
A Weyl-Type Theorem for Geometrized Newtonian Gravity†

Erik Curiel‡

October 25, 2015

ABSTRACT

I state and prove, in the context of a space having only the metrical structure imposed

by the geometrized version of Newtonian gravitational theory, a theorem analagous to

that of Weyl’s for a Lorentz manifold. The theorem says that a projective structure and

a suitably defined compatible conformal structure jointly suffice for fixing the metrical

structure of a Newtonian spacetime model up to constant factors. It allows one to

give a natural, physically compelling interpretation of the spatiotemporal geometry of

a geometrized Newtonian gravity spacetime manifold, in close analogy with the way

Weyl’s Theorem allows one to do in general relativity.
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1 Weyl’s Theorem

Soon after Einstein first promulgated the theory of general relativity, Weyl (1918) formulated

and proved a theorem that has since served as the foundation for one of the most influential

and compelling ways to give a physical interpretation to the theory’s mathematical machinery,

Lorentzian geometry:1

†This paper has been submitted to Journal of Mathematical Physics, October 2015.
‡I thank David Malament and Jim Weatherall for useful questions about and constructive criticism of an

earlier draft of the paper.Author’s address: Munich Center for Mathematical Philosophy, Ludwig-Maximilians-

Universität, Ludwigstraße 31, 80539 München, Deutschland; email: erik@strangebeautiful.com
1Researchers as varied in their backgrounds, aims and temperaments as Eddington (1923), Møller (1952), Traut-

man (1965), Hawking and Ellis (1973) and Malament (2012) have used it so, to mention only a small sample. This

form of interpretation can be enlighteningly contrasted with one based, e.g., on chronometry, as in Einstein (2001)

or Synge (1960).
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Weyl-Type Theorem for GNG

Theorem 1.1 (Weyl 1918) Given a conformal structure on a differential manifold, and a pro-

jective structure agreeing with it on (images) of its null geodesics, there is a Lorentz metric, fixed

up to a constant factor, having each as its associated structure of that kind.

In essence, to know the conformal structure is to know which curves are timelike (the possible

paths of massive bodies), which are null geodesics (the possible paths of light-rays in vacuo), and

which are spacelike (the possible paths of no physical system); to know the projective structure

allows one further to say which timelike curves are (images of) geodesics, i.e., the possible paths of

freely falling massive bodies. To know both, then, the theorem tells us, is to know the spacetime

metric up to a fixed constant, i.e., up to the choosing of a system of units of measurement, thus

giving us the physical significance of the metric: it is determined by the behavior of light rays and

freely falling bodies.2 In this paper, I construct the necessary machinery, a Newtonian conformal

structure, for a formulation and proof of a natural analogue of this theorem in the context of

geometrized Newtonian gravity. It provides in the same way the basis for a compelling physical

interpretation of the spatiotemporal structures of that theory.

In §2, I characterize the analogue of a conformal structure in Newtonian spaces. I conclude in

§3 with a statement and proof of the theorem, and an explanation of the way it grounds a physical

interpretation of the theory. In appendix A, I sketch the machinery of geometrized Newtonian

gravity required for the paper’s definitions and proofs, following the treatment of Malament (2012,

ch. 4, §2) (with minor emendations and simplifications).

2 Newtonian Conformal Structure

The following definition encapsulates almost the entirety of the formal structure of geometrized

Newtonian gravity as a physical theory, the remainder being elaboration of and derivations from

its elements.

Definition 2.1 A Newtonian spacetime model is an ordered quintuplet (M, ρ, hab, tab,∇a) such

that:

1. M is a four-dimensional, connected, paracompact, smooth, differential manifold

2. ρ is a smooth, non-negative, scalar function on M

3. hab is a smooth, symmetric tensor field on M of signature (0, 1, 1, 1)

4. tab is a smooth, symmetric tensor field on M of signature (1, 0, 0, 0)

5. tab and hab are compatible, i.e., tanh
nb = 0

6. ∇a is a smooth derivative operator on M, compatible with tab and hab in the sense that

∇a tbc = 0 and ∇ahbc = 0

2See, e.g., Ehlers, Pirani, and Schild (1972) for a thorough exposition of the mathematics behind the theorem

and its intended physical significance, and Malament (2012, ch. 2, §1, pp. 120–121) for a lapidary account of such a

physical interpretation, including a discussion of its virtues and possible problems.
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M represents spacetime, the “totality of all point-events”, and ∇a the physically relevant affine

structure, i.e., the one whose geodesics represent unaccelerated paths in the spacetime. ρ represents

the mass-density distribution of matter. hab and tab represent, respectively, the closest we come

to having spatial and temporal metric structures on M. (See appendix A for an explanation of the

sense in which these tensors represent such structure.) We refer to the ordered pair (hab, tab) as a

Newtonian metrical structure.

From hereon, we assume all Newtonian spacetime models to be spatially flat (i.e., Rabcd, the

spatialized Riemann tensor, vanishes; see appendix A for an explanation of the significance of this

condition). It follows from the results and discussion of Malament (1986) that this represents no real

loss of generality, as it is those models that best capture the idea of the possible spaces of classical

Newtonian gravitational theory. We also assume in what follows that M is simply connected and

the spacetime model is temporally orientable (i.e., that there exists a globally defined temporal

function t such that tab = ∇a t∇b t). Again, this is no real loss of generality, for all arguments

and conclusions would still go through without the assumption, at the cost of constant hedging

about which results are local and which global, and hence much technical work of a nit-picky sort

without any counter-balancing gain in physical insight.

From hereon, we will need to keep track of the difference between a curve considered, on the

one hand, as a smooth, injective mapping from a real interval to M, and, on the other, as the

point-set image in M of such a mapping. I will use ‘curve’ when I mean the former, and ‘image of

a curve’ when I mean the latter.

Two affinities ∇a and ∇̃a are projectively equivalent if they agree on images of geodesics,

which is to say, if they agree on geodesics up to arbitrary (smooth, monotonic) reparametrization:

ξn∇n ξa = 0 if and only if ξn∇̃n ξa = λξa for λ a smooth function on the image ξ. A projective

structure, then, is a maximal collection of affine structures on a Newtonian spacetime all of which

agree on images of all geodesics (“maximal” in the sense that we throw in every affine structure

that meets the criterion). One can equally well define the projective structure as the complete

family of images of geodesics on which the affine structures agree. A member of such a family of

images of geodesics is a projective geodesic.

Now, to characterize the analogue of conformal structure in geometrized Newtonian gravity.

In general relativity, one can define a conformal structure to be an assignment of a smoothly

varying field of quadratic cones at every point of the spacetime manifold, the null-cones. Two

Lorentz metrics gab and g̃ab are conformally equivalent if they have the same null-cone structure.

This holds if and only if the two metrics agree on their null geodesics, which holds if and only if

gab = Ω2g̃ab for some smooth, non-zero scalar field Ω. Because we have no such metric structure

in geometrized Newtonian gravity, and correlatively no cone-structure (except the degenerate one,

which will not do) or non-trivially null type of vector, one cannot apply such a characterization of

conformal structure here.

The following observation provides the required clue for moving forward: two Lorentz metrics

are conformally equivalent if and only if they agree on orthogonality relations for all pairs of vectors.

Equivalently, gab and g̃ab agree in assignments of ratios of lengths to any pair of (non-null) tangent

vectors. The conformal structure so characterized then allows one to distinguish among timelike,

null and spacelike vectors, to distinguish null geodesics, and to reconstruct the null-cone structure.

Null-vectors are those non-zero vectors orthogonal to themselves, which picks out the null-cones;
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and a null geodesic is one contained in a null-cone (in an appropriate sense—see Ehlers, Pirani, and

Schild 1972). Timelike vectors are those pointing into the interior of the null cones, and spacelike

vectors are all the rest.

This suggests that we attempt to characterize conformal structure in the context of geometrized

Newtonian gravity by making use of orthogonality among (appropriate) pairs of vectors.

Definition 2.2 A Newtonian Conformal Structure C on a four-dimensional manifold M consists

of:

1. at each point p ∈ M, a three-dimensional vector subspace Cp of T ∗
pM (the tensor space of

1-forms over p), smoothly varying from point to point

2. orthogonality relations fixed for all pairs of elements of Cp

This structure suffices for defining a family of symmetric tensor fields characterized by a given hab

with signature (0, 1, 1, 1), fixed up to multiplication by a positive scalar field Ω2: αa, βa ∈ Cp are

orthogonal if and only if hmnαmβn = 0. We can now distinguish timelike from spacelike vectors:

spacelike vectors are those that result from raising an index of a 1-form in a Cp; timelike are those

that cannot be so derived. If ξa = hanαn, we say αa is a spacelike representative 1-form of xa. We

can now also determine a second family of symmetric tensor fields, characterized by a given tab

with signature (1, 0, 0, 0), fixed up to multiplication by a positive scalar field χ2. A vector ξa is

timelike if and only if tmnξ
mξn > 0. Clearly, any two such representative tensor fields hab and tab

are compatible, in the sense that tanh
nb = 0. We say two symmetric tensor fields hab and h̃ab of

the appropriate signature are conformally equivalent if they live in the same family of tensor fields

of a given Newtonian conformal structure, and similarly for tab and t̃ab.

Because, given two spacelike vectors, there is always a third that, added to the first, makes

it orthogonal to the second, the trigonometric functions allow one to define angles among them.

One can similarly define hyperbolic angles among pairs of timelike vectors by taking the difference

between them, fixing a spacelike vector, and using that as a “unit” to treat the difference vector

as, in essence, a velocity difference. One can then use the hyperbolic trigonometric to define the

angles. (This is essentially the same procedure one uses in general relativity to define hyperbolic

angles between timelike vectors; and, in the same way, this structure does not allow one to define

orthogonality relations among timelike vectors.) From this, one immediately derives ratios of

lengths between all pairs of spacelike vectors, and between all pairs of timelike vectors, which is

exactly the information encoded in the two families of conformally related tensor fields.

A conformal derivative operator, then, is the family of derivative operators each of which is

compatible with a pair of compatible spatial and temporal metrics in the conformal families, in

the sense that each triplet of representatives satisfy ∇ahbc = 0 and ∇a tbc = 0. A conformal

representative of the conformal structure is a triplet (hab, tab, ∇a) all compatible with each other.

By construction, we are always guaranteed that at least one conformal representative has a spatially

flat derivative operator.3

3In general, the derivative operator of a given conformal representative will not be spatially flat, and so cannot

represent the affine structure of a Newtonian spacetime model according to the constraints of this paper, but that

is not a problem. The conformal structure I sketch here is strictly that of the spatial geometry of a candidate

Newtonian spacetime model. A conformal structure in this sense need not embody all the geometry of a complete
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It will give some insight into the character of a Newtonian conformal structure, as well as

being useful in the proof of theorem 3.1, to show that being spatially twist-free for a vector field

(∇[aξb] = 0) is a conformally invariant notion, i.e., a conformal derivative operator allows one to

determine whether a given vector field is twist-free or not. This makes intuitive sense, as being

twist-free essentially means that “nearby” vectors in the vector field have no “angular velocity”

with respect to each other, but angular velocity is a conformal notion. More precisely, fix two

conformal representatives (hab, tab, ∇a) and (h̃ab, t̃ab, ∇̃a), with h̃ab = Ω2hab, and the difference

vector Cabc between the two derivative operators. First,

0 = ∇̃a h̃bc

= ∇̃a (Ω2hbc)

so

Ω2∇̃ahbc + hbc∇̃aΩ2 = 0

Using Cabc to re-express this, and noting that ∇a and ∇̃a agree in their action on Ω2, we get

0 = Ω2∇ahbc + Ω2Cbanh
nc + Ω2Ccanh

bn + hbc∇aΩ2

= 2Ω2hcnCban + hbc∇aΩ2
(2.1)

Thus 2Ω2hanCbnc = −hab∇cΩ2 and so hn[aCb]nc = 0. Thus

∇̃[aξb] = 0 if and only if ∇[aξb] = 0

The analagous calculation now shows that ∇̃a is compatible with t̃ab if and only if t̃ab = Ω2tab,

and 2Ω2tanCb
nc = tab∇cΩ2.

Now, for a Newtonian conformal structure to be a physically meaningful analogue of conformal

structure in general relativity, it should allow one to distinguish a preferred family of images of

curves, the conformal spacelike geodesics, i.e., images of curves that can be reparametrized so as

to be geodesics for each representative derivative operator of the conformal derivative operator

associated with the conformal structure.4 And it does. They are the spacelike curves that, in

an appropriate sense, preserve orthogonality relations. Fix two spacelike vector-fields ξa and ηa

everywhere orthogonal to each other. One can always do this. Pick a flat representative of the

conformal derivative operator, ∇a; fix ξa and ηa orthogonal at a point p; then construct a curve

(unique up to parametrization) that has ξa as its tangent vector at p, and that parallel-transports

ηa along it with respect to ∇a. Then do the same with the roles of ξa and ηa reversed. Do the

same along every point of the constructed curves. Pick a vector θa orthogonal to both ξa and ηa at

p, and parallel-transport the constructed curves along θa. And so on. Because we are working with

Newtonian spacetime model. In particular, although spatial flatness of a complete Newtonian spacetime model may

fix the spatial metric up to a constant, that does not imply that spatial conformal factors for a Newtonian conformal

structure can be only constants. Any S2-preserving transformation of R3 will preserve orthogonality, and there are

far more of those than just multiplication by a constant—the Mb̈ius transformations, e.g.
4Although a conformal structure in general relativity fixes the null geodesics as curves, not just images of curves,

we cannot expect that here: that happens in the null case only because all vectors tangent to all curves formed by

parametrizing the images have the same length (viz., 0), and so the images remain true geodesics under arbitrary

parametrizations. That will not be the case for the spacelike curves here, which will be true geodesics (not just

re-parametrizable so as to be geodesics) only under a preferred family of parametrizations.
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a spatially flat derivative operator, we are guaranteed that parallel-transport of all these vectors

is path-independent, so the construction is consistent.

The integral curves of ξa and ηa are conformal spacelike geodesics. Now, pick again a represen-

tative ∇a of the conformal derivative operator (not necessarily spatially flat), with its associated

hab. We will use hab to effectively lower indices in the following calculations, by using it to arbi-

trarily fix spacelike representative 1-forms of ξa and ηa respectively. (It is a simple calculation to

show that the following argument is independent of the initial choice of spacelike representative 1-

forms.) Now, it is clear that the two vector-fields Lie-derive each other. Thus ξn∇n ηa = ηn∇n ξa,

and, by orthogonality, ∇a ξnηn = 0. Now the result follows by playing these off each other in the

standard way.

ηmξ
n∇n ξm = ξmξn∇n ηm

= ξn∇n ξmηm − ηmξn∇n ξm

The first term in the last line is zero by orthogonality, and so we are left with ηmξ
n∇n ξm =

−ηmξn∇n ξm, i.e., ηmξ
n∇n ξm = 0. Since this is true for all vectors orthogonal to ξa, we conclude

that ξn∇n ξa = λξa, for some non-negative λ. Thus, the integral curves of ξa are spacelike geodesics

up to reparametrization.

3 The Theorem

A projective structure and a Newtonian conformal structure are compatible with each other if the

conformal spacelike geodesics determined by the Newtonian conformal structure are also projective

geodesics. We can now state the main result of the paper.

Theorem 3.1 Two conformal representatives of the same conformal structure have projectively

equivalent derivative operators if and only if the two temporal and spatial metrics differ, respectively,

only by a constant factor.

proof:

The “if” part of the theorem is immediate. Assume, then, that we have two pairs of con-

formal representatives , (hab, tab, ∇a) and (h̃ab, t̃ab, ∇̃a), where h̃ab = Ω2hab and t̃ab = Ω2tab.

Because their respective compatible derivative operators, ∇a and ∇̃a, agree on images of geodesics,

their difference tensor Cabc is of the form δa(bφc) for some 1-form φa. In particular, because

they are conformally related, from equation (2.1) we know that Cab
c = − 1

2h
ac∇b ln Ω2 and

Ca
b
c = 1

2 tac∇
b ln Ω2. The proof now proceeds as in the Lorentzian case (Malament 2012, ch. 1,

§9, p. 83), playing these expressions off each other, until one derives ∇aΩ2 = 0.

First, contract the three equations, yielding

Cnna = Ca = δn(nφa) = (n+ 1)φa

Cnn
a = Ca = −1

2
∇a ln Ω2

Cn
n
a = Ca =

1

2
∇a ln Ω2

Erik Curiel 6 October 25, 2015



Weyl-Type Theorem for GNG

so

(n+ 1)φa = −1

2
∇a ln Ω2

(n+ 1)φa =
1

2
∇a ln Ω2

It follows that φa = φa = 0, and so ∇aΩ2 = 0.
�

One can now use the theorem to render a physical interpretation to the Newtonian metric

structure of a Newtonian spacetime model, in the following way.5 We will use the following

interpretive principles.

C1 timelike curves represent the possible paths of massive bodies

C2 segments of images of spacelike geodesics represent the spatial position and extent of (rigid)

yard-sticks

P1 images of timelike geodesics represent the paths of freely falling massive bodies

Now, if we can determine when two coincident rigid rods are orthogonal at an instant of time,

then, by C2, we can determine the Newtonian conformal structure. This can be operationalized

in any of a number of ways, such as by the use of a compass. The projective structure is then

fixed by determining the images of paths of freely falling bodies (P1). Thus, by the theorem, to

know when rigid rods are orthogonal to each other at a given moment of time and to know the

images of the paths of freely falling bodies is to fix the entirety of the metrical and affine structure

of a Newtonian spacetime model. (A Newtonian metrical structure does not by itself fix a unique

affine structure, in contradistinction to the situation in general relativity.)

A Appendix: Geometrized Newtonian Gravity

A Newtonian spacetime model is as defined in definition 2.1.

Definition A.1 The temporal length of a vector ξa is (ξmξntmn)
1
2 . ξa is timelike if its temporal

length is non-zero, spacelike if the vector is non-zero and has a temporal length of zero.

It is natural to think of the zero-vector as both timelike and spacelike, in so far as we know what

it means for two events to occur at the same time as well as at the same place. The addition of

any spacelike vector to a timelike one is always timelike. It follows that the family of timelike

vectors forms a four-dimensional affine space modeled on the tangent space. (It cannot form a

vector-space, as the sum of two timelike vectors may be spacelike.) It also follows that the family

of spacelike vectors at a point forms a three-dimensional vector subspace of the tangent space at

that point.

The signature of tab implies that at every point there exists a neighborhood and smooth 1-

form ta defined on that neighborhood such that tab = tatb on that neighborhood. If there is

a globally defined such 1-form, then the spacetime model is temporally orientable and ta is a

5I do not claim this is the unique or even just a canonical way of doing so, or the most elegant or concise or what

have you, only that it is a perspicuous and natural way, with clear physical significance.
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temporal orientation on it; a timelike vector ξa is future-directed if tnξ
n > 0. Item 6 in definition

2.1 implies that ta is closed, and so, at least locally, there exists a smooth function t such that

∇at = ta, the (local) time-function. If M is simply connected and the spacetime model temporally

orientable, t is defined globally. In this case, its constant surfaces represent the Newtonian idea

of “all of space at a given moment of time”, i.e., a maximal collection of events all (absolutely)

simultaneous with each other, a simultaneity slice, and so M has the topology R × Σ, where Σ

is a three-dimensional manifold diffeomorphic to a simultaneity slice. This t is unique up to the

addition of a constant, which may be thought of as a change of temporal origin. Its scale, however,

is fixed by the temporal length of vectors: to multiply tab by a constant factor changes nothing

physically, but rather represents only a change in units of temporal measurement.

tab, then, determines an absolute temporal structure—the temporal separation of any two

events in the spacetime is fixed once and for all, independent of any other state of affairs in the

world; the equivalence classes of spacetime points under the relation “having a temporal separation

of zero with” are exactly the simultaneity slices. A timelike curve is one whose tangent vectors

are everywhere timelike. Such curves represent the possible worldlines of ponderable bodies. The

signature of tab has another consequence of note: it does not allow one to define orthogonality

between two timelike vectors. This makes physical sense: two orthogonal, timelike vector-fields

would define time-functions different in the sense that they would not share surfaces of constancy,

i.e., they would define incommensurable temporal structures.6

hab defines the spatial metric structure in a more indirect way.

Proposition A.2

1. A vector ξa is spacelike at a point p if and only if there is a covector αa at p such that

ξa = hanαn.

2. For all covectors αa and βa at a point, if hanαn = hanβn, then hmnαmαn = hmnβmβn.

In virtue of this proposition, the following is well formulated.

Definition A.3 The spatial length of a spacelike vector ξa is (hnmαnαm)
1
2 , where αa is any

covector satisfying hanαn = ξa.

If a spacelike ηa equals hanαn, then we say αa is a representative spacelike 1-form of ηa. In so far

as hab determines lengths only for spacelike vectors, but not at all for timelike vectors (whereas

tab determines lengths for all spacelike vectors: 0), it defines a spatial metric in only a Pickwickian

sense, as it ought to according to Galileian relativity. We know what it means in Newtonian theory

to assign a definite distance between two simultaneous events, by employing yard-sticks and the

like, independent of any other state of affairs in the world. We do not know how to do so for

non-simultaneous events.7

6One can see the physical sense this makes in another, more indirect way: in so far as one can consider all the

spacelike vectors at a point in Newtonian spacetime to be the result, in the limit, of “flattening” the null-cones

in a relativistic spacetime—“letting the upper bound of possible velocities go to infinity”—the timelike Newtonian

vectors at that point encode essentially the same information as the timelike vectors in the interior of the original

null-cones, and no two timelike vectors can be orthogonal to each other with respect to a fixed Lorentz metric. See

Malament (1986) for a precise characterization and analysis of the process of flattening the null-cones in a relativistic

spacetime.
7See Stein (1967) for a thorough discussion.
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The following construction captures the content of this observation. Specify at a point p a

constant timelike vector ξa of unit temporal length, and define ĥab to be the unique symmetric

tensor at p satisfying

ĥanh
nb = δa

b − tanξbξn

ĥanξ
n = 0

ĥab represents the covariant spatial metric determined by projection relative to ξa. Then the spatial

length of any vector assigned indirectly by hab will agree with that assigned directly by ĥab. The

spatial separation of two non-simultaneous events, however, as determined by such a ĥab, depends

on the choice of ξa. Again, this is as it should be. If we knew how to assign a spatial length to

timelike vectors, and so a fixed spatial separation between non-simultaneous events, then we could

define a notion of absolute rest: “a particle is at absolute rest if the timelike curve representing its

worldline has everywhere tangent vectors of zero spatial length”. This, however, we cannot do.

In contradistinction to tab, h
ab allows one to define a relation of orthogonality among spacelike

vectors: two spacelike vectors ηa and θa are orthogonal if hmnαmβn = 0, where αm and βn are any

two representative spacelike 1-forms of ηa and θa respectively. This makes physical sense as well: we

know in Newtonian spacetime how to determine whether two yardsticks at a single moment of time

are at a right angle to each other. hab also allows us to define a relation of orthogonality between

a spacelike and a timelike vector: given a a timelike vector ξa, a spacelike vector ηa, and any

representative 1-form αa for ηa, then ξnαn = 0 if and only if ξnβn = 0 for any other representative

spacelike 1-form βa. Though this may sound a little odd at first, it makes physical sense, too. A

simple calculation shows that any timelike curve parametrized by arc-length (“proper time”) will

satisfy ξn∇nξa = ηa, where ξa is the tangent to the curve and ηa is spacelike and orthogonal to ξa.

This says that for any ponderable body, the worldine of which by definition instantiates a timelike

curve, its acceleration is everywhere spacelike, and thus a viable candidate for entering Newton’s

Second Law on the righthand side. If this were not the case, then one could have ponderable

bodies accelerating in a timelike direction, with attendant timelike forces, and I see no possible

way to make physical sense of such a conceit, except perhaps in a 1950’s B-movie “Great Scot!

He’s beginning to mutate!”-sort of way. Thus, we can assign determinate magnitudes, fixed once

and for all, to the acceleration of bodies, as Galileian relativity allows us to do, and Newtonian

mechanics demands we do (Stein 1967). In sum, hab encodes the right amount of structure of the

right kind, nothing more, nothing less. (One may think of this as physics practiced in accord with

the Goldilocks Principle.)

In what follows, we assume that M is simply connected and the spacetime model is temporally

orientable; this is no real loss of generality, for all arguments and conclusions would still go through

without the assumption, at the cost of constant hedging and much technical work of a nit-picky

sort without any counter-balancing gain in physical insight. In particular, we do not need to worry

about which results hold only locally and which globally.

Before moving on to the definition of the appropriate analogue of a conformal structure for a

Newtonian metric structure, we rehearse a few of its properties and state the most important two

theorems in geometrized Newtonian gravity, which will be of use later. When there is no chance

for ambiguity, we will use raised indices to represent the action of hab on a tensorial object, e.g.,

∇a := han∇n.
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Theorem A.4 (The Geometrization Lemma) Fix a Newtonian spacetime model (M, ρ, hab,

tab,∇a), such that ∇a is flat, i.e., its associated Riemann tensor Rabcd = 0, and a smooth scalar

field φ such that ∇n∇nφ = 4πρ (the Poisson equation). Define another derivative operator ∇̃a =

(∇a, Cabc), where Cabc = −tcb∇aφ. Then:

1. (M, ρ, hab, tab, ∇̃a) is a Newtonian spacetime model

2. ∇̃a is the unique derivative operator such that

ξn∇̃nξa = 0 if and only if ξn∇nξa = −∇aφ

3. the Riemann tensor R̃abcd associated with ∇̃a satisfies

a. R̃ab = 4πρtab

b. R̃ab
c
d = R̃cd

a
b

c. R̃abcd = 0

A few remarks are in order to explain the physical significance of the theorem. In essence it says

that, given a Newtonian spacetime model with a flat affine structure, we can always construct one

in which the geodesics (possible paths of “freely falling bodies”) of a curved affine structure are

the same paths as those representing bodies moving under the force of the ambient gravitational

field associated with ρ in the original model. The constructed model “geometrizes” gravity: it

incorporates the effects of gravity into the metric structure of the new model, in analogy with

general relativity.

The effective converse of the Geometrization Lemma holds as well.

Theorem A.5 (Trautman Recovery Theorem) Fix a Newtonian spacetime model

(M, ρ, hab, tab,∇a) satisfying

1. Rab = 4πρtab

2. Rab
c
d = Rcd

a
b

3. Rabcd = 0

Then there is a derivative operator ∇̃a and a scalar field φ̃ such that

1. ∇̃n∇̃nφ̃ = 4πρ (the Poisson equation)

2. ∇̃a is compatible with tab and hab

3. ∇̃a if flat

4. for all timelike curves with tangent vector ξa

ξn∇nξa = 0 if and only if ξn∇̃nξa = −∇̃aφ̃

Moreover, (∇̃a, φ̃) is not unique. Any other such pair (∇̂a, φ̂) will satisfy the stated conditions

if and only if

a. ∇a∇b(φ̃− φ̂) = 0
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b. ∇̂a = (∇̃a, Cabc), where Cabc = tbc∇a(φ̃− φ̂)

Given a Newtonian spacetime model in which the gravitational effects of ρ are geometrized (incor-

porated into the curved affine structure), the theorem tells us that we can recover one in which

the gravitational effects of ρ are rather represented by the acceleration of the paths of freely-falling

bodies, as defined by a flat affine structure.

In disanalogy with general relativity, and crucially for our purposes, in this context Rabcd = 0 is

not equivalent to Rabcd = 0. The interpretation of the condition Rabcd = 0 and its relative strength

as compared to Rabcd = 0 follow from a proposition whose proof is straightforward, albeit tedious

(Malament 2012, §§4.2–4.3). To state it, we need a few more definitions. A Newtonian spacetime

model is spatially flat if Rabcd = 0, i.e., if the affine structure on the simultaneity slices derived

by restricting to them the action of the global affine structure is flat. A unit, future-directed

timelike vector-field ξa is rigid if £ξh
ab = 0, i.e., if ∇(aξb) = 0. (One may think of a rigid vector

field as the analogue of a Killing field in general relativity.) ξa is twist-free if ∇[aξb] = 0, and is

acceleration-free if ∇aξb.

Proposition A.6 Fix a spatially flat Newtonian spacetime model. Then:

1. Rabcd = 0 if and only if there exists a rigid and twist-free vector field

2. Rabcd = 0 if and only if there exists a rigid, twist-free and acceleration-free vector field

Another illuminating characterization of Rabcd = 0 follows from this proposition: the condition

holds if and only if parallel-transport of spacelike vectors is path-independent.
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