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Abstract It has been generally assumed that certain categories of numerical

expressions, such as ‘more than n’, ‘at least n’, and ‘fewer than n’, systematically

fail to give rise to scalar implicatures in unembedded declarative contexts. Various

proposals have been developed to explain this perceived absence. In this paper, we

consider the relevance of scale granularity to scalar implicature, and make two

novel predictions: first, that scalar implicatures are in fact available from these

numerical expressions at the appropriate granularity level, and second, that these

implicatures are attenuated if the numeral has been previously mentioned or is

otherwise salient in the context. We present novel experimental data in support of

both of these predictions, and discuss the implications of this for recent accounts of

numerical quantifier usage.

Keywords Granularity · Implicature · Quantifiers · Constraints ·

Pragmatics · Numerals · Salience · Relevance

1 Introduction

Modified numerals such as ‘more than nine’ or ‘at least ten’ typically seem to

convey the impression that the speaker’s knowledge about the topic under
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discussion is imprecise. By contrast, unmodified numerals such as ‘ten’ convey

precise knowledge. However, on closer inspection, this distinction is not as clear-cut

as might be supposed: in particular, modified numerals appear to convey more

information than their semantic analyses would suggest. This paper aims to

characterise the meaning of these expressions more rigorously, and account for it in

terms of semantic and pragmatic theory.

The standard account of unmodified and modified numeral meaning claims that

unmodified numerals have an upper bound to their interpretation, while modified

numerals such as ‘more than n’ do not. So, while ‘ten’ would establish that the

cardinality in question is not greater than 10, ‘more than nine’ and ‘at least ten’

would not establish such an upper bound on the cardinality in question. Theories

differ on whether the upper bound for the unmodified numerals is part of semantics

(Breheny 2008 and others) or derived as a pragmatic implicature (Horn 1972 and

others). But the claim that modified numerals have no such bound is generally

agreed on in the literature: Horn (1972, 1984) endorses this implicitly by referring to

the interpretation of a numeral without an upper limit as the ‘at least n’
interpretation. More recently Krifka (1999) and Fox and Hackl (2006) have

explicitly claimed that modified numerals with ‘more than’ or ‘at least’, when used

in unembedded declarative contexts, generally do not give rise to an implicated

upper bound, and provided theoretical accounts that encompass this observation.

Specifically, both note a conflict between the theory of scalar implicatures and the

lack of an upper bound for these modified numerals. We consider the relevant

aspects of their accounts in the following section, and then return to the empirical

issue of whether modified numerals establish pragmatic bounds on their interpre-

tation. In Sect. 3, we present a proposal for the interpretation of modified numerals

based on scale granularity and salience that predicts an implicated bound in most

cases when a modified numeral is used, and specifically one that depends upon

granularity level. In Sect. 4, we present experimental evidence in favour of our

proposal. We conclude by discussing the implications of these findings for Fox and

Hackl’s account, and consider the conditions under which quantifiers of this type

may felicitously be used.

2 Previous accounts

In this section we present two previous accounts of modified numerals, both of

which predict that modified numerals should not generally give rise to

pragmatically-communicated bounds on the cardinality they report. Before doing

so, we must make some preliminary remarks about the nature of the pragmatic

enrichment under discussion, namely scalar implicature.

Scalar implicatures have been much debated in recent years (Chierchia 2004;

Chierchia et al. 2008; Geurts 2010, and others; see Sauerland 2012 for a summary).

However, the discussion in this paper generally does not depend on the specifics of

the approach adopted. Therefore we frame our proposal within a classical

framework close to that of Horn (1972), but note that this could be adapted to

any of the current approaches. We assume that certain words (such as ‘some’, ‘all’,
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‘or’, etc.) are associated with lexical scales (such as hsome, alli and hor, andi),
which we shall refer to as Horn scales. We further assume that unembedded

occurrences of scalar terms can trigger a scalar implicature. That is, if scalar term A

has a stronger scale-mate B, such that if replacing A with B in the current sentence S

creates a sentence S* that unidirectionally entails S, the speaker of S implicates that

S* is false. For example, a speaker of (1) implicates the falsity of (2), where these

sentences are linked by the substitution of the scale-mates ‘some’ and ‘all’.

(1) Some member states of the EU are monarchies.

(2) All member states of the EU are monarchies.

In order for this implicature to be conveyed it is also necessary for the speaker of (1)

to be epistemically committed—that is, the speaker must be presumed to be

knowledgeable about the truth or falsity of the stronger proposition expressed by

(2), and to be willing to communicate that knowledge. In this paper we focus on

cases where this condition is satisfied.

Krifka (1999) and Fox and Hackl (2006) observe that certain categories of

modified numeral systematically fail to admit scalar implicature. Krifka (1999)

discusses numerals modified by ‘at least’, noting that their apparent behaviour is at

variance with the predictions of Horn’s (1972) account of scalar implicature.

Specifically, he observes that (3) does not give rise to the implicature that (4) is

false. If it did so, a knowledgeable speaker who uttered (3) would be pragmatically

understood to imply that John has exactly three children, as this follows from the

truth of (3) coupled with the falsity of (4). This is clearly intuitively incorrect (and is

shown by Geurts et al. (2010, p. 138) to be uniformly rejected by experimental

participants).

(3) John has at least three children.

(4) John has at least four children.

In attempting to account for (3), Krifka considers the possibility that modified

numerals of the type ‘at least n’ do not participate in Horn scales, while bare numerals

do. Although this solves the problem, it appears to be an arbitrary and unprincipled

distinction: the standard requirements for Horn scale membership are that the terms

should be equally lexicalised, from the same semantic field, and in the same register.

This appears to apply just as much to the scale hat least three, at least fouri as to the

scale hthree, fouri. Krifka (1999, p. 259) goes further, asserting that “[i]f number

words form Horn scales, they should do so in any context in which they appear”.

Krifka (1999, p. 259) also discusses the idea that ‘at least’ signals the speaker’s

unwillingness or inability to give a precise answer. This precludes a scalar

implicature from arising, as the epistemic condition on the speaker is not met.

Krifka’s suggestion is that the notion of the speaker’s uncertainty, or reticence, is

pragmatically derived from the choice of ‘at least n’ rather than the bare numeral n,
because the latter would carry the implicature of certainty (‘exactly n’).
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This analysis, however, does not appear to generalise to the equally problematic

case of ‘more than’. Fox and Hackl (2006, p. 540) observe that ‘more than n’ also
typically does not give rise to scalar implicature in an unembedded context.1 The

relevant observation is that, for example, uttering (5) does not trigger the scalar

implicature that John has exactly four children, even though comparison with (6)

should yield exactly this implicature.

(5) John has more than three children.

(6) John has more than four children.

Nevertheless, it is intuitively plausible that an informed and cooperative speaker

could say something like (5), for example in the context of establishing whether

John is eligible for certain benefits, or whether he needs a bigger car, etc. Under

such circumstances, the implicature that John has exactly four children does indeed

seem not to arise.

Moreover, if we turn our attention to larger numbers, we can observe clear

examples of implicatures failing to arise from expressions using ‘more than’ and

‘fewer than’. Consider, for instance, (7) and (8). These utterances do not convey the

corresponding implicatures (9) and (10). In fact, they do not even convey the weak

implicatures (9′) and (10′), which demonstrates that the implicature failure cannot

be attributed to the hearer doubting the epistemic commitment of the speaker. An

informed speaker seems perfectly entitled to utter (7) without being committed to

the rather unlikely proposition found in (9′).

(7) More than 100 people got married today.

(8) Fewer than 20 people have walked on the Moon.

(9) Exactly 101 people got married today.

(10) Exactly 19 people have walked on the Moon.

(9′) The speaker considers it possible that exactly 101 people got married today.

(10′) The speaker considers it possible that exactly 19 people have walked

on the Moon.

The need to account for this apparently anomalous behaviour of modified numerals

has been a partial motivation for various semantic accounts of numerical quantifiers.

For Krifka (1999), this and other factors motivate a rejection of the generalised

1 Fox and Hackl (2006, p. 541, footnote 7) observe that an implicature is available if the context specifies a

set of ‘relevant alternatives’. In particular, they note that if a speaker is prompted with a choice of responses

‘more than 10’, ‘more than 20’, ‘more than 30’, ‘more than 40’, then the subsequent use of ‘more than 20’

yields an implicature that ‘not more than 30’. However, they contrast this with the use of ‘more than 20’ out

of the blue, which they contend does not give rise to this kind of enrichment. It is this latter claim that we

contest here.
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quantifier account of Barwise and Cooper (1981) for expressions such as ‘at least n’.
Krifka’s account of the way in which scales are built up in such cases feeds into

Geurts and Nouwen’s (2007) proposal concerning the modal semantics of

superlative quantifiers. Fox and Hackl (2006) attribute this absence of implicature

to the failure of a covert exhaustivity operator, and use the facts from this domain as

one of the motivations for their proposal of the Universal Density of Measurement.2

They also report a different pattern of behaviour for modified numerals embedded

below modal verbs and other quantifiers, as we will discuss briefly in Sect. 5.

However, despite the absence of implicatures such as (9) and (10), there do

appear to be some pragmatic enrichments available from utterances using ‘more/

fewer than n’, and perhaps ‘at least/most n’, that have not been satisfactorily

accounted for. Consider an utterance such as (11).

(11) John’s birthplace has more than 1000 inhabitants.

If John was born in London, this statement is semantically true but intuitively

misleading, because ‘more than 1000’ seems to convey a quantity that is

appreciably less than the actual population of London. However, its precise

communicative value is difficult to determine introspectively. Certainly it does not

seem to convey the classical scalar implicature (12), and in this sense it patterns

with (5), (7) and (8). However, it does seem to convey an implicature like (13), if

not a stronger one.

(12) John’s birthplace does not have more than 1001 inhabitants.

(13) John’s birthplace does not have more than a million inhabitants.

In this paper, we attempt to explain this apparent divergence of behaviour. We argue

that ‘more than n’ and ‘fewer than n’ do in fact give rise to scalar implicatures, and

that the same is true of superlative quantifiers. However, we propose that these

implicatures are restricted by the granularity of the numerical scale and by

considerations of contextual salience of the numeral.

Our argument stems from the observation that the potential implicature of a

sentence depends on the scalar alternatives of the words in the sentence. For

instance, if ‘most’ also inhabited the hsome, alli scale, (1) would additionally

implicate the falsity of (14).

(14) Most member states of the EU are monarchies.

In this paper, we argue that the question of which expressions constitute bona fide
scalar alternatives to forms such as ‘more than 100’ is more subtle than has

previously been assumed. Specifically, in the following section, we develop the

2 Our proposal is compatible with the specific details of Fox and Hackl’s analysis but does not depend on

them. For instance, Mayr (in progress) develops an account of the core facts that Fox and Hackl seek to

account for, but which extends to modified numerals of the “at least/most n” type and does not assume the

universal density of measurement. As far as we can see, Mayr’s analysis is fully compatible with ours.

Granularity and scalar implicature in numerical expressions 139

123



proposal that scale membership in the numerical domain is determined by

granularity considerations. Thus, the failure of ‘more than 100’ to implicate ‘not

more than 101’, and similar examples, can be accounted for from first principles and

without globally prohibiting the participation of these terms in Horn scales. This

coheres with existing observations but makes the novel prediction that certain

specific scalar implicatures will be available from modified numerals of this type.

We further argue on the grounds of relevance that the prior mention of a numeral

may license its reuse in a modified expression, and thus that this category of

implicatures should be attenuated in such cases. In Sect. 4, we present novel

experimental evidence in support of both these claims. In Sect. 5, we discuss the

implications of these findings in determining the use and interpretation of these

classes of modified numerals.

3 Granularity and salience

3.1 Granularity

As discussed by Krifka (2002), there is a sense in which both (15) and (16) are

simultaneously true.

(15) The distance from Amsterdam to Vienna is 1000 km.

(16) The distance from Amsterdam to Vienna is 965 km.

What distinguishes these two sentences is the level of granularity they assume, and

hence the level of precision that they are taken to convey. Here granularity can be

understood as the density of representation points on a measurement scale. Thus

(15) plausibly involves a scale whose points are multiples of 100 km (…800 km…

900 km…1000 km…1100 km….), and thus conveys that the distance between

Amsterdam and Vienna is 1000 ± 50 km. But (16) implies a finer-grained scale,

perhaps one with units of 1 km, in which case it expresses that the distance between

the two cities is 965 ± 0.5 km.

In the case of cardinal quantities, as in examples (1)–(13) above, the finest-

grained scale that makes sense is that in which the representation points coincide

with whole numbers: that is, the scale points are one apart. However, as discussed

by Krifka (2009), drawing upon work by Curtin (1995), coarser-grained scales are

typically also available. Krifka notes that in Western culture, and in particular in

languages with a decimal number system, the most frequently used granularity

levels are those based on powers of 10. Also possible are scales constructed from

these by operations of halving (resulting in the optimal refinement of a scale) and

doubling.

Thus in reporting the results of counting entities, available scales appear to

include the following (not intended to be an exhaustive list):
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(17) a. 1…2…3…4…5…

b. 10…20…30…40…

c. 5…10…15…20… [derived from (17b) via halving]

d. 20…40…60…80… [derived from (17b) via doubling]

e. 100…200…300…400…

f. 50…100…150…200… [derived from (17e) via halving]

etc.

The points on the coarser-grained scales in (17) are the numbers that we intuitively

think of as more ‘round’: 100, for example, seems rounder than 90, which in turn

seems rounder than 93 (see Jansen and Pollmann (2001) for a definition of

roundness based on divisibility by powers of 10, 2 and 5). More formally, the

representation points on each of these scales are distributed equidistantly. Such a

distribution can be accounted for in terms of the amount of information that can be

conveyed by choosing one of a limited number of expressions: that is, we can see

the distribution of representation points as an attempt to partition up a scale in the

most efficient way.

As Krifka remarks, scales with other granularity levels are also in operation in

specific domains: notably, in the case of time, one granularity level is based on

15 min intervals, another on 3- or 6-month intervals, and so on. Logarithmic

granularity may also be an option in some domains (e.g. 10…100…1000…

10,000…), such as for example the size of populations or settlements.

The use of a coarser granularity level may be favoured on several grounds. For

one, the expressions referring to points on scales of coarse granularity (e.g. ‘ten’,

‘one hundred’, ‘one thousand’) are typically shorter than those referring to

neighbouring points on scales of finer granularity (e.g. ‘eleven’, ‘one hundred and

one’, ‘one thousand and one’), and therefore should be favoured both in production

and comprehension, although this is in principle an issue that can be distinguished

from granularity per se. Krifka (2002) notes also that values corresponding to points

on coarser-grained scales, in being interpreted less precisely, may be useful for face-

saving: if one speaks in approximate terms, one is not committed to such high

precision and is less likely to be inadvertently misleading. More generally, it could

be argued that expressions occurring on scales of coarse granularity are privileged in

terms of availability or default activation level, and therefore can be used at a lower

cognitive cost. Evidence for the existence of a processing advantage of this sort is

provided by Mason et al. (1996), who show that round 5-digit numbers produced as

a result of a mathematical operation are recalled more accurately than non-round

numbers, even when the task is to recall the first two digits.

Against these advantages for coarse granularity, there is some loss of precision in

the information communicated, and indeed an ambiguity may arise as to the

intended granularity level. From a relevance standpoint (Sperber and Wilson 1986),

all this means that the use of an expression belonging to a coarser-grained scale

results in a saving of cognitive effort, at the cost of a loss of cognitive effect. The

prediction would be that the coarse-grained scale is used in circumstances where the

saving in effort outweighs the loss of effect, typically because the expression on

the coarse-grained scale is much more readily available than alternatives on a
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finer-grained scale, and/or because more precise information is not sufficiently

useful to the hearer to justify the additional expense involved in encoding and

decoding it.

Bearing considerations of granularity in mind, we can look again at expressions

of the form ‘more than n’ and similar, and derive new predictions concerning their

pragmatic interpretation. Consider in particular the classical scalar implicature that

we have argued does not arise from (11), repeated below for convenience.

(11) John’s birthplace has more than 1000 inhabitants.

From the lack of an implicature to ‘not more than 1001’, we concluded that the sub-

scale of alternatives hmore than 1000, more than 1001i was in some way failing to

function. Granularity gives us a principled way of accounting for this. Given that

1001 is not a scale point on the numeral scales of granularity 10, 100 or 1000, while

1000 is, ‘more than 1000’ and ‘more than 1001’ are not comparable. Specifically,

we would argue that the use of 1001 comes at an additional cognitive cost, which

counterbalances the additional cognitive effect that its use conveys (in this case,

ruling out the possibility that John’s birthplace has exactly 1001 inhabitants).

Therefore, the use of ‘more than 1000’ rather than ‘more than 1001’ is supported by

considerations of relevance, irrespective of whether the speaker knows that the latter

holds. Hence, the implicature that ‘more than 1001’ does not hold—and therefore

that exactly 1001 is the case—does not arise.

By contrast, if we consider a scale containing numerals which occur on a scale of

the same granularity level, this argument fails. For instance, hmore than 70, more
than 80i actually does appear to constitute part of a Horn scale. Contrasting

utterances (18) and (19), we note that the numerals used in both correspond to scale

points on the numeral scale of granularity 10, and both fail to correspond to scale

points on the numeral scale of granularity 100. Hence, from a granularity

standpoint, the numerals are matched in level. In addition, (19) is more informative

than (18). Therefore, if the speaker is in a position to say (19) instead of (18),

relevance considerations mandate that they should do so. Hence we predict that (18)

does typically give rise to an implicature that (19) does not hold.

(18) More than 70 people got married today.

(19) More than 80 people got married today.

Similarly, while hmore than 1000, more than 1001i does not seem to function as a

set of alternatives, hmore than 1000, more than 2000i and hmore than 1000, more
than 1,000,000i do seem legitimate options, the former corresponding to a scale

with units of 1000, the second to a logarithmic scale, or perhaps one based on the

lexicalized values ‘thousand’ and ‘million’. Thus while the utterance of (11) does

not give rise to the implicature ‘not more than 1001’, it does allow inferences such

as ‘not more than 1 million’ or even ‘not more than 2000’, resulting in the pragmatic

infelicity discussed above.
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It is not strictly necessary, on this account, that the numerals are precisely

matched as to the granularity levels on which they are scale points. In fact, if the

more informative statement refers to a scale point on a coarser-grained scale, it will

arguably be further favoured by its lower cognitive cost. Thus we predict that (18)–

(20) will all give rise to an implicature that (21) does not hold, in that 100 is a point

on a coarser-grained scale than 70, 80 or 90.

(20) More than 90 people got married today.

(21) More than 100 people got married today.

Following the analysis of Krifka (2009), who asserts that scales of different

granularity levels should align, we note that 100 is a scale point for several

granularity levels simultaneously, including 100s, 50s, 10s and units. It follows

that, on our account, the implicature arising from the utterance of (21) would be

in some sense under-determined. Our prediction would be that the possible

pragmatic enrichments of (21) vary according to the granularity level at which

the numeral is interpreted. The applicable scalar implicature might be that ‘more

than 200’ does not hold, that ‘more than 150’ does not hold, that ‘more than 110’

does not hold, or even that ‘more than 101’ does not hold. We would further predict

that numbers that are scale points for finer-grained scales should give rise to stronger,

more informative implicatures, i.e. provide a tight upper bound. To enable this to

occur, we must assume that the granularity level is itself pragmatically determined by

the hearer, and that it guides the hearer’s interpretation as regards implicature.

In sum, our first prediction is that expressions of the form ‘more than n’ (and,
mutatis mutandis, ‘fewer/less than n’) do give rise to scalar implicatures, when

granularity considerations are taken into account. Under the standard conditions of

speaker informativeness and cooperativity, and in simple declarative contexts,

‘more than n’ gives rise to the implicature than ‘more than m’ does not hold, where
m is any numeral such that m [ n and the coarsest granularity level expressed by m
is at least as coarse as than that expressed by n. We validate this prediction

empirically in Experiment 1 of this paper.

3.2 Contextual salience

In the discussion earlier, we noted that an utterance such as (22) is apparently

infelicitous, given our world knowledge. However, this infelicity seems to be

mitigated considerably by the presence of a preceding context such as (23).

(22) London has more than 1000 inhabitants.

(23) Give an example of a settlement with more than 1000 inhabitants.

Given our first prediction, articulated above, how are we to address examples such

as this? Without the preceding context, (22) seems to convey an implicature to the

effect that London’s population is of the same order of magnitude as 1000 (and
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certainly fewer than a million). However, this implicature is attenuated by the

preceding context, in which the number 1000 is introduced.

By appeal to the notion of relevance, defined in terms of the minimisation of

cognitive effort and the maximisation of cognitive effect, we can reconcile this

finding with our first prediction. The crucial point here is that the prior mention of

the numeral licenses its second mention, because the reuse of the numeral saves

cognitive effort for the discourse participants. Without a preceding context of this

kind, a hearer could legitimately respond to (22) by drawing a granularity-based

inference through the process discussed earlier. However, in the presence of such a

context, this reasoning falls down. The hearer’s reasoning is instead as follows: the

speaker uttered (22), rather than making a statement with a more informative

quantifier such as ‘more than a million’. Therefore, either the speaker is not in a

position to make the stronger statement, or it would not be relevant to do so.

However, given the preceding context, (22) is plausibly more relevant than the more

informative alternative: it reuses a number that has already been activated,

potentially saving the hearer effort,3 and it answers the question raised in that

context, thus achieving the necessary effect. Hence the speaker has grounds for

choosing to utter (22) in preference to the stronger alternative, even if the speaker

knows the latter is true, and therefore the implicature cannot go through.

Note that this argument does not require that the speaker is obliged to use the

quantifier ‘more than 1000’ in answering (23). In fact, if the speaker were to say

‘more than a million’, it seems clear that this satisfactorily answers the question

while preserving semantic truth. However, the hearer’s awareness of the possibility

that the speaker might simply be choosing to repeat the numeral in the question,

without intending any pragmatic effects, is sufficient to block the implicature arising

from (22). The hearer who is alert to this possibility will therefore not draw the

scalar inference, and will not find (22) pragmatically anomalous in this context.

By contrast, a speaker who says (24) in answer to (23) appears to be guilty of a

pragmatic violation. The speaker’s failure to reuse the number in the question has

the effect of licensing a scalar implicature of the type we have been discussing. As

the scalar implicature is false, the utterance of (24) is infelicitous as an answer to

(23), while being perfectly felicitous as an answer to a parallel question (“Give an

example of a settlement with more than 7000 inhabitants”).

(24) London has more than 7000 inhabitants.

Crucial to this analysis is the idea that the preceding context can license the (re)use

of a specific numeral. In principle, the existence of this licensing context should

attenuate the scalar implicature arising from the use of that specific numeral. The

logic here is clear: scalar implicatures are conveyed by what we choose not to say. If

there is no choice, because the preceding context specifies which numeral should be

used in the continuation of the dialogue, the use of that numeral cannot give rise to

3 As a anonymous reviewer pointed out, the relevance-theoretic approach presumes that the speaker acts

in order to minimise the effort required by the hearer, rather than minimising the speaker’s own effort.

Hence, in RT terms, we argue that reuse of a numeral reduces the hearer’s effort. In practice, the speaker’s

interests must also be considered (Wilson and Sperber 2002, p. 257), and we presume that reuse of a

numeral also serves these interests for the same reason.
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an implicature. In practice, there is always some choice, and a weaker argument

goes through: if the speaker might not have deliberately chosen to use a particular

number, then they might not have been attempting to convey the corresponding

implicature. The hearer, attempting to reconstruct the speaker’s intention, cannot

then rely upon the implicature being intended.

In what way can the preceding context specify that a particular numeral should be

used? To answer this question fully would require a general theory of contextual

salience, and we do not attempt to offer such a proposal here. However, we posit

that one specific way in which this can take place is if a numeral is mentioned in the

preceding context. We would then expect that this numeral is heightened in

availability and thus preferred for reuse. This reuse would then, according to our

theory, give rise to weaker implicatures than would the use of the same numeral in a

situation where there was no prior mention of it. In the former case, we propose that

the prior mention would constrain the speaker’s choice of numeral, and thus

attenuate the pragmatic significance of the selected utterance.

Hence, we make the following additional prediction. Scalar implicatures of the

type we predicted earlier, arising from expressions of the form ‘more than n’ and
‘less/fewer than n’ at the appropriate granularity level, will be attenuated by

contextual prior mention of the numeral n, compared to cases in which n has not

previously been introduced in the context. We validate this prediction empirically in

Experiments 2 and 3 of this paper.

4 Experimental evidence

In this section, we report on a series of three experiments designed to test the two

predictions discussed in Sect. 3:

(1) Modified numerals of the form ‘more than n’ give rise to scalar implicatures

that are conditioned by granularity

(2) Granularity-based implicatures will be attenuated by mention of the numeral in

the prior context.

4.1 Experiment 1: Range of interpretation of numerical quantifiers

Experiment 1 was designed to test the first of these two predictions. In this

experiment, we presented participants with a numerically quantified expression and

asked them to estimate the value or range of values they interpreted the expression

as conveying. We manipulated the roundness of the numeral (corresponding to the

granularity of the scale(s) on which it occurs) and the type of numerical quantifier,

as discussed below.

4.1.1 Method

4.1.1.1 Participants The experiment was carried out online via the Amazon

Mechanical Turk (MTurk) platform (see Sprouse 2011 for a discussion of the use of
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MTurk for the collection of acceptability judgements). A total of 1200 participants

were recruited (100 per condition, as described below). The only inclusion criterion

was an acceptance rate of over 95 % on prior MTurk tasks. The subjects themselves

remained anonymous to us, but as part of the study they reported a few demographic

facts about themselves. The gender split was 51 % female, 49 % male. Subjects

were paid $0.02 for participation.

4.1.1.2 Materials and procedure Participants were shown the following stimuli,

consisting of a statement including a modified numeral, and were asked to provide

an estimate of the number in question:

Information A newspaper reported the following.

“[Numerical expression] people attended the public meeting about the new

highway construction project.”

Question Based on reading this, how many people do you think attended the

meeting?

Between ______ and ______ people attended [range condition].

______ people attended [single number condition].

Participants were also given an opportunity to write a comment explaining why they

answered the way they did.

These materials were used across 12 conditions in which the following

parameters were crossed:

● 2 quantifiers:

○ more than n
○ at least n

● 3 levels of roundness of n, corresponding to 3 levels of scale granularity:

○ Coarse granularity: multiple of 100 (n = 100)

○ Medium granularity: multiple of 10/non multiple of 100 (n = 110)

○ Fine granularity: non-round (n = 93)

● 2 question formats:

○ range

○ single number

The 12 conditions were fielded online over the course of roughly 20 days in December

2009 and January 2010, each condition being fielded separately in order to reduce the

likelihood of individual participants completing multiple versions of the task.

4.1.1.3 Predictions If participants draw inferences based on the writer’s decision

not to use a more informative expression containing a numeral m that participates on

a scale of the same (or coarser) granularity than n, we expect to see the following:

● The rounder n is, and thus the coarser-grained the scale is on which it occurs, the

higher respondents’ estimates will be (relative to n)
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● In the range condition, typical estimates will be of the form ‘n + 1 to m’ (for
‘more than n’) or ‘n to m’ (for ‘at least n’), where m is the next higher value on a

scale on which n occurs (or a coarser-grained scale).

4.1.2 Results

Incomplete responses were eliminated, as were those that did not consist of a single

numeral, including non-numerical responses (e.g. ‘many’ or ‘infinity’) as well as

those expressing ranges (e.g. ‘more than 110’); see Appendix 1 for the number of

responses excluded in each condition.

Because the data were not normally distributed, and in particular there were a

small number of outliers (see Appendix 1), in this and the following experiments we

used non-parametric methods for our analyses.

For each condition, median values were calculated, and the most frequent

responses were tallied. Additionally, to facilitate comparison across conditions,

median values were restated in terms of numerical ‘distance’ from the numeral n in

the quantifier presented. For example, a response of 140 in the ‘more than 100’

condition represents a distance of 40 from n. Full results are presented in Tables 1

and 2. Figure 1a, b shows graphically the median estimates and quartiles, expressed

in terms of distance from n.
To evaluate the effect of granularity, a Kruskal–Wallis test was used, with

distance from n as the independent variable and granularity level (coarse, medium,

fine) as predictor. For the quantifier ‘more than n’ in the range condition, a

significant effect of granularity was found for the high estimate (p \ 0.001);

follow-up pairwise comparisons via a Mann–Whitney U test showed significant

differences between coarse and fine granularity, coarse and medium, and medium

and fine (all p \ 0.001). In the single number condition, a significant effect of

granularity was also observed (p \ 0.001), with follow-up pairwise comparisons

showing a significant difference between coarse and fine (p \ 0.001), coarse and

medium (p \ 0.001) and medium and fine (p \ 0.05).

For the quantifier ‘at least n’ in the range condition, a significant effect of

granularity was again found for the high estimate (p \ 0.001); follow-up pairwise

comparisons showed significant differences between coarse and fine granularity

(p \ 0.001) and between coarse and medium granularity (p \ 0.05); no significant

difference was found between medium and fine granularity. In the single number

condition, a significant effect of granularity was also observed (p \ 0.05), with

follow-up pairwise tests showing a significant difference between coarse and fine

and coarse and medium (both p \ 0.01) but no significant difference between

medium and fine.

Note that the preceding analyses included responses that were inconsistent

with the truth conditions of the stimuli sentence. This includes responses such as

‘60–80’ in the ‘more than 100’ range condition, where it seems the participant has

misunderstood the nature of the task, and responses of n in the ‘more than n’ single
number condition (see Appendix 1 for the number of such responses in each

condition). When truth-conditionally inconsistent responses are removed, a
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Kruskal–Wallis test shows a significant effect of granularity for the high estimate in

the range conditions, for both ‘more than n’ and ‘at least n’ (p \ 0.001). In the

single number condition, a significant effect of granularity is found for ‘more than

n’ (p\ 0.001), but the corresponding effect for ‘at least n’ falls short of significance
(p = 0.083).

Turning now to the distribution of individual responses in the range conditions

(Table 2), for both ‘more than n’ and ‘at least n’, respondents’ estimates for the

Table 1 Number estimated—median (MADa)

More than n At least n

Range condition Single #

condition

Range condition Single #

condition
Low High Low High

Coarse: n = 100 100 (1.5) 149 (35.6) 110 (14.8) 100 (0.0) 125 (37.1) 101 (5.9)

Medium: n = 110 110 (1.5) 127.5 (18.5) 112 (3.0) 110 (0.0) 125 (22.2) 110 (3.0)

Fine: n = 93 93 (1.5) 100 (7.4) 94 (1.5) 93 (0.0) 100 (7.4) 93 (3.0)

a MAD is the (scaled) median absolute deviation, a measure of dispersion, calculated as the median of the

absolute deviations from the median, multiplied by a standard scale factor of 1.4826 for approximation to

the standard deviation (Hampel 1974)

Table 2 Most frequent estimates—range condition (# of participants)

More than n At least n

Low High Low High

Coarse: n = 100 100 (40) 150 (24) 100 (63) 150 (18)

101 (28) 125 (12) 90 (7) 125 (15)

120 (8) 50 (6) 120 (9)

200 (7) 100 (9)

1000 (5) 200 (5)

Medium: n = 110 110 (46) 120 (28) 110 (55) 150 (19)

111 (31) 150 (24) 100 (14) 120 (13)

100 (9) 200 (7) 130 (12)

119 (6) 110 (9)

130 (5) 115 (7)

115 (5) 200 (7)

125 (6)

111 (6)

Fine: n = 93 93 (32) 100 (34) 93 (57) 100 (42)

94 (29) 95 (14) 90 (16) 150 (9)

90 (14) 99 (7) 50 (5) 95 (8)

150 (6) 120 (6)

125 (5) 93 (6)

Truth-conditionally inconsistent responses in italics
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lower end of the range were most typically n or n + 1.4 Most of the remaining

responses fall into the ‘truth-conditionally inconsistent’ category; only a small

proportion of subjects’ responses were higher than n + 1 (between 5 and 14 per

condition).

With regard to the upper end of the range estimated, in the case of ‘more than

100’/‘at least 100’, the most common values given were 150, 125, 120 and 200;

these correspond to the next higher point above 100 on scales of granularity 50, 25,

20 and 100, respectively. In the case of ‘more than 110’/‘at least 110’, the most

common high estimates were 120 and 150, corresponding to the next points on

scales of granularity 10 (on which 110 occurs) and 50 (a coarser grained scale).

Finally, in the case of ‘more than 93’/‘at least 93’, the upper end given for the range

was most commonly 100, corresponding to the next higher point on scales of

granularity 10, 20, and higher.

4.1.3 Discussion

The results of Experiment 1 demonstrate that scale granularity plays a role in the

interpretation of numerically quantified expressions of the form ‘more than n’ and
‘at least n’. The rounder n is, and thus the coarser the granularity of the scale(s) on

which it occurs, the wider the range of interpretation that subjects allow for ‘more

than n’ and ‘at least n’. Looking just at the median responses, we see that the range

Coarse Medium Fine

Coarse Medium Fine Coarse Medium Fine

Coarse Medium Fine

0
20

40
60

0
20

40
60

0
20

40
60

0
20

40
60

D
is

ta
nc

e 
fr

om
 'n

'

More than 'n' - Range/high At least 'n' - Range/high

D
is

ta
nc

e 
fr

om
 'n

'

More than 'n' - Single # At least 'n' - Single #

Fig. 1 Number estimated—median and quartiles

4 Here, we assume that a response of the form ‘between n and m’ in the ‘more than n’ condition reflects

an exclusive rather than inclusive interpretation of between.
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of interpretation for ‘more than 100’ extends on average to 149 (i.e. 49 higher than

100), while that for ‘more than 110’ on average extends to 127.5 (only 17.5 higher

than 110, and actually lower than the upper limit inferred for ‘more than 100’), and

that for ‘more than 93’ typically does not extend past 100. Similar patterns are

observed in the case of ‘at least n’, though in this case the differences are less

pronounced.

These patterns can be interpreted as arising from scalar implicatures based on

granularity. In completing the task, respondents appear to have relied on the

inference that a decision not to refer to a higher value on a scale of the same or a

coarser level of granularity is an indication that (as far as the speaker/writer knows)

the statement with that higher value does not hold. That is, when presented with

‘more than n’, the hearer typically computes the implicature that ‘not more than m’,
where m is the next higher point on a scale on which n occurs (or on a scale of

coarser granularity). The coarser-grained the scale, the more ‘distant’ m is from n,
and thus the higher respondents’ estimates relative to n.

The distribution of individual responses further supports this hypothesis. The

majority of responses in the range condition were of the form ‘n/n + 1 to m’, where
m was, as discussed above, the immediately higher point on a scale on which n
occurs, or a coarser scale. Thus ‘more than 100’ typically conveys ‘not more than

150’, ‘more than 110’ conveys ‘not more than 120’ or ‘not more than 150’, and

‘more than 93’ conveys ‘not more than 100’. While respondents were not consistent

as to which scale they used as a basis for inference, their responses overall reflect an

influence of granularity.

Additional insight into the reasoning processes involved comes from the

responses to the optional comments question. Some, though not all, participants

commented on the reasoning behind the answers they provided. In the ‘more than

100’ condition, responses included “I feel that if there was more than 150, the

newspaper would say more than 150”, “I chose the above number because I felt had

the numbers been higher the paper would have said more than 200”, and “I think

125 would be the next increment worthy of mentioning”. Similarly, in the ‘more

than 110’ condition, we received responses such as “if it was [120 it would have

been described as such” or “if there were 116 people I assume the writer would’ve

said more than 115.” In total, 60 participants gave ‘reason’ responses, and of those

25 explicitly mentioned an alternative value that the writer could have used but did

not. These responses all indicate reasoning based on alternatives, and furthermore

reflect awareness of granularity considerations.

While the discussion so far has focused primarily on ‘more than n’, the results for
‘at least n’ further corroborate the account we have proposed. The primary

difference between the ‘at least n’ and ‘more than n’ conditions seems to be that the

estimates are on average higher for ‘more than n’ than they are for ‘at least n’. This
difference is potentially due to the fact that the use of ‘at least n’ indicates that the
value ‘(exactly) n’ has some non-zero probability of being true (Geurts and Nouwen

2007; Cummins and Katsos 2010; see Nouwen 2008 for a similar analysis of ‘no

more than n’). However, the general trend appears to be that ‘at least n’ does not
differ substantively from ‘more than n’. In the following, we can therefore focus on

‘more than n’.
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In the case of ‘more than 93’, we might further ask why participants do not draw

the inference that ‘exactly 94’ is the case, given that 94, like 93, occurs on the scale

of unit granularity. Rather, the upper bound is most commonly the next-largest

numeral with a coarser granularity level (i.e. 100), rather than at the same level as

93 itself. This possibility itself is not inconsistent with our prediction for granularity

effects (which holds that ‘more than n’ implicates that ‘not more than m’ does not
hold, where m is a numeral that occurs on a scale of the same or coarser granularity

than n). However, the absence of unit-granularity implicatures is at variance with

our initial hypothesis. We think that this is related to Fox and Hackl’s (2006)

observation that the enriched interpretation obtained at the finest level of granularity

would be futile as it would make ‘more than 93’ synonymous with ‘94’ (at least with

respect to cardinalities). We return to this topic in the general discussion, where we

go on to consider the circumstances under which quantifiers such as ‘more than 93’

may felicitously be employed.

Broadly speaking, however, Experiment 1 supports our first hypothesis.

According to these findings, scalar implicatures are available from expressions

such as ‘more than n’, and these implicatures are constrained by granularity. In this

respect, our findings cohere with the developing body of research on the role of

granularity in quantification.

4.2 Experiment 2: Effect of contextual priming on interpretation of numerical

quantifiers

In Experiment 2, we wish to test the second of our two hypotheses, namely that the

implicatures due to granularity are attenuated by previous mention of a numeral.

Given that Experiment 1 used a methodology which precludes close control of the

participants’ linguistic and cognitive abilities, we also wish to replicate our findings

in a more controlled setting. We further seek to extend the findings to the monotone

decreasing quantifier ‘fewer than n’. We achieve this by presenting quantified

expressions in two contexts, one in which the numeral is previously mentioned

(‘primed’) in the discourse and one in which it is not, and ask our participants to

interpret these expressions. We are then able to examine both whether granularity-

based implicatures are again exhibited, and, if so, whether prior mention of the

numeral influences these implicatures.

4.2.1 Method

4.2.1.1 Participants 45 native adult English-speaking participants were recruited

and randomly allocated to one of the versions of the task described below. Their

average age was 21.3 years (SD 5.5 years, range 17–46). 27 were female. 26 of the

participants were recruited via advertisement in the University of Cambridge, and

the remaining 19 by word-of-mouth.

4.2.1.2 Materials and procedure Each participant completed a questionnaire

consisting of 16 items. For each item, the participant was presented with a short
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dialogue, and asked to provide both a range and their preferred interpretation of the

value expressed by a numerically quantified expression in that dialogue. The

numeral in the quantified expression was either primed earlier in the dialogue or

unprimed. The precise instructions and an example item from this questionnaire in

its primed and unprimed versions are as follows.

Please read the following short dialogues, and answer the questions by filling

in a value for each blank space, according to your opinion. Consider each

dialogue separately. Assume that participant B is well-informed, telling the

truth, and being co-operative in each case.

Primed

A: We need to sell 60 tickets to cover our costs. How are the ticket sales

going?

B: So far, we’ve sold fewer than 60 tickets.

How many tickets have been sold? From …… to ……, most likely …….

Unprimed

A: We need to sell tickets to cover our costs. How are the ticket sales going?

B: So far, we’ve sold fewer than 60 tickets.

How many tickets have been sold? From …… to ……, most likely …….

The test items were designed to represent the following:

● 2 quantifiers:

○ more than n
○ fewer than n

● 3 levels of roundness of n, corresponding to 3 levels of scale granularity,

with 2 numerals per level:

○ Coarse granularity: multiple of 100 (n = 100, 200)

○ Medium granularity: multiple of 10/non-multiple of 100 (n = 60,80)

○ Fine granularity: non-round (n = 77,93)

● 2 levels of priming:

○ primed

○ unprimed

12 scenarios of the form illustrated above were developed (2 quantifiers 9 3

granularity levels 9 2 numerals), with each written in primed and unprimed

versions, which were identical except for the inclusion of the numeral in the first

sentence of the primed variant (as in the above example). This resulted in 24 test

items overall. An additional 4 primed and 4 unprimed filler items used the quantifier

‘about n’. Two versions of the questionnaire were developed, each containing one

variant (primed or unprimed) of each test and filler item, for a total of 12 test items

(6 primed/6 unprimed) and 4 filler items (2 primed/2 unprimed) per questionnaire

version. Every participant therefore responded to both quantifiers and each of the

three granularity levels, in both primed and unprimed scenarios.

A full set of experimental materials is included as an Appendix to this paper.
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4.2.1.3 Predictions We predict the following:

● In the unprimed condition, granularity effects will be observed as in Experiment

1, in that participants’ estimates will be more distant from n for values of n
occurring on coarser-grained scales

● In the primed condition, participants will not infer granularity-based upper/lower

bounds to the value in question, such that estimates will be more distant from n
in the primed vs. unprimed condition

4.2.2 Results

Prior to the analysis, 14 responses were removed due to missing or non-numerical

answers.

Tables 3, 4 and Figs. 2, 3 show participants’ median extreme and most likely

estimates, expressed in terms of numerical distance from the value n in the

quantifier; here, by extreme we mean the high end of the range in the ‘more than n’
case and the low end of the range in the ‘fewer than n’ case. As examples, a high

estimate of 150 for a ‘more than 100’ item represents a distance of 50 from 100; a

low estimate of 80 for a ‘fewer than 100’ item represents a distance of 20 from 100.

As was the case in Experiment 1, participants’ estimates were more distant from

n at coarser levels of granularity. We also observe higher estimates in the primed

versus unprimed conditions.

A Kruskal–Wallis test (again chosen due to the non-normal distribution of the

data) shows a significant effect of granularity on the extreme estimate (p \ 0.001),

with post hoc pairwise comparisons (Mann–Whitney U) showing significant

differences between coarse and fine, medium and fine, and medium and coarse

granularity (all p \ 0.001). A significant overall effect of granularity is also found

in the most likely estimates (p \ 0.001), with all of the pairwise comparisons again

significant (p \ 0.001).

With regard to the effects of priming, a Mann–Whitney U test finds a significant

difference between primed and unprimed items on both the extreme estimate

(p \ 0.05) and the most likely estimate (p \ 0.001).

Turning to the results for the two quantifiers individually, in the case of ‘fewer

than n’ a significant effect of granularity is found in both the extreme and most

likely estimates (p \ 0.001 for both); a significant effect of priming is likewise

found in the extreme estimate (p \ 0.05) and the most likely estimate (p \ 0.001).

For the quantifier ‘more than n’, a significant effect of granularity is found in the

extreme and most likely estimates (p \ 0.001 for both). However, the effect of

priming falls short of significance (p = 0.18 for the extreme estimate; p = 0.12 for

the most likely estimate).

To investigate the relationship of priming and granularity, the results for

unprimed and primed test items were analysed separately. For the unprimed items, a

Kruskal–Wallis test shows a significant effect of granularity on both the most likely

and extreme estimates (p \ 0.001 for both). A significant effect of granularity is

also found for the primed items, in both the most likely and extreme estimates
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(again p \ 0.001 for both). In each case, all three pairwise comparisons (coarse/

fine, coarse/medium, medium/fine) are significant at the p \ 0.01 level or stronger.

4.2.3 Discussion

These data replicate our findings from Experiment 1 concerning our first prediction

—once again, there is evidence of granularity-based implicature. The range of

values ascribed to the expressions does appear typically to be limited by the

locations of numerals that match the utterance in granularity but which would be

more informative if used; the result is that subjects give estimates more distant from

n for rounder values of n.
In addition to validating our first experiment’s finding with a more controlled

pool of participants, we also extend it, by showing that granularity-based inferences

Table 3 Most likely number (relative to n)—median (MAD)

Granularity

Fine Medium Coarse Total

Total

Unprimed 3 (3.0) 10 (7.4) 20 (14.8) 10 (10.4)

Primed 7 (7.4) 15 (7.4) 20 (14.8) 15 (11.9)

Fewer than n

Unprimed 3 (3.0) 10 (7.4) 25 (22.2) 10 (10.4)

Primed 12 (8.9) 15 (10.4) 20 (14.8) 17 (13.3)

More than n

Unprimed 2.5 (2.2) 10 (7.4) 20 (14.8) 10 (8.9)

Primed 4 (4.4) 15 (7.4) 20 (14.8) 10 (10.4)

Total 4.5 (5.2) 10 (7.4) 20 (14.8)

Table 4 Extreme end of range (relative to n)—median (MAD)

Granularity

Fine Medium Coarse Total

Total

Unprimed 12 (13.3) 20 (14.8) 50 (42.3) 20 (19.3)

Primed 23 (23.7) 30 (19.3) 50 (44.5) 27 (25.2)

Fewer than n

Unprimed 18 (16.3) 20 (14.8) 50 (44.5) 27 (29.6)

Primed 27 (25.2) 40 (29.7) 50 (44.5) 33 (29.6)

More than n

Unprimed 7 (5.9) 20 (14.8) 50 (33.4) 20 (19.3)

Primed 13 (14.8) 20 (14.8) 40 (29.7) 20 (19.3)

Total 17 (14.8) 20 (14.8) 50 (44.5)
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are available not only for monotone increasing quantifiers such as ‘more than n’ and
‘at least n’, but also for the monotone decreasing ‘fewer than n’.

We also find support for our second prediction, namely that the inference should

be attenuated by contextual salience of the numeral. When the numeral n has been

previously mentioned in the discourse (primed condition), participants gave

estimates significantly more distant from n than when it has not been not previously

mentioned (unprimed condition). We interpret this pattern as indicating that, when
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there is a contextually determined reason for the speaker to use the numeral, hearers

are less likely to draw inferences based on the non-use of the next highest value on

the scale of the appropriate granularity level.

Two aspects of our results are, however, unexpected in light of our predictions.

First, granularity effects are observed not only in the unprimed condition—where

we predicted them to occur—but also in the primed condition. Thus when the

numeral n was made salient, participants were less likely to draw inferences based

on the next higher value on a scale n occurs on, but they nonetheless appeared to

derive pragmatically enriched interpretations which were in some way affected by

granularity considerations. Thus the effect of contextual salience on granularity-

based inferencing is a graded rather than absolute one. We return to this point in the

conclusions, where we discuss more broadly the interaction of granularity and

salience with other determiners of expression choice such as informativeness.

Second, the effects observed for priming are somewhat less robust than might

have been expected, and in particular reach significance for ‘fewer than n’ but not
‘more than n’. We hypothesise that task-related effects may have played a role here.

The design of this experiment, which was intended to explore the interacting effects

of priming and granularity, required that participants see both primed and unprimed

test items. It is possible that the exposure to priming influenced participants to infer

some relevance for the numeral stated even in the unprimed items where it was not

mentioned, or conversely that the contextual occurrence of the numeral was

sometimes overlooked in the primed items. Either could result in a blurring of the

distinction between the two conditions. Relatedly, the various conditions were

represented by 12 distinct dialogues, and in particular more and fewer were

represented by different dialogues (see Appendix 2). It is thus conceivable that item

effects contributed to the pattern of results observed. We investigate these two

possibilities in Experiment 3.

4.3 Experiment 3: Effect of priming

In Experiment 2, we found evidence that subjects assigned wider ranges of

interpretation to numerical quantifiers when the numeral was primed in the context

than when it was not. We also found a difference between the behaviour of the

quantifiers ‘more than’ and ‘fewer than’ with respect to priming. In Experiment 3,

we investigate these effects more directly with a partial replication of Experiment 2,

which was designed to address two potential issues with that study. Specifically: (a)

participants saw only a single test item, in either primed or unprimed version; (b) the

same scenario (dialogue) was used for both quantifiers tested.

4.3.1 Method

4.3.1.1 Participants A total of 400 participants (100 per condition) were recruited

via Amazon MTurk, using the same screening criteria and payment as in

Experiment 1.
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4.3.1.2 Materials and procedure Participants saw either the primed or the

unprimed version of the following dialogue, featuring either ‘more than’ or ‘fewer

than’, and were asked to estimate the number in question (range and most likely

value):

Primed:

Salesperson: This storage unit holds 60 CDs. How many CDs do you own?

Customer: I have more than/fewer than 60 CDs

Unprimed:

Salesperson: This storage unit holds CDs. How many CDs do you own?

Customer: I have more than/fewer than 60 CDs

Participants also had the opportunity to comment on their answers.

The numeral 60 was chosen to represent an intermediate level of granularity

(corresponding to a scale whose points are multiples of 10 or 20), at which level

priming effects were clearly visible in Experiment 2.

The two ‘more than’ conditions were fielded in June 2010; the ‘fewer than’

conditions were fielded in December 2010. In both cases, fielding of the primed and

unprimed conditions was separated by at least a day to minimise overlap between

the samples.

4.3.1.3 Predictions We predict that for both ‘fewer than 60’ and ‘more than 60’,

participants’ estimates will be more distant from 60 (i.e. lower in the case of

‘fewer’, higher in the case of ‘more’) in the primed condition than in the unprimed

condition.

4.3.2 Results

As in previous experiments, data were cleaned by the removal of incomplete and

non-numerical responses. In addition, a number of responses (between 4 and 10 per

condition) were removed where the respondent seemingly misinterpreted the

instructions as calling for a single digit to be entered in each blank (resulting for

example in a range of ‘between 1 and 9’ given for a ‘more than’ condition). This

resulted in usable data from 92 subjects in the ‘more than’ primed condition, 91 in

the ‘more than’ unprimed condition, 90 in the ‘fewer than’ primed condition, and 89

in the ‘fewer than’ unprimed condition.

Table 5 displays median values for subjects’ estimates, expressed as both raw

values and in terms of distance from the value 60 in the quantifier. Once again we

observe that subjects’ estimates are more distant from the value in the quantifier (i.e.

higher for ‘more than’, lower for ‘fewer than’) in the primed than unprimed

conditions. For example, for ‘more than’ the median estimate for the high end of the

range condition was 100 in the primed condition (a distance of 40 from 60),

compared to 80 in the unprimed condition (a distance of 20 from 60). Similarly, for

‘fewer than’ the median estimate for the low end of the range was 27.5 in the primed
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condition (a distance of 32.5 from 60), compared to 40 in the unprimed condition (a

distance of 20 from 60).

A Mann–Whitney U test, with the distance of the extreme estimate from n as the

independent variable, finds a significant difference between primed and unprimed

conditions (p \ 0.001); the corresponding analysis using the most likely estimate

also shows a difference between primed and unprimed conditions (p \ 0.001).

Additionally, a significant difference between the quantifiers ‘more than’ and ‘fewer

than’ is found with respect to the most likely estimate (p \ 0.001), though not for

the extreme estimate (p = 0.15).

Examining the two quantifiers separately, in the case of ‘more than’ a significant

difference is found between primed and unprimed conditions with respect to both

the extreme estimate and the most likely estimate (p \ 0.001 for both). In the case

of ‘fewer than’, a significant difference between conditions is also found for the

extreme estimate (p \ 0.05) and the most likely estimate (p \ 0.05).

Further insight into participants’ behaviour is obtained by examining the

distribution of individual responses. Figures 4 and 5 show the distribution of the

values given as the extreme end of the range.

Looking first at the results for ‘more than’ in Fig. 4, the pattern of responses is

markedly different between the two conditions. In the unprimed condition, there are

three main peaks, at 70, 80 and 100. The first two of these values (70, 80)

correspond to the immediately higher values on two scales on which 60 occurs: the

scale whose units are multiples of 10, and the one whose units are multiples of 20.

The third of these values (100) corresponds to a point on a scale of higher

granularity (i.e. multiples of 50 or 100). In the primed condition, by contrast, there is

a single primary peak at 100, representing a higher level of granularity than the

numeral in the quantifier; responses of 70 and 80 are much less frequent, while

higher responses (200, 1000) also occur. A χ2 test, comparing responses of 70, 80,

100, 200, and 1000 with all other values, shows the difference in distribution is

significant (χ2 = 18.7, df = 5, p \ 0.01).

The corresponding distributions for ‘fewer than’ are shown in Fig. 5. In both

primed and unprimed conditions, an appreciable proportion of subjects gave a

response of 0 or 1 for the lower end of the range. We might term these “truth

conditional” responses, in that the range of interpretation is not affected by any sort

Table 5 Number estimated—median (MAD)

Raw values Distance from n

Extreme Most likely Extreme Most likely

More than n

Unprimed 80 (23.7) 70 (8.9) 20 (23.7) 10 (8.9)

Primed 100 (29.7) 80 (23.0) 40 (29.7) 20 (23.0)

Fewer than n

Unprimed 40 (17.8) 55 (4.4) 20 (17.8) 5 (4.4)

Primed 27.5 (25.9) 45 (14.8) 32.5 (25.9) 15 (14.8)
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of pragmatic strengthening. Other than these responses, we again observe a

difference in the pattern of responses. In the unprimed condition, the primary peak is

at 50, corresponding to the immediately lower point on two scales: that whose units

are multiples of 10 (on which it occurs), and the coarser grained scale whose units

are multiples of 50. Inferences relative to this scale point thus seem to be

particularly robust. In the primed condition, in comparison, the pattern of responses

is more diffuse, with 40 being the most commonly given value, followed by 30, 20,

50 and 10. A χ2 test, comparing responses of 0/1, 10, 20, 30, 40, and 50 with all

other values, shows the difference in distribution is significant (χ2 = 16.92, df = 6,

p \ 0.01).

4.3.3 Discussion

Corroborating the findings of Experiment 2, we find here further evidence for the

role of contextual salience, this time for both quantifiers investigated. The

interpretation of ‘more than n’ and ‘fewer than n’ is shaped by the contextual status
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of the numeral n. When n is not in any way salient in the context, the interpretation

assigned to ‘more than n’ is constrained by implicature to ‘not more than m’, where
m corresponds to the next-highest point on a scale on which n participates, or a

coarser-grained scale. Similarly, the interpretation of ‘fewer than n’ is constrained
by implicature to ‘not fewer than m’ for some appropriate m. Round numbers

typically occur on multiple scales, which differ in their granularity: 60, for example,

seems to be a scale point on scales with granularity levels 10 and 20 (and perhaps

others). As such, there are multiple options for the value m, and correspondingly

variation in the range speakers assign to ‘more than n’ and ‘fewer than n’. But
notwithstanding this, granularity effects are observed.

On the other hand, when n is contextually salient, giving the speaker a reason to

(re)use it, granularity effects are attenuated: hearers allow an overall wider range of

interpretations for ‘more than n’ and ‘fewer than n’, and in particular show less of a

tendency to draw inferences relating to the immediately higher or lower scale point.

That is, alternative-based implicatures are less likely to be generated in the case

where the numeral is salient. This accords with the second of our two main

hypotheses, namely that prior mention of the numeral would attenuate scalar

inferences of this type. Note however that typical responses in the primed condition

(e.g. 100, 200, 1000) nevertheless correspond to points on scales of the same or

coarser granularity than those on which 60 occurs. This sheds light on the finding in

Experiment 2 that granularity effects are observed in the primed condition as well.

5 Conclusion

From our experiments, we conclude that hearers are able to enrich numerically-

quantified expressions such as ‘more than’ and ‘fewer than’ with scalar implicat-

ures, even in unembedded contexts, contrary to the claims prevalent in the literature

(Krifka 1999; Fox and Hackl 2006). This suggests that no additional theoretical

machinery need be posited to account for the seemingly deviant pragmatic

behaviour of these quantifiers. Instead we showed that two established factors of

pragmatic reasoning are important for the implicatures triggered by modified

numerals. Specifically, we show that granularity, construed in terms of the density

of measure points on the number scale, and contextual salience, specifically with

regard to whether the numeral used has previously been mentioned in the context,

exert significant influence on these inferences.

Our results also provide some insight into the relative strength of the two factors

granularity and salience, showing specifically that salience can attenuate the effect

of granularity. It remains to be established precisely how these factors interact. One

possible account of this is offered by Cummins (2011), which posits a constraint-

based model for the use of numerical quantifiers by a speaker. In this model, the

speaker selects the utterance that best satisfies a ranked set of constraints, while

maintaining truthfulness. Hearers then recover meanings by drawing inferences

about the situation that must prevail, given the fact that the speaker’s utterance was

optimal. With respect to our experiments, the relevant constraints in Cummins’s

model are Numeral Priming, which is violated when a contextually activated
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number is not used, Numeral Salience, which is violated when the number used is

not intrinsically salient (i.e. round),5 and Informativeness, which is violated when

the speaker makes a less informative statement than they could have.

This model’s treatment of priming effects can be sketched as follows. In the

unprimed case, the Numeral Priming constraint exerts no effect. The speaker’s

choice is conditioned by Numeral Salience and Informativeness. Thus, the decision

to use a particular numeral implicates that no alternative was available that was at

least as good with respect to both constraints: that is, there was no more informative

expression available to the speaker that used at least as round a number. Hence the

hearer is predicted to draw the inference discussed earlier (for instance, that “more

than 90” implicates “not more than 100”). By contrast, in the primed case, Numeral

Priming becomes relevant as well. The decision to use a particular numeral now

implicates only that no alternative was available that was at least as good with

respect to all three constraints. If the primed numeral is reused, then this implicature

is vacuous: no other numeral could be as good with respect to Numeral Priming.

Hence, reuse of a numeral is predicted to block implicatures about informativeness.

In this way, the model formalises the notion that the reuse of a numeral might

merely reflect a decision to save effort, in which case it should not convey any

pragmatic effects.

The above model requires further refinement to accommodate the observation

that granularity effects are still observed in cases where the numeral is primed, as

shown in experiments 2 and 3. One possibility is to posit gradient effects in

constraint violation, which would imply that adherence to Numeral Priming

becomes increasingly disfavoured as the loss of Informativeness increases. For

example, in the case where 60 is primed, ‘more than 60’ might be favoured by

Numeral Priming up to some ceiling value, at which point a more informative

expression becomes preferred, whereupon Numeral Salience will favour the use of

round numbers (thus preserving granularity effects). Alternatively, numerals such as

100 might be categorically more prominent than those at lower levels, in which case

they may be preferred on the grounds of Numeral Salience, even in the face of a

competing preference for Numeral Priming. This remains a matter for future study,

so we shall not speculate here about the merits and demerits of such approaches. In

general, though, it appears that a constraint-based account such as that proposed by

Cummins (2011) has potential utility in explaining data such as those we present

here.

A further point requiring discussion is the curious behaviour of quantified

expressions at the finest level of granularity. As discussed above, their implicatures

seem frequently to arise with reference to a higher level of granularity: for instance,

“more than 93” implicating “not more than 100” rather than “not more than 94”. As

this is crucial to the analysis of quantifiers with small numerals, which have been

adduced as evidence that modified numerals do not convey implicatures, it merits

further discussion.

5 Note that the term “salience” is used differently in Cummins (2011) than in the present paper. The

Numeral Salience constraint relates to roundness, in our terms, while the Numeral Priming constraint

relates to prior mention of the numeral.
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Our account for the data at the finest level of granularity proceeds in two steps. In

the first step, we observe that use of “more than n” is expected to be blocked at the

finest level of granularity except in certain contexts or situations. Secondly, we

propose that hearers therefore infer from a speaker’s use of “more than n”, where n
is not round, that such a context must be present. However, as a consequence of this,

the hearers cannot then draw the typical granularity-based inference from the

speaker’s utterance. In the following, we show that this account predicts the

experimental data and also the speakers’ intuitions concerning quantifiers with small

numerals, such as ‘more than three’.

The first step of our account has already been argued in the literature: Fox and

Hackl (2006) observe that the lexical content combined with the implicature arising

from ‘more than three’—that is, ‘exactly four’—could be communicated more

efficiently by the use of ‘(exactly) four’. A knowledgeable speaker who is aware

that ‘exactly four’ is the case should therefore say ‘four’ rather than ‘more than

three’ (and similarly, mutatis mutandis, for the case of ‘more than 93’ versus ‘94’).

This argument dispenses with the unwanted implicature, but at the cost of

excluding the possibility of ‘more than three’ (or ‘more than 93’) being uttered by a

knowledgeable speaker: given the perfectly good examples of this that have been

discussed, it seems we are throwing the baby out with the bathwater. At this point,

the second step of our account becomes important: we argue that ‘more than n’ can
be used with non-round n, but only in certain contexts. One such case is if the

speaker is not epistemically committed (that is, the case where the speaker’s

knowledge might be characterised as “[n”). The second is the one we have

investigated in this research, namely when the numeral n is contextually salient. For

this explanation to work, we would have to be able to argue that expressions such as

‘more than three’ actually surface only in such contexts. We would contend that the

examples discussed in the literature do indeed meet this condition. For instance, (25)

naturally supposes a context in which John’s having three children is somehow

critical, perhaps because it is a threshold for benefits, it is as many as will fit in the

back of the car, or because it means he has more children than some other individual

who is known to have exactly three. (Alternatively, it is compatible with a situation

in which the extent of the speaker’s knowledge is merely that the number of John’s

children is greater than three.)

(25) John has more than three children.

This seems to apply not only for small n but for fine-grained values of n in general.

Consider for instance (26), based on an item from Experiment 1.

(26) More than 93 people attended the meeting.

Intuitively, it only seems natural for this to surface in a context in which 93 is a

critical level for attendance; for example, if it is the quorum for the meeting, or the

typical attendance, or a guess someone has made about the attendance. In fact,

presented with this sentence without context, some participants in Experiment 1

commented on its oddness. There are good reasons for this. If ‘more than 93’ does
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not reuse a number and does not directly address a question under discussion, both

the speaker and the hearer are being forced to process a numeral that is not highly

available. Furthermore, this numeral does not even correspond to the precise

number of people at the meeting. All this does is to generate additional processing

requirements without achieving much in the way of additional cognitive effects: i.e.

it is less relevant than some alternative.

Furthermore, when one searches for corpus examples of modified numerals

containing non-round numerals, the examples one finds are precisely those where the

numeral has some contextual salience or relevance. For example, (27) refers to the

number of seats required to command a majority in the UKHouse of Commons, (28) to

the ‘perfect’ score for an over in cricket, and (29) to the size of a standard pack of cards.

(27) Maybe fewer than 25 % think the unthinkable—that the Tories will obtain

fewer than 326 seats.6

(28) It is also possible to get more than 36 runs in an over, but it has never

happened before.7

(29) [M]ost decks used in casinos for poker have more than 52 cards so people

don’t cheat.8

We propose that hearers, when confronted with a quantifier such as ‘more than 93’,

actually posit that there is some reason for this particular expression to be chosen—

either because the numeral itself is in some way salient, or because the speaker’s

knowledge does not allow a more informative expression to be used. Once it is

supposed that there is some such reason, there will be no implicature, because the

speaker’s choice of utterance is to some extent forced.9 Or perhaps we should more

accurately say that, to the extent that the hearer supposes that there is a reason for

using that number, the hearer does not draw an inference.

This effect should also influence hearers’ interpretations at a coarser granularity

level, albeit to a lesser extent. When a hearer interprets ‘more than 100’, they are

entitled to question whether there is a specific reason for 100 to be referred to; and if

so, they may not draw the inference. This might further account for the variability

exhibited by participants in both our experiments: a competent user of language

should interpret ‘more than 100’ without an implicature if the speaker’s decision to

mention 100 is contextually forced. In this way we, as hearers, can ‘repair’

infelicitous utterances such as (22) by positing a context against which they can be

interpreted without implicature.

This proposal appears to account for the distribution of responses to quantifiers at

the finest granularity level, and in doing so to account for the lack of implicatures

6 http://www2.politicalbetting.com/index.php/archives/2010/01/17/do-these-1992-approval-ratings-hold-

the-key/, retrieved 2nd August 2010.
7 http://www.sports1234.com/cricket/1652-2-cricket.html, retrieved 2nd August 2010.
8 http://answers.google.com/answers/threadview/id/100828.html, retrieved 2nd August 2010.
9 Here it is not crucial whether the speaker is epistemically committed but choosing to reuse a

contextually-activated number, or merely not epistemically committed. In either case, the implicature

should not be available.
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from expressions such as ‘more than 3 children’ that has been observed in the

literature. However, clearly further experimental investigation is required to

ascertain whether hearers are indeed reasoning in the way we hypothesise. If so, it

remains to be shown how our participants’ responses are derived: for instance, are

they acting in accordance with some specific imagined context, and if so, can we

establish how they select this context?

We turn finally to the question of how our results can be unified with the findings of

Fox and Hackl (2006). Fox and Hackl observe that while comparative quantifiers do

not seem to give rise to implicatures (and do not associate with ‘only’) in unembedded

contexts, they do so when embedded under certain, though not all, modals. They

exemplify this by citing the following examples (p. 544; their (13) and (14)).

(30) a. You’re required to read more than 30 books.

Implicature: There is no degree greater than 30, d, s.t.
you are required to read more than d books.

b. You’re only required to read more than 30 books.

(31) a. You’re allowed to smoke more than 30 cigarettes.

*Implicature: There is no degree greater than 30, d, s.t.
you are allowed to smoke more than d cigarettes.

b. *You’re only allowed to smoke more than 30 cigarettes.

Our results show that, contrary to Fox and Hackl’s assumption, modified cardinals

can yield implicatures even in unembedded contexts. However, this does not explain

the difference between the behaviour of (30) and (31). If Fox and Hackl’s analysis of

(30) is correct, it does appear to constitute strong evidence in favour of their proposal.

It might nevertheless be interesting to investigate whether the interpretation of (30a)

involves the implicature that they posit or a weaker one conditioned by granularity or

salience, such as appears to arise from a dialogue such as (32).

(32) A. Can I apply for an international business development grant?

I have ten employees.

B. You need more than ten employees to count as an ‘international business’.

If however the Fox and Hackl (2006) type implicature is not subject to these

considerations, it suggests that the two types of implicature require different

accounts. In fact, at least the grammatical theory of scalar implicature allows for

two kinds of implicatures and other theories of implicature may do so too. The

grammatical theory of implicature proposes that scalar implicatures in most cases

arise from a silent semantic exhaustification operator Exh (Chierchia et al. 2008).

One version of this operator, as defined in (33), negates all alternatives to the actual

utterance that are contextually salient—i.e. members of the set C.

(33) Exh(C)(p) = p & ∀p′ ∈ C: ¬ p′

However, the grammatical account does not attribute all implicatures to the silent

exhaustification operator, and claims that pragmatic reasoning accounts for the
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remaining implicatures. The pragmatic reasoning assumed by the grammatical

account is weaker than the analysis of scalar implicatures we introduced in Sect. 2.

Consider the case of a speaker uttering S that has a logically stronger scalar

alternative S*. Above we assumed that hearers conclude in this case that the speaker

thinks that S* is false. However, another version of the pragmatic reasoning

assumes that hearers conclude that the speaker is not certain that S* is true.10 More

formally, if we use Belσ as an operator for speaker belief, the two candidate

implicatures are represented as Belσ(¬ S*) for the first version of pragmatic
reasoning and ¬Belσ(S*) for the latter. From these two representations, it is
transparent that the former entails the latter—i.e. the latter form of pragmatic
reasoning yields strictly weaker results. The grammatical account assumes only the
weaker form of pragmatic reasoning. This predicts that in many examples the effect
of pragmatic reasoning is impossible to detect, because exhaustification yields
stronger inferences. Disjunction is the major example where both mechanisms can be
seen at work. Use of a disjunctive statement of the form ‘A or B’ implicates (1) that
the speaker believes that ‘A and B’ is false and (2) that the speaker is not certain that
A is true and is also not certain that B is true. The Exh operator accounts only for the
former implicature, and the later is taken to derive from pragmatic reasoning.

The implicatures triggered by modified numerals can receive a similar account to

disjunction. On the one hand, as Fox and Hackl (2006) show, the implicatures from

modified numerals embedded below a modal can be attributed to Exh, while similar

implicatures are blockedwhen nomodal is present. On the other hand, the granularity-

based implicatures from modified numerals can be explained by pragmatic reasoning

and are predicted to be independent of the presence of a modal, since modals are

upward-entailing. For example, the use of an expression “more than 100” in a sentence

S leads by pragmatic reasoning to an implicature that for any numeralm[ 100 and at

the same granularity level as 100, it is not certain that S would hold if “more than 100”

were replaced by “more than m”. The account predicts that these pragmatic

implicatures should have the weaker epistemic force noted above: the speaker is

uncertain that a stronger claim holds. Our experiments were not specifically designed

to distinguish between epistemically strong and weak implicatures, so we are not yet

able to test this prediction. We see this as a direction for future research.
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Appendix 1: Excluded and flagged responses (Experiment 1)

Appendix 2: Experimental materials (Experiment 2)

For each of the following items, A’s utterance contains a numeral in the primed
condition. In the unprimed condition, the numeral is omitted. Participants saw
either a version of the questionnaire in which items 1, 3, 4, 8, 9, 10, 12 and 16 were
primed, or one in which items 2, 5, 6, 7, 11, 13, 14 and 15 were primed.

Please read the following short dialogues, and answer the questions by filling in a

value for each blank space, according to your opinion. Consider each dialogue

separately. Assume that participant B is well-informed, telling the truth, and being

co-operative in each case.

1. A: We need to sell [60] tickets to cover our costs. How are the ticket sales

going?

B: So far, we’ve sold fewer than 60 tickets.

How many tickets have been sold? From …… to ……, most likely …….

2. A: To win the election, the candidate had to convince [77] people to vote

for him.

How many votes did he get?

B: He got more than 77 votes.

How many votes did the candidate get? From …… to ……, most likely …….

3. A: This photo album has space for [150] 4 9 6 photos.

How many photos of that size do you have?

B: I have about 150 photos.

Range condition Single number condition

Incomplete/not

single numeral

(excluded from

analysis)

Outlier

(high

estimate)

Inconsistent

w/truth

conditions

Incomplete/not

single numeral

(excluded from

analysis)

Outlier Inconsistent

w/truth

conditions

More than n

n = 100 3 6 15 6 1 19

n = 110 2 3 16 5 2 28

n = 93 3 3 31 1 1 34

At least n

n = 100 3 2 25 0 1 11

n = 110 1 1 36 0 1 22

n = 93 2 1 33 1 2 15
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How many photos does B have? From …… to ……, most likely ……

4. A: We’ve invited [80] members and non-members to the reception.

How much room is there in the hall?

B: There’s room for more than 80 people.

How many people is there room for in the hall? From …… to ……, most likely

…….

5. A: There are still [200] copies of the agenda left. How many delegates

are we waiting for?

B: We’re waiting for fewer than 200 delegates.

How many delegates are they waiting for? From …… to ……, most likely …….

6. A: This display case holds [80] CDs. How many CDs do you own?

B: I own fewer than 80 CDs.

How many CDs does B own? From …… to ……, most likely …….

7. A: The lecture hall can accommodate [130] students taking an exam.

How many students will be taking tomorrow’s exam?

B: About 130 students will be taking tomorrow’s exam.

How many students will be taking the exam? From …… to ……, most likely

…….

8. A: I expect [93] cars to arrive between now and three o’clock.

How many spaces are left in the car park?

B: There are more than 93 spaces left in the car park.

How many spaces are left in the car park? From …… to ……, most likely …….

9. A: We wanted [200] new signatures on the petition. How many new people

signed it?

B: Fewer than 200 new people signed it.

How many new people signed the petition? From…… to ……, most likely …….

10. A: The new prison still has space for [110] prisoners. How many prisoners

need to be transferred out of the old facility?

B: About 110 prisoners need to be transferred.
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How many prisoners need to be transferred? From …… to ……, most likely

…….

11. A: [60] [P]eople have already paid their deposit for this holiday. How many

seats are there on the plane?

B: There are more than 60 seats on the plane.

How many seats are there on the plane? From …… to ……, most likely …….

12. A: We can hire a bus with [77] reclining seats for the excursion.

How many people will be coming?

B: Fewer than 77 people are coming.

How many people are coming on the excursion? From …… to ……, most likely

…….

13. A: We have space in the garden to plant [50] tulips. How many tulip bulbs

are in the bag?

B: There are about 50 tulip bulbs in the bag.

How many tulip bulbs are in the bag? From …… to ……, most likely …….

14. A: There are [100] free tickets available for people who call the station today.

How many people have called so far?

B: Fewer than 100 people have called so far.

How many people have called the station so far today? From …… to ……, most

likely …….

15. A: We have enough budget left to print [93] colour copies of the brochure.

How many people have asked for one?

B: Fewer than 93 people have asked for a copy.

How many people have asked for a copy of the brochure? From …… to ……,

most likely …….

16. A: We can provide [100] lunches for the guests.

How many of them will stay for lunch?

B: More than 100 of them will stay for lunch.

How many of the guests will stay for lunch? From …… to ……, most likely

…….
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