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ABSTRACT

The question of the existence of gravitational stress-energy in general relativity has
exercised investigators in the field since the inception of the theory. Folklore has it
that no adequate definition of a localized gravitational stress-energetic quantity can
be given. Most arguments to that effect invoke one version or another of the Princi-
ple of Equivalence. I argue that not only are such arguments of necessity vague and
hand-waving but, worse, are beside the point and do not address the heart of the issue.
Based on a novel analysis of what it may mean for one tensor to depend in the proper
way on another, which, en passant, provides a precise characterization of the idea of
a “geometric object”, I prove that, under certain natural conditions, there can be no
tensor whose interpretation could be that it represents gravitational stress-energy in
general relativity. It follows that gravitational energy, such as it is in general relativ-
ity, is necessarily non-local. Along the way, I prove a result of some interest in own
right about the structure of the associated jet bundles of the bundle of Lorentz metrics
over spacetime. I conclude by showing that my results also imply that, under a few
natural conditions, the Einstein field equation is the unique equation relating gravi-
tational phenomena to spatiotemporal structure, and discuss how this relates to the
non-localizability of gravitational stress-energy. The main theorem proven underlying
all the arguments is considerably stronger than the standard result in the literature
used for the same purposes (Lovelock’s theorem of 1972): it holds in all dimensions
(not only in four); it does not require an assumption about the differential order of the
desired concomitant of the metric; and it has a more natural physical interpretation.
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As soon as the principle of conservation of energy was grasped, the physicist practically
made it his definition of energy, so that energy was that something which obeyed the law
of conservation. He followed the practice of the pure mathematician, defining energy
by the properties he wished it to have, instead of describing how he measured it. This
procedure has turned out to be rather unlucky in the light of the new developments.

Arthur Eddington
The Mathematical Theory of Relativity, p. 136

1 Gravitational Energy in General Relativity

There seems to be in general relativity no satisfactory, localized representation of a quantity whose
natural interpretation would be “gravitational (stress-)energy”. The only physically unquestion-
able expressions of energetic quantities associated solely with the “gravitational field” we know of
in general relativity are quantities derived by integration over non-trivial volumes in spacetimes
satisfying any of a number of special conditions.1 These quantities, moreover, tend to be non-
tensorial in character. In other words, these are strictly non-local quantities, in the precise sense

1Weyl (1921, pp. 271–272) and Eddington (1923, pp. 134–137) were perhaps the first to grasp this point with
real clarity. Schrödinger (1950, pp. 104–105) gives a particularly clear, concise statement of the relation between
the fact that the known energetic, gravitational quantities are non-tensorial and the fact that integration over them
can be expected to yield integral conservation laws only under restricted conditions.
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that they are not represented by invariant geometric objects defined at individual spacetime points
(such as tensors or scalars).

This puzzle about the character and status of gravitational energy emerged simultaneously
with the discovery of the theory itself.2 The problems raised by the seeming non-localizability of
gravitational energy had a profound, immediate effect on subsequent research. It was, for instance,
directly responsible for Hilbert’s request to Noether that she investigate conservation laws in a
quite general setting, the work that led to her famous results relating symmetries and conservation
laws (Brading 2005).

Almost all discussions of gravitational energy in general relativity, however, dating back even
to the earliest ones, have been plagued by vagueness and lack of precision. The main result of
this paper addresses the issue head-on in a precise and rigorous way. Based on an analysis of
what it may mean for one tensor to depend in the proper way on another, I prove that, under
certain natural conditions, there can be no tensor whose interpretation could be that it represents
gravitational stress-energy in general relativity. It follows that gravitational stress-energy, such as
it is in general relativity, is necessarily non-local. Along the way, I prove a result of some interest
in its own right about the structure of the associated first two jet bundles of the bundle of Lorentz
metrics over spacetime. I conclude with a discussion of the sense in which my results also show
that the Einstein field equation is, in a natural sense, the unique field equation in the context of
a theory such as general relativity, and discuss how this fact relates to the non-localizability of
gravitational stress-energy.

The main theorem (7.1) underlying all the arguments is considerably stronger than the standard
result in the literature used to argue for the uniqueness of the Einstein field equation (the classic
theorem of Lovelock 1972, stated in footnote 35): it holds in all dimensions, not only in four; it does
not require an assumption about the differential order of the desired concomitant of the metric;
and it has a more natural physical interpretation. The theorem also has interesting consequences
for a proper understanding of the cosmological-constant term in the Einstein field equation, and for
higher-dimensional Lanczos-Lovelock theories of gravity, which I discuss at the end of the paper.

2 The Principle of Equivalence: A Bad Argument

The most popular heuristic argument used to attempt to show that gravitational energy either
does not exist at all or does exist but cannot be localized invokes the “principle of equivalence”.
Choquet-Bruhat (1983, p. 399), for example, puts the argument like this:

This ‘non local’ character of gravitational energy is in fact obvious from a formulation of
the equivalence principle which says that the gravitational field appears as non existent
to one observer in free fall. It is, mathematically, a consequence of the fact that the
pseudo-riemannian connexion which represents the gravitational field can always be
made to vanish along a given curve by a change of coordinates.

Trautman (1976, pp. 135-6) and Goldberg (1980, pp. 469-70) also made essentially the same argu-
2The first pseudo-tensorial entity proposed to represent gravitational stress-energy dates back to Einstein (1915),

the paper in which he first proposed the final form of the theory.
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ment.3 Indeed, the making of this argument seems to be something of a shared mannerism among
physicists who discuss gravitational energy in general relativity; it is difficult to find an article on
the topic in which it is not at least alluded to.4

The argument has a fundamental flaw. It assumes that, if there is such a thing as localized
gravitational energy or stress-energy, it can depend only on “first derivatives of the metric”—that
those first derivatives encode all information about the “gravitational field” relevant to stress-
energy—for it is only entities depending only on those first derivatives that one can make vanish
along curves. But that seems wrong on the face of it. If there is such a thing as a localized
gravitational energetic quantity, then surely it depends on the curvature of spacetime and not on
the affine connection (or, more precisely, it depends on the affine connection at least in so far as
it depends on the curvature), for any energy one can envision transferring from the gravitational
field to another type of system in a different form in general relativity (e.g., as heat or a spray of
fundamental particles) must at bottom be based on geodesic deviation,5 and so must be determined
by the value of the Riemann tensor at a point, not by the value of the affine connection at a point
or even along a curve. There is no solution to the Einstein field-equation that corresponds in any
natural way to the intuitive Newtonian idea of a constant non-zero gravitational field, i.e., one
without geodesic deviation; that, however, would be the only sort of field that one could envision
even being tempted to ascribe gravitational energy to in the absence of geodesic deviation, and
that attribution is problematic even in Newtonian theory. Indeed, a spacetime has no geodesic
deviation if and only if it is everywhere locally isometric to Minkowski spacetime, which we surely
want to say has vanishing gravitational energy if any spacetime does, if one can make such a
statement precise in the first place.6

An obvious criticism of my response to the standard line, related to a popular refinement of
the argument given for the non-existence or non-locality of gravitational energetic quantities, is
that it would make gravitational stress-energy depend on second-order partial derivatives of the
field potential (the metric, so comprehended by analogy with the potential in Newtonian theory),
whereas all other known forms of stress-energy depend only on terms quadratic in the first partial
derivatives of the field potential. To be more precise, the argument runs like this:

One can make precise the sense in which Newtonian gravitational theory is the “weak-
field” limit of general relativity (Malament 1986). In this limit, it is clear that the
metric field plays roughly the role in general relativity that the scalar potential φ

3Goldberg’s formulation of the argument makes explicit a feature at least implicitly common in the many instances
I have found in the literature, the conclusion that a local gravitational energy scalar density does not exist and not
that a gravitational stress-energy tensor does not exist. One cannot have a scalar energy density for a physical field
in general relativity, however, without an associated stress-energy tensor. Such a state of affairs would violate the
thermodynamic principle that all energy is equivalent in character, in the sense that any one form can always in
principle be tranformed into any other form, since all other known forms of physical field do have a stress-energy
tensor as the fundamental representation of their energetic content. I discuss this in more detail in §6, especially
footnote 22.

4Bondi (1962), Penrose (1966) and Geroch (1973) are notable exceptions. I take their discussions as models of
how one should discuss energetic phenomena in the presence of gravitational fields.

5Penrose (1966) and Ashtekar and Penrose (1990) rely on the same idea to very fruitful effect.
6One might be tempted by the stronger claim that Minkowski spacetime ought to be the unique spacetime with

vanishing gravitational energy. I do not think that can be right, however. If the existence of gravitational energy is
indeed intimately tied with the presence of geodesic deviation (as argued forcefully by Penrose 1966), then any flat
spacetime, such as that of Kasner (1921), also ought to have vanishing gravitational energy.
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does in Newtonian theory. In Newtonian theory, bracketing certain technical questions
about boundary conditions, there is a more or less well-defined energy density of the
gravitational field, proportional to (∇φ)2. One might expect, therefore, based on some
sort of continuity argument, or just on the strength of the analogy itself, that any local
representation of gravitational energy in general relativity ought to be a “quadratic
function of the first partials of the metric”.7 The stress-energy tensor of no other field,
moreover, is higher than first-order in the partials of the field potential, so surely gravity
cannot be different. No invariant quantity at a point can be constructed using only the
first partials of the metric, however, so there can be no scalar or tensorial representation
of gravitational energy in general relativity.

(No researcher I know makes the argument exactly in this form; it is just the clearest, most concise
version I can come up with myself.) As Pauli (1921, p. 178) forcefully argued, however, there
can be no physical argument against the possibility that gravitational energy depends on second
derivatives of the metric; the argument above certainly provides none. Just because the energy of
all other known fields have the same form in no way implies that a localized gravitational energy in
general relativity, if there is such a thing, ought to have that form as well. Gravity is too different
a field from others for such a bare assertion to carry any weight. As I explain at the end of §6,
moreover, a proper understanding of tensorial concomitants reveals that an expression linear in
second partial derivatives is in the event equivalent in the relevant sense to one quadratic in first
order partials. This illustrates how misleading the analogy with Newtonian gravity can be.

3 Geometric Fiber Bundles, Concomitants, and Geometric

Objects

The introduction of a coordinate system to geometry is an act of violence.

Hermann Weyl
Philosophy of Mathematics and Natural Science

I have argued that, if there is an object that deserves to be thought of as the representation of
gravitational stress-energy in general relativity, then it ought to depend on the Riemann curvature
tensor. Since there is no obvious mathematical sense in which a general mathematical structure
can “depend” on a tensor, the first task is to say what exactly this could mean. I will call a
mathematical structure on a manifold that depends in the appropriate fashion on another structure
on the manifold, or set of others, a concomitant of it (or them).

The reason I am inquiring into the possibility of a concomitant in the first place, when the
question is the possible existence of a representation of gravitational stress-energy tensor, is a
simple one. What is wanted is an expression for gravitational energy that does not depend for
its formulation on the particulars of the spacetime, just as the expression for the kinetic energy
of a particle in classical physics does not depend on the internal constitution of the particle or on

7In this light, it is interesting to note that gravitational energy pseudo-tensors do tend to be quadratic in the
first-order partials of the metric (Einstein 1915; Møller 1972; Landau and Lifschitz 1994).

Erik Curiel 5 August 15, 2018



Geometric Objects, Gravitational Energy, and the EFE

the particular interactions it may have with its environment, and just as the stress-energy tensor
for a Maxwell field has the same form as a function of the Faraday tensor in every spacetime
irrespective of its particulars.8 If there is a well-formed expression for gravitational stress-energy,
then one should be able in principle to calculate it whenever there are gravitational phenomena,
which is to say, in any spacetime whatsoever—it should be a function of some set of geometric
objects associated with the curvature in that spacetime, in some appropriately generalized sense
of ‘function’. This idea is what a concomitant is supposed to capture.

The term ‘concomitant’ and the general idea of the thing is due to Schouten (1954, p. 15).9

The definition Schouten proposed is expressed in terms of coordinates: depending on what sort of
concomitant one deals with, the components of the concomitant in a given coordinate system must
satisfy various conditions of covariance under certain classes of coordinate transformations, when
those transformations are also applied to the components of the objects the concomitant is defined
as a “function” of. His work was picked up and generalized by several other mathematicians, such
as Aczél (1960), who extended Schouten’s work to treat more generalized classes of higher-order
differential concomitants.10 The definitions provided by this early work is clear, straightforward
and easy to grasp in the abstract, but becomes difficult to work with in particular cases of interest—
Schouten’s covariance conditions translate into a set of partial differential equations in a particular
coordinate system, which even in seemingly straightforward cases turn out to be forbiddingly
complicated. This makes it not only unwieldy in practice and inelegant, but, more important,
it makes it difficult to discern what of intrinsic physical significance is encoded in the relation of
being a concomitant in particular cases of interest. It is almost impossible to determine anything
of the general properties of a particular kind of concomitant of a particular (set of) object(s) by
looking at those equations.11 I suspect that it is because in particular cases the conditions are so
complex, difficult and opaque that use is very rarely made of concomitants in arguments about
spacetime structure in general relativity. This is a shame, for the idea is, I think, potentially rich,
and so calls out for an invariant formulation.12

8This property of (stress-)energy for other types of physical systems already stands in contradistinction to the
properties of all known rigorous expressions for global gravitational energy in general relativity, e.g., the ADM
mass and the Bondi energy, which can be defined only in asymptotically flat spacetimes (Wald 1984), and all such
quasi-local expressions, which can be defined only in stationary or axisymmetric ones (Szabados 2009).

9The specific idea of proving the uniqueness of a tensor that “depends” on another tensor, and satisfies a few
collateral conditions, dates back at least to Weyl (1921, pp. 315–318) and Cartan (1922). In fact, Weyl proved that
the only two-index symmetric covariant tensors one can construct at a point in any spacetime, using only algebraic
combinations of the components of the metric and its first two partial derivatives in a coordinate system at that
point, that are at most linear in the second derivatives of the metric, are linear combinations of the Ricci curvature
tensor, the scalar curvature times the metric and the metric itself. In particular, the only such divergence-free
tensors one can construct at a point are linear combinations of the Einstein tensor and the metric with constant
coefficients.

10I thank an anonymous referee for drawing my attention to the work of Aczél and others who developed Schouten’s
work.

11For a good example of just how hairy those conditions can be, see du Plessis (1969, p. 350) for a complete set
written out explicitly in the case of two covariant-index tensorial second-order differential concomitants of a Lorentz
metric.

12There is a tradition, initiated in the 1970s by Nijenhuis (1972), that attempts a more invariant formulation of a
notion similar to Schouten’s original one, introducing the idea of “natural bundles” as a setting for the definition and
study of structures closely related to what I call here geometrical objects. That work was elaborated and extended
by, e.g., Epstein (1975) and Epstein and Thurston (1979), inter alia. That work is similar to the constructions and
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I use the machinery of fiber bundles to characterize the idea of a concomitant in invariant terms.
I give a (brief) explicit formulation of the machinery, because the one I rely on is non-standard.
(We assume from hereon that all relevant structures, mappings, etc., are smooth; nothing is lost
by the assumption and it simplifies exposition—all germane constructions and proofs can easily be
generalized to the case of topological spaces and continuous structures.)

Definition 3.1 A fiber bundle B is an ordered triplet, (B,M, π), such that:

FB1. B is a differential manifold

FB2. M is a differential manifold

FB3. π : B →M is smooth and onto

FB4. For every q, p ∈M, π−1(q) is diffeomorphic to π−1(p) (as submanifolds of B)

FB5. B has a locally trivial product structure, in the sense that for each q ∈ M there is a
neighborhood U 3 q and a diffeomorphism ζ : π−1[U ] → U × π−1(q) such that the action of
π commutes with the action of ζ followed by projection on the first factor.

B is the bundle space, M the base space, π the projection and π−1(q) the fiber over q. By a
convenient, conventional abuse of terminology, I will sometimes call B itself ‘the fiber bundle’ (or
‘the bundle’ for short). A cross-section κ is a smooth map fromM into B such that π(κ(q)) = q,
for all q in the mapping’s domain.

This definition of a fiber bundle is non-standard in so far as no group action on the fibers is
fixed from the start; this implies that no correlation between diffeomorphisms of the base space and
diffeomorphisms of the bundle space is fixed.13 One must fix that explicitly. On the view I advocate,
the geometric character of the objects represented by the bundle arises arises not from the group
action directly, but only after the explicit fixation of a correlation between diffeomorphisms on the
base space with those on the bundle space—only after, that is, one fixes how a diffeomorphism
on the base space induces one on the bundle. For example, depending on how one decides that a
diffeomorphism on the base space ought to induce a diffeomorphism on the bundle over it whose
fibers consist of 1-dimensional vector spaces, one will ascribe to the objects of the bundle the

arguments I give here. I did not know of it when I developed my own work. (Again, I thank the anonymous referee
for drawing my attention to it.) There are two novelties I can claim for my definitions and constructions (besides
the fact that it is now all presented in a purely invariant way, with no use of coordinates). First is my definition
of fiber bundles without reference to an associated group of transformations, and so the consequent development
of what I call geometric bundles based on the idea of inductions. Second, the idea of an induction allows for a
simple generalization of my definition for concomitants to more general structures than just tensorial-like objects,
e.g., projective structures as characterized by an appropriate family of curves; I do not develop that generalization
here as it is not needed. Also, to the best of my knowledge, the main result of §5, theorem 5.2, is new, and of some
interest in its own right, besides the use I put it to in proving theorem 7.1. (There is some contemporary work being
done on so-called natural transformations—e.g., Kolář, Michor, and Slovák 1993 and Fatibene and Francaviglia
2003, dating back to Palais and Terng 1977—that bears some similarity to all these ideas, but I do not discuss it,
first because it is formulated in category theory and so is fundamentally algebraic in nature, whereas I aim for a
formulation with clear and intuitive geometric content, and second because my idea of an induction differentiates
my work in important ways from it.)

13See, e.g., Steenrod (1951) for the traditional definition and the way that a fixed group action on the fibers
induces a correlation between diffeomorphisms on the bundle space and those on the base space.
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character either of ordinary scalars or of n-forms (where n is the dimension of the base space).
The idea is that the diffeomorphisms induced on the bundle space then implicitly define the group
action on the fibers appropriate for the required sort of object.14

I call an appropriate mapping of diffeomorphisms on the base space to those on the bundle space
an induction. (I give a precise definition in a moment.) In this scheme, therefore, the induction
comes first conceptually, and the relation between diffeomorphisms on the base space and those
they induce on the bundle serves to fix the fibers as spaces of geometric objects, viz., those whose
transformative properties are tied directly and intimately to those of the ambient base space.15

This way of thinking of fiber bundles is perhaps not well suited to the traditional mathematical
task of classifying bundles, but it turns out to be just the thing on which to base a perspicuous and
useful definition of concomitant. Although a diffeomorphism on a base space will naturally induce
a unique one on certain types of fiber bundles over it, such as tensor bundles, in general it will
not. There is not known, for instance, any natural way to single out a map of diffeomorphisms of
the base space into those of a bundle over it whose fibers consist of spinorial objects.16 Inductions
neatly handle such problematic cases.

I turn now to making this intuitive discussion more precise. A diffeomorphism φ] of a bundle
space B is consistent with φ, a diffeomorphism of the base spaceM, if, for all u ∈ B,

π(φ](u)) = φ(π(u))

For a general bundle, there will be scads of diffeomorphisms consistent with a given diffeomorphism
on the base space. A way is needed to fix a unique φ] consistent with a φ so that a few obvious
conditions are met. For example, the identity diffeomorphism onM ought to pick out the identity
diffeomorphism on B. More generally, if φ is a diffeomorphism on M that is the identity on an
open set O ⊂M and differs from the identity outside O, it ought to be the case that the mapping
picks out a φ] that is the identity on π−1[O]. If this holds, we say that that φ] is strongly consistent
with φ.

Let DM and DB be, respectively, the groups of diffeomorphisms onM and B. Define the set

D]
B = {φ] ∈ DB : ∃φ ∈ DM such that φ] is strongly consistent with φ}

It is simple to show that D]
B forms a subgroup of DB. This suggests

Definition 3.2 An induction is an injective homomorphism ι : DM → D]
B.

φ will be said to induce φ] (under ι) if ι(φ) = φ].17

Definition 3.3 A geometric fiber bundle is an ordered quadruplet (B,M, π, ι) where

GFB1. (B,M, π) satisfies FB1-FB5

GFB2. ι is an induction
14I will not work out here the details of how this comes about, as they are not needed for the arguments of the

paper.
15See Anderson (1962, 1967), Friedman (1983) and Belot (2011) for other approaches to defining geometric or (as

they refer to them) absolute objects.
16See, e.g., Penrose and Rindler (1984).
17In a more thorough treatment, one would characterize the way that the induction fixes a group action on the

fibers, but we do not need to go into that for our purposes.
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Geometric fiber bundles are the appropriate spaces to serve as the domains and ranges of concomi-
tant mappings.

Most of the fiber bundles one works with in physics are geometric fiber bundles. A tensor
bundle B, for example, is a fiber bundle over a manifoldM each of whose fibers is diffeomorphic to
the vector space of tensors of a particular index structure over any point of the manifold; a basis for
an atlas is provided by the charts on B naturally induced from those onM by the representation
of tensors on M as collections of components in M’s coordinate systems. There is a natural
induction in this case fixed by the pull-back action of a diffeomorphism φ of tensors onM. Spinor
bundles provide interesting examples of physically important bundles that have no natural, unique
inductions, though there are classes of them.

We are finally in a position to define concomitants. Let (B1,M, π1, ι1) and (B2,M, π2, ι2)

be two geometric bundles with the same base space.18

Definition 3.4 A mapping χ : B1 → B2 is a concomitant if

χ(ι1(φ)(u1)) = ι2(φ)(χ(u1))

for all u1 ∈ B1 and all φ ∈ DM.

In intuitive terms, a concomitant is a mapping between bundles that commutes with the action
of the induced diffeomorphisms that lend the objects of the bundles their respective geometrical
characters, i.e., the structure in virtue of which they are, in a precise sense, geometric objects. It
is easy to see that χ must be fiber-preserving, in the sense that it maps fibers of B1 to fibers of
B2. This captures the idea that the dependence of the one type of object on the other is strictly
local; the respecting of the actions of diffeomorphisms captures the idea that the mapping encodes
an invariant relation. By another convenient abuse of terminology, I will often refer to the range
of the concomitant mapping itself as ‘the concomitant’ of the domain.

4 Jet Bundles, Higher-Order Concomitants, and Geometric

Objects

Just as with ordinary functions from one Euclidean space to another, it seems plausible that the
dependence encoded in a concomitant from one geometric bundle to another may take into account
not only the value of the first geometrical structure at a point of the base space, but also “how
that value is changing” in a neighborhood of that point, something like a generalized derivative of
a geometrical structure on a manifold. The following construction is meant to capture in a precise
sense the idea of a generalized derivative in such a way so as to make it easy to generalize the idea
of a concomitant to account for it.

Fix a geometric fibre bundle (B,M, π, ι), and the space of its sections Γ[B]. Two sections
γ, η : M → B osculate to first-order at p ∈ M if Tγ and Tη (the differentials of the mappings)
agree in their action on TpM.19 (They osculate to zeroth-order at p if they map p to the same

18One can generalize the definition of concomitants to cover the case of bundles over different base spaces, but we
do not need this here.

19See, e.g., Hirsch (1976, p. 18) for the definition of the differential of a mapping.
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point in the domain.) This defines an equivalence relation on Γ[B]. A 1-jet with source p and
target γ(p), written ‘j1

p [γ]’, is such an equivalence class. It is not difficult to show that the set of
all 1-jets,

J1B :=
⋃

p∈M,γ∈Γ[B]

j1
p [γ]

naturally inherits the structure of a differentiable manifold (Hirsch 1976). One can naturally fibre
J1B overM. The source projection σ1 : J1B →M, defined by

σ1(j1
p [γ]) = p

gives J1B the structure of a bundle space over the base space M, and in this case we write the
bundle (J1B,M, σ1). A section γ of B naturally gives rise to a section j1[γ] of J1B, the first-order
prolongation of that section:

j1[γ] :M→
⋃
p∈M

j1
p [γ]

such that σ1(j1[γ](p)) = p. (We assume for the sake of simplicity that global cross-sections exist;
the modifications required to treat local cross-sections are trivial, albeit tedious.)

The points of J1B may be thought of as coordinate-free representations of first-order Taylor
expansions of sections of B. To see this, consider the example of the trivial bundle (B, R2, π)

where B := R2 × R and π is projection onto the first factor. Fix global coordinates (x1, x2, v1)

on B, so that the induced (global) coordinates on J1B are (x1, x2, v1, v1
1 , v

1
2). Then for any 1-jet

j1
q [γ], define the inhomogenous linear function γ̂ : R2 → R by

γ̂(p) = v1(γ(p)) + v1
1(j1

q [γ])(p1 − q1) + v1
2(j1

q [γ])(p2 − q2)

where γ ∈ j1
q [γ], and p, q ∈ R2 with respective components (p1, p2) and (q1, q2). Clearly γ̂ defines

a cross-section of J1B first-order osculant to γ at p and so is a member of j1
q [γ]; indeed, it is the

unique globally defined, linear inhomogeneous map with this property.
A 2-jet is defined similarly, by iteration, as an equivalence class of sections under the relation of

having the same first and second differentials (as mappings) at a point. More precisely, γ, η ∈ Γ[B]

osculate to second order at p ∈M if they are in the same 1-jet and if their second-order differentials
equal each other, T (Tγ) = T (Tη). Again, this defines an equivalence relation on Γ[B]. A 2-jet
with source p and target γ(p), written ‘j1

p [γ]’, is such an equivalence class. The set of all 2-jets,

J2B :=
⋃

p∈M,γ∈Γ[B]

j2
p [γ]

also inherits the structure of a differentiable manifold. J2B is naturally fibered over M by the
source projection σ2 : J2B →M, defined by

σ2(j2
p [γ]) = p

giving J2B the structure of a bundle space over the base spaceM, (J2B,M, σ2). Again, a section
γ of B gives rise to a section j2[γ] of J2B, the second-order prolongation of that section:

j2[γ] :M→
⋃
p∈M

j2
p [γ]
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such that σ1(j2[γ](p)) = p. Jet bundles of all higher orders are defined in the same way.
There is a natural projection from J2B to J1B, the truncation θ2,1, characterized by “dropping

the second-order terms in the Taylor expansion”. More precisely, for j2[γ], the truncation is the
unique j1[η] such that Tj1[η] = TTγ, which guarantees that j1[η] = j1[γ].20 In general, one has
the natural truncation θn,m : JnB → JmB for all 0 < m < n.

For our purposes, the most important fact about these spaces is that the jet bundles of a
geometric bundle are themselves naturally geometric bundles. Fix a geometric bundle (B,M, π, ι)

and a diffeomorphism φ on M. Then ι[φ] not only defines an action on points of B, but, as a
diffeomorphism itself on B, it naturally defines an action on the cross-sections of B and thus on the
1-jets. by the natural pull-back of differentials of mappings. It is easy to show that the mapping ι1

so specified fromDM to D]
J1B is an injective homomorphism and thus itself an induction; therefore,

(J1B,M, σ1, ι1) is a geometric fiber bundle. One defines inductions for higher-order jet bundles
in the same way.

We can now generalize our definition of concomitants. Let (B1,M, π1, ι) and (B2,M, π2, )

be two geometric fiber bundles over the manifoldM.

Definition 4.1 An nth-order concomitant (n a strictly positive integer) from B1 to B2 is a smooth
mapping χ : JnB1 → B2 such that

1. (∀u ∈ JnB1)(∀φ ∈ AM) (φ)(χ(u)) = χ(ιn(φ)(u))

2. there is no (n− 1)th-order concomitant χ′ : Jn−1B1 → B2 satisfying

(∀u ∈ JnB1) χ(u) = χ′(θn,n−1(u))

A zeroth-order concomitant (or just ‘concomitant’ for short, when no confusion will arise), is
defined by 3.4.

An important property of concomitants is that, in a limited sense, they are transitive.

Proposition 4.2 If χ1 : JnB1 → B2 is an nth-order concomitant and χ2 : B2 → B3 is a smooth
mapping, where B1, B2 and B3 are geometric bundles over the same base space, then χ2 ◦ χ1 is an
nth-order concomitant if and only if χ2 is a zeroth-order concomitant.

This follows directly from the fact that inductions are injective homomorphisms and concomitants
respect the fibers.

It will be of physical interest in §6 to consider the way that concomitants interact with multi-
plication by a scalar field. (Since we consider in this paper only concomitants of linear and affine
objects, multiplication of the object by a scalar field is always defined.) Towards that end, let us
say that a concomitant is homogeneous of weight w if for any constant scalar field ξ

χ(ι1(φ)(ξu1)) = ξwι2(φ)(χ(u1))

20One might worry that the truncation is not unique, because two 1-jets may “differ only by a constant” and
so still give the same 2-jet, as may happen with ordinary derivatives in calculus. Because there is no privileged
derivative operator on J1B, however, there is no well defined notion of two 1-jets “differing by a constant”.
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5 Concomitants of the Metric

As a specific example that will be of use in what follows, consider the geometric fiber bundle
(Bg,M, πg, ιg), with M a 4-dimensional, Hausdorff, paracompact, connected, smooth manifold
(i.e., a candidate spacetime manifold), the fibers of Bg diffeomorphic to the space of Lorentz
metrics at each point ofM, all of the same signature (+, −, −, −), and ιg the induction defined
by the natural pull-back. Since the set of Lorentz metrics in the tangent plane over a point of a
4-dimensional manifold, all of the same signature, is a 10-dimensional manifold,21 the bundle space
Bg is a 14-dimensional manifold. A cross-section of this bundle defines a Lorentz metric field on
the manifold.

The following proposition precisely captures the statement one sometimes hears that there is
no scalar or tensorial quantity one can construct depending only on the metric and its first-order
partial derivatives at a point of a manifold.

Proposition 5.1 There is no first-order concomitant from Bg to any tensor bundle overM.

To prove this, it suffices to remark that, given any spacetime (M, gab) and any two points p, p′ ∈M,
there are open neighborhoods U of p and U ′ of p′ and a diffeomorphism φ : M→M, such that
φ(p) = p′, φ](g′ab) = gab at p, and φ](∇agbc) = ∇agbc at p, where ∇a is any derivative operator
other than the Levi-Civita one associated with gab, and φ] is the map naturally induced by the
pull-back action of φ.

This is not to say, however, that no information of interest is contained in J1Bg. Indeed, two
metrics gab and hab are first-order osculant at a point if and only if they have the same associated
covariant derivative operator at that point. To see this, first note that, if they osculate to first
order at that point, then ∇̂a(gbc−hbc) = 0 at that point for all derivative operators. Thus, for the
derivative operator ∇a associated with, say, gab, ∇a(gbc−hbc) = 0, but ∇agbc = 0, so ∇ahbc = 0 at
that point as well. Similarly, if the two metrics are equal and share the same associated derivative
operator ∇a at a point, then ∇̂a(gbc−hbc) = 0 at that point for all derivative operators, since their
difference will be identically annihilated by ∇a, and gab = hab at the point by assumption. Thus
they are first-order osculant at that point and so in the same 1-jet. This proves that all and only
geometrically relevant information contained in the 1-jets of Lorentz metrics onM is encoded in
the fiber bundle over spacetime the values of the fibers of which are ordered pairs consisting of a
metric and the metric’s associated derivative operator at a spacetime point.

The second jet bundle over Bg has a similarly interesting structure. Clearly, if two metrics are in
the same 2-jet, then they have the same Riemann tensor at the point associated with the 2-jet, since
the result of doubly applying an arbitrary derivative operator (not the Levi-Civita one associated
with the metric) to it at the point yields the same tensor. Assume now that two metrics are in
the same 1-jet and have the same Riemann tensor at the associated spacetime point. If it follows
that they are in the same 2-jet, then essentially all and only geometrically relevant information
contained in the 2-jets of Lorentz metrics onM is encoded in the fiber bundle over spacetime the
points of the fibers of which are ordered triplets consisting of a metric, the metric’s associated
derivative operator and the metric’s Riemann tensor at a spacetime point. To demonstrate this,

21In fact, it is diffeomorphic to a connected, convex, open subset—an open cone with vertex at the origin—in
R10, and has the further structure of a Fréchet manifold (Curiel 2017).
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it suffices to show that if two Levi-Civita connections agree on their respective Riemann tensors
at a point, then the two associated derivative operators are in the same 1-jet of the bundle whose
base-space isM and whose fibers consist of the affine spaces of derivative operators at the points
of M (because they will then agree on the result of application of themselves to their difference
tensor, and thus will be in the 2-jet of the same metric at that point).

Assume that, at a point p of spacetime, gab = g̃ab, ∇a = ∇̃a (the respective derivative op-
erators), and Rabcd = R̃abcd (the respective Riemann tensors). Let Cabc be the symmetric
difference-tensor between ∇a and ∇̃a, which is itself 0 at p by assumption. Then by definition
∇[b∇c]ξa = Rabcnξ

n for any vector ξa, and so at p

Rcabnξ
n = ∇[a∇̃b]ξc

= ∇a(∇bξc + Ccbnξ
n)− ∇̃b∇aξc

= ∇a∇bξc +∇a(Ccbnξ
n)−∇b∇aξc − Ccbn∇aξn + Cnba∇nξc

but ∇b∇cξa −∇c∇bξa = 2Rabcnξ
n and Cabc = 0, so expanding the only remaining term gives

ξn∇aCcbn = 0

for arbitrary ξa and thus ∇aCbcd = 0 at p; by the analogous computation, ∇̃aCbcd = 0 as well. It
follows immediately that ∇a and ∇̃a are in the same 1-jet over p of the affine bundle of derivative
operators overM. We have proven

Theorem 5.2 J1Bg is naturally diffeomorphic to the geometric fiber bundle overM whose fibers
consist of pairs (gab, ∇a), where gab is the value of a Lorentz metric field at a point of M, and
∇a is the value of the covariant derivative operator associated with gab at that point, the induction
being defined by the natural pull-back. J2Bg is naturally diffeomorphic to the geometric fiber bundle
overM whose fibers consist of triplets (gab, ∇a, Rabcd), where gab is the value of a Lorentz metric
field at a point of M, and ∇a and Rabc

d are respectively the covariant derivative operator and
the Riemann tensor associated with gab at that point, the induction being defined by the natural
pull-back.

It follows immediately that there is a first-order concomitant from Bg to the geometric bundle
(B∇,M, π∇, ι∇) of derivative operators, viz., the mapping that takes each Lorentz metric to its
associated derivative operator. (This does not contradict proposition 5.1, as the bundle of derivative
operators is an affine not a tensor bundle.) Likewise, there is a second-order concomitant from
Bg to the geometric bundle (BRiem,M, πRiem, ιRiem) of tensors with the same index structure
and symmetries as the Riemann tensor, viz., the mapping that takes each Lorentz metric to its
associated Riemann tensor. (This is the precise sense in which the Riemann tensor associated with
a given Lorentz metric is “a function of the metric and its partial derivatives up to second order”.)
It is easy to see, moreover, that both concomitants are homogeneous of degree 0.

It follows from theorem 5.2 and proposition 4.2 that a concomitant of the metric will be second
order if and only if it is a zeroth-order concomitant of the Riemann tensor:

Proposition 5.3 A concomitant of the metric is second-order if and only if it can be expressed
as a sum of terms consisting of constants multiplied by the Riemann tensor, the Ricci tensor, the
Ricci scalar curvature, and contractions and products of these with the metric itself.
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6 Conditions on a Possible Gravitational Stress-Energy Ten-

sor

We are almost in a position to state and prove the main result of the paper, the nonexistence of a
gravitational stress-energy tensor. In order to formulate and prove a result having that proposition
as its natural interpretation, one must first lay down some natural conditions on the proposed
object, to show that no such object exists satisfying the conditions. In general relativity, the
stress-energy tensor is the fundamental invariant quantity encoding all known localized energetic
properties of all known types of matter field, in the sense that each known type of matter field
has a canonical, unique form of stress-energy tensor associated with it, and all other invariant
energetic quantities associated with the matter field are derivable from that object. The canonical
form of a stress-energy tensor is a two-index, symmetric, covariantly divergence-free tensor.22 Not
just any such tensor will do, however, for that gives only the baldest of formal characterizations of
it. From a physical point of view, at a minimum the object must have the physical dimension of
stress-energy for it to count as a stress-energy tensor. That it have the dimension of stress-energy is
what allows one to add two of them together in a physically meaningful way to derive the physical
sum of total stress-energy from two different sources. In classical mechanics, for instance, both
velocity and spatial position have the form of a three-dimensional vector, and so their formal sum
is well defined, but it makes no physical sense to add a velocity to a position because the one has
dimension length/time and the other the dimension length. (I will give a precise characterization
of “physical dimension” below.)

An essential, defining characteristic of energy in classical physics is its obeying some formulation
22Thus, the Bel-Robinson tensor is ruled out from the start, as it is a 4-index tensor. (For characterization and

discussion of the Bel-Robinson tensor and its properties, including the way it gives rise to energy-like quantities, see
Senovilla 2000, 2002, Garecki 2001 and García-Parrado Gómez-Lobo 2008.) There are indeed several other “energetic
quantities” that have in general relativity invariant representation in some form other than a stress-energy tensor,
e.g., the ADM mass and various so-called quasi-local quantities (Szabados 2009). Since none of those are localized
quantities, I do not consider them to be relevant to the purposes of this paper. (One might also reasonably complain,
so far as my purposes go, that all of those quantities do not differentiate between gravitational and non-gravitational
forms of energy, but rather represent only total, aggregate energy.) Starting with Komar (1959) and Finkelstein
and Misner (1959), there is another tradition in the context of general relativity of searching for quantities that one
might hope to be able to interpret as energetic quantities, possibly associated in a physically relevant way with the
“gravitational field”, viz., the search for scalar and 1-index objects satisfying various forms of “conservation laws”.
(See as well, e.g., Trautman 1962 and Goldberg 1980.) As interesting as that work is from a mathematical point of
view, and as potentially interesting as it may be from a physical point of view, I do not consider here any of those
quantities as viable candidates for representations of a localized gravitational energetic quantity, for several reasons.
If there are localized energy-like quantities associated with “the gravitational field” in general relativity that do not
have the structure of (0, 2)-index tensor, quantities which are found from investigation of various possible forms
of conservation laws, then it seems to me there are two possibilities: there is in fact a gravitational stress-energy
tensor, and one can derive those quantities from it, even though that is not how they were discovered; or those
quantities are in fact representative of localized gravitational stress-energy, but the claim that they are energetic
in some important physical sense has to be articulated and justified, with a particular eye to explaining how such
an energy-like quantity interacts with (or not) and is fungible with (or not) the stress-energy content of ordinary
matter. I do not know how to do it for any of the objects associated with the search for single-index conservation
laws. Indeed, it is striking that none of the researchers who have investigated such objects discuss in any detail the
possible physical interpretation of the mathematical structures they were investigating, and in particular how such
quantities may relate to what we understand about ordinary stress-energy.

Erik Curiel 14 August 15, 2018



Geometric Objects, Gravitational Energy, and the EFE

of the First Law of Thermodynamics. The formulation of the First Law I rely on is somewhat
unorthodox: that all forms of stress-energy are in principle ultimately fungible—any form of energy
can in principle be transformed into any other form23—not necessarily that there is some absolute
measure of the total energy contained in a system or set of systems that is constant over time.
In more precise terms, this means that all forms of energy must be represented by mathematical
structures that allow one to define appropriate operations of addition and subtraction among them,
which the canonical form of the stress-energy does allow for.24 I prefer this formulation of the First
Law in general relativity because there will not be in a generic spacetime any well-defined global
energetic quantity that one can try to formulate a conservation principle for. In so far as one wants
to hold on to some principle like the classical First Law in a relativistic context, therefore, I see no
other way of doing it besides formulating it in terms of fungibility. (If one likes, one can take the
fungibility condition as a necessary criterion for any more traditional conservation law.) This idea
is what the demand that all stress-energy tensors, no matter the source, have the same physical
dimension is intended to capture.25

To sum up, the stress-energy tensor encodes in general relativity all there is to know of pon-
derable (i.e., non-gravitational) energetic phenomena at a spacetime point:

1. it has 10 components representing with respect to a fixed pseudo-orthonormal frame, say,
the 6 components of the classical stress tensor, the 3 components of linear momentum and
the scalar energy density of the ponderable field at that point;

2. that it has two covariant indices represents the fact that it defines a linear mapping from
timelike vectors at the point (“worldline of an observer”) to covectors at that point (“4-
momentum covector of the field as measured by that observer”), and so defines a bi-linear
mapping from pairs of timelike vectors to a scalar density at that point (“scalar energy density
of the field as measured by that observer”), because energetic phenomena, crudely speaking,
are marked by the fact that they are quadratic in velocity and momental phenomena linear
in velocity;

3. that it is symmetric represents, “in the limit of the infinitesimal”, the classical principle of
the conservation of angular momentum; it also encodes part of the relativistic equivalence of
momentum density and the flux of scalar energy density;

4. that it is covariantly divergence-free represents the fact that, “in the limit of the infinitesimal”,
the classical principles of energy and linear momentum conservation are obeyed; it also

23Maxwell (1877, ch. v, §97) makes this point especially clearly, including its relation to the principle of energy
conservation. See also Maxwell (1888, chs. i, iii, iv, viii, xii).

24This kind of linear structure is a requirement even if one takes a more traditional view of the First Law as
making a statement about conservation of a magnitude measuring a physical quantity.

25For what it’s worth, this conception has strong historical warrant—Einstein (implicitly) used a very similar idea
in one of his first papers laying out and justifying the general theory (Einstein 1916, p. 149):

It must be admitted that this introduction of the energy-tensor of matter is not justified by the
relativity postulate alone. For this reason we have here deduced it from the requirement that the
energy of the gravitational field shall act gravitatively in the same way as any other kind of energy.

Møller (1962) also stresses the fact that the formulation of integral conservation laws in general relativity based on
pseudo-tensorial quantities depends crucially on the assumption that gravitational energy, such as it is, shares as
many properties as possible with the energy of ponderable (i.e., non-gravitational) matter.
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encodes part of the relativistic equivalence of momentum-density and scalar energy density
flux;

5. the localization of ponderable stress-energy and its invariance as a physical quantity are
embodied in the fact that the object representing it is a tensor, a multi-linear map acting
only on the tangent and cotangent planes of the point it is associated with;26

6. finally, the thermodynamic fungibility of energetic phenomena is represented by the fact that
the set of stress-energy tensors forms a vector space—the sum and difference of any two is
itself a possible stress-energy tensor, and there is a distinguished zero element—all elements
of which have the same physical dimension.

Consequently, the appropriate mathematical representation of localized gravitational stress-energy,
if there is such a thing, is a two covariant-index, symmetric, covariantly divergence-free tensor
having the physical dimension of stress-energy.27 (That we demand it be covariantly divergence-
free is a delicate matter requiring further discussion, which I give at the end of this section.)

Now, in order to make precise the idea of having the physical dimension of stress-energy, recall
that in general relativity all the fundamental units one uses to define stress-energy, namely time,
length and mass, can themselves be defined using only the unit of time (or equivalently, using
only units of length or mass); these are so-called geometrized units (Misner, Thorne, and Wheeler
1973, p. 36).28 For time, this is trivially true: stipulate, say, that a time-unit is the time it takes
a certain kind of atom to vibrate a certain number of times under certain conditions. A unit of
length is then defined as that in which light travels in vacuo one time-unit. A unit of mass is
defined as that of which two, placed one length-unit apart, will induce in each other by dint of
their mutual gravitation alone an acceleration towards each other of one length-unit per time-unit
per time-unit.29 These definitions of the units of mass and length guarantee that they scale in

26More generally, the notion of localized quantity I use here means to be represented by a tensor-like object
(scalar, tensor, spinor, affine, conformal, projective, . . . ), one that has values attributable to individual spacetime
points and that in some sense or other has properties or actions that ramify into the tangent plane over that point
in a way that can be made sense of by restricting attention to the tangent plane.

27Pitts (2010) has proposed an infinite number of ways to define quantities that he calls representations of localized
gravitational energies (all inequivalent). I exclude Pitts’s proposal because I cannot see any physical content to his
constructed quantities. How, e.g., could one use one of them to compute the energy a gravitational-wave sensor
would absorb from ambient gravitational radiation? Precisely because his quantities depend on the frame one fixes
to make the computation, there can be no invariant, physically well defined answer to such a question. If I stick a
rod of piezoelectric material in my cup of coffee and use it to warm the coffee from the heat it generates by being
deformed by a passing gravitational wave, then surely the rise in temperature of the coffee does not depend on which
frame I use to perform the calculation. How should the piezoelectric “know” which of Pitts’s “localized energies” it
should draw on? Since there seems to be no way to answer such basic physical questions in an unambiguous way, I
do not see that what he has done is to characterize a physical quantity.

28Aldersley (1977) contains an interesting discussion of geometrized units, and proves a result superficially similar
to theorem 7.1, albeit in a very different way than I give here. I have trouble understanding many of his arguments
and conclusions, however, as he seems to imply that the physical dimensions of the components of a quantity depend
on the physical dimensions of the coordinates in a coordinate system in which the quantity is represented. This
makes no sense to me. A quantity simply has a physical dimension, and how one represents it in a coordinate
system, if one does at all, is physically irrelevant to that fact.

29This definition may appear circular, in that it would seem to require a unit of mass in the first place before one
could say that bodies were of the same mass. I think the circularity can be mitigated by using two bodies for which
there are strong prior grounds for positing that they are of equal mass, e.g., two fundamental particles of the same
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precisely the same manner as the time-unit when new units of time are chosen by multiplying the
time-unit by some fixed real number λ−

1
2 . (The reason for the inverse square-root will become

clear in a moment). Thus, a duration of t time-units would become tλ−
1
2 of the new units; an

interval of d units of length would likewise become dλ−
1
2 in the new units, and m units of mass

would become mλ−
1
2 of the new units. This justifies treating all three of these units as “the same”,

and so expressing acceleration, say, in inverse time-units. To multiply the length of all timelike
vectors representing an interval of time by λ−

1
2 , however, is equivalent to multiplying the metric

by λ (and so the inverse metric by λ−1), and indeed such a multiplication is the standard way
one represents a change of units in general relativity. This makes physical sense as the way to
capture the idea of physical dimension: all physical units, the ones composing the dimension of
any physical quantity, are geometrized in general relativity in the most natural formulation, and
so depend only on the scale of the metric itself. By Weyl’s theorem, however, a metric times a
constant represents exactly the same physical phenomena as the original metric (Malament 2012,
ch. 2, §1).30

Now, the proper dimension of a stress-energy tensor can be determined by the demand that the
Einstein field-equation, Gab = γTab, where γ is Newton’s gravitational constant, remain satisfied

when one rescales the metric by a constant factor. γ has dimension
(length)3

(mass) (time)2
, and so in

geometrized units does not change under a constant rescaling of the metric. Thus Tab ought to
transform exactly as Gab under a constant rescaling of the metric. A simple calculation shows that
Gab (= Rab − 1

2Rgab) remains unchanged under such a rescaling. Thus, a necessary condition for
a tensor to represent stress-energy is that it remain unchanged under a constant rescaling of the
metric. It follows that the concomitant at issue must be homogeneous of weight 0 in the metric,
whatever order it may be.

We must still determine the order of the required concomitant, for it is not a priori obvious.
In fact, the weight of a homogeneous concomitant of the metric suffices to fix the differential order
of that concomitant.31 This can be seen as follows, as exemplified by the case of a two covariant-
index, homogeneous concomitant Sab of the metric. A simple calculation based on definition 4.1
and on the fact that the concomitant must be homogeneous shows that the value at a point p ∈M
of an nth-order concomitant Sab can be written in the general form

Sab =
∑
α

kα g
qx . . . gxr

(
∇̃(n1)
x gqx

)
. . .
(
∇̃(ni)
x gxr

)
(6.1)

type. It also suffers from a fundamental lack of rigor that the definition of length does not suffer from. In order
to make the definition rigorous, one would have to show that there exists a solution of the Einstein field-equation
(approximately) representing two particles in otherwise empty space (as defined by the form of Tab)—viz., two
timelike geodesics—such that, if on a spacelike hypersurface at which they both intersect 1 unit of length apart
(as defined on the hypersurface with respect to either) they accelerate towards each other (as defined by relative
acceleration of the geodesics) one unit length per unit time squared, then the product of the masses of the particles
is 1. I will just assume, for the purposes of this paper, that such solutions exist. Another possibility for geometrizing
a unit of mass would be to define one as that of a Schwarzschild black hole with spatial radius one unit of length, as
measured with respect to a fixed radial coordinate respecting the spherical and timelike symmetries of the spacetime.
It would be of some interest to determine the relation between these two different ways of defining a geometrized
unit of mass.

30Recall that Weyl’s Theorem states that the projective structure and the conformal structure determine the
metric up to a constant.

31I thank Robert Geroch for pointing this out to me.
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where: ∇̃a is any derivative operator at p other than the one naturally associated with gab; ‘x’
is a dummy abstract index; ‘∇̃(ni)

x ’ stands for ni iterations of that derivative operator (obviously
each with a different abstract index); α takes its values in the set of all permutations of all sets of
positive integers {n1, . . . , ni} that sum to n, so i can range in value from 1 to n; the exponents of
the derivative operators in each summand themselves take their values from α, i.e., they are such
that n1 + · · ·+ni = n (which makes it an nth-order concomitant); for each α, kα is a constant; and
there are just enough of the inverse metrics in each summand to contract all the covariant indices
but a and b.

Now, a combinatorial calculation shows

Proposition 6.1 If, for n ≥ 2, Sab is an nth-order homogeneous concomitant of gab, then to
rescale the metric by the constant real number λ multiplies Sab by λn−2.

In other words, the only such homogeneous nth-order concomitants must be of weight n−2.32 So if
one knew that Sab were multiplied by, say, λ4 when the metric was rescaled by λ, one would know
that it had to be a sixth-order concomitant. In particular, Sab does not rescale when gab → λgab

only if it is a second-order homogeneous concomitant of gab, i.e., (by theorem 5.2 and proposi-
tion 5.3) a zeroth-order concomitant of the Riemann tensor. There follows from proposition 4.2

Lemma 6.2 A 2-covariant index concomitant of the Riemann tensor is homogeneous of weight
zero if and only if it is a zeroth-order concomitant.

Thus, such a tensor has the physical dimension of stress-energy if and only if it is a zeroth-
order concomitant of the Riemann tensor. It is striking how powerful the physically motivated
assumption that the required object have the physical dimensions of stress-energy: it guarantees
that the required object will be a second-order concomitant of the metric.

We now address the issue whether it is appropriate to demand of a potential gravitational stress-
energy tensor that it be covariantly divergence-free. In general, I think it is not, even though that is
one of the defining characteristics of the stress-energy tensor of ponderable matter in the ordinary
formulation of general relativity.33 To see this, let Tab represent the aggregate stress-energy of all
ponderable matter fields. Let Sab be the gravitational stress-energy tensor, which we assume for
the sake of argument to exist. Now, we ask: can the “gravitational field” interact with ponderable
matter fields in such a way that stress-energy is exchanged? If it could, then, presumably, there
could be interaction states characterized (in part) jointly by these conditions:

1. ∇n(Tna + Sna) = 0

2. ∇nTna 6= 0

3. ∇nSna 6= 0

32The exponent n − 2 in this result depends crucially on the fact that Sab has only two indices, both covariant.
One can generalize the result for tensor concomitants of the metric of any index structure. A slight variation of the
argument, moreover, shows that there does not in general exist a homogeneous concomitant of a given differential
order from a tensor of a given index structure to one of another structure—one may not be able to get the number
and type of the indices right by contraction and tensor multiplication alone.

33I thank David Malament for helping me get straight on this point. The following argument is in part para-
phrastically based on a question he posed to me.
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It is true that, as ordinarily conceived, condition 2 is incompatible with general relativity as stan-
dardly understood and formulated. The existence of a gravitational stress-energy tensor, however,
would necessarily entail that we modify our understanding and formulation of general relativity.
That is why this argument is only ex hypothesi, and not meant to be one that would make sense
in general relativity as we actually know it. (One possible way to understand it, e.g., would be
that the ways we currently use to calculate the stress-energy tensor of ordinary matter are mis-
taken, precisely in so far as they do not take into account possible interactions with gravitational
phenomena.)

The most one can say, therefore, without wading into some murkily deep and speculative waters
about the way that a gravitational stress-energy tensor (if there were such a thing) might enter
into the righthand side of the Einstein field-equation or that its existence might modify the ways
we calculate stress-energy for ordinary matter, is that we expect such a thing would have vanishing
covariant divergence when the aggregate stress-energy tensor of ponderable matter vanishes, i.e.,
that gravitational stress-energy on its own, when not interacting with ponderable matter, would
be conserved in the sense of being covariantly divergence-free. This weaker statement will suffice
for our purposes, so we can safely avoid those murky waters.

Finally, it seems reasonable to require one more condition: were there a gravitational stress-
energy tensor, it should not be zero in any spacetime with non-trivial curvature, for one can always
envision the construction of a device to extract energy in the presence of curvature by the use of
tidal forces and geodesic deviation. (See, e.g., Bondi and McCrea 1960 and Bondi 1962.)

To sum up:

Condition 6.3 The only viable candidates for a gravitational stress-energy tensor are two
covariant-index, symmetric, second-order, zero-weight homogeneous concomitants of the metric
that are not zero when the Riemann tensor is not zero and that have vanishing covariant diver-
gence when the stress-energy tensor of ponderable matter vanishes.

This discussion, by the way, obviates the criticism of the claim that gravitational stress-energy
ought to depend on the curvature, viz., that this would make gravitational stress-energy depend
on second-order partial derivatives of the field potential whereas all other known forms of stress-
energy depend only on terms quadratic in the first partial derivatives of the field potential. It is
exactly second-order, homogeneous concomitants of the metric that possess terms quadratic in the
first partials. The rule is that the order of a homogeneous concomitant is the sum of the exponents
of the derivative operators when the concomitant is represented in the form of equation (6.1).

7 Gravitational Energy, Again, and the Einstein Field Equa-

tion

If we are to surround ourselves with a perceptual world at all, we must recognize as
substance that which has some element of permanence. We may not be able to explain
how the mind recognizes as substantial the world-tensor [i.e., the Einstein tensor], but
we can see that it could not well recognize anything simpler. There are no doubt
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minds which have not this predisposition to regard as substantial the things which are
permanent; but we shut them up in lunatic asylums.

Arthur Eddington
The Mathematical Theory of Relativity, pp. 120–121

It follows from lemma 6.2, in conjunction with condition 6.3, that any candidate gravitational
stress-energy tensor must be a zeroth-order concomitant of BRiem, the geometric bundle of Rie-
mann tensors over spacetime. (One can take this as a precise statement of the fact that any
gravitational stress-energy tensor ought to “depend on the curvature”, as I argued in §2.) It follows
from proposition 5.3 that the only possibilities then are linear combinations of the Ricci tensor
and the scalar curvature multiplied by the metric. The only covariantly divergence-free, linear
combinations of those two quantities, however, are constant multiples of the Einstein tensor Gab.
(To see this, note that if there were another, say k1Rab + k2Rgab for constants k1 and k2, then
k1Rab + k2Rgab − 2k2Gab would also be divergence free, but that expression is just a constant
multiple of the Ricci tensor, which is not in general divergence free.) The Einstein tensor, however,
can still be zero even when the Riemann tensor is not (when, e.g., there is only Weyl curvature).
This proves the main result.

Theorem 7.1 The only two covariant-index, divergence-free concomitants of the metric that are
homogeneous of zero weight are constant multiples of the Einstein tensor.

(Note the strength of the result: not only need one not assume that the concomitant be second-
order, but one need not even assume the tensor to be symmetric; it all automatically follows from
the proof that all such concomitants of the metric are symmetric.) Because the Einstein tensor
will be zero in a spacetime having a vanishing Ricci tensor but a non-trivial Weyl tensor, there
follows immediately

Corollary 7.2 There are no two covariant-index, divergence-free concomitants of the metric that
are homogeneous of weight zero that do not identically vanish when the Riemann tensor is not zero.

The corollary does bear the required natural interpretation, for the Einstein tensor is not an appro-
priate candidate for the representation of gravitational stress-energy: it can be zero in spacetimes
with non-zero curvature; such spacetimes, however, can manifest phenomena, e.g., pure gravi-
tational radiation in the absence of ponderable matter, that one naturally wants to say possess
gravitational energy in some (necessarily non-localized) form or other.34 Non-localizability does
mean that gravitational energy in general relativity, such as it is, is “nowhere in particular”, but
that is no problem. The same holds for gravitational energy (such as it is) in Newtonian theory, and
it also holds for heat in thermodynamics, which is not a localizable quantity, and more generally
for work in classical mechanics. That does not mean it is “not in space-time at all”, no more than
any other globally characterized quantity or entity (e.g., the Euler characteristic of the spacetime

34As an historical aside, it is interesting to note that early in the debate on gravitational energy in general relativity
Lorentz (1916) and Levi-Civita (1917) proposed that the Einstein tensor be thought of as the gravitational stress-
energy tensor. Einstein criticized the proposal on the grounds that this would result in attributing zero total energy
to any closed system.
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manifold, or the incompleteness of an incomplete, inextendible curve, i.e., a singularity, or even
the ADM mass) is not. The way such quantities and entities are “in space-time” is a delicate and
subtle matter that does call out for investigation and discussion, but this paper is not the place
for that. (See Curiel 2016 for discussion of the question.)

Theorem 7.1 is similar to the classic result of Lovelock (1972), but it is significantly stronger
in two important ways.35It does not assume that the desired concomitant be second-order; and
it holds in all dimensions, not just four. Both of those properties are grounded on the derivation
of the differential order of the desired concomitant of the metric based on analysis of its required
physical dimension, encoded in the requirement that the concomitant of the metric be homogeneous
of weight zero. The physical interpretation of this is that the desired tensor have the physical
dimensions of stress-energy, as is the case for the Einstein tensor, and as must be the case for any
tensor that one would equate to a material stress-energy tensor to formulate a field equation (so
long as the coupling constant is dimensionless, as is the case for Newton’s constant). This provides
a physical interpretation to the conditions of the theorem that Lovelock’s theorem lacks.

The fact, moreover, that the proof relies essentially only on the structure of the first and second
jet bundles of the bundle of metrics over a manifold, i.e., on the bundle of Riemann tensors over a
manifold, and how that structure places severe restrictions on its possible concomitants, illuminates
the physical and geometrical content of the theorem. Because Lovelock bases his theorem and its
proof on Schouten’s definition of a concomitant, with the attendant complexity and opacity of the
conditions one then has to work with (as I discussed on p. 6, and in particular in footnote 11),
his proof consists of several pages of Baroque and unilluminating coordinate-based, brute-force
calculation, which gives no physical or geometrical insight into why the theorem holds. The third
difference is that the addition of constant multiples of the metric is not allowed. I discuss the
consequences of that below.

Before concluding the paper with a discussion of the bearing of the theorem on the Einstein
field equation, it behooves us to examine a prima facie puzzle my arguments have left us with. I
argued in §6 that the form of the desired object, that it ought to be a two-index tensor, followed
from the idea that all forms of stress-energy ought to be fungible, and so a fortiori one must be
able to add in a physically significant way entities representing the stress-energy of different kinds
of systems. Now that I have shown that there is no gravitational stress-energy tensor, one may
be tempted to conclude that gravitational energy, such as it is, is not fungible with other forms
of energy. That would be disastrous, because, as I argued in footnote 27, there are circumstances
whose only reasonable interpretation is that gravitational energy, such as it is, is in some way or
other being transformed into other, less recherché forms of energy. (For more rigorous arguments

35Lovelock proved the following, using the definition of concomitant due to Schouten, and based on earlier work
by Rund (1966) and du Plessis (1969).

Theorem 7.3 Let (M, gab) be a spacetime. In a coordinate neighborhood of a point p ∈ M, let Θαβ be the
components of a tensor concomitant of {gλµ; gλµ,ν ; gλµ,νρ} such that

∇nΘnb = 0.

Then
Θab = rGab + qgab,

where Gab is the Einstein tensor and q and r are constants.
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to this effect, again see Bondi and McCrea 1960 and Bondi 1962.) I think the resolution is that, in
general relativity, there is no single framework for analyzing and intrepreting all the phenomena one
may want to characterize as involving the coupling of physical systems based on energy transfer.
Energetic concepts that hang together in a unified framework in classical physics come apart in
general relativity. When one is dealing with processes mediated by localizable energetic quantities,
the stress-energy tensor should do the job; otherwise, there are a multitude of different kinds of
quantities any one of which may be physically relevant to the phenomena at issue. This should
not be surprising. We already know of cases in which concepts that formed a unified framework
in classical physics come apart in radical ways in general relativity, such as the different ways
one may characterize a physical system as being in rotation or not (Malament 2002, 2003). In
any event, even in classical physics there are non-localized energetic quantities, such as heat in
thermodynamics and gravitational potential energy in Newtonian gravitational theory, that one
cannot always treat in a unified framework with all localized forms of energy, and this fact never
gave rise to any ambiguities in calculations or other problems.

I conclude the paper by noting that theorem 7.1 has another reasonable interpretation, that,
in a natural sense the Einstein field equation is the unique field equation for a theory such as
general relativity that unifies spatiotemporal structure with gravitational phenomena by way of an
appropriate relation between spacetime curvature and the energetic content of ponderable matter.
(In particular, it follows from the result that a cosmological-constant term in the field equation
must be construed as forming part of the total stress-energy tensor of spacetime.) Malament (1986)
makes precise the sense in which geometrized Newtonian gravity is the limiting theory of general
relativity, as “the speed of light goes to infinity”. In geometrized Newtonian gravity, moreover,
the Poisson equation is formally almost equivalent to the Einstein field equation, and indeed is
identical with it in the vacuum case. Malament (2012, ch. 2, §7) argues persuasively that, on this
basis, it is natural to adopt the Einstein field equation as the appropriate one when moving from
the context of a Newtonian to a relativistic, curved spacetime, in so far as any theory better in
some sense than Newtonian theory must, at an absolute minimum, have Newtonian theory as its
limit in certain weak-field regimes.

One can read theorem 7.1 as a way to generalize this argument. We know from Newtonian
gravitational theory that the intensity of the gravitational field in a spatial region, in so far as
one can make sense of this idea, is directly proportional to the density of mass in that region. In
geometrized Newtonian gravity, this idea is made precise in the geometrized form of the Poisson
equation, which equates a generalized mass-like quantity, which has the form of a stress-energy
tensor, to the Ricci curvature of the ambient spacetime. In relativity, one knows that mass just is
a form of energy. In order for a relativistic theory of gravitation to have Newtonian gravitational
theory as its limiting form, therefore, one is driven to look for the appropriately analogous equation,
equating a term representing the curvature of a Lorentz metric with a stress-energy tensor. Once
one imposes natural ancillary conditions on the desired curvature term, such as that it must be
a second-order, homogeneous concomitant of the metric, then, by theorem 7.1, the Einstein field
equation falls out as the only possibility.36

Theorem 7.1 implies that the addition of constant multiples of the metric to the geometrical
36One may take this as a more precise and rigorous form of the argument Einstein (1916, p. 149) proposed for his

introduction of the stress-energy tensor in the first place, as I discussed in footnote 25.
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lefthand side of the Einstein field equation is not allowed. I interpret that to mean that any
cosmological-constant term must be construed as part of the total stress-energy tensor of spacetime,
and so, in particular, the cosmological constant itself must have the physical dimensions of mass2,
so that its product with the metric will not change under constant rescaling of the metric.

In higher dimensions, there are other tensors satisfying Lovelock’s original theorem, the so-
called Lovelock tensors. (Those tensors are not linear in the second-order partial-derivatives of the
metric as the Einstein tensor is.) Those tensors form the basis of so-called Lanczos-Lovelock gravity
theories in dimensions higher than four (Lovelock 1971; Padmanabhan and Kothawala 2013), being
used to formulate field equations including Lovelock tensors besides the Einstein tensor. Because
theorem 7.1 holds in all dimensions, not just in four, it follows that, in dimensions other than four,
the Lovelock tensors are not homogeneous of weight zero, and so do not have the physical dimension
of stress-energy. Thus, if one wants to construct a field equation that equates a linear combination of
such tensors to the stress-energy tensor of ordinary matter, as Lanczos-Lovelock theories of gravity
do, then the coupling constants cannot be dimensionless like Newton’s gravitational constant; the
physical dimension of each coupling constant will be determined by the physical dimension of the
Lovelock tensor it multiplies. These Lovelock tensors are usually interpreted as generalizing the
Einstein field equation so as to include curvature terms other than the Einstein tensor that couple
with the stress-energy of ponderable matter. As in the case of the cosmological constant, however,
the fact that these Lovelock tensors require dimensionful coupling constants to get the physical
dimensions of the terms right strongly suggests that one ought not interpret them as geometrical
terms coupling to ordinary stress-energy, but rather as exotic forms of stress-energy themselves. If
this is correct, then Lanczos-Lovelock theories are not in fact generalizations of general relativity,
but rather simply the Einstein field equation with exotic stress-energy added to the righthand side.
This is an issue that deserves further investigation.

The fact that the same theorem has as its natural interpretation the uniqueness of the Einstein
field equation and the non-existence of a gravitational stress-energy tensor suggests that there may
be a tight relation between the non-localizability of gravitational stress-energy and the form of the
Einstein field equation. I have a strong suspicion this is correct, but I have not been able to put my
finger on exactly what that relation may come to. A hint, perhaps, comes from the pregnant remark
of Choquet-Bruhat (1983) to the effect that the principle of equivalence (on her interpretation of
it) demands that the gravitational field act as its own source, represented mathematically by the
non-linearity of the Einstein field equation. Choquet-Bruhat’s claim, if true, implies that there can
be no linear field equation for gravity satisfying the equivalence principle, which would to my mind
be a startlingly strong implication for the equivalence principle to have. And yet my arguments
here suggest that she may, in some sense, be correct. That is a question, however, for future work.

I conclude with an intriguing observation. The derivation of the Einstein field equation in Pad-
manabhan (2010), based on thermodynamical arguments, is really just a special case of theorem 7.1
in disguise, as the Einstein tensor is the only appropriate covariantly divergence-free tensor having
the units of stress-energy, as his proof requires. (The same holds true for the generalization of
Padmanabhan’s arguments to Lanczos-Lovelock gravity in Padmanabhan and Kothawala 2013.)
Note, moreover, that Lovelock’s original theorem does not suffice for Padmanabhan’s needs, since
it is crucial that the desired tensor have the right physical dimension.
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