 
point of view of the emerging rules and regularities in the mapping between meanings and 326 
signals. A highly specific feature of the evolving language (e.g. a particular idiosyncratic label for 327 
a single meaning, like went as the past tense of GO) will be harder to learn than a 328 
generalisation over a large number of meanings (e.g. a morpheme, like –ed, that shows up in 329 
the signals associated with a wide range of meanings). Particularly if learners only see a subset 330 
of all possible meanings, this inevitably leads to a preferential transmission of broader and 331 
broader generalisations that apply across large parts of the language. Hurford (2000) puts it 332 
pithily, stating “social transmission favours linguistic generalisation”. 333 

The simplicity bias thus appears to predict one of the fundamental design features of 334 
human language. However, things are not quite so straightforward. Consider a language in 335 
which every meaning is expressed by the same signal (Figure 3C). This degenerate language 336 
will be even more compressible than the compositional one, suggesting that a domain-general 337 
bias for simplicity is not sufficient to explain the origins of compositional structure. Cornish 338 
(2011) argues that in fact all simulations of iterated learning purporting to demonstrate the 339 
emergence of compositionality have in some way implemented a constraint that rules out 340 

                                                
4 Brighton (2002) makes the simplicity bias of the learners in his model overt by counting the numbers of 
bits in the encoding of transducers that generate the data the learners see. However, this does not mean 
that we necessarily believe that this kind of representation of grammars is necessary for an 
implementational or algorithmic account of what language we are doing when they learn language. 
Rather, this is a computational level account in Marr’s (1982) terms. It is an empirical question whether 
the particular ranking of grammars in terms of simplicity that we can derive from this particular 
representation matches precisely the ranking that applies in the case of real language learners, but we 
are confident that the crucial distinction between degenerate < compositional < holistic is correct. This 
matches behaviour of participants in the lab (Kirby et al., 2015) and broadly similar results are found in 
both connectionist and symbolic models of iterated learning (Kirby & Hurford, 2002; Brace, Bullock & 
Noble, 2015). 
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degeneracy. It is simply impossible for the learners in these simulation models to acquire a 341 
language that maps many meanings to one signal. Similarly, in the first laboratory analog of 342 
these iterated learning simulations, Kirby, Cornish & Smith (2008) report that degenerate 343 
languages rapidly evolve over a few generations of human learners.  344 

Kirby, Tamariz, Cornish & Smith (2015)  argue that a countervailing pressure for 345 
expressivity is required to avoid the collapse of languages in iterated learning experiments to 346 
this degenerate end point. The obvious pressure arises not from learning, but from use. If pairs 347 
of participants learn an artificial language and then go on to use it in a dyadic interaction task, 348 
then there are two pressures on the language in the experiment: a pressure to be compressible 349 
arising from participants’ domain-general simplicity bias in learning, and a pressure to be 350 
expressive arising from participants’ use of the language to solve a communicative task. Kirby et 351 
al. (2015) show that compositionality only arises when both of these two pressures are in play. 352 
In this case then, a domain-general bias is only explanatorily adequate once we take into 353 
account features of domain of application. In other words, the case of compositionality illustrates 354 
that the simplicity bias is domain-specific in the sense that we cannot understand how it shapes 355 
language without also appealing to the special function of language as a system of 356 
communication.  357 
 358 
3.2    Regularization 359 
There is converging evidence from multiple strands of research including pidgin/creole studies, 360 
sociolinguistics, language acquisition, and computational cognitive science suggesting that 361 
language tends to minimize unpredictable or unconditioned variation. Variation can be 362 
introduced by non-native speaker errors, contact with speakers of other languages, or in the 363 
case of newly emerging languages, variation may reflect a lack of conventionalized grammar. In 364 
the latter case, there is evidence that new generations of learners regularize and 365 
conventionalize these noisy systems (e.g., Sankoff 1979; Mühlhäusler 1986; Meyerhoff 2000; 366 
Senghas & Coppola 2001). Natural language and laboratory language learning research has 367 
further shown that both children and adults learn and reproduce conditioned variation relatively 368 
well compared to unpredictable variation (e.g., Singleton & Newport, 2004; Hudson Kam & 369 
Newport, 2005, 2009; Smith, Durham & Fortune, 2007; Smith & Wonnacott, 2010; Culbertson, 370 
Smolensky & Legendre, 2012). For example, Singleton & Newport (2004) report the case of a 371 
child acquiring American Sign Language (ASL) from late-learner parents. While the parents’ 372 
realization of several grammatical features of ASL was variable, the child did not reproduce this 373 
variation. Rather, he regularized his parents’ variable productions, resulting in a much more 374 
consistent system (though in some aspects it differed from ASL). Following up on this finding 375 
using an experimental paradigm, Hudson Kam & Newport (2009) report that, when trained on a 376 
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grammar with unpredictable use of determiners, child learners (and to a lesser extent adults) 377 
regularize those determiners, using them according to a consistent rule.  378 

Computational modeling has formalized this in terms of learners’ a priori expectations, 379 
namely that observed data come from a deterministic generative process (Reali & Griffiths, 380 
2009; Culbertson & Smolensky, 2012; Culbertson et al., 2013). This has a natural interpretation 381 
in terms of simplicity, since the description of a language that only allows one option in a 382 
particular context will be shorter than one that allows multiple variants.5 More generally, as 383 
we’ve seen already, there’s a straightforward relationship between the entropy of the distribution 384 
of variants and the coding length of that distribution. More predictable processes can be 385 
captured by shorter overall descriptions: they are compressible (Ferdinand, 2015). However, the 386 
expectation that the world will be deterministic is to some extent dependent on the domain in 387 
question. Most obviously, prior experience in a given domain can override this expectation–e.g., 388 
we expect that a coined being tossed will be fair and therefore outcomes will be random (Reali 389 
& Griffiths, 2009). In a carefully controlled study comparing learning of unpredictable variation in 390 
a linguistic versus non-linguistic domain, Ferdinand (2015) found that regularization occurs in 391 
both domains. However, across a number of conditions manipulating system complexity, the 392 
bias is stronger for linguistic stimuli. Regularization thus illustrates a case in which the strength 393 
of a bias is domain-specific, perhaps dependent on previous experience and functional 394 
pressures relevant to that domain.  395 

While most recent work on regularization focuses on unconditioned or random variation, 396 
there is some evidence that even conditioned variation is avoided in language. For example, 397 
English is losing its system of irregular (variable) past tense marking in favor of a single rule 398 
(add -ed) despite this variation being lexically conditioned (Hooper, 1976). Similarly, while some 399 
languages allow widespread lexically or semantically conditioned variation in adjective 400 
placement, most languages tend to order them more or less consistently before or after (Dryer, 401 
2013). This can be related straightforwardly to simplicity; a grammar with a single (high-level) 402 
rule or constraint applying to all words of a given type is more compressible than one in which 403 
different such words must obey different rules. For example, a grammar with a single rule 404 
stating that adjectives must always precede nouns is simpler than one which has to specify that 405 
certain adjectives precede and others follow.  406 
 407 
3.3    Harmony 408 

                                                
5 Note that this requires taking into account the simplicity of the generating grammar and the simplicity 
(compressibility) of the data. A grammar which allows free variation may be simpler than a grammar 
which generates conditioned variation, however the random data produced by the former grammar is not 
compressible.  
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Interestingly, this reflex of simplicity applies not only to word order within a word class, but also 409 
across classes of words. Some of the best known typological universals describe correlations 410 
among words orders across different phrase types. For example, Greenberg (1963) lists a set of 411 
universals, collated from a sample of 30 languages, including the following: 412 
 413 

Universal 2: In languages with prepositions, the genitive almost always follows the 414 
governing noun, while in languages with postpositions it almost always precedes. 415 
 416 
Universal 18: When the descriptive adjective precedes the noun, the demonstrative and 417 
the numeral, with overwhelmingly more than chance frequency, do likewise. 418 

 419 
These universals are part of the evidence for word order harmony–the tendency for a certain 420 
class of words to appear in a consistent position, either first or last, across different phrase 421 
types in a given language (Greenberg, 1963; Chomsky, 1981; Hawkins, 1983; Travis, 1984; 422 
Dryer, 1992; Baker, 2001; for experimental evidence see Culbertson et al., 2012; Culbertson & 423 
Newport, 2015). At its root, this is just an extension of the same very general statement of 424 
within-category order consistency. However, absent a notion of what ties certain categories of 425 
words together, the connection between harmony and simplicity remains opaque. For example, 426 
the two universals quoted above make reference to a single category–noun–and how it is 427 
ordered relative to a number of other categories. Based on syntactic class alone, simplicity 428 
predicts that nouns should be ordered consistently relative to all these other categories. This is, 429 
of course, the wrong prediction; Universal 2 actually says that the order of nouns relative to 430 
adpositions is the opposite of the order of nouns relative to genitives. While adpositions and 431 
genitives thus tend to appear on different sides of the noun, it turns out that adjectives, 432 
demonstratives, and numerals often pattern with genitives (note that English is a 433 
counterexample). These tendencies are exemplified in (3). 434 
 435 

3) a. Preposition N {Adj, Num, Dem, Gen} 436 
b. {Adj, Num, Dem, Gen} N Postposition 437 

 438 
To make sense of this, we need a notion that connects adpositions as they relate to nouns, with 439 
nouns as they relate to the other categories. The most popular such notion provided by linguistic 440 
theory is the head-dependent relation. In this example, the noun is a head with respect to 441 
nominal modifiers–including genitive phrases, adjectives, numerals, and demonstratives. By 442 
contrast, the noun is a dependent in an adpositional construction. When stated in this way, 443 
harmony falls out: in the world’s languages, there is a tendency for heads to consistently 444 
precede or follow their dependents. The former type is often called head-initial, the latter head-445 
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final. Coming back to simplicity then, a language which has a single high-level rule stating that 446 
heads either precede or follow their dependents is simpler than one which has specific ordering 447 
rules for heads in distinct phrase types. Simplicity therefore predicts that the more specific rules 448 
a grammar has, the less likely it should be. 449 

Importantly, a clear understanding of whether this prediction is borne out depends on the 450 
precise definition of the relevant relation between word categories. This turns out to be 451 
controversial. For example, particular theories differ in what is deemed to be a head, and 452 
whether ‘head’ is in fact the relevant notion at all (Hawkins, 1983; Zwicky, 1985; Hudson 1987; 453 
Dryer, 1992; Corbett et al., 1993). Dryer (1992) provides typological evidence that head order 454 
does not correlate across all phrase types. For example, he reports that the order of verb (head) 455 
and object (dependent) correlates with the order of preposition (head) and noun (dependent) 456 
within a language, but not with noun (head) and adjective (dependent) order. This is unexpected 457 
if the simplicity bias is indeed based on head-dependent order. He therefore argues that a 458 
different notion, related to the average length or complexity of particular phrase types, must be 459 
used in order to see that languages do indeed prefer higher-level rules governing order across 460 
multiple phrase types. Regardless of whether Dryer’s precise formulation is correct, what this 461 
suggests is that merely stating that simplicity is a factor in determining word order does not 462 
allow us to determine which grammars are in fact the simplest. In order to do this, we need a 463 
theory of linguistic representations which tells us which should be treated as parallel and in what 464 
contexts. 465 
 From the perspective of the learner, there is also a clear sense in which the simplicity 466 
bias as it relates to word order harmony depends on linguistic representations. Given three 467 
words, in the absence of any knowledge about the relations between and among them, there is 468 
no way simplicity can be used by a learner to make inferences about likely orderings. These 469 
representations must be present (e.g., learned) before a simplicity bias can be active. How and 470 
when they develop–i.e., when particular syntactic categories are differentiated, when abstract 471 
higher-level categories like head develop, etc.–will dictate how simplicity impacts learners’ 472 
inferences. 473 
 474 
3.4    Isomorphic mapping 475 
The relation between word order and semantic interpretation in a number of domains also 476 
appears to be affected by a simplicity bias. For example, Greenberg’s (1983) Universal 18 477 
describes how nominal modifiers are ordered relative to the noun. Universal 20 builds on this, 478 
describing how those modifiers tend to be ordered relative to one another.  479 
 480 

Universal 20 (as restated by Cinque, 2005):  481 
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In pre-nominal position the order of demonstrative, numeral, and adjective (or any 482 
subset thereof) is Dem-Num-Adj. 483 
In post-nominal position the order is either Dem-Num-Adj or Adj-Num-Dem. 484 

 485 
Interestingly, while both post-nominal orders are indeed possible, addition typological 486 

work since Greenberg (1963) indicates that the second order is much more common. In fact, 487 
Dem-Num-Adj-N, and N-Adj-Num-Dem are the two most common orders found in the world’s 488 
languages by far. Part of this is likely due to the harmony bias described above; assuming 489 
nominal modifiers are covered by the relevant notion of dependent, these two orders are 490 
harmonic, while alternative possibilities are not (e.g., Dem-Num-N-Adj). However harmony does 491 
not explain why N-Adj-Num-Dem would be more common than N-Dem-Num-Adj. An 492 
explanation of this difference depends on how syntax–specifically, linearization–interacts with 493 
underlying semantic structure.  494 

Several theoretical lines of research converge on a universal semantic representation of 495 
these modifiers and their relation to the noun. On one view, this representation reflects iconicity 496 
of relations (Rijkhoff, 2004). For example, adjectives modify inherent properties of nouns, 497 
numerals count those larger units, and demonstratives connect those countable units to the 498 
surrounding discourse. This describes a nesting representation as in Figure 5A. Research in 499 
formal linguistics further suggests a hierarchical relation between these elements in terms of 500 
semantic combination, illustrated in Figure 5B. Crucially, these abstract relations are preserved 501 
in linear orders that have the adjective closest to the noun and the demonstrative most 502 
peripheral–orders that can be read directly off Figure 5A. Notice that N-Adj-Num-Dem is one 503 
such order, while N-Dem-Num-Adj is not (the modifiers must be swapped around to get this 504 
order). Recent laboratory studies suggest a corresponding cognitive bias, in favor of isomorphic 505 
mappings between nominal semantics and linear order (Culbertson & Adger, 2014). Typological 506 
frequency differences in this domain can be therefore be much better explained once we take 507 
into account the underlying semantic structure and an isomorphism bias.  508 

 509 
 510 

     511 
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Figure 5. Nested representation (A) and hierarchical representation (B) of semantic relations 512 
between modifiers and the noun. The most typologically common orders can be read off 513 
directly. 514 
 515 

 516 
Figure 6. Schematic representation of semantic composition in verbal domain. 517 
 518 

This is not the only case of isomorphic mappings from semantics to linear order, indeed 519 
perhaps the most well-known case is the mirror principle in the domain of verbal inflection 520 
(Baker, 1985; Bybee, 1985; Rice, 2000). Languages tend to order inflectional morphemes like 521 
tense and aspect in a way that reflects semantic composition, as shown in Figure 6.6 522 

Biases in favor of isomorphism between semantics and linear order can again be 523 
reduced to a general simplicity bias. In very general terms, more transparent or predictable 524 
relations between order and meaning are simpler than ones with extra arbitrary stipulations. 525 
Brighton & Kirby (2006) show that isomorphic7 mappings between signals and meanings arise 526 
naturally from iterated learning under general simplicity considerations. Put in more precise 527 
terms, to derive surface order from semantics, each branch of the hierarchical structure (or each 528 
rectangle in the nested schematic) in the figure above represents a choice point for linearization. 529 
For isomorphic orders, that is all that is required: N-Adj-Num-Dem means choosing (1) Adj after 530 
N, (2) Num after [N-Adj], and (3) Dem after [N-Adj-Num]. Similarly, a non-harmonic but 531 
isomorphic order like Dem-Num-N-Adj is (1) Adj after N, (2) Num before [N-Adj], and (3) Dem 532 
before [Num-N-Adj]. By contrast, non-isomorphic orders require additional choice points or 533 
rules. N-Dem-Num-Adj, for example, cannot be derived from the semantic hierarchy alone–the 534 
simplest route is Dem-Num-Adj-N (three choice points) plus one addition rule placing N first. 535 
The isomorphism bias again illustrates that the notion of simplicity, however general, must be 536 

                                                
6 Interestingly, the acquisition of semantics literature provides a related observation. Musolino, 
Crain & Thornton (2000) show that when asked to interpret ambiguous sentences with 
quantificational elements, children strongly prefer the interpretation that corresponds to the 
surface syntactic position of those elements. For example, the sentence “Every horse didn’t 
jump over the fence”, could involve every taking scope over not (meaning no horses jumped 
over the fence), or not scoping over every (meaning not every horse jumped over the fence). 
The first interpretation is isomorphic to the linear order, and this is the interpretation preferred by 
young children (see also Musolino & Lidz, 2003). 
7 These authors use the term “topographic” rather than “isomorphic” because of similarity to the 
neuroanatomical organising principle of topographic maps. For our purposes the terms are 
interchangeable, since both give rise to the property that neighbouring representations in one 
domain map to neighbouring representations in the other. 
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formulated with reference to specific hypotheses about the domain in question–here, about 537 
conceptual iconicity or formal compositional semantics.  538 
 539 
4    CONCLUSION 540 
There is little doubt that the language faculty includes capacities and constraints that are 541 
domain-general or co-opted from other cognitive systems. Whether it also includes domain-542 
specific features is both less clear, and more likely to split along philosophical lines; traditionally, 543 
generative linguistics has argued for a Universal Grammar containing (among other things) 544 
linguistically contentful principles that place hard constraints on what is learnable. We have 545 
suggested, based on results obtained using computational models of language evolution, that 546 
domain-specific hard constraints are much less likely to have evolved than weak biases. This is 547 
essentially because the cultural evolution of language exerts cognition-external pressures that 548 
mean linguistic phenotypes no longer directly reflect the underlying genotype. The strength of 549 
any particular bias is underdetermined by the cross-linguistic distribution of language types. At 550 
the same time, these cognition-external pressures allow weak genetically-encoded biases to 551 
have potentially large typological effects. While this does not categorically rule out the existence 552 
of very strong (or inviolable) biases that have evolved specifically for language, it clearly 553 
suggests we should not treat them as the default hypothesis. The idea that weak biases for 554 
language-specific structures or patterns are more likely is in line with recent trends in linguistics. 555 
Researchers in phonology and syntax have begun using formal models which encode 556 
probabilistic biases in order to better capture empirical data from typology and learning (e.g., 557 
Hayes & Wilson, 2008; Pater, 2009; Culbertson et al., 2013; White, 2014). 558 
 Regardless of whether the language faculty contains domain-specific capacities, the 559 
representations which make up our linguistic knowledge, and the function of language as a 560 
system of communication means that domain-general capacities will interact with language in 561 
unique ways. This is most convincingly illustrated by looking at an uncontroversially general 562 
bias: the bias in favor of representational simplicity. The examples we have discussed here 563 
show that a simplicity bias is reflected in a range of language universals that cut across very 564 
different aspects of the linguistic system: compositionality, regularity, harmony, and 565 
isomorphism. In each case, the simplicity bias interacts with linguistic representations to give 566 
rise to domain-specific effects. In the case of compositionality, simplicity interacts with the major 567 
unique function of language as a communication system that must be expressive. It is only via 568 
the interaction of these two pressures that compositional systems will emerge. The 569 
regularization bias, which describes the established finding that language learners tend to 570 
reduce random or unconditioned variation, shows domain-specific effects in terms of its 571 
strength. Word order harmony, the tendency for languages to order heads consistently before or 572 
after dependents, depends crucially on a language- and even theory-specific notion of the 573 
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relevant categories. Finally, the notion of isomorphism between semantic or conceptual 574 
structure and surface word order crucially requires an articulated hypothesis about the specific 575 
semantic relations among dependent elements.  576 

In all these cases, distinct hypotheses about linguistic categories, their representations, 577 
and how they relate to one another will make distinct predictions about how simplicity is cashed 578 
out. This means that an understanding of language, how it is learned, and how it evolved will 579 
necessarily require input from linguists formulating theories of the architecture and 580 
representations of language. The fact the many aspects of the capacity for language also come 581 
from broader cognition means linguists in turn must take into account findings from research on 582 
other cognitive domains, and indeed on related capacities in other species. 583 
 584 
 585 
 586 
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