
Measure, Topology and Probabilistic Reasoning in Cosmology†

Erik Curiel‡

October 18, 2014

A man said to the universe:

“Sir, I exist!”

“However,” replied the universe,

“The fact has not created in me

A sense of obligation.”

— Stephen Crane

ABSTRACT

I explain the difficulty of making various concepts of and relating to probability precise,

rigorous and physically significant when attempting to apply them in reasoning about

objects (e.g., spacetimes) living in infinite-dimensional spaces, working through many

examples from cosmology. I focus on the relation of topological to measure-theoretic

notions of and relating to probability, how they diverge in unpleasant ways in the

infinite-dimensional case, and are even difficult to work with on their own. Even in

cases where an appropriate family of spacetimes is finite-dimensional, and so admits

a measure of the relevant sort, however, it is always the case that the family is not a

compact topological space, and so does not admit a physically significant, well behaved

probability measure. Problems of a different but still deeply troubling sort plague

arguments about likelihood in that context, which I also discuss. I conclude that

most standard forms of argument used in cosmology to estimate the likelihood of the

occurrence of various properties or behaviors of spacetimes have serious mathematical,

physical and conceptual problems.
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1 Probabilistic Reasoning in Cosmology

There is, by any standard measure, exactly one actual cosmos, and its evolution cannot be repeated.

It is, therefore, perhaps surprising when one first learns that probabilistic reasoning of various kinds

pervades cosmology as a science—reasoning not just about the statistics of repeated and repeatable

subsystems of the cosmos, but reasoning that purports to assign probabilities to uniquely global

properties and structures of the cosmos itself. It should, therefore, perhaps not be surprising that

problems arise for probabilistic reasoning in this context peculiar to it.

Physicists and philosophers have tended to focus on problems with probabilistic reasoning in

cosmology that, in the end, boil down to one of the following two forms.

1. What can probability mean, when there is only one physical system of the type at issue to

observe?

2. How can one justify attributions of definite values of probability when one cannot measure

frequencies (because one cannot repeat experiments), which is to ask, what kinds of evidence

may be available to try to substantiate attributions of probability?

I shall not address these sorts of questions and problems in this paper.1 I shall rather address the

relationship between topological and measure-theoretic methods in probabilistic reasoning and the

problems that arise for it in the case of infinite-dimensional spaces, as naturally occur in cosmology.

Although it is far more common to associate the mathematical theory of measure spaces with

probabilistic notions and reasoning, if one takes a broad-minded view of what counts as “proba-

bilistic” reasoning, then, in many areas of physics, topological concepts and methods ground much

of what it is reasonable to think of as probabilistic reasoning. This is particularly true in a science

such as cosmology, in which well defined probability measures over families of systems are few and

far between. In such situations, physicists often argue that a property or behavior of interest is

typical or generic or stable in a family of possible systems, or is scarce or meagre or rigid, and so

1See Ellis (2007) and Smeenk (2012a, 2012b) for excellent reviews and discussion of these questions and problems.
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on, with no serious attempt to make those ideas quantitatively precise, though they clearly are

intended to have probabilistic import. Often, the arguments are grounded on topological consid-

erations with gestures at interpreting the conclusions in measure-theoretic terms so as to justify

the intended probabilistic import.

Say we are interested in the likelihood of the appearance of a particular feature (having a

singularity, e.g.) in a given family of spacetimes satisfying some fixed condition (say, being spatially

open). If one can convincingly argue that spacetimes with that feature form a “large” open set

in some appropriate, physically motivated topology on the family, then one concludes that such

spacetimes are generic in the family, and so have high prior probability of occurring. If one

can similarly show that such spacetimes form a meagre or nowhere-dense set in the family, one

concludes they have essentially zero probability. The intuition underlying the conclusions always

seems to be that, though we may not be able to define it in the current state of knowledge, there

should be a physically significant measure consonant with the topology in the sense that it will

assign large measure to “large” open sets and essentially zero measure to meagre or nowhere-dense

sets. Similarly for stability and rigidity: if one can show that a given feature is topologically

stable under “small” perturbations, one can conclude that the probability is very high that a

spacetime approximately satisfying the relevant conditions will still have the feature; if the feature is

topologically rigid under “small” perturbations, one can conclude that the probability is essentially

zero that a spacetime approximately satisfying the relevant conditions will still have the feature.

In order to justify the probabilistic nature of the conclusion, one again assumes the existence of an

appropriate measure consonant with the topology in the sense that the smallness of the pertubation

is to be judged by the fact that the resulting spacetime is in a neighborhood of the initial spacetime,

of “small” measure.

In cosmology, reasoning of this form occurs ubiquitously, in the context of the following of kinds

problem:

1. characterizing the likelihood of observing certain kinds of events, given the situation of possi-

ble observers in a spacetime, i.e., the fact that observers are limited in observations to what

lies in their past light-cone, by the sensitivity of their apparatus, by the amount of time a

process will emit energy of a given magnitude or greater, and by how far to the past of the

observers such processes may occur

2. characterizing the likelihood that the value of a universal constant lies within a fixed range

3. characterizing the likelihood that cosmological initial conditions of a particular kind or form,

or having a particular property or characteristic, occurred

4. characterizing the likelihood that large-scale structure of a particular kind would form

5. characterizing the likelihood that a spacetime has a particular global (causal, topological,

projective, conformal, affine, metrical) property

Common specific examples of such problems are:

1. characterizing the likelihood that observers such as ourselves would come to exist in the sort

of spatiotemporal region we occupy in a spacetime of this sort
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2. characterizing the likelihood that we are “typical” observers in the universe

3. characterizing the likelihood that the cosmological constant has any non-zero value, and has,

moreover, a value near that actually observed

4. characterizing the likelihood of various “fine-tuning coincidences”: the seeming equality of

densities of dark energy and dark matter in the current epoch, the approximate flatness of

the observed universe, the approximate isotropy and spatial homogeneity of the observed

universe, the seemingly required special entropic state of the very early universe, etc.

5. characterizing the likelihood that a spatially open spacetime is singular

In most branches of physics, one would address such problems by fixing an appropriate reference

class of physical systems and a physically significant probability-measure on that class. When one

cannot rigorously define such a measure, or one is not that interested in quantitative exactness,

one will often rest content with arguing (or just stipulating) that a physically significant measure

exists whose distribution of weight harmonizes in a particular way with a natural topology on the

class of systems, to wit, one assumes that non-trivial positivity of measure is at least strongly

correlated with openness of sets and likewise that smallness or nullness of measure is correlated

with topological meagreness of sets. In this case, one will base one’s estimates of likelihood on the

topological properties of the families of systems at issue.

Even in cases where one does have a well defined measure to give quantitative exactness to

estimates of genericity or typicality, however, one still needs the measure to harmonize with an

underlying topology in the appropriate way. The point is simple, though it does not seem to be

widely appreciated or even recognized, either in the physics or the philosophy literature: genericity

and typicality, roughly speaking, mean something like “most systems are similar in this respect”

(and mutatis mutandis for meagreness and scarcity); “most”, however, is a measure-theoretic

notion, whereas “similar in this respect” is a topological notion.2 Most systems satisfy a property

if the family of such systems forms a set of large measure; a given family of physical systems are

similar in a given respect if the topological neighborhood-systems of the elements of the space

representing the physical systems stand in some appropriate relation to each other, which often

will be as simple as the fact that the family of elements representing the physical systems forms

an open set.

In cosmology, however, the systems one most often focuses on are entire spacetimes, and families

of spacetimes usually form infinite-dimensional spaces of a particular kind. And now one comes

to the heart of the problem: it is a theorem (as I discuss in some detail in §3 below) that infinite-

dimensional spaces of that kind do not admit non-trivial measures that harmonize in the right

way with any underlying topology. It follows that one simply does not have available the kinds

of reasoning normally employed to draw even qualitative conclusions about the likelihoods of

properties or features or behaviors of spacetimes. To be clear, I do not claim that it is not possible

to draw well grounded conclusions about such likelihoods, only that arguments of the standard

forms cannot, not even in principle, be made rigorous, and so conclusions based on them are prima

2One can of course quantify similarity using a metric as well, but in this case the metric will give rise to a

topology. The measure will still have to harmonize with the metric and so will automatically harmonize (or not)

with the induced topology.
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facie suspect, and should be treated with far more caution and skepticism than is common in the

physics and philosophy literature. It is exactly the standard forms of argument, however, that

cosmologists make when reasoning about likelihoods.

In §2, I quickly review the basics of topology, measure theory and probability theory, empha-

sizing technical and interpretative points that the rest of the paper relies on. Cognoscenti may

want to skip that section, though I do discuss some issues (such as the character of topologies on

spaces of functions, and the topological character of the uniqueness of the Lebesgue measure on

Rn) sometimes unfamiliar even to those with a solid grounding in topology and measure theory. I

also present the basic facts about topology in a somewhat unusual way, based on the idea of an

accumulation point, which is particularly suited to the goals of this paper. In my presentation of

the basics of probability, moreover, I focus on those foundational problems most relevant to the

kinds of cosmological argument I examine. In §3, I briefly rehearse the relevant aspects of topology

and measure theory in the context of infinite-dimensional Fréchet spaces, and conclude with a

statement of the fundamental theorem relevant to this paper and explain its import. In §4.1, I

discuss the few well defined topologies on families of spacetimes commonly used in cosmology, and

show that they have severe problems of physical interpretation on their own. In §4.2, I do the same

for the only known example of a well defined measure on a finite-dimensional family of spacetimes

of real physical interest. I conclude in §5 with a discussion of several standard cosmological argu-

ments about likelihood in the context of infinite-dimensional spaces of spacetimes, and show how

the reasoning runs afoul of the mismatch between topology and measure in such spaces.

2 Topology, Measure, Probability

2.1 Topological Spaces

A topology T is a family of sets, including the null set ∅, closed under arbitrary unions and finite

intersections.3 In particular, the union T of all elements of T itself belongs to T, and is called

the topological space with topology T. The elements of T are its open sets; a neighborhood of

a point of T is a subset of T, not necessarily in T, that contains an open set containing that

point. In general, one can associate many different topologies with the same set of points T. (We

will, however, still abuse notation and terminology in the usual way when no ambiguity can arise,

sometimes referring to a topological space simply by its associated set without specifying which

topology on it we mean.)

As is always the case with mathematical fields of study, there are many ways to think about

the subject of topology, both in the sense of intuitive visualization and in the sense of rigorous

formalization. For our purposes, the sense in which topology captures the idea of the study of

“continuity”—what remains invariant under deformations of a space that don’t rip or puncture it

and don’t glue different parts together—is the most important.4 The neighborhoods of a topology

capture an idea of relative proximity relevant to the idea of continuity: two points of the underlying

set are in proximity (relative to the fixed topology) if the family of neighborhoods of one stands

in one of a number of relations to the family of neighborhoods of the other. Intutively speaking,

3All the material I cover in this section is developed with thoroughness and illuminating insight in Kelley (1955).
4A topologist is a person who doesn’t know the difference between a coffee-cup and a doughnut.
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a neighborhood is a region of the space in which, at the point of which it is a neighborhood,

“arbitrarily small perturbations” don’t take one out of the region. If one thinks of the topology as

capturing something like a similarity relation among entities, then a neighborhood of an entity is

a collection of other entities similar to the first to some degree.

For our purposes, one of the most important of these relations among families of neighborhoods

is grounded on the idea of an accumulation point. Given any subset O ⊂ T (whether an open

set or not), an accumulation point of O is a point p such that every neighborhood of p has a

non-trivial intersection with O − {p}. In agreeably suggestive language, one may say that an

accumulation point is “arbitrarily close” to its associated set. Much information about the topology

of a topological space is encoded in the behavior of infinite sequences of points, and in particular by

the situation of any accumulation points they may have. (Indeed, under mild restrictions, which

all the examples we consider here satisfy, a topology can be fully characterized by the behavior of

the accumulation points of all infinite sequences.) A set is closed if it contains all its accumulation

points.

Given a sequence P = {pi} (i ∈ I↑, the non-negative integers), we say P is eventually in a

set O if there is an m ∈ I↑ such that pn ∈ O for all n > m. Clearly, if there is a p such that a

sequence P is eventually in every one of its neighborhoods, then p is an accumulation point of P .

In this case, we say P converges to p.5 If a sequence converges at all, there may be more than

one point the sequence converges to, depending on global properties of the topology. A topology

is Hausdorff if every two distinct points have disjoint neighborhoods. In a Hausdorff space, if a

sequence converges, its convergence point is unique.

A function from one topological space to another is continuous if the inverse image of an open

set in the range is an open set in the domain: if you tell me how proximate you want to be to a point

in the range, under the mapping, I’ll tell you how proximate you need to be to its pre-image in the

domain. Under mild conditions on the topology, the continuity of a function can be characterized

by the behavior of infinite sequences of points: roughly speaking, a function f is continuous if, for

every sequence P in the domain that accumulates at a point p, the sequence f [P ] in the range

accumulates at f(p).

Whether or not a given mapping between two point-sets is continuous depends sensitively on

the topologies one imposes on the sets. As a general rule, the fewer open sets a topology has,

the easier it is for a function having the space as its range to be continuous; contrarily, the fewer

open sets a topology has, the harder it is for a function having it as its domain to be continuous.

The intuition behind this rough claim is easy to grasp: the more open sets there are, the harder

it is for a sequence to have an accumulation point. Of two topologies on a given set, one is finer

than the other if every one of its open sets is also an open set of the other. (One also says that

the other is coarser than the one.) Finer topologies have more continuous functions from them;

coarser topologies have more continuous functions to them.

One of the most central and important ideas in topology is compactness. The motivation behind

5A sequence may have an accumulation point it does not converge to. A sequence is frequently in a set O if, for

every m ∈ I↑, there is an n > m such that pn ∈ O. If a sequence is frequently in every neighborhood of a point,

that point is a cluster point of a sequence. A cluster point is an accumulation point; a sequence may, but does not

necessarily, converge to a cluster point. Roughly speaking, a sequence may ceaselessly approach arbitrarily close to

and then recede from a cluster point, but never come to remain permanently near it.
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the idea comes from the classic Heine-Borel Theorem. To state it, we need two more definitions.

An open cover of a subset of a topological space is a family of open sets whose union contains the

subset. A subcover of a cover is a proper subset of a cover that is also itself a cover.

Theorem 2.1.1 (Heine-Borel) Every open cover of a closed, bounded interval of R (under its

standard topology) has a finite subcover.

This is remarkable. No matter how large and fiendishly Baroque one makes an open cover of a

closed, bounded interval, one can always select a finite number of elements from it that will still

cover the interval. As with all the best theorems, the conclusion of the Heine-Borel Theorem has

become a definition of fundamental importance: a subset of a topological space is compact if every

one of its open covers has a finite subcover. (Of course, the entire space itself may be compact.)

Compact sets have particularly pleasant properties for our purposes, perhaps the two most

important of which are that, first, under mild restrictions on the topology, every infinite sequence

in a compact set has at least one accumulation point, and, second, under no restrictions at all on

the topology, the Cartesian product of any family of compact spaces is itself compact under the

natural product topology. (The latter statement is known as Tychonov’s Theorem.) Intuitively

speaking, then, compact sets don’t “extend out to infinity”, and they also contain “every point they

could possibly have had in the first place”—in a natural sense, they are bounded, and they don’t

have any gaps or holes. An important weakening of the notion of compactness retains almost all its

nice properties: a topological space is locally compact if every point has a compact neighborhood.

Finally, we record a few definitions and propositions that will play an important role in what

follows. A subset D of a topological space is dense if every point of the space is an accumulation

point of some sequence of points in D. Intuitively, D extends arbitrarily closely to every point of

the space. The rational numbers, for example, form a dense subset of R (indeed, a countable one).

A topological space is separable if it has a countable dense subset. A subset of a topological space

is nowhere dense if the union of the set and all its accumulation points do not contain an open

set. If a subset N is nowhere dense, then, given any point not in N , one can find a neighborhood

around that point such that no sequence in N accumulates on the neighborhood.

The case of most interest for us will be topologies on the family of continuous, differentiable

or smooth functions between two topological spaces—in particular, the family of cross-sections on

the fiber bundle of Lorentz metrics over a candidate spacetime manifold (connected, paracompact,

Hausdorff, four-dimensional).6 Consider two topological spaces T1 and T2, and the family of

continuous functions F from the former to the latter. Define N(K, O) := {f ∈ F : f [K] ⊂ O, for

K ⊂ T1 compact and O ⊂ T2 open}. The family of all such collections, for all such K and O, forms

a subbase for the compact-open topology on F.7 A topology on F is said to be jointly continuous if

the mapping P : F×T1 → T2 that takes (f, p) to f(p) is itself continuous, in the product topology

6A topological space is connected if it is not the union of two open, nonempty, disjoint sets. The exact definition

of paracompactness is too involved to give here; suffice it to say that it means the space is not “too big”. Indeed,

one has to work hard to construct a topological space that is not paracompact (Hocking and Young 1988). In any

event, a theorem due to Geroch (1969) shows that a manifold has a Lorentz metric only if it is paracompact, so we

lose nothing by restricting attention to such manifolds.
7A base for a topology is a collection of open sets such that every other open set can be formed from a union of

sets in the base. A subbase is a collection of open sets such that one can form a base by taking finite intersections

of them.
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on F× T1.8 Say a topological space T is regular if for every p ∈ T and every neighborhood N of p,

there is a closed neighborhood U of p such that U ⊂ N . Then the following proposition captures

the sense in which the compact-open topology is the coarsest mathematically reasonable topology

to impose on a function space, so long as one wants that topology to respect the structure of the

elements of the space as functions.

Proposition 2.1.2 If the topological space T is locally compact and regular, then the compact-open

topology is the coarsest jointly continuous topology one can impose on the family of continuous

functions from T to any other topological space.

Most relatively well behaved topologies—and all the ones we will consider here—are Hausdorff,

separable, regular, and locally compact.

2.2 Measure Spaces

A σ-algebra is an ordered pair (S, Σ) consisting of a set S, and Σ, a non-empty collection of subsets

of S closed under the operations of finite set-differences and countable unions.9 Where no confusion

can arise, we will often abuse notation in the standard way and refer to Σ itself as the σ-algebra.

Write ‘R↑’ for the set of non-negative real numbers.

Definition 2.2.1 A measure on a σ-algebra Σ is a function µ : Σ→ R↑ ∪ {∞} such that

1. µ(S) <∞ for at least one S ∈ Σ

2. for any countable, pairwise-disjoint family {Si} ⊂ Σ,

µ

(⋃
i

Si

)
=
∑
i

µ(Si)

A measure space is an ordered pair consisting of a σ-algebra and a measure on it; the elements

of the σ-algebra are called measurable sets. It follows from the definitions that the null set ∅ is

always measurable, and any measure assigns value zero to it.10 In general, however, the null set

will not be the only set assigned a measure of zero. We say a property that holds for all points of

a measure space except for a subset of measure zero holds almost everywhere.

A σ-algebra has much the same feel about it as a topology, naturally giving rise to the question

whether one can construct measures on topological spaces that relate in a natural way to the

topology.

Definition 2.2.2 Let T be a Hausdorff, locally compact topological space. The Borel sets B of T

consist of the smallest σ-algebra containing all its open sets. A Borel measure is a measure µ on

the Borel sets such that µ(C) <∞ for every compact set C.

8The product topology for the Cartesian product of two topological spaces is exactly what one would expect: all

sets of the form O1 × O2, where O1 is an open set in the first factor and O2 open in the second, constitute a base

for the product topology.
9All the material I cover in this section is developed with thoroughness and illuminating insight in Halmos (1950).

10While it is not unusual, it is also not entirely standard to demand condition 1 for a measure. I do it because it

simplifies matter greatly, in particular guaranteeing that the null set is measurable, of measure zero, without having

to require it as a separate axiom. Also, it seems to me a quite reasonable bare minimum one should require of

something one wants to call a measure, if it is to be useful in physics at all.

Erik Curiel 8 October 18, 2014



Measure, Topology, Probability in Cosmology

A Borel measure, in an obvious and natural sense, respects the topology of the underlying topo-

logical space.11 It is a simple matter to construct a natural Borel measure on R: one is uniquely

picked out by the requirement that µ([a, b]) = b − a for every real interval [a, b]. This measure,

suitably generalized to Rn, is not however unique, and its multiplicity can be traced to the fact

that it lacks one feature, completeness, that it is convenient to have: we say a measure is complete

if every subset of every set of measure zero is itself measurable (and so necessarily of measure zero).

An extension of a measure space (S, Σ, µ) is another measure space (S, Σ′, µ′) such that Σ ⊂ Σ′

and µ′(A) = µ(A) for all A ∈ Σ. The following is easily proven.

Proposition 2.2.3 There is exactly one complete extension of the natural Borel measure on Rn

(for any n ∈ I↑).

Lebesgue measure µl on Rn is the unique complete extension of the natural Borel measure. Any

countable subset of Rn has Lebesgue measure zero, but uncountable subsets also can. The Cantor

Set is an example.

Let A be a subset of Rn; then, for any p ∈ Rn, denote by ‘A+ p’ the set that results by adding

p to every element of A, sometimes called the p-translate of A. Now, the following proposition

shows the most important properties of Lebesgue measure in relation to the natural topology and

linear structure on Rn.

Proposition 2.2.4 Lebesgue measure is locally finite, strictly positive and translation invariant,

i.e.:

1. every p ∈ Rn has an open neighborhood O such that µl(O) <∞

2. µl(O) > 0 for every non-empty open set O

3. for every measurable set A and every p ∈ Rn, µl(A+ p) = µl(A)

(Lebesgue measure is obviously not the unique measure satisfying these conditions, because there

are non-complete Borel measures that also satisfy them.) The translation invariance of Lebesgue

measure is commonly taken to be its most characteristic feature, to the point that any translation-

invariant measure on any linear space is often referred to as a Lebesgue measure. The analogous

property is particularly important in a measure that would be used to define a probability space

over a family of events that itself has an appropriate algebraic structure, for reasons I discuss in

§2.3 below.

The following theorem captures the precise sense in which Lebesgue measure is the unique

measure that respects both the topology and the linear structure of Rn.

Theorem 2.2.5 Lebesgue measure is the unique complete, translation-invariant measure on the

Borel sets in Rn.

11Again, while not unusual, it is not wholly standard to demand that a Borel measure assigns finite measure to

all compact sets. And, again, this seems to me the minimum one should require of such a thing for it to be usefully

applicable in physics.
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2.3 Probability

Measures allow for one elegant and important way to formalize the notion of probability: a prob-

ability space is an ordered pair consisting of a σ-algebra (P, Π) and a measure µ on it such that

µ(P) = 1. Intuitively speaking, the elements of P represent the totality of possible outcomes for

some family of phenomena we are interested in, those of Π the collections of outcomes to which it

makes sense to assign probabilities, and the value assigned by µ to an element of Π the probability

of that collection of outcomes. It is trivial to show that a probability space satisfies the standard

Kolmogorov axioms of probability theory.

It is of fundamental importance to recognize that, when one wants to be precise and rigorous,

it never makes sense to ask for “the probability” simpliciter of some event or collection of events.

One must have in hand a probability space that includes the event or collection of events in its

σ-algebra (or, at least, some structure formally equivalent to one). In general, for any given event

or collection of events, there will be many, many, many such probability spaces, with different

σ-algebras and with different measures. Picking the most appropriate σ-algebra for the question

or investigation at hand is known as the reference-class problem. I am not aware of any standard

name for the problem of picking the most appropriate measure, but it is equally as important and

difficult in general as the reference-class problem. The kinds of consideration that should bear on

those choices will depend on the nature of the subject matter one is treating, and on the nature of

the problem concerning that subject matter. In physics, of course, when using measures to assign

probabilities to collections of events, one wants to find a σ-algebra that represents “all appropriately

similar events”, where the similarity has manifest physical significance for the problem at issue,

and to fix a measure on it that captures a property of real physical significance shared by the events

that relates in a clear, direct, determinate way to the probabilities one wants to characterize.12

Without making sure that the measure latches on to and respects a physically significant feature

of the problem space with manifest relevance to the determination of probabilities, there will be

no reason to think of the values the measure assigns as representing real physical probabilities. All

these issues play a crucial role in attempts to evaluate the soundness of many kinds of argument

in cosmology.

Although measures on their own can be used to define probability spaces, it is often the case

that topological considerations play an important role in probabilistic reasoning. It is almost

always desirable, for instance, especially in physics, for an appropriate probability measure to be

a Borel measure, and in particular to assign non-zero probability to any collection of outcomes

that forms an open set in a physically natural topology. This captures the idea that, if an event

has non-zero probability (measure greater than zero), then “arbitrarily small” perturbations of it

shouldn’t render the result impossible, i.e., send it into a set of measure zero. One can guarantee

this by having the original event lie in an open set, which, because the measure is Borel, will

have non-zero measure. If this were not the case, then, given the necessarily limited precision

of observations in physics, we would find ourselves in the position of predicting outcomes with

non-zero probability that we could never in principle observe.

Topology plays other important roles in probabilistic reasoning as well. In many cases, the

12Peirce (1878a, 1878b) gives a particularly beautiful discussion of these issues, although of course he does not

use the language of measures.
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quantitative exactness delivered by a measure is either not feasible or not desirable. Sometimes

it is enough merely to know that an event is very likely or not likely at all, without attaching

a quantitatively exact probability to it. Let’s say that we make a prediction for the dynamical

evolution of a system starting from a set of exact initial conditions. We want to know how likely it is

that the system, if prepared with approximately those initial conditions will evolve in approximately

the predicted way. (Roughly speaking, this is known as the Hadamard stability problem for the

initial-value formulation of the system.) One natural way to make the question precise is to find

appropriate topologies for the space of initial conditions and the space of dynamical evolutions,

define the mapping taking initial conditions to dynamical evolutions, and determine whether it

is jointly continuous. (“Do arbitrarily small perturbations of the initial conditions leave the later

dynamical behavior essentially unchanged?”) If so, then, if the prediction is sound and if we have

good reason to believe that the system starts with initial conditions close enough to the exact initial

conditions used to generate the prediction, it is very likely that we will get the expected behavior

even though we know that, due to the finite exactness of measurement and preparation, the system

almost certainly did not start with those exact initial conditions. If the mapping is not jointly

continuous, then it may be very unlikely that we will get the expected behavior, no matter how

close to the exact initial conditions the system starts evolving from. (This is one of the reasons why

it is almost always desirable, from a physical point of view, to have one’s function-space topology

be jointly continuous.)

In a closely related vein, say that we have found an appropriate topology for the space rep-

resenting the possible states of a type of system, and that, moreover, the points of that space

representing the system as possessing a certain property with values in a fixed range form an

open dense subset.13 Then there is a natural sense in which it is overwhelmingly likely that an

appropriately random sampling of such systems will all evince values for the given property falling

within the fixed range. If the subset is nowhere dense, it is very unlikely to find a system having

the property with value in the fixed range in an appropriately random sample.14 Of course, one

must bear in mind that such conclusions depend not only on the physical propriety of the topology

one has fixed on the space of states, but, at least as importantly, they depend on the propriety of

the mechanism one has chosen to construct the random sample. If one’s sampling mechanism is

biased in some way, then it doesn’t matter how “appropriate” one’s measure is: one will not get

physically reliable results. Again, these issues play a crucial role in the evaluation of many kinds

of cosmological argument.

Finally, one can use measures in similar ways to draw qualitative judgments about the likelihood

of an event or kind of event: a property that holds almost everywhere in an appropriate measure

space will be very likely to occur, and one that holds in a set of measure zero will be very unlikely,

even if the measure is not a probability measure, so long as one has been able to demonstrate an

appropriate relation between the measure and the relevant physical properties of the system at

issue. It is only in the latter case that the value the measure attributes to a set may reasonably

13If the topology arises from or is compatible with a complete metric, one can use the more general criterion that

the set be a Gδ-set, i.e., that it be a countable intersection of open dense subsets, in so far as the complement of a

Gδ-set in this case is nowhere dense.
14If the topology arises from or is compatible with a complete metric, one can use the more general criterion that

the set be meagre, i.e., that it be a countable union of nowhere dense subsets, in so far as the complement of a

meagre set in this case is dense. (This is known as the Baire Category Theorem.)
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be thought of as a representation of a real physical probability for the class of events in the set.

3 Topology and Measure in Infinite-Dimensional Spaces

Now, as we have seen, there is a natural sense in which, in Rn, Lebesgue measure respects both

the topology and the linear structure, both of which are desirable features in a measure one wants

to found probabilistic reasoning on, for the reasons discussed in §2.3, inter alia. The situation in

infinite-dimensional spaces, therefore, as we will see, poses considerable problems for the hopeful

physicist. This matters because, for our purposes—the application of probabilistic reasoning to

families of spacetimes—the natural spaces one works with are spaces of functions (Lorentzian

metrics on differential manifolds). These spaces tend to be infinite-dimensional spaces with natural

algebraic structures accruing to them.

To apply probabilistic reasoning to families of spacetimes, one must first choose what sort of

spacetime metric one is going to work with, Cn or C∞. Each has virtues and demerits. To see what

is at issue in a simpler setting, consider the set of functions on the unit disk. For Cn functions, we

have the norm

‖f‖ = sup |f |+ . . .+ sup |∇(n)f |

resulting in a Banach space, since this norm is complete for any finite n—because the disk is

compact and the functions are continuous, the supremum is always finite. (A Banach space is a

normed vector space, complete with respect to the metric the norm induces.) For C∞, we do not

get a Banach space because the resulting infinite sum may not converge. Instead, we define

�f� =
sup |f |

1 + sup |f |
+ . . .+

1

2n
sup |∇(n)f |

1 + sup |∇(n)f |
+ . . .

which manifestly converges. This operation defines a metric in the obvious way,

(f, g) = �f − g�

and this metric is complete in the sense that all its Cauchy sequences converge to a point in the

space. This operation, however, does not define a norm, since it is not the case that

�af� = |a|�f�

for scalar a. (There is no norm for C∞ functions that both accounts for all their derivatives and, in

a natural sense, extends the norm for Cn functions.) The metric is, however, manifestly invariant

with respect to translations. The resulting space is a Fréchet space, a metrizable, locally convex

vector space, complete with respect to a translation-invariant metric.

Is it true in such a large space that every well-behaved vector field has unique integral curves

(a necessity, e.g., for certain forms of local stability analysis)? In a Banach space, yes, but in a

Fréchet space, no. (Sometimes there are no integral curves, sometimes they are not unique). As an

example of the way things can go awry, consider a map f from functions on the disk to functions

on the disk:15 fix a vector field ξa on the disk; then define

φ(f) = ξn∇nf
15I thank Bob Geroch for conversations in which we worked out the details of this example.
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φ wants to be a linear functional on our space of functions, i.e., to be a vector field on the vector

space of functions on the disk, but, while it is in fact a vector field on the Fréchet space of C∞

functions, it is not one on the Banach space of Cn functions, since for f ∈ Cn it is not necessarily the

case that ∇af ∈ Cn. On the Fréchet space, however, the vector field resulting from this mapping

does not yield unique solutions—when one slides a function along the disk, as the mapping in effect

asks one to do, one gets to make up whatever one wants to fill up the “back” part of the disk, as

the “front” part of the function slides off the disk, i.e.,

d

dt
f(t, 0) = ξn∇nf(t, 0)

has no unique integral curves. So one can have unique integral curves, but no vector field (on

Banach space), or a vector field but no unique integral curves (on Fréchet space).

In general, however, there may be difficulties with defining tangent vectors to curves on a

Fréchet space. In a Banach space B, γ : < → B has derivative v ∈ B if, ∀ε > 0, ∃c > 0 such that

‖γ(t)− γ(t0)− (t− t0)v‖ ≤ c|t− t0|2

for |t − t0| < ε, but in a Fréchet space one has no norm, only a metric, and if one uses the

metric to try to define derivatives, nice properties like “sum of two differentiable vector fields is a

differentiable vector field” will likely fail since one does not have the nice norm properties.

Now, once one has bitten the bullet and chosen to work with the type of space one considers

the lesser of two evils, one might have thought that all one’s travail would be behind one. Sadly,

no.

Theorem 3.1 The only locally finite, translation-invariant Borel measure on an infinite-dimensional,

separable Fréchet space is the trivial measure ( viz., the one that assigns measure zero to every mea-

surable set).

Thus, since a Banach space is automatically a Fréchet space, any translation-invariant measure on

any reasonably well behaved infinite-dimensional space assigns infinite measure to all open sets,

unless the measure is the trivial measure.

4 Topologies and Measures on Families of Spacetimes

Even though, as should now be clear, we cannot hope for the most satisfactory framework—a well

behaved Borel measure—on which to found probabilistic reasoning about families of spacetimes, we

may still hope to find topologies or measures on their own appropriate for addressing specific sorts

of problems. Perhaps, the hope goes, we can find a well behaved, physically significant measure

that will return probabilities in such a way that its lack of relation to a topology will not necessarily

lead to conundrums or implausibility. Or perhaps we can find a topology that, though not related

to a measure, will still allow us to reason qualitatively about likelihoods in a physically significant

way. Alas, in the event, things do not look good.

4.1 Topologies

Fix a candidate spacetime manifold M , and consider the family G of all Lorentz metrics on it,

i.e., the family of all cross-sections of the fiber bundle of Lorentz metrics over M . There are two
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standard topologies relativists impose on G when addressing problems related to likelihoods. The

first is a standard compact-open topology on a function space; the second is a standard Whitney

topology on a function space.16 (The compact-open is strictly coarser than the Whitney, unless M

itself is compact, in which case the two coincide; we will not consider that case.) The idea behind

each is to fix a standard of “distance” between Lorentz metrics by fixing an arbitrary positive-

definite metric on M and using it to assign magnitudes to the algebraic differences of Lorentz

metrics. As we shall see, both have severe problems of physical interpretation, which can in large

part be traced to the fact that the positive-definite metrics themselves used to fix the similarity

relations among Lorentz metrics have no physical significance.17

Roughly speaking, the compact-open topology cares only whether or not metrics are similar

on bounded regions in the interior of the spacetime manifold; it does not care about their relative

asymptotic behavior. To characterize it, we must define the neighborhoods of a given Lorentz

metric gab. A neighborhood N(hab, K, ε; gab) is determined by a positive-definite metric hab on M ,

a compact subset K of M , and a real number ε > 0. A Lorentz metric g′ab is in the neighborhood if

and only if hmnhrs(gmr−g′mr)(gns−g′ns) < ε everywhere inK. The family of all such neighborhoods

forms a subbase for the compact-open topology.18 The compact-open topology has the pleasant

properties of being locally compact, Hausdorff and regular (because the fiber bundle of Lorentz

metrics overM is). It also, according to proposition 2.1.2, is the coarsest mathematically reasonable

topology to use on G.

An example from Geroch (1971) shows, however, that its physical significance is questionable

at best. Consider the sequence of metrics on R4 of the form diag(tm, −1, −1, −1), for m ∈ I+ (the

strictly positive integers), where tm := 1 +
m

1 + (x−m)1/2
, x being a global Cartesian spacelike

coordinate function. Roughly speaking, each of these metrics is essentially flat almost everywhere

except for a sharp peak of curvature around the t-y-z-hypersurface defined by x = m. As m

increases, moreover, this peak of curvature becomes higher and sharper, as it moves further out

along the x-axis. It does not seem physically reasonable that such a sequence should converge

to Minkowski spacetime, since the spacetimes in it have curvature that in a sense one can make

precise grows without bound, and yet that is what it does under the compact-open topology.19

The problem is that the compact-open topology is too coarse—it does not have enough open sets

to stop pathological sequences from converging.

Roughly speaking, the Whitney topology cares whether or not metrics are similar on the entire

spacetime manifold, including their relative asymptotic behavior. A neighborhood N(hab, ε; gab) of

a given Lorentz metric gab is determined by a positive-definite metric hab on M , and a real number

16Geroch (1971) calls the former the coarse and the latter the fine topology. Hawking (1971) calls the latter

the open topology, and calls a yet finer topology the fine topology. We shall not consider here the fine topology

of Hawking (1971), for, as we shall soon see, the Whitney topology already has “too many open sets”. Another

common class of topologies used in relativity theory are the Sobolev topologies, which play an important role in the

analysis of the Cauchy problem in general relativity (Ringström 2009). Since these are even finer than the finest

one Hawking (1971) considers, and since we shall not discuss the Cauchy problem, we shall, again, not worry about

them.
17See Geroch (1967, 1971) and Fletcher (2015) for insightful discussions of these problems.
18One can also form compact-open topologies that account for derivatives of the Lorentz metrics and how they

differ, but we will not need to do so.
19This sequence of metrics does not converge at all under the Whitney topology, which one may perhaps think of

as the “correct” or “naturally expected” result.
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ε > 0. A Lorentz metric g′ab is in the neighborhood if and only if hmnhrs(gmr−g′mr)(gns−g′ns) < ε

everywhere in M . The family of all such neighborhoods forms a subbase for the topology.20 The

Whitney topology also has the pleasant properties of being locally compact, Hausdorff and regular

(because the fiber bundle of Lorentz metrics over M is).

The Whitney topology fairs even worse than the compact-open one with regard to physical

significance, as examples from Geroch (1970, 1971) again show. Consider the sequence of metrics

on R4 of the form diag(tm, −1, −1, −1), for m ∈ I+, where now tm := 1 +
1

m2 + x2 + y2 + z2
.

Each metric in this family is essentially flat almost everywhere except for a spherically symmetric

bump of curvature centered on the origin; this bump, moreover, decreases smoothly to zero as m

increases. This sequence, however, does not converge to Minkowski spacetime under the Whitney

topology. Even more egregiously, the one-parameter family of metrics {λgab}, for λ ∈ R+ (the set

of strictly positive real numbers), where gab is any Lorentz metric on any non-compact M , fails

to be a continuous curve under the Whitney metric. But each metric in the family represents the

same physical spacetime! Multiplying a spacetime metric by a constant does nothing other than

change the effective units one (implicitly) uses to quantify physical magnitudes such as mass and

acceleration.21 The problem now is that the Whitney topology is too fine—it has so many open

sets that almost no reasonable sequence will converge.

One could perhaps argue with some justice that Geroch’s example speaking against the compact-

open topology is not so bad as to preclude its usefulness in many cases and for many purposes, and

I would not necessarily disagree. The problem arises in the example because the compact-open

topology, roughly speaking, does not contain enough open sets to control the similarity relations

between metrics with respect to their asymptotic behavior. In other words, it does not care about

global similarity, only local similarity. For the sorts of problems for which one would want to use

a topology on a family of spacetime metrics to ground qualitative probabilistic reasoning in the

context of cosmology, however, it is exactly the global similarity of metrics that will in general be

at issue. We will see physically important examples of this in §5 below. The Whitney topology

rules unhelpfully in such simple and fundamental cases as to make it, to my mind, never a viable

option for addressing global issues.22

It will be useful to conclude the section by considering problems with these topologies in the

context of a more physically interesting example, to substantiate my claims. Consider the question

of the stability of the occurrence of singularities in the family of metrics over a given manifold.

One wants to show that the occurrence of a singularity is (topologically) stable “under small

perturbations”. (I discuss this question, and the problems facing attempts to address it, in more

detail in §5 below.) In this case, the impropriety of the Whitney topology can be easily illustrated

20One can also form Whitney topologies that account for derivatives of the Lorentz metrics and how they differ,

but again we will not need to do so.
21The compact-open topology seems to get both of these examples right: under it, the sequence converges to

Minkowski spacetime, and the one-parameter family forms a continuous curve.
22One may thus wonder about the usefulness of the Sobolev measures used in analyzing the stability of the Cauchy

problem in general relativity, for those topologies are always strictly finer even than the Whitney topology. In fact,

though, in this case the promiscuity of the topologies is a virtue—one wants to show stability under as difficult

conditions as possible. Even though one may not be able to elucidate the physical significance of the Sobolev

topologies, they are surely finer than any topology one will be able so to elucidate, and so stability under the

Sobolev topologies ensures stability under more restrained, more physically plausible ones, whatever they may be.
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by noting that any reasonable sense of “small perturbation” will yield an operation discontinuous

with respect to it. For example, given a spacetime (M, gab), one might define a small perturbation

as follows. Consider a one-parameter family of spacetimes Mε := {(M, (1 + φλ)gab) : λ ∈ [0, ε)},
for some small ε, where each φλ is a non-negative smooth function on M such that 0 ≥ supM φλ′ <

λ′ < supM φλ < λ, for all λ′, λ ∈ [0, ε), and the family of functions {φλ} varies smoothly with

respect to λ in the supremum norm, and the supremum approaches zero “slowly”.23 Then(
1 +

dφλ
dλ

∣∣∣∣
λ=0

)
gab

is a small perturbation off gab. It is easy to see by construction that Mε forms an everywhere

discontinuous curve on the family of metrics with respect to the Whitney topology, and so any

property of (M, gab) one may want to consider is trivially stable under such small perturbations.

(The only physically reasonable “small perturbation” continuous with respect to the Whitney

topology is the identity operation.)

Non-trivial small perturbations defined in this way can easily be constructed so as to be con-

tinuous with respect to the compact-open topology, so this looks initially more promising. For the

treatment of singularities, though, the compact-open topology is not physically appropriate. If

one characterizes a singularity by the existence of incomplete, inextendible causal geodesics, then

the compact-open topology will never be able to discriminate singular from non-singular metrics:

it is only in highly pathological cases that incomplete, inextendible geodesics are contained in

compact subsets of a spacetime (Curiel 1999). Every open neighborhood of a singular metric in

the compact-open topology contains non-singular metrics, and vice-versa. There are no other well

defined topologies on the family of Lorentz metrics standardly used by physicists.24

4.2 Measures

The space of Lorentz metrics over a manifold—the family of possible spacetime models having

that as its underlying manifold—is an infinite-dimensional Fréchet space, and so by theorem 3.1 it

has no non-trivial Borel measure. The only rigorously defined measure on a reasonably interesting

family of spacetimes is the Gibbons-Hawking-Stewart (GHS) measure µghs on “minisuperspace” Γ

(Gibbons, Hawking, and Stewart 1987). Roughly speaking, Γ comprises the family of initial data for

FLRW spacetimes with compact Cauchy surfaces, sourced by a minimally coupled homogeneous

scalar field. A little more precisely, one constructs the constraint-reduced phase space for an

appropriately gauge-fixed Hamiltonian formulation of general relativity; restricting attention to

compact 3-geometries sourced by homogeneous, minimally coupled scalar fields, one finds that

the resulting space, remarkably, simplifies to the point that it itself is only four-dimensional. In

essence, the reduced phase space is fully parametrized by the field-intensity φ of the scalar field

and the Hubble expansion factor a on a Cauchy surface, and their “time-derivatives”, φ̇ and ȧ, off

23Since the family of Lorentz metrics is a locally convex space, all the (1+φλ)gab will also be Lorentzian for small

enough ε.
24In order to try to address such problems with the compact-open and the Whitney topologies, Fletcher (2014)

constructs a novel topology, in some ways similar to the compact-open topology but which yields the “natural”

answers for Geroch’s examples I discussed above. It would be of great interest to determine whether Fletcher’s

topology is appropriate for the characterization of the stability of singularities not confined to compact subsets of

spacetime.
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the Cauchy surface; these quantities are constant on the Cauchy surface by homogeneity of the

spacetime. The standardly defined Liouville measure on this phase space (modulo a few technical

difficulties that do not concern us) is the GHS measure. All of a sudden, things are looking up for

our eternally hopeful cosmologist who would engage in probabilistic reasoning, at least with regard

to this (admittedly quite restricted, but still physically important) family of spacetimes—we have

a rigorously defined Borel measure on a finite-dimensional space. (A Liouville measure is always

a Borel measure.25) It is not long, however, before a bucket of cold water is dashed in her face

with the realization that, even though the space is finite-dimensional and the measure is Borel, it

cannot be turned into a probability measure, for the measure it assigns the entire phase space is

infinity—Γ is not compact.

Still, let us see whether we may not salvage something useful from this mess. We want to

see whether the GHS measure can support any, even weak, form of probabilistic reasoning. Say

we want to determine whether we can meaningfully attribute a probability to the occurrence of a

physical property X, given the fixed reference class Γ. Let PX ⊂ Γ be the family of spacetimes

evincing X. There are four cases to consider.

1. PX is not measurable

2. µghs(PX) <∞

3. µghs(Γ \ PX) <∞

4. µghs(PX) =∞ and µghs(Γ \ PX) =∞

In the first case, we can say nothing at all, but one assumes or stipulates or hopes or demands or

pleads or dreams that physically significant properties will not manifest such topological pathology

in their distribution across spacetimes. In the second case, one can unambiguously attribute a

probability of zero to it, and in the third a probability of one. In the fourth, one can say nothing

simple or straightforward, without ambiguity, but now one does not even have the solace of yelling

at the property and demanding that it not be pathological, as in the first case, for there is nothing

pathological about such topological behavior at all.

There is, however, a “natural” schema for regularization procedures that one can use to try to

derive a finite probability in such cases.26 One approximates PX by a nested sequence of finite-

measure subsets of Γ, such that the union of the sequence is PX and the sequence of measures of

the subsets, appropriately weighted, converge to a finite value in [0, 1]:

1. assume Γ is σ-finite (i.e., is a countable union of subsets of finite measure)

2. find “physically appropriate” nested sequence of subsets of Γ, {Si} (i ∈ I+), such that

Γ =
⋃
i Si and µghs(Si) <∞

3. define Pr(PX) = lim
i→∞

µghs(PX ∩ Si)
µghs(Si)

25Since the final, four-dimensional space does not naturally have the structure of a cotangent bundle, and so the

symplectic structure one uses is not perspicuously related to the underlying topology, it is actually not clear to me

that the standardly constructed Liouville measure ends up in this case being a Borel measure. It strikes me as

plausible that it is, so I will assume so for the sake of argument. It would be an interesting exercise, which I leave

to the reader, to verify this.
26I follow here the exposition of Schiffrin and Wald (2012).
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Minisuperspace is σ-finite, so we’re off to a good start. The serious problem arises with the second

condition: one can get pretty much any answer one wants by judicious choice of {Si}, i.e., different

regularization procedures can yield wildly different results.

A simple example illustrates the general form of the problem. What is the probability that

a randomly chosen natural number is even? Prima facie, the question makes no sense. Let’s

fix a regularization procedure to attempt to address it. Let Si be the subset consisting of the

first i natural numbers, in their normal ordering; then the regularization procedure yields the well

defined probability 1
2 for a natural number’s being even. Now, however, order the natural numbers

as follows, {1, 3, 2, 5, 7, 4, . . .}, and again let Si be the subset consisting of the first i numbers.

This yields a well defined probability, but now it is 1
3 .

In cosmology, the problem is nicely illustrated by attempts to calculate the probability of in-

flation for spacetimes in Γ. Using regularization procedures derived from arguments based on

(topological) stability of initial conditions yielding “slow-roll” inflation, Gibbons and Turok (2008)

deduced extremely low probability for N � 1 e-foldings of inflation, whereas Carroll and Tam

(2010) deduced extremely high probability for N � 1 e-foldings of inflation. Both analyses, more-

over, have strong, physically plausible justifications for the regularization procedures they employ

(i.e., their choice of {Si}). The resolution to this seemingly paradoxical state of affairs is that

they each used a different criterion for topological stability for initial conditions yielding inflation

in fixing the choice of {Si}. Roughly speaking, Carroll and Tam (2010) characterized topological

stability based on the behavior of spacetimes entering an inflationary phase, whereas Gibbons and

Turok (2008) did so based on spacetimes leaving the inflationary phase. This difference naturally

leads them to consider the weight the GHS measure assigns to physically quite different open sets

in Γ. It should therefore be no surprise that those open sets get assigned divergent weights.27

Even in the cases where one can unambiguously attribute a probability to the occurrence of a

property based on µghs, one must ask about the physical significance of that probability, which, if

it indeed has any, must come from the physical significance of the GHS measure itself, if it indeed

has any. Schiffrin and Wald (2012) argue persuasively on multiple grounds that, at best, much

work must be done to justify the physical significance of the GHS measure, and, at worst, it has

none. In particular, they note that the standard justifications for the use of a Liouville measure

are given by arguments based on special properties of the dynamical evolution of the system at

issue and in particular on how it equilibrates. In particular, the arguments rely on the fact that

the amount of time the system spends in a portion of phase space is proportional to its Liouville

measure. Those arguments, however, are not available when:

1. the system is not ergodic

2. OR one has not waited a time much greater than the equilibration time after the system was

prepared

3. OR the system has a time-dependent Hamiltonian that varies on a timescale that is small or

comparable to the equilibration time

27My diagnosis of the conflict between the two conclusions is in some ways similar to that of Schiffrin and Wald

(2012), but also differs in one important way, viz., my emphasis on the role topological stability plays in their

arguments in fixing the open sets whose measures are relevant to the problem.
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All of those conditions hold, however, for the canonical “dynamics” of that sector of general

relativity represented by minisuperspace and its Hamiltonian. The system is not ergodic because

the phase space has infinite measure—the dynamics cannot adequately explore the whole space in

any finite time. For the same reason, there is no finite time in which the system can explore enough

of the phase space in order for one to be able to conclude that it has satisfactorily equilibrated: the

system always “remembers” its initial state, which precludes true statistical equilibration. That the

time-dependent Hamiltonian in this case varies over timescales small compared to the equilibration

time follows for the same reason.

In the face of these problems, Hollands and Wald (2002) and Schiffrin and Wald (2012) conclude

that the only justification for the use of a Liouville measure in cosmology, in our current state of

knowledge, is the bare assumption of the conceit of Penrose (1979), to wit, that the universe’s initial

conditions were, by some appropriate process, randomly selected from a probability distribution

fixed by the Liouville measure—the “creator” blindly threw a dart at a dartboard whose values are

distributed according to it. Schiffrin and Wald (2012, p. 20) drily observe that this “has the status

of an unsupported hypothesis.” I demure. There is no tongue long enough and no cheek deep

enough to sufficiently warrant endowing this assumption with the honorific ‘hypothesis’. There is

no known physical justification for the use of the Liouville measure in cosmology.

5 Genericity, Stability, and Prediction

As I already remarked above, the space of Lorentz metrics over a manifold—the family of possible

spacetime models having that as its underlying manifold—is an infinite-dimensional Fréchet space,

and so by theorem 3.1 it has no non-trivial Borel measure. Standard probabilistic forms of argument

in cosmology, however, mix topological and measure-theoretic concepts and methods in a way that

depends on relations between topology and measure that are guaranteed to obtain only for Borel

measures. In particular, those standard forms (always implicitly) assume at least one of the

following propositions.

• Fix a “randomly selected” spacetime with a given property; if “small perturbations” (in a

topological sense) destroy that property, then the collection of spacetimes with that property

has zero measure. (The property is “scarce”; theorems showing the existence of the property

are “rigid”.)

• Fix a “randomly selected” spacetime with a given property; if “small perturbations” (in a

topological sense) preserve that property, then the collection of spacetimes with that property

has large (or at least discernibly non-zero) measure. (The property is “generic”; theorems

showing the existence of the property are not “rigid”.)

• If the collection of spacetimes with a given property has large (or at least discernibly non-zero)

measure (“generic”), then that property is topologically stable under “small perturbations”

(not “rigid”).

• If the collection of spacetimes with a given property has zero measure (“scarce”), then that

property is topologically unstable under “small perturbations” (“rigid”).
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The probabilistic element of the conclusions can be expressed using the idea of likelihood (in a

non-technical sense). Standard arguments then take the following form. Assume that the property

is generic and that observations we make indicate that the actual spacetime approximately satisfies

the conditions of an existence theorem for that property; then the topological stability under small

perturbations entailed by genericity guarantees that the inevitable inaccuracies and inexactitudes

in the observations cannot block the inference that the likelihood that the property obtains in the

actual universe is high; and so we conclude that the likelihood is in fact high. Because one does not

have a Borel measure in infinite-dimensional Fréchet spaces, however, none of these propositions

hold in general for the space of Lorentz metrics over a fixed manifold.28

A good example of a powerful probabilistic conclusion based on topological reasoning dressed

up in measure-theoretic clothing pertains to the likelihood of finding singularities in a certain class

of spacetimes. Geroch (1966) conjectured that essentially all spatially closed spacetimes either

have singularities or do not satisfy the SEC, or, somewhat more precisely, that singularities are

generic and their occurence is stable in the family of spatially closed spacetimes.29 One compelling

way to make Geroch’s conjecture precise is given by the so-called Lorentzian splitting theorems.30

These theorems may be thought of as rigidity meta-theorems for singularity theorems invoking the

strong energy condition, for the splitting theorems show that, under certain other assumptions,

there will be no singularities only when the spacetime is static and globally hyperbolic. The

reasoning then runs, static and globally hyperbolic spacetimes are “of measure zero” in the space

of all spacetimes, and so being free of singularities is, under the ancillary conditions, unstable

under arbitrarily small perturbations; thus, the likelihood of a “randomly selected” spatially closed

spacetime being singularity-free is very low.31 These conclusions, however, are simply not justified

in the absence of a Borel measure, even if one had a physically appropriate topology to use for the

rigorous characterization of stability in the first place.

28Hawking (1971) is particularly clear and explicit in sketching what I just proposed as a typical scheme for this

sort of argument, though he does not note the mathematical issues I focus on.
29The strong energy condition requires that for any timelike vector ξa, Rmnξmξn ≥ 0, where Rab is the Ricci

tensor associated with the spacetime metric.
30In order to state the most relevant splitting theorem, we need two definitions. First, the edge of an achronal,

closed set Σ is the set of points p ∈ Σ such that every open neighborhood of p contains a point q ∈ I−(p), a point

r ∈ I+(p) and a timelike curve from q to r that does not intersect Σ. Second, let Σ be a non-empty subset of

spacetime; then a future inextendible causal curve is a future Σ-ray if it realizes the supremal Lorentzian distance

between Σ and any of its points lying to the future of Σ (Galloway and Horta 1996); mutatis mutandis for a past

Σ-ray. (If γ is a Σ-ray, it necessarily intersects Σ.)

Theorem 5.1 (Lorentzian splitting theorem) (M, gab) be a spacetime that contains a compact, acausal space-

like hypersurface Σ without edge and obeys the SEC; if it is timelike geodesically complete and contains a future

Σ-ray γ and a past Σ-ray η such that I−(γ)∩ I+(η) 6= ∅, then it is isometric to (R×Σ, tatb−hab), where (Σ, hab)

is a compact Riemannian manifold and ta is a timelike vector-field in M.

In particular, (M, gab) must be globally hyperbolic and static. See Galloway and Horta (1996) for a proof.
31See, e.g., Hawking (1971), Penrose (1979), and Senovilla (1998) for examples of physicists explicitly using

such measure-theoretic language to characterize the genericity of the occurrence of singularities in these families of

spacetimes, based on topological stability of the occurrence of singularities. Those same physicists also offer similar

arguments for the genericity of singularities in spatially open spacetimes. One can make the conjecture in this case

precise by using a variation of the Lorentzian splitting theorem given in footnote 30 (Galloway and Horta 1996);

see, e.g., Ringström (2009), for arguments of the sort I criticize based on the Lorentzian theorem for the spatially

open case.
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An example of a different sort is provided by the anthropic argument of Weinberg (1987)

predicting “the most likely” range of values for the cosmological constant Λ. His argument runs

as follows:

1. work with a family of near-FLRW spacetimes (i.e., ones derived by allowing small perturba-

tions off FLRW spacetimes, introducing small inhomogeneities);

2. then the existence of large, gravitationally bound systems places upper and lower bounds on

possible values of Λ—if Λ is too positive, then potentially bound systems would be pulled

apart, and if it is too negative, then the universe would recollapse before they can form;

3. argue for the topological stability of the formation of such bound systems under small changes

in the value of Λ;

4. use an anthropic argument (the presence of conscious observers as a selection effect, assuming

we are typical observers, i.e., that the value of Λ in our spacetime is typical of spacetimes

with such observers) to fix the shape and peak of an appropriate measure on the family of

near-FLRW spacetimes;

5. predict that the probability of the occurrence of a cosmological constant with a value lying

in the range fixed in the second step is high, according to the posited measure.

The inadmissibility of the reasoning should, again, be clear. The argument assumes that there

exists a measure and a topology that harmonize in such a way as to allow one both to characterize

topological stability under small perturbations and to characterize typicality of a class of observers

in a consistent way. On any reasonable family of near-FLRW spacetimes, however, there will

be no such measure and topology, for the inhomogeneities ensure that the family will form an

infinite-dimensional space.

My arguments do not show that the conclusions of the sorts of arguments I have considered in

this section are necessarily wrong, only that the arguments currently given for those conclusions,

in their present form, have serious mathematical, physical and conceptual problems that must be

addressed before any real confidence can be had in those conclusions.
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