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Abstract 

Pluralism about scientific method is more-or-less accepted, but the consequences have yet 

to be drawn out. Scientists adopt different methods in response to different epistemic 

situations: depending on the system they are interested in, the resources at their disposal, and 

so forth. If it is right that different methods are appropriate in different situations, then 

mismatches between methods and situations are possible. This is most likely to occur due to 

method bias: when we prefer a particular kind of method, despite that method clashing with 

evidential context or our aims. To explore these ideas, we sketch a kind of method pluralism 

which turns on two properties of evidence, before using agent-based models to examine the 

relationship between methods, epistemic situations, and bias. Based on our results, we suggest 

that although method bias can undermine the efficiency of a scientific community, it can also be 

productive through preserving a diversity of evidence. We consider circumstances where 
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method bias could be particularly egregious, and those where it is a potential virtue, and argue 

that consideration of method bias reveals that community standards deserve a central place in 

the epistemology of science. 

1. Introduction 

Philosophers, historians, and sociologists of science have long agreed that there is no single 

scientific method. How to best generate knowledge depends crucially on the kind of knowledge 

in question, as well as technological, social and theoretical context, and the kind of system the 

investigation targets: what we’ll call the ‘epistemic situation1’. Accepting that good knowledge-

production admits of a plurality of methods, and that these are more-or-less appropriate in 

different epistemic situations, leads us to the possibility of method mismatch. The adopted 

method might be inappropriate for the epistemic task. Method mismatch likely occurs due to 

method bias: tacit or explicit ideas about knowledge production might influence scientific 

practice. Our target then, is how opinions about good method in a scientific community—as 

reflected in publishing practices, for instance—might influence the nature and productivity of 

that community.  

In this paper, we articulate a form of method plurality, allowing us to explore both mismatch 

and bias vis-à-vis method. We’ll understand method plurality by distinguishing between two 

properties of evidence. First, what we’ll call sharpness: how incisive evidence is regarding a 

hypothesis. Second, what we’ll call independence: the amount of overlap between the 

background theory which underwrites different evidence. In light of this, we’ll characterize two 

scientific strategies, one targeting sharpness—methodological ‘obligates’—the other 

independence: methodological ‘omnivores’. We’ll then consider under what conditions method 

                                                             
1 For fuller discussion of this notion, see Leonelli 2016, Currie 2018. 
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mismatch could occur, exploring two aspects of epistemic situations. First, the evidential 

context investigators face; second, community-level preferences for different evidence types.  

We’ll not claim that method bias is necessarily problematic: indeed, as we’ll show, 

sometimes introducing it can ensure a diversity of strategies are employed. Moreover, given 

that method bias is, in effect, a community’s preference for types of evidence, it is often 

unavoidable. The take-home message is that the make-up of a scientific community depends 

both upon evidential context, and what is recognised as ‘good evidence’ or practice in that 

community. Publishing standards, funding decisions, the opinions of referees, and so forth, 

affect what kind of work gets done. Recognising that, on the one hand, different investigative 

strategies are more appropriate in different contexts, while on the other hand, opinions about 

what good science looks like might either follow or work against those contexts, allows us to see 

the kinds of effects method bias might have. Moreover, this itself underwrites an argument that 

understanding scientific evidence without taking the relevant community’s views about good 

evidence, and the epistemic situation, into account, is wrong-headed. Indeed: we’ll argue that 

consideration of such community properties is required for understanding evidence. 

In addition to these points about the social epistemology of science, we also take ourselves 

to be making a contribution to discussion of how we should understand and make optimal 

epistemic progress, under constraint, in a Bayesian framework. This more technical discussion 

largely plays out in the footnotes, specifically footnotes 8, 12, 18, 20 and 212. 

We’ll analyse and explore method plurality, mismatch, and bias, via agent-based modelling, 

which we introduce and utilize in sections 3 through 5. We construct an epistemic landscape 

which represents the two properties of evidence which interest us. We then add agents which 

adopt the strategies we’ve mentioned, and publishing standards which reflect the community’s 

method bias. We’ll establish a link between properties of the landscape and the success of 

                                                             
2 We thank an anonymous referee for pointing out this angle, and for helpful suggestions on how to 

make it explicit. 
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different strategies. Some landscapes favour obligates, others omnivores. We’ll then explore the 

effects of method bias by considering to what extent changing publishing standards can 

influence the kind of evidence which is generated in the population, and the make-up of the 

population in terms of strategies.  

According to our model, method bias can maintain a diversity of strategies and evidence in a 

community. This can occur even when the landscape heavily favours one strategy over another. 

Moreover, making it easier for the disadvantaged strategy is more effective than making it 

harder for the favoured strategy. Finally, the trade-off between method bias and a community’s 

productivity is not simple: often gains in one arena are not equally matched by losses in 

another. This suggests that under some conditions maintaining a diversity of scientific 

strategies can actually increase the productivity of a community overall. Before describing our 

simulation work, in section 2 we’ll analyse sharpness and independence. 

Our primary goal in this paper, then, is to identify and analyse an otherwise unnoticed kind 

of bias whose recognition is made possible through a commitment to method pluralism and a 

recognition that some methods are more useful in some contexts than others. In doing so, we 

also make original use of ‘epistemic landscape’ models, both in the dynamics they instantiate 

and how we interpret them. We’ll finish in section 6 by discussing circumstances in which 

method bias might be particularly egregious, and by arguing that philosophical analysis which 

approaches evidence abstracted from aspects of epistemic situations—community standards in 

particular—are inadequate for many instances of knowledge-generation in science. 

2. Sharpness & Independence 

In this section we provide conceptual underpinnings for the remainder of the paper. 

Although methodological pluralism takes diverse forms, it suits our modelling approach to focus 

on two diverging properties of evidence: ‘sharpness’ and ‘independence’. We’ll first briefly 

discuss method pluralism, before spending some time developing and clarifying these two 
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evidential properties, and briefly pointing to examples where these notions are plausibly in 

scientific play. 

A ‘scientific method’ is a strategy for doing science: how should scientists go about 

generating knowledge? The kind of ‘disunity’ or ‘pluralism’ that concerns us here denies that 

science can be unified by a single method3 (see Feyarabend 1975 for a classic defence of this 

claim). That is, there is no one privileged strategy for generating scientific knowledge that is 

distinctive of it. Rather, method is context sensitive. There is room for disagreement about 

which aspects of context matter, and to what extent: some emphasize the social and political4, 

others research’s public import5, others the kinds of systems the investigation targets6. 

Regardless, that good science admits a plurality of method—that it is ‘disunified’—we take to be 

generally agreed upon. 

In our model, agents adopting different strategies compete by trying to maximize different 

properties of evidence. We’ll call one ‘sharpness’, the other ‘independence’. It is useful to begin 

with the old truth that observations do not count as evidence for or against a hypothesis 

simplicita: bodies of background theory are required to connect our hypothesis-driven 

expectations with an investigation’s results7. The relationship between background theory and 

evidence underwrites two evidential properties. 

On the one hand, evidence can be more-or-less sharp. Brandon (1997) understands how 

‘experimental’ a study is in part by the extent to which experimental results test the relevant 

hypothesis. The epistemic ‘power’ of a result, or set of results, to establish or falsify a conjecture, 

varies. Sharpness, then, is a relationship between results and hypotheses. Dull results are 

ambiguous vis-à-vis hypotheses, sharp evidence speaks clearly and firmly. For this to occur, 

                                                             
3 It is worth pointing out that this disunity thesis is weaker, and does not necessarily come hand-in-

hand with the stronger metaphysical claims of Dupre (1995) and Cartwright (1999). 
4 See, for instance, Shapin & Schaffer (1985) 
5 For instance Douglas (2000), Brown (2013). 
6 Currie & Walsh (2018), Weisberg (2012), Matthewson (2011) 
7 See, for instance, Bogen & Woodward (1988). 
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background theory must both connect the investigation’s results to the hypothesis, and 

alternatives must be accounted for. 

Sharpness is best understood probabilistically. Evidence is sharp vis-à-vis a hypothesis to 

the extent to which the unconditional probability of the hypothesis is lower than its likelihood 

given the evidence in question. That is, sharp evidence has a high likelihood ratio. In Bayesian 

terms, ‘sharpness’ is a measure of how much we should update our beliefs in light of the 

evidence. Dull evidence will raise our credence but a little, while sharp evidence has major 

effects8. It is plausible that many experimental strategies aim to maximize sharpness (consider 

Cleland 2002, for instance). Controlling for confounding factors lowers ambiguity; the results 

exclude more possibilities. Multiple runs, controlled conditions, and other features of 

experiments make for powerful, convincing, sharp results. 

On the other hand, variety-of-evidence reasoning relies on independence. We can 

understand ‘independence’ as the extent to which lines of evidence rely on varied background 

theories. Consider proxies of past temperature. Surface temperature fluctuations in the deep 

past can be detected by (among other things) boreholes, and preserved pollen grains in 

sediment. First, the temperature variation at different vertical positions of boreholes tracks 

temperature variation at the time of deposition. Second, pollen quantity tracks plant 

productivity and as this is sensitive to temperature, fluctuations in pollen quantity can tell us 

about temperature fluctuations across time. Again, data is not evidence for free: borehole 

temperature must be controlled against warmth from the Earth’s core, for instance. So, both 

                                                             
8 Things are not as simple as they may seem here: on many Bayesian accounts evidence for a 

proposition has diminishing returns, that is, if my confidence is already very high, evidence which in other 
contexts might be very telling would, on this account, be dull. There are several moves open here. One 
might adopt a 4-place account of sharpness, relative to (1) the hypothesis in question, (2) the 
observations or data, (3) background theory, and (4) the current beliefs of the relevant agents (this could 
be a three place account if background theory determines current beliefs). Alternatively, one might adopt 
a counterfactual account, understanding sharpness as the amount by which a rational agent’s credence 
would increase in light of the evidence if their priors were suitably low. Or, one could abandon the 
subjectivism of Bayesianism and adopt an externalist account of evidence: thus, there is some non-agent-
relative fact of the matter about sharpness. There may be subtle differences in the construal of our model 
based on these decisions, but as we discuss in footnote 21, our model will cohere with a wide variety of 
precisifications. 
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proxies require background theory for evidential relevance but—crucially—they require 

different background theory. That is, they are independent, and independence can sometimes 

carry important epistemic consequences (see Forber & Griffith 2011, Fitelson 2001, Heesen, 

Bright & Zucker 2014, Stegenga 2009)9.  

Imagine that both borehole and pollen data converge on the same pattern of past 

temperature. Because the evidence relies on different bodies of background theory, for the 

world to refuse to cooperate—that is, for the convergent predictions to turn out false—distinct 

failures are required. If temperature estimates from both borehole and pollen data converge, 

but those estimations are false, separate mistakes are required for each source. Perhaps our 

method for pollen-gathering introduces bias; perhaps interior warming in our analysis of 

borehole data was faulty. In this circumstance, the convergence would be a, perhaps very 

unlikely, coincidence. Independence, then, is a virtue. Under the right conditions, if the 

measures converge on the same result, then it is likely to be the right result, as otherwise both 

must mess up, but coincidentally converge. If, however, data relies on overlapping background 

theory, then a single mistake can lead to the failure of both. Independence is graded: some 

measures will have more-or-less overlapping justification. And indeed, overlaps can be more-or-

less problematic depending on how firmly established the overlapping theory is. Although 

independence is in principle a virtue, it is important to note its in-practice limitations. Evidence 

generated from different procedures can be incongruent: background theory is required to 

‘translate’ between evidence generated by different procedures using different language 

(Stegenga 2011). Further, often different evidence is used to support different aspects of a 

hypothesis: they merely cohere rather than converge in the sense independence requires 

(Currie 2018, chapter 8, also Mayo-Wilson 2011)10.  

                                                             
9 The term ‘robustness’ is sometimes used in discussion of ‘independence’, we prefer the latter term 

as ‘robustness’ is also used to discuss virtues of models and experimental setups which are not directly 
related to the evidence they generate. 

10 Thanks to an anonymous referee for suggesting these clarifications. 
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Nancy Cartwright (2007) makes a related evidential distinction, and it is worth clarifying 

the difference between her approach and ours. She distinguishes between clinchers: a form of 

evidence which is very strong—deductive—but narrow in scope, and vouchers, broader 

evidence which simply adds inductive weight, but doesn’t ‘clinch’ the deal for the hypothesis in 

question. Clinchers are narrow because of their deductive nature: “The assumptions necessary 

for their successful application will have to be extremely restrictive and they can take only a 

very specialized type of evidence as input and special forms of conclusion as output” (6). 

Evidence’s sharpness, or the independence of a set of evidence, doesn’t entail whether we 

should think of that evidence as a clincher or a voucher: that turns on how restrictive the 

assumptions, and how special the outputs and inputs must be, for evidential relevance. 

However, as we’ll mention in section 6.1, highly sharp evidence is likely to have the restricted 

scope that Cartwright identifies with clinchers. 11 We can further specify sharpness and 

independence using formal machinery. We don’t think the formal machinery is strictly-speaking 

necessary for our purposes, and less technically-minded readers might prefer to go straight to 

section 3. 

Consider two situations. In situation 1, we are trying to establish whether hypothesis h is 

true. Our prior is low, say 𝑝(ℎ) =  0.01 (perhaps h is a putative causal pathway, and there are 

numerous possible pathways consistent with our background knowledge). By investing 

resources we can increasingly refine a method m that will generate data set D. Given 

background knowledge, we know that if the data set yields evidence that confirms our 

hypothesised pathway, that evidence will be powerful, say 𝑝(ℎ|𝑒) =  0.95. Furthermore, our 

background knowledge could indicate that the data set D is likely to produce evidence for one, 

and only one, of the competing hypotheses we are currently entertaining within set H, such that, 

say, 

                                                             
11 Thanks to an anonymous referee for pointing us towards Cartwright’s distinction. 
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𝑝(ℎ𝑖) = 0.01 ∩ 𝑝(ℎ𝑖|𝑒𝑖) =  0.95 ∩ 𝑝(ℎ𝑗≠𝑖|𝑒𝑖) = 𝜀 ∩ 𝑝(¬ ⋃ 𝑒𝑘

𝑘

|𝐷) =  0.05, ℎ𝑖,𝑗 ∈ 𝐻 

Then we’ll say method m is very sharp.  

In situation 2 we will have two methods, m1 and m2, generating data sets D1 and D2. 

Following notation from above, the situation here will be of dull evidence: 

∀𝐷, 𝑝(ℎ𝑖) = 0.01 ∩ 𝑝(ℎ𝑖|𝑒𝑖) =  0.04 ∩ 𝑝(ℎ𝑗≠𝑖|𝑒𝑖) = 0.03 ∩ 𝑝(¬ ⋃ 𝑒𝑘|𝐷)

𝑘

=  0.8, ℎ𝑖,𝑗 ∈ 𝐻 

However, we will add a special boost to the posterior in the case of evidential convergence: 

𝑝(ℎ𝑖|𝑒𝑖,𝐷1
∩ 𝑒𝑖,𝐷2

) = 0.95 ∩ 𝑝(ℎ𝑗≠𝑖|𝑒𝑖,𝐷1
∩ 𝑒𝑖,𝐷2

) = 𝜀 

In such a case we will say the two methods m1 and m2 are highly independent of each other. 

There are other ways one might formalize independence12 but the simulation we introduce in 

section 3 can represent most of these. 

                                                             
12 There are different ways of characterizing independence (thanks to an anonymous referee for 

encouraging us to expand on this point). Stegenga & Menon, for instance, distinguish between 
probabilistic independence (which is closer to what we have in mind) and ontological independence 
(2017). Although we discuss independence in terms of (lack of) overlap in background theory; there are 
other ways to go within a Bayesian framework, and subtleties to how one formalises it with respect to 
different measures of evidential support (Fitelson 2001). We take independence to be a relationship 
between two (or more) instances of evidence (E1 and E2) and a hypothesis (H) for which they can 
potentially provide confirmation (and not, it is important to note, a two-way relationship between 
instances of evidence, or methods for generating them). However, a datum does not become evidence for 
(or against) a particular hypothesis without the background knowledge (K) that connects the datum to 
the hypothesis and allows it to perform the role of evidence: 𝑃(𝐸|𝐻 ∩ 𝐾) > 𝑃(𝐸|¬𝐻 ∩ 𝐾), 𝑃(𝐸|𝐻 ∩
¬𝐾) ≈ 𝑃(𝐸|¬𝐻 ∩ ¬𝐾). Thus we get to our notion of independence: it is the extent to which the parts of 
the background knowledge (K1 and K2) that underpin the confirmation relationship between the different 
data and the hypothesis are independent of each other, such that a fault in one would not undermine the 
strength of the other; for independent sources of evidence, 𝑃(𝐸1 ∩ 𝐸2|𝐻 ∩ 𝐾1 ∩ 𝐾2) >
 𝑃(𝐸1 ∩ 𝐸2|𝐻 ∩ 𝐾1 ∩ ¬𝐾2) > 𝑃(𝐸1 ∩ 𝐸2|¬𝐻 ∩ 𝐾1 ∩ ¬𝐾2), whereas for non-independent sources the 
second inequality does not necessarily hold. Another way to look at independence is in terms of the 
hypothesis screening off the probabilistic connection between the different data (Sober 1989). For 
independent sources of evidence, it is the truth of the hypothesis (rather than some other aspect of the 
world) that makes both data turn out in a way that supports the hypothesis. On this view, for independent 
sources of evidence, 𝑃(𝐸2|𝐸1) >  𝑃(𝐸2|𝐸1 ∩ 𝐻). As we’ll discuss below, we think our approach to 
modelling independence (and sharpness, for that matter) handles the majority of approaches to 
precisifying these notions. 
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So, we can distinguish between how sharp evidence is, that is, its lack of ambiguity vis-à-vis a 

hypothesis, given background theory; and its independence, that is, the amount of overlap 

between background theory pertaining to different evidence sources. In our model, both of 

these properties will be represented on a landscape. The former will be the height dimension of 

the landscape – higher values will represent sharper evidence. The latter will be represented as 

distance on the landscape. The distinction also allows us to explain the two strategies adopted 

by agents on the landscape.  

In our model, we will distinguish between two scientific strategies: one attempts to 

maximize sharpness, the other independence. The former strategy is followed by 

methodological obligates: they seek out sources that generate maximally sharp evidence. The 

latter is followed by methodological omnivores: they seek to minimize the overlap in background 

theory between the evidence they have13. Clearly, these strategies are major simplifications of 

actual science; the distinction is drawn for the purposes of modelling. However, we do think 

that some differences in scientific methodology do reflect the obligate/omnivore distinction. 

First, scientists interested in uncovering the past often emphasize the need to ‘do science 

differently’ in the face of a lack of experimental access to their targets and the decay of past 

information (see, for instance, the introduction to Diamond & Robinson 2010, as well as Turner 

2007). In light of this, the extent to which one can rely on a single or a few sources of evidence 

dramatically diminishes: scientists instead adopt a ‘variety-of-reasoning’ strategy which seeks 

to maximize their epistemic reach. Philosophical accounts of historical reasoning often 

emphasize the importance of independence in light of a lack of access to sharp evidence. 

Because in such contexts evidence is often ambiguous, biased and degraded (in our terminology, 

dull), scientists weave together several independent evidence sources (see, in particular, Currie 

2016, 2018, Wylie 2011, 2016, Chapman & Wylie 2016, Forber & Griffith 2011, Vezer 2016). 

                                                             
13 The obligate/omnivore distinction is adapted from Currie (2015, 2018). 
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Second, ecologists are often worried about the legitimacy of their evidential practices (for a 

classic example, see Weiner 1997). As William Bausman has recently discussed (Bausman 2016, 

under review, Bausman & Halina under review), ‘neutral theorists’ complain that ecological 

methodologies which focus on competition-models are epistemically inadequate, because they 

lack the crucial tests provided by null-models. They argue that models without competition 

(neutral models) should be used to test competition models. Competition modellers, in 

response, point to the empirical fruitfulness of their approach. Where one side emphasizes 

statistical testing, the other points to the use of ‘natural experiments’ (Diamond & Robinson 

2010). So, competition theorists approach an ecosystem by positing a set of trophic interactions 

between populations in that ecosystem: patterns of abundance are explained in light of 

interactions between, for instance, predators and prey. As evidence, they cite those population-

level patterns themselves, and less direct evidence from a variety of sources which suggest that, 

in effect, such patterns are often due to trophic interactions. In response, ‘neutral modellers’ 

demand it be shown that those same patterns cannot be generated by models which do not 

posit trophic interactions. We think this debate is plausibly read as a demand for sharpness on 

the part of the neutral theorists, and a defence of variety of evidence reasoning from 

competition theorists. 

Third, defenders of Evidence-Based Medicine are plausibly read as demanding sharpness, 

and denying the value of independence, in the context of approving medicinal treatments. On 

such views, the best evidence (sometimes, in effect, the only admissible evidence) for proving 

the effectiveness of a treatment is a randomised controlled trial and, ideally, a meta-analysis of 

such trials. These are contrasted with anecdotal, narrative, and lab-based mechanistic evidence 

which are considered less important. Others respond that medicine would do better to take a 

‘total evidence view’, including these other evidence-sources in approving medical treatments 

(for general discussion, see Stagenga 2011, Solomon 2015). Here, the evidence-based medicine 

folk appear to be demanding a certain sharpness, while their detractors think that 

independence matters too. 
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To show whether our distinction really captures these debates and others like it, of course, 

would require significantly more argument on our part. The point of this tour is to provide some 

preliminary reason to think that the sharpness/independence distinction has some claim to 

plausibility in practice. In what follows, we’ll contrast two features which might make a 

difference to such debates. First, what we’ll call ‘evidential context’—understood narrowly as 

concerning the effectiveness of those strategies given the nature of the target systems involved, 

the available evidence, and so forth. Second, the beliefs and values of the epistemic community 

at hand. We aim for our model to explore how a community’s beliefs can shape both the kind of 

evidence generated, and the variety and productivity of that community. An upshot of this 

discussion is the reminder that debates about evidence do not occur in a social vacuum: 

understanding why scientists approve of what they do, and how they progress, is not a simple 

matter of considering the appropriate strategy given an evidential context. Social factors 

matter—crucially—as well. 

3. Modelling Method-Pluralism 

Here is not the place for a full defence of the use of agent based models in institutional 

design, but we’ll make a few observations before discussing our model. If, as we argue, method 

bias is a real phenomenon with serious real-world implications, this paper could form part of an 

agenda calling for the redesign of various scientific institutions affected by this bias (e.g. 

publishing and funding institutions). But how does such simulation work feed into such 

agendas? We’ll by and large follow Roth (2002) and Alexandrova & Northcott (2009)’s 

discussions. 

The model presented in this paper is not driven by empirical data, but by idealised 

representations of “reasonable assumptions” about the target domain. Therefore, it may be 

useful to think of the model as a formalised thought experiment. Both thought experiments and 

our model operate by making a complex system “concrete” (in the sense of specific, not in the 
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sense of actual). However, unlike thought experiments, which concretise by loading a 

hypothetical anecdote with what are taken to be exemplary characteristics, the model 

concretises by assigning numerical parameters to what are taken to be key processes. 

In the design of the model, the usefulness of the concretisation relies on our judgements of 

what is reasonable and what is important. The designer's judgement is called upon twice: in the 

choice of relevant processes, and in their numerical parametrisation. Due to its reliance on 

largely untested beliefs about what is relevant and what is reasonable, the model is not 

predictive. Nonetheless, in the best scenario it can serve as a template for predictive hypotheses, 

once the relevant data have been gathered. In this capacity it can also serve as a guide to data 

collection, prioritising some data-gathering activities over others. Further, the concretization 

model-building provides allows us to see how our ideas might interact, thus revealing important 

connections between them.  

A useful way of approaching questions about diversity in science co-opt landscape models 

from evolutionary biology14. A standard evolutionary landscape consists of three dimensions, X, 

Y and Z. X and Y form a two dimensional grid: locations representing genotypes. A third 

dimension—Z—adds a topography to this grid, representing the fitness of various genotypes. 

Agents explore the landscape according to various rules. In evolutionary landscapes agents are 

typically ‘hill-climbers’, shifting from lower to higher locations on the grid. This is useful for 

representing, for instance, local fitness traps: an agent may reach local optima, but due to 

‘valleys’ be unable to reach higher ground15.  

Philosophers and sociologists of science have reconceived such landscapes in epistemic 

terms. Typically (following Weisberg & Muldoon 2009) locations on the X, Y grid represent 

topics that a scientist might decide to pursue, while the Z axis represents the significance of a 

                                                             
14 Wright (1932) 
15 Though see Gavrilets (2004) for criticism of this use stemming from the pernicious simplifying use 

of low (two) dimensions to represent a high dimensionality space. We note this criticism doesn’t bite as 
strongly for our model since our agents are not local hill-climbers, as described below. 
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result—i.e., the local optima might represent a publication in a top journal. In this context, 

philosophers have asked which search-strategies are more likely to locate peaks in the 

landscape: typically ‘follower’ strategies, which piggyback on already explored locations are 

contrasted with ‘maverick’ strategies, which prefer unexplored areas. 

In our case, we’re interested in a different set of questions: first, the relationship between 

epistemic situation and evidence-gathering strategy; second, the relationship between 

evidence-generation and method bias. As such, our model differs from previous work both in 

terms of its dynamics—as we’ll see, these are more complex—and in terms of construal. Where 

X, Y coordinates represent topics for Weisberg & Muldoon, for us they represent methods: 

particular investigative techniques. Where the Z axis previously represented significance, we’ll 

take it to mean sharpness, such that the height of each location is the sharpness of the evidence 

produced by that particular method. Further, distance between X, Y coordinates in our model 

represents the overlap between background theory which underwrites methods, that is, 

independence. 

A common criticism of existing epistemic landscape models is that neither height of 

individual points on the landscape, nor distance between points on the landscape have rigorous 

philosophical underpinnings16. In our model, both of these parameters are clearer. Each 

parameter (height and distance) maps directly to the goals of obligates and omnivores 

respectively, namely sharpness (degree of belief update following evidence) and independence 

(degree of information overlap between two different kinds of evidence, given background 

knowledge)17. As such, we conceive of each location, given by a specified (x, y) coordinate, as 

representing a method of data generation, and of landscape ‘height’ (Z axis) as evidence 

sharpness: the higher the point, the sharper the evidence produced by the method given 

                                                             
16 See criticism of current lack of solid foundations in Avin (2015), ch. 2. See Avin (2015) ch. 3 for an 

attempt to provide such a foundation. 
17 Though note possible complications arising from the subjective nature of background belief and 

belief update, as noted in footnote 8, and from various interpretations of independence, as noted in 
footnote 12. 
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background knowledge. Distance in the landscape – on the X-Y plane —represents 

independence18: the further apart two methods are, the more independent their evidence 

outputs will be from each other, i.e. less shared background theory goes into linking the 

evidence streams to a hypothesis19. The basic idea is that obligate and omnivore agents pursue 

research programs preferring sharpness or independence. By manipulating landscape 

topography, and publishing requirements, we can examine the relationship between 

methodological strategy, epistemic situation, and method bias.  

What do we take our model to be a model of? At minimum, a population of scientists are 

interested in which evidential sources and tests will lead them to the truth concerning some 

particular hypothesis or set of hypotheses. One group of scientists—the obligates—bet that 

sharp evidence is the way to go, while another—omnivores—seek out independence20. Our 

model captures a set of minimal conditions for when two different features of evidence might 

matter within an investigation. One way of capturing these minimal conditions is by appealing 

to the Kuhnian notion of normal science. That is, our model captures circumstances where there 

                                                             
18 As long as the conceptualisation of independence takes the form of a three-way relationship, or 

more generally an (n+1)-way relationship for a hypothesis and n instances of evidence, and as long as 
independence is taken to be gradual (such that overlap of background knowledge, or amount of 
screening, can vary along a spectrum), we can associate, for a given hypothesis (or set of mutually-
inconsistent hypotheses) the degree of independence with a distance metric, and use it to map various 
evidential sources onto a landscape. We use this property in the simulations that follow, and our results 
should hold for any conceptualisation of independence that allows associating a distance metric to a 
collection of evidence instances or sources, vis-à-vis a hypothesis under consideration. 

19 Given this notion of distance we also chose a bounded, non-toroidal topology for our model. 
20 We can view this situation through Bayesian eyes. There’s a set of hypotheses under consideration, 

and a range of evidential sources which could provide confirmation of one hypothesis against others. We 
care about two properties of evidence in relation to the hypothesis set. One is a direct confirmation 
relationship that maps an evidence source and a hypothesis set to a degree of confirmation for the best 
supported hypothesis in the set 𝑓1(𝑒, {ℎ}) → 𝒸 (ℎ𝑏𝑒𝑠𝑡). The other is a relational confirmation relationship 
that maps a set of evidence sources and a hypotheses set to a degree of confirmation for the best 
supported hypothesis in the set 𝑓2({𝑒}, {ℎ}) → 𝒸(ℎ𝑏𝑒𝑠𝑡). In our model we cash these out in terms of 
sharpness and independence respectively, but our simulation results should hold for any way of factoring 
the confirmation relationship into two complementary relationships, one that emphasises the direct link 
between an evidence source and a hypothesis, and the other that emphasises the relations between 
evidence sources (all of this, of course, should take into account general- and evidence-source-specific- 
background knowledge). 
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is more-or-less agreement about what hypotheses matter, how evidence effects those 

hypotheses, and so on21.  

As mentioned above, our landscape is a three-dimensional configuration space. Agents 

interact with the landscape, generating evidence and publishing their results. Agents are 

distinguished by how they do so: obligates prefer to pursue sharpness, and will publish when 

sufficient sharpness is reached; omnivores will prefer independence, and will publish when they 

collect a body of evidence that spans a sufficiently diverse background. We can represent 

method bias by manipulating publishing requirements.  

The model is evolutionary: after set time periods the ratio of obligates to omnivores is 

altered, with some agents “defecting” to the “winning” strategy, where “winning” is determined 

by the number of publications attributed to each strategy. We don’t mean for these evolutionary 

dynamics to represent the development of actual scientific communities over time. Rather, the 

revealed evolutionary trajectories show how different publishing requirements and landscape 

topographies favour different research strategies. 

In designing the model, we ran calibration simulations which explored ranges of reasonable 

parameter values to find combinations of landscape topography, agent strategies, and 

publication thresholds that consistently result in landscapes where both obligates and 

omnivores survive in dynamic equilibrium near a 50%/50% population split. We used these 

parameter configurations to establish “neutral” landscapes and publication thresholds that we 

could then vary to explore the effects of method mismatch and method bias. The values which 

                                                             
21 More explicitly, we take a straightforward model interpretation to require (1) general community 

agreement about the hypothesis set under consideration {h}, (2) an a posteriori agreement about the 
admissible evidence set {e} (this is a posteriori because evidential sources are initially unknown to the 
community members, but we require that once a method is discovered its results are accepted as 
evidence by the knowledge gatekeepers of the community), and (3) agreement within each sub-
community pursuing one of f1 or f2 about their values (which can be cached out, for example, by 
demanding agreement about the background knowledge required for each evidence source).   
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determine, for instance, agent behaviour are therefore not arbitrary at least in this minimal 

sense. 

Let’s highlight some model features one-by-one22. 

3.1 Landscape values 

We utilise the three dimensions of the landscape (distance along the X dimension, distance 

along the Y dimension, and height along the Z dimension) to represent the two distinct qualities 

of evidence discussed above: sharpness and independence. Our landscape is dynamic, with 

sharpness values allowed to vary over the course of the simulation.  

The Z axis (sharpness) of a landscape consists in both a potential value or ‘ceiling’ and an 

actual value. At the beginning of a simulation run, the potential value is created by adding 

randomly shaped bivariate Gaussians to a flat landscape. The initial actual value is then set to 

some fraction of the potential value. By ‘generating’ (see below), agents can increase the 

exploitable landscape to above the initial actual values, but it can only exceed the ceiling under 

special circumstances23. When agents ‘exploit’ (see below) the actual value along the Z-axis 

decreases. When the actual value of sharpness changes, it changes for all agents in the model; 

there is only one unchanging ‘potential’ landscape throughout the simulation, and at any given 

simulation step only one ‘actual’ landscape, which are shared by all agents. 

In addition to sharpness—the Z value—we’re also interested in independence. This is 

roughly the distance between two locations on the X, Y grid. Distance is an infamous source of 

trouble for landscape models24. In evolutionary models, it is plausibly read as similarity 

between genotypes; in epistemic models, similarity between investigations or techniques. But in 

what sense are genotypes or techniques similar; and is this similarity reasonably represented in 

                                                             
22 Both the model’s code and an expanded explanation of the model’s variables and operation can be 

found online at https://github.com/shaharavin/method-bias/. 
23 If two peaks overlap, the total value can exceed the ceiling. 
24 Stadler et al (2001), Avin (2015, ch. 3) 
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two dimensions? On our construal, distance is not a measure of similarity, but of overlap 

between background theories which underwrite methods. We don’t doubt that there is much 

more to be said in working out precisely what this amounts to, but insofar as it relies on a 

notion of overlap rather than similarity it is, we think, an improvement. 

So, distance is conceived as a measure of independence: methods close to each other in the 

landscape have significant overlap in background theory, while those far apart have less 

overlap. When extending from distance, a 2-way relationship, to an N-way relationship, we 

measure the independence of a set of methods as the area of the polygon bounding the 

coordinates corresponding to these methods. An important variable regarding distance is the 

clustering of peaks. An initial variable determines to what extent peaks are distributed within 

the landscape: high values lead to peaks clustering in the centre, such that the area of the 

polygon bounding the highest peaks is small relative to the size of the landscape (low 

independence); low values of clustering lead to a wider distribution of peaks, a larger bounding 

polygon, and higher independence. Unlike sharpness, the degree of independence of different 

methods (the X and Y coordinates of methods) remains fixed throughout the simulation; 

however, as sharpness varies, sometimes a method becomes so dull (‘0’ sharpness) that it is no 

longer worth pursuing, at which point it would not contribute to independence, and so the 

potential for generating independent evidence on the landscape changes over time even as 

distances remain fixed.  

3.2 Agent behaviours 

At the beginning of the simulation, agents are seeded on the landscape in random locations. 

Each turn, agents perform one of 4 behaviours, and an agent’s strategy (omnivore or obligate) 

dictates how likely they are to perform each behaviour. If a behaviour is selected that the agent 

cannot perform that turn, they select a new behaviour with the unavailable behaviour removed. 

Let’s examine each behaviour. 
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3.2.1  Exploration 

In the model each agent tracks their own ‘vision’, representing the methods each scientist 

knows about and can deploy to generate evidence; vision is not shared between agents. At a 

simulation run’s beginning, each agent’s vision is restricted to a radius around their initial 

position.25 When an agent explores they shift their position to a random unexplored spot on the 

landscape (allowing ‘hopping’) and update their vision. We can imagine exploration as a set of 

quite disparate scientific activities: literature reviews, field work, and so forth. As the simulation 

proceeds, agents uncover increasing amount of the landscape. Agents never lose vision of 

previously explored areas, and can ‘see’ changes to sharpness caused by other agents (see 

below). 

3.2.2  Exploitation 

‘Exploitation’ mines evidence from the landscape. Agents are unrestricted spatially—they 

can exploit any visible (to them) spot on the landscape.  On exploitation an agent scans known 

locales and selects the best spot according to their strategy (see below). Once a spot is selected, 

the evidence for that position—its sharpness and location (which affects independence)—is 

added to the agent’s evidence stack. Exploitation also changes topography to reflect both 

diminishing returns in evidential sharpness and loss of novelty. The actual height of the position 

is decreased by a fixed fraction of the ceiling. Note that reduction is shallow and surgical: the 

landscape doesn’t reduce completely, and the surrounding landscape is more-or-less unscathed. 

We can imagine exploitation as scientists producing data: analysing fossils, say, or running an 

experiment. 

3.2.3  Generation 

                                                             
25 We used a radius of 5 for vision updates, using Moore neighborhood (all grid locations within 

distance 5 and within the grid’s bounds). 
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Scientists do not simply run experiments, they also must design them; palaeontologists do 

not only analyse fossils, they must find them, and produce new methods for doing so. 

Generation is a way of modelling this activity. When an agent generates, actual landscape value 

increases both at their current position and at a randomly selected spot. The extra spot is to 

represent the indirect upshots of new techniques. The two peaks are both generated at the 

potential value of their respective locations. Generation is time-consuming, but agents get first 

dibs on accessing the fruits of their labour—after generation is complete the agent immediately 

exploits. 

3.2.4  Submit 

Once an agent’s evidence stack meets a certain threshold (threshold is strategy-dependent, 

see below) they are able to submit their evidence for publication. The submitting agent’s 

evidence stack is cleared, and a new publication with that evidence emerges. The publication 

records both which agent produced it, and the strategy of the agent. Publication quantity per 

strategy determines the ratio of strategies at the beginning of the next episode (see below).  

3.3  Agent strategies 

Agents adopt one of two strategies, defined by how likely they are to perform actions (their 

weighting), and by the sufficiency conditions for publication.  

Omnivores are scientists who value independent evidence: they are likely to seek out new 

methods, techniques and data-sources and this is reflected in their tendency to prefer 

exploration. Their bar for publication submission is determined by the independence of their 

stack of evidence. In the first experiment, they may publish once the area of the bounding 

polygon of their evidence stack is greater than or equal to 1/5 of the landscape area (the X, Y 

dimensions). They are twice as likely to explore as they are to generate, exploit or submit. This 

represents ‘variety-of-evidence’ reasoning. When an omnivore exploits, they select locations 
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which are maximally distant from the locations in their evidence stack (so long as that location 

has at least some non-zero value in terms of sharpness). 

Obligates are scientists who value sharpness: they are less likely to look for different kinds 

of evidence, but instead prefer to focus on developing a promising area. Their bar for 

publication is determined by the total sharpness of their stack of evidence.  In the first 

experiment, this is when the sum of the evidence sharpness is greater than three times the 

landscape’s ceiling. They generate and exploit twice as often as they submit, and only explore 

half as often as they submit. This represents the kind of reasoning we see in much experimental 

science: careful, controlled studies are the focus. Obligates select the highest visible peak when 

exploiting. 

Table 1 Agent strategies and associated behaviour likelihoods and publication criteria 

 Explore 

Prob. 

Generate 

Prob. 

Exploit 

Prob. 

Submit 

Prob. 

Publish (in 

1st and 2nd 

experiment) 

Obligate 1 / 11 4 / 11 4 / 11 2 / 11 Total evidence 

sharpness > 3x 

the ceiling 

Omnivore 2 / 5 1 / 5 1 / 5 1 / 5 Polygon area of 

evidence > 1/5 

landscape area 

  

3.4 Simulation Runs 

At the beginning of a simulation, various initial parameters are set, including agent number, 

landscape size, and so forth. Agents are seeded and each performs one action per turn (unless 
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they have generated, at which point no action is taken for 6 turns). At the end of an episode 

(which is a set number of turns) the ratio of omnivores to obligates is updated to reflect the 

relative success of each strategy in publishing papers. We take a turn to represent 3 months of 

research: a very coarse estimate of a field-season, or an experimental run.  

Figure 1 shows a series of snapshots from a sample simulation run. Variations in colour 

indicate landscape values, with the blue end of the spectrum representing low values, and red 

high. Between snapshots, exploitation leads to reduction in local sharpness (less red, more 

blue), while generation leads to increases in sharpness. Locations obligates exploit are marked 

with black dots and cluster around the highest peaks; locations omnivores exploit are marked 

with white dots and tend to occur on the periphery of the landscape. 

(a) (b) 

(c) (d) 
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(e) (f) 

Figure 1. Snapshots of a sample simulation run. X- and Y-axes map to landscape coordinates, 

and colours represent height (from dark blue which is lowest to dark red which is highest). 

The locations where agents exploit are marked on the landscape as well, with black dots for 

obligate exploitation and white dots for omnivore exploitation. The series shows the 

landscape dynamics following generation and exploitation. 

4. Experiments: Topography & Strategy 

The literature on methodological pluralism implies that caring about independence or 

sharpness—that is, adopting omnivore or obligate strategies—is in part a response to epistemic 

situation. We can understand an epistemic situation as concerning, first, an evidential context, 

that is, the kinds of evidence-sources which are available, and second, a broader set of social 

influences. Our landscape is intended to represent the former (we examine the latter by shifting 

publication requirements in the next section). Obligates should flourish when there are rich 

seams of evidence to exploit (clustered, tall peaks), while omnivores should do well when the 

epistemic landscape is more diffuse and sparse. We ran two experiments to establish that in our 

model the success of a strategy is sensitive to landscape topography, which reasonably 

represents evidential context. 

4.1 Experiment 1: Abundance 
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What’s the relationship between total landscape abundance (that is, the sum of heights of all 

landscape coordinates) and whether the landscape favours obligate or omnivore strategies? A 

circumstance with bountiful, sharp evidence should encourage scientists to focus on sharpness. 

When evidence is duller, a strategy of focusing on variety-of-evidence reasoning is more 

appropriate. And indeed, in our model increasing abundance leads to higher obligate favouring, 

lower abundance leads to higher omnivore favouring (See fig 2). 

 

Figure 2: Plot of omnivore ratio relative to the total population at simulation end (after 150 steps), as a 

function of total landscape abundance, averaged over 50 runs (error bars show one standard deviation). 

Figure 2 represents fifty simulation runs per value of total landscape abundance. The 

vertical axis represents the ratio of omnivores to the total population, the horizontal axis 

represents landscape abundance. There is a clear pattern: landscapes of low abundance are 

dominated by omnivores, at higher values obligates are favoured. These results are reason to 

think that our model is behaving as it should: sharpness-rich circumstances encourage obligate 

strategies. 

4.2 Experiment 2: Clustering 
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In a further experiment on the relationship between topography and strategy, we altered 

the spread of value in the landscape. We in effect kept total abundance and landscape ceiling 

steady26, but varied the distribution of value across the landscapes. We predicted that 

landscapes with concentrated value at or near the centre would favour obligates, while 

landscapes with value spread across the landscape would favour omnivores. By manipulating 

landscape clustering while holding abundance fixed, we thus examined the relationship 

between how distributed evidence is, and the success of strategies (fig 3).

 

Figure 3: Omnivore ratio as a function of peak clustering. 

Again, in the figure the vertical axis represents omnivore ratio to the total population at the 

end of the simulation. The horizontal axis represents clustering, where low values place no 

restriction on initial peak placement, and higher values increasingly restrict peaks to the centre 

of the landscape. We ran fifty simulations for each value of the clustering parameter shown in 

the figure. Sure enough, increasing clustering favoured obligates, lowering it favoured 

omnivores. 

                                                             
26 There is some variation due to peak overlaps. 
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5. Experiments: Bias 

The first two experiments established the relationship between strategy success and 

landscape topography. In effect, this shows that our model behaves as it ought: landscapes with 

abundant, sharp, clustered evidence favour obligates; unabundant, dull, dispersed landscapes 

favour omnivores. We construe this as representing the kinds of differences between sciences 

discussed in section 2. Where some scientists seek ‘rich veins’ of sharp evidence, others adopt 

variety-of-evidence reasoning to mitigate the ambiguity of their data. Having established that 

different strategies were favoured in different topographies, we now introduce publishing bias 

to see how it effects favouring. We can introduce bias by shifting the sufficiency for publication 

in one strategy but not another. Recall that epistemic situations include both evidential 

contexts—represented by the landscape—and broader social aspects. We take publication bias 

to coarsely represent these broader aspects—and indeed, our models are intended to show how 

crucial these are. 

We should disambiguate two ways in which publishers might be ‘unbiased’. On the one 

hand, a ‘laisse-faire’ bias takes an unbiased publisher to go, as it were, with the evidential 

context. They will not attempt to interfere with the ‘natural’ path of things. On the other hand, a 

‘balanced’ notion of bias understands unbiased publishers as striving for an even split between 

strategies. They will sometimes work against the evidential context to ensure that as close as 

possible to equal proportions are present. These differing conceptions are unproblematic for 

our purposes: ‘bias’ is simply the comparative ease of publishing for the various strategies 

(irrelevant of topography). Whether bias is egregious, indifferent, or positive is not built into 

our model—this depends on context and the goals at hand. 

5.1 Experiment 3: Method Bias 

We know that certain landscapes favour certain strategies: clustered, abundant landscapes 

favour obligates, dispersed, sparse landscapes favour omnivores. Can method bias, here in its 
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guise of publishing standards, work against or mitigate the strategies favoured by the 

landscape? To answer this, we conducted a series of experiments where the publishing 

requirements for one strategy were increased while the other remained steady. 

In the experiment below, we track omnivore ratio against an omnivore publishing bias in a 

landscape which highly favours obligates (high clustering and abundance). Low values on the 

horizontal axis represent low standards for omnivore publishing – roughly, the lower the value, 

the easier it is for omnivores to publish.  

 

Figure 4: Omnivore ratio as a function of omnivore publication threshold on an obligate-favouring 

landscape. 

In an epistemic landscape so favouring of obligates, things must be made very easy to keep 

omnivores in the population. Even at our highest publishing bias, under ¼ of the population are 

omnivores. However, the bias does keep them in the population—where, under usual 

conditions, topography would exclude omnivores, diversity can be maintained using publishing 

bias.  

Further, (and unsurprisingly), publishing bias can also affect both the amount of sharpness 

and independence extracted from a landscape. 
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Figure 5: Total independence summed across all publications as a function of omnivore publication 

threshold on an obligate-favouring landscape. 

This graph charts omnivore publishing bias on the horizontal axis (as before) but this time 

tracks the total amount of evidential independence on the vertical axis. The results are 

remarkably similar to those previously, and this makes sense: as publishing bias keeps more 

omnivores in a population, and those omnivores will focus on producing highly-independent 

evidence, we should expect the total population to produce more independence of evidence. 

The lesson here is that publishing bias can effect evidence generation in two ways. Firstly, it 

can maintain methodologically mismatched strategies in a population which would otherwise 

be eliminated. Secondly—and in virtue of this first feature—it can increase the amount of 

evidence quality that is mismatched to the evidential context: bias can increase the 

independence extracted from abundant landscapes or sharpness from diffuse landscapes. 

In the above experiments, we have mitigated the context-matching advantages of the 

obligate by making things easier for the omnivores. In the next study, we leave the omnivores’ 

publication thresholds as are, but make it trickier for the obligates. 
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Figure 6: Total independence as a function of obligate publication threshold on an obligate-favouring 

landscape. 

Figure 6 plots total independence (vertical axis) against obligate-bias (horizontal axis) in an 

obligate-favouring landscape. We’ve seen above that total independence in this kind of 

landscape is a good proxy for both epistemic and strategic diversity. We see that there is no 

discernible pattern—making things easier or harder for the context-matching obligates doesn’t 

seem to make a systematic difference to the amount of independence produced. A tempting 

lesson to draw here is that publishing bias produces more diversity when favouring the 

mismatched than disfavouring the matched. As mentioned above, such conclusions are not 

prescriptive, both because the model is agnostic with respect to the valence of bias, and because 

it is too idealised for direct application to science policy.  

Nonetheless, we offer here a template for a causal hypothesis that could be tested: lowering 

evidential requirements for the method which is less effective in the evidential context (e.g. a 

variety-of-evidence paper in a traditional experimental-sharpness oriented discipline) would 

have more effect than hardening the requirements for a favoured method. Though conceptual 

and methodological hurdles abound, such a hypothesis could conceivably be put to the test. 

5.2  Efficiency cost 
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A further question: what costs are there in overall productivity, and in terms of the evidence 

quality pursued by the context-matching strategy when publishing bias is introduced?  

 

Figure 7: Total sharpness across all publications as a function of omnivore publication threshold on an 

obligate-favouring landscape. 

The above tracks total sharpness (vertical axis) against omnivore bias (horizontal axis), 

again in an obligate-favouring landscape. Undoubtedly, the amount of sharpness extracted from 

a landscape decreases at more extreme omnivore publishing biases (and thus omnivore ratio, 

and total independence). Interestingly, the average amount still increases – although not 

enormously, once error-bars are taken into account—once the bias is lowered to the point 

where, in the previous studies, omnivores left the population. That is, the previous experiments 

showed us that at 0.2 there are next to no omnivores in the population, and yet the trend in 

quality continues its upwards trajectory to 0.25. This suggests that biasing against the 

mismatched methodology can have positive effects to the context-matching methodology—

presumably because it decreases the number of ‘lucky’ omnivores who happen to hang on 

beyond expectations. Bias can, then, operate in both directions: it can increase how focused an 

epistemic community is, by conspiring with the epistemic landscape; or it can increase diversity, 

by working against the landscape. 
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Is the trade-off a fair one? That is, when we encourage the mismatched methodology, do we 

discourage the other in equal amounts? We think not (and this is, presumably, because 

omnivores still produce some sharpness, and obligates some independence). To draw a 

comparison, we ran a series of experiments which looked at a neutral landscape, an omnivore-

favouring landscape, and an obligate-favouring landscape. The values in the neutral landscape 

were used as a metric against which the others were valued. The table below tracks the results: 

 Neutral bias Omni bias (for) Obli bias (for) 

Neutral 1,1 0.68,1.38 1.72,0.47 

Omni favouring 0.31,1.69 0.31,2.04 0.46,1.54 

Obli favouring 11.37,0.17 9.08,0.38 11.93,0.16 

 

The first value represents total sharpness, the second total independence. The values are 

indexed to the neutral values. So, for instance, the score of ’11.93’ in the obligate favouring, 

obligate bias landscape in the bottom right corner, represents a nearly 12-fold increase in the 

total amount of sharpness extracted from the (much more abundantly sharp) landscape. These 

results suggest that there is not a fair trade-off in such cases – in fact, the cost paid in the 

advantaged value (the property sought by the context-matched methodology) is less than the 

amount gained in the disadvantaged value. In an obligate-favouring landscape, we pay a cost of 

20% reduction in total sharpness (from 11.37 with no bias to 9.08 with omnivore favouring 

bias), for a 124% increase in the amount of independence generated (from 0.17 to 0.38). A 

similar effect is seen on the omnivore favouring landscape. There, a 9% reduction in total 

independence (from 1.69 to 1.54) is paid to generate a 48% increase in sharpness (from 0.31 to 

0.46). 
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The lesson, we take it, is that although there are costs associated with publishing bias, these 

are neither simple nor fair. In our model, at least, the introduction of bias against the grain does 

not have equal costs for the advantaged value—potentially then, overall efficiency (taking into 

account both sharpness and independence) of the community has increased. Of course, in our 

model we have no non-arbitrary way of combining independence and sharpness into a single 

measure, and so ‘overall efficiency’ is not meaningful in that context27. Regardless, the 

discrepancy between increases of one value and decreases in the other are suggestive. If this 

trade-off can be confirmed empirically, it could support an argument for methodological 

pluralism in epistemic communities—there may be diminishing returns for a particular 

strategy, and much to be gained by having at least a small number of researchers pursuing 

another. 

6. Discussion 

We’ve aimed to provide a systematic way of thinking about method pluralism, to argue that 

methods might not match evidential context, and to explore how bias can both undermine and 

aid us in increasing the efficiency and diversity of epistemic communities. Before concluding, we 

want to make two points. First, we’ll consider the potential downsides of method bias in various 

contexts. Second, we suggest that consideration of method bias should lead us to think that 

community standards about what good science looks like is a necessary component of 

philosophical explanations of scientific evidence. 

6.1 Egregious Method Bias 

                                                             
27 It might be argued that a lack of a unified measure is problematic, but we’re not so sure. First, it’s 

unclear to us whether the kinds of evidence which scientists often bring together are non-arbitrarily 
combined in practice. Second, our focus is not on the evidential value of a landscape per se, but on how 
different publishing practices might affect the makeup of populations. Thanks to Remco Heesen for 
pushing us on this point. 
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Our model does not tell you when method bias is egregious or advantageous; it only 

generates the effects publishing bias might have vis-à-vis methodological pluralism. Whether 

we want to emphasize one kind of evidence, or want a diversity of strategies, or whatever, 

depends crucially on what we want to do with the scientific evidence. A circumstance which 

concerns us is when method bias acts to diminish exactly the kind of evidence we want. For 

example, an emphasis on highly focused—sharp—experimental evidence could lead us to 

misunderstand how our results will play out in the complex, interdependent world beyond the 

lab. Where the costs of getting things wrong matter, and they often do, then getting it right 

involves understanding the limitations of the evidence we are able to generate. 

Egregious method bias and mismatch are particularly problematic in circumstances where 

scientific results are, as it were, in the public eye: when they matter for public policy, for 

instance. Preferring a kind of evidence which is inappropriate to context could result in 

mismanagement, and misunderstanding the stability, accuracy, or trustworthiness of scientific 

claims. Our technological prowess is plausibly outpacing our scientific understanding, and it 

becomes increasingly difficult to understand the impact that interventions (intentional or not) 

might have on complex, large-scale systems. Considering method mismatch and method bias is 

crucial for debates about the validity of scientific studies that attempt to ascertain the effects of 

climate change, the effectiveness of medicinal treatments, the safety of new AI technologies, and 

so forth (Avin et al. 2018). In these contexts, we should ask whether the kinds of evidence we 

demand and want are appropriate to both the task at hand, and the kinds of questions and 

systems we’re interested in knowing about. Insofar as scientific results guide policy, preferring 

one sort of evidence or approach when another is more appropriate could be disastrous. 

Often, the more-or-less unambiguous results of methodological obligates are seen as the 

gold standard of scientific success, but in some contexts this method is inappropriate. And often 

these places are just where such risky gaps in our understanding occur. As Nancy Cartwright 

makes particularly vivid, firmly understood knowledge in highly controlled experimental 
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settings often collapses once it leaves the safe confines of the lab (1993, 1999, 2007). The hunt 

for ‘clinchers’ leads to stable results, but these are very limited in their application. 

Transporting knowledge from laboratory settings into the wild often involves dramatic switches 

in epistemic context; plausibly from a context encouraging an obligate strategy to one favouring 

an omnivore strategy. That is, applying our hard-won knowledge of how things behave in 

controlled settings—where obligate strategies often pay dividends—to the world outside 

requires variety-of-evidence reasoning, as the sheer increased complexity and heterogeneity 

dulls the evidence in the new context. Under these conditions, method bias could lead us to both 

ignore routes to better discoveries and to misjudge the importance and reliability of the 

information we do have. 

6.2 Knowledge Generation & Community Standards 

A further consequence of our discussion of method plurality, bias and mismatch concerns 

what a philosophical account of scientific knowledge should be like. Philosophers have often 

approached scientific evidence narrowly: the philosophical task vis-à-vis scientific evidence 

requires understanding confirmation. That is, explaining the relationship between observations 

and hypotheses. It strikes us that consideration of method bias puts pressure on such narrow 

conceptions.  

One (admittedly caricatured) illustration of a narrow conception appeals to the distinction 

between contexts of justification and discovery. Originally coined by Reichenbach (1938, 

although his distinction was quite nuanced, see Schickore 2014), the distinction was used to 

carve out a place for philosophical analysis vis-à-vis science. Roughly speaking, discovery is the 

processes by which scientists conceive of, and come to, scientific theories, as well as the 

business of generating evidence. Justification involves understanding the connection between 

evidence and theories. One way of defending a narrow conception of science is to say the latter, 

rather than the former, is the proper target of analysis (as Popper argued in the Logic of 
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Scientific Discovery, 1935). The logical and abstract questions of justification are the 

philosopher’s playground, while the messy, human side can be relegated to the dustbin of 

‘discovery’. As such, when philosophers consider science, we should enquire after the 

connection between theories, evidence, and the world—understanding those issues provides 

the philosophical essence of science. 

Philosophers have applied pressure on these views for a long time. The narrow view misses 

important aspects of scientific practice necessary for understanding its very success, progress 

and stability. Such arguments take multiple forms. One set argues that justification itself has 

non-epistemic properties, often due to inductive risk (Douglas 2000). Another set argues that 

justification is found in places usually associated with discovery: specifically, the social 

organization of science plays an important role in preserving and supporting its stability 

(Longino 1990). A third set argues that scientific goods, the outputs and aims of their 

investigations, are not limited to well-supported theories—scientists are also interested in 

building storehouses of data (Hacking 1993), or provisioning understanding (Potochnik 2017), 

and so on. What unifies these critiques is the claim that narrow conceptions are just too narrow.  

Our critique is complementary: as evidence comes in a range of flavours, and (crucially) in 

different contexts some flavours perform better than others, combining them into a single 

relation between hypotheses and theories, obscures the different work they do28. And indeed, 

this becomes particularly problematic in light of method bias. If different communities have 

different ideas about what good science is like, and use these to guide how the community 

develops, understanding different evidential properties and scientific strategies is necessary for 

understanding that evidence. That is, the relationships between evidential context and 

                                                             
28 We think analogous arguments can be found. Toulmin’s position that scientific reasoning should 

focus on warrants rather than logical relationships (1958) and Norton’s defence of a material theory of 
induction (2003) both can be read as making something like this argument. 



36 
 

community standards are an essential part of a philosophy of scientific knowledge-generation: 

they are part of the context of justification. 

To see this, recall our Bayesian sketches of independence and sharpness. Read narrowly, 

Bayesian evidence just are observations which grant reason to update our subjective priors 

pertaining to relevant hypotheses. Powerful formalisms are bought to the fore to demonstrate 

how various aspects of evidence can be incorporated into this probabilistic picture. And indeed 

this is often an enlightening and rich way of proceeding29.  

Although bayesian machinery can precisify what we mean by independence and sharpness, 

it doesn’t follow from this that the machinery captures what matters about sharpness or 

independence. First, it does not tell us under what epistemic circumstances sharpness or 

independence ought to be favoured. That is, although the Bayesian can combine the two 

measures, and accommodate them, she cannot link them to evidential context. To do this, we 

would need to represent either something like our epistemic landscape or, in a less abstract 

mood, characterize the actual conditions scientists are working under, and the actual aims they 

have. A Bayesian precisification might explain why, for instance, variety of evidence reasoning 

can be epistemically powerful, but it cannot explain why scientists might need to ‘do things 

differently’ in different contexts. That is, it cannot explain why one group of scientists adopting 

an obligate strategy is the right thing to do, while another group adopting an omnivore strategy 

is the right thing to do. Epistemic situations, then, are a crucial part of the context of 

justification.  

Second, such a precisification cannot explain community standards—method biases—that 

shape how a scientific community behaves. That is, in addition to missing epistemic context, 

they also cannot accommodation epistemic situations. And our modelling demonstrates how 

important such biases might be for the epistemic success of those communities: by maintaining 

                                                             
29 Wallach (2016) for instance, has no problem fitting diverse archaeological evidence into a Bayesian 

framework. 
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a diversity of strategies, for example, or for targeting particular evidential properties. 

Understanding scientific evidence involves understanding how a community’s conception of 

good method shapes what work in fact gets done.  

As with other objections to narrow conceptions, we do not claim that such work is without 

value, nor that it fails to achieve many of its aims. Rather, the point is that the perspective is 

itself limited—and even limited in terms of its narrow concerns of evidence and confirmation—

as such, we take consideration of method pluralism to further a more pluralistic, increasingly 

local, approach to science from philosophers themselves. 

7. Conclusion 

Our aim in this paper has been to first, introduce the notion of method bias as it arises from 

a recognition of method-pluralism; second, to explore these notions using a series of 

simulations; third, to sketch some consequences for philosophical understanding for scientific 

knowledge. The extent to which lessons from this second aim can be exported into actual 

practice depends crucially on the extent to which the model’s simplifying assumptions matter 

for features of the real-world systems—scientific communities—that we’re interested in. 

Models like ours must be contextualized to have direct empirical consequences. Regardless, the 

experiments motivate a series of further, potentially testable, claims about scientific 

communities. Insofar as the epistemic landscape will favour certain kinds of studies, publishing 

bias can effect this by increasing efficiency, diversity, or both. Moreover, it is plausible that 

positive discrimination works better than negative discrimination—make it easier for the little 

guy, not harder for the big guy. The trade-offs faced are not simple; sometimes at least the 

introduction of method bias of the sort discussed here will have greater gains than losses. Such 

considerations, we think, motivate a richer, more local understanding of the nature of scientific 

evidence and confirmation. 
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