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Abstract

Elementary results concerning the connections between deductive
relations and probabilistic support are given. These are used to show
that Popper-Miller’s result is a special case of a more general result,
and that their result is not “very unexpected” as claimed. Accord-
ing to Popper-Miller, a purely inductively supports b only if they are
“deductively independent”—but this means that —a F b. Hence, it
is argued that viewing induction as occurring only in the absence of
deductive relations, as Popper-Miller sometimes do, is untenable. Fi-
nally, it is shown that Popper-Miller’s claim that deductive relations
determine probabilistic support is untrue. In general, probabilistic
support can vary greatly with fixed deductive relations as determined
by the relevant Lindenbaum algebra.

1 Introduction

The publication of the paper, A Proof of the Impossibility of Inductive Proba-
bility by Popper and Miller (Popper and Miller, 1983), marked the beginning
of a vigorous debate on the relationship between deductive relations and
probabilistic support. Popper and Miller (hereafter PM) made the claim
that any positive probabilistic support of evidence e for a hypothesis h, as
measured by s(h,e) = p(h, e) —p(h) is due solely to deductive relations (prop-
erly understood) between e and h. An immediate corollary is that inductive
(i.e. non-deductive) probabilistic support does not exist. All probabilistic
support is deductive.



It is not my intention to give an account of the ensuing controversy, the
interested reader is referred to (Mura, 1990), which contains a list of the
relevant papers. There is also a detailed survey in (Cussens, 1991). Instead,
I will focus on two points. First, I identify and take issue with the concept
of ‘induction’ employed by PM. Second, I refute the claim that deductive
relations, however widely conceived, determine probabilistic support. In or-
der to do this, I will first give a brief account of the Popper-Miller argument
against inductive probabilistic support, followed by some elementary results
concerning some of the relevant concepts.

2 Aspects of the Popper-Miller Argument

2.1 The “Main Thesis”

Consider any two propositions & and e. We have the following from elemen-
tary logic.
Fh< (h<e)A(hVe)) (1)

e-hvVe (2)

PM describe h < e, as “that part of the hypothesis [h] that is not deductively
entailed by the evidence [e]”. It is then simple to show that s(h < e,e) <0
so long as p(h,e) < 1 and p(e) < 1. This is the core of PM’s argument
that probabilistic support derives from deductive relations. Jeffrey (Jeffrey,
1984) criticises this argument, using the example of h = e A f. f is part of
h that does not follow deductively from e and yet is not contained in h < e
(h < el f with h - f and e t/ f). Jeffrey appears to refute the Popper-
Miller position by showing that h <— e does not “contain all of A that does
not follow deductively from e”.

PM can argue as follows, however. Although e I/ f, e may deductively
entail part of f. If we ‘extract’ from f all that is deductively entailed by e,
it is only then that we are left with “all of A that does not follow deductively
from e”. We find that if we perform this extraction in a natural way we are
indeed left with A < e. As PM put it “we find that what is left of A once
we discard from it everything that is logically implied by e, is a proposition
that in general is counterdependent on e” (Popper and Miller, 1987).

This observation constitutes PM’s “main thesis”. Their argument in-
volves a consideration of the consequence classes of propositions. For PM,
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the deductive relations between two propositions are contained in the total-
ity of logical implications between elements of their consequence classes. In
particular, for PM, deductive dependence is measured by the amount of over-
lap between consequence classes. Deductive dependence and, in particular,
deductive dependence of magnitude zero (deductive independence), plays a
crucial role in the PM account of probabilistic support, so we will now state
three elementary results concerning deductive independence.

2.2 Deductive Independence

Definition 2.1 For any proposition b, Cn(b) is the class of all consequences
of b which are not logical truths. Cn(b) = {z : btk x and ¥/ x}.

Definition 2.2 Two propositions, a and b, are deductively independent iff
Cn(a) NCn(b) = (. Otherwise they are deductively dependent.

Lemma 2.3 For any two propositions a and b, Cn(a) N Cn(b) = Cn(a V b).

Proof of 2.3

z € Cn(a) N Cn(b) atFz, bz, t/x
F-aVz,F-bVz fzx
F(aVz)A(-bVa), e
F(maA-b)Vz, tfz
F=(aVb)Vz x
aVbruz, t/x
xz € Cn(aVb)

(A

O

Corollary 2.4 For any two propositions a and b, a and b are deductively
independent iff H a V b.

Proof of 2.4 Using Lemma 2.3, Cn(a) NCn(b) =0 < Cn(aVbd) =0 &+
aVb O

Corollary 2.5 b is deductively independent of a iff —a F b.

Proof of 2.5 FaV b << —a - b. The result then follows immediately from
Corollary 2.4 and the definition of deductive independence. O



2.3 Deductive Independence and Probabilistic Coun-
tersupport
We now give the essential connections between deductive independence and

probabilistic support. We begin with a useful lemma connecting s(a, b) and

s(a, —b).
Lemma 2.6 Assuming p(b), p(—b) > 0,

S(a’ b)p(b) = —s(a, _'b)p(_'b)

Proof of 2.6 s(a,b)p(b) = [p(a A b)/p(b) — p(a)]p(b) = p(a A b) — p(a)p(
Similarly, s(a, =b)p(—b) = p(aA—b)—p(a)p(—b). So s(a, b)p(b)+s(a, —~b)p(b)
pla A b) +pla A =b) — p(a)p(=b) — p(a)p(b) = p(a)[l — (p(b) + p(=b))] =
The result follows. O

g
0

Theorem 2.7 If a and —b are deductively independent and p(b) > 0 then
p(a) <1= s(a,b) >0 and p(a) =1= s(a,b) =0

Proof of 2.7 If a and —b are deductively independent then it follows from
Corollary 2.4 that - a vV =b. Hence p(b) > 0 = p(a,b) = 1. So

s(a,b) =1 —p(a){ 28 ﬁ% = }

O

Corollary 2.8 If s(a,b) < 0 then a is deductively dependent on —b.

Proof of 2.8 If s(a,b) < 0 then s(a, b) is defined, hence p(b) > 0. The result
then follows from Theorem 2.7. O

Theorem 2.9 If a and b are deductively independent and p(b) > 0 then

<0 otherwise

s(a,b) = p(a,b) — p(a) = { =0 ifp(a) =1 orp(d) =1

(This result is a direct consequence of Theorem 1 in (Popper and Miller,
1987).)



Proof of 2.9 If p(b) = 1 then it follows trivially that s(a,b) = 0, so from
now on assume that p(b) < 1, or equivalently that p(—b) > 0. If p(a) = 1,
then, since p(—b) > 0, Cn(a) N Cn(b) = O = s(a,—b) = 0 by Theorem 2.7,
and therefore s(a,b) = 0 by Lemma 2.6. If p(a) < 1, then Cn(a) N Cn(b) =
# = s(a,—b) > 0 by Theorem 2.7, and therefore s(a,b) < 0 by Lemma 2.6.
O

Corollary 2.10 If s(a,b) > 0 then a is deductively dependent on b.

Proof of 2.10 If s(a,b) < 0 then s(a,b) is defined, hence p(b) > 0. The
result then follows from Theorem 2.9. O

We can now apply the general results above to the specifics of the Popper-
Miller argument. PM note that h < e is “what is left of A once we discard
from it everything that is logically implied by e¢” (Popper and Miller, 1987).
In other words Cn(h < e) is the class of consequences of h that are not
deductively dependent on e, in particular h < e is deductively independent
of e. Now it follows from Theorem 2.9 that s(h < e,e) < 0 unless p(h) =
1 or p(e) = 1, in which case s(h < e,e) = 0. PM state that this is a
“very unexpected result” (Popper and Miller, 1987), but surely the result
is not surprising, since =(h < e) - e. This is a special instance of the
relationship between deductive independence and deductive inference given
in Corollary 2.5.

3 Induction in the Popper-Miller Argument

In the Popper-Miller argument, PM are concerned with pure inductive sup-
port, i.e. inductive support that occurs with deductive independence, rather
than with inductive support in general.!

... unless h happens to be deductively independent from e, the
values of d(h, e) and s(h, e) are deductively contaminated. If there
is such a thing as pure inductive dependence at all, there seems
nothing for it but to measure it by something like s(h < e, €) or
d(h < e,e). (Popper and Miller, 1987)

ld(a,b) = p(a A b) — p(a)p(b), a function closely related to covariance. We will not
examine this function in the present paper.



There are two problems with this focus on pure inductive support. Firstly, for
the dependence between a and b to be purely inductive, it apparently has to
be the case that a and b are deductively independent, but this is equivalent to
having —a = b. So, if the dependence between @ and b is purely inductive, the
deductive dependence between —a and b has to be maximal. This connection
between pure inductive dependence and deductive consequence shows that
it is not possible to define a notion of purely inductive dependence, which is
free from ‘deductive contamination’.

The second related problem is that PM seem to view “deductively con-
taminated” inductive support as not really inductive. This is made evident by
the claim that inductive support can only occur in the presence of deductive
independence. However, there seems no reason to suppose that inductive
(i.e. ampliative) inference should not be deductively contaminated. There
can be a relation between deduction and induction, without the two types of
inference being equivalent, or one reducible to the other. In fact, I take the
investigation of this relation by PM to be the most useful contribution made
by the Popper-Miller argument.

Although their concern is with pure inductive support, PM usually omit
the word ‘pure’ in their arguments. However, it is clear that there is a big
difference between pure inductive support, as defined by PM, and inductive
support as it is usually conceived (by inductivists, for example). The latter
conception is given by Pierce, who is quoted by PM (Popper and Miller,
1987), where he characterises “amplifative, synthetic, or (loosely speaking)
inductive” reasoning occuring when “the facts summed up in the conclusion
are not amongst those stated in the premisses”.

It is clear that these two conceptions of inductive inference are not co-
extensive. Recall Jeffrey’s example, as reported in Section 2.1. On the PM
view, “the ‘ampliative’ part of h relative to e was identified with this condi-
tional h +— €” (Popper and Miller, 1987) and f is not an ampliative part of A
relative to e, because e and f are, in general, deductively dependent. On the
other hand, according to Pierce’s definition, f would count as an ampliative
part of A relative to e, simply because et/ f.

This difference between the usual view of induction, as ampliative in-
ference as defined by Peirce, and the notion of induction as the absence of
deductive relations, employed by PM, explains the incredulity with which
many of PM’s critics view the Popper-Miller argument. The usual complaint
is that for a proposition to ‘go beyond’ evidence e, it is not necessary for it to



be deductively independent of e, in the sense defined above. It also accounts
for the superficially puzzling remark of Miller (quoted in (Mura, 1990)) that
the prediction A = ‘The sun will rise tomorrow.’ is

not itself ‘about’ the future; indeed, it consists of a conjunction
of a sentence ‘about’ the past and a sentence countersupported
by the evidence.

Now on a view of inductive inference as merely ampliative as defined by
Peirce, h will count as an inductive inference, since its truth is not established
by evidence. It makes no difference that, if e = “The sun has risen every day
so far.”, then h V e is a sentence ‘about’ the past and h < e is a sentence
countersupported by e. Alternatively, on a view of induction that sees it as
a sort of complement to deduction, then it is natural to see only h < e as
an inductive inference, a proposition that is indeed countersupported by the
evidence e.

4 Can Deductive Relations Explain Proba-
bilistic Support?

PM claim that

Although evidence may raise the probability of a hypothesis above
the value it achieves on background knowledge alone, every such
increase in probability has to be attributed entirely to the de-
ductive connections that exist between the hypothesis and the
evidence. (Popper and Miller, 1987)

Now it is clear that PM have given a necessary condition for the existence
of (positive) probabilistic support: s(a,b) > 0 implies a and b are deductively
dependent, or, equivalently, —a - b = s(a,b) < 0. However, if the existence
of probabilistic support could really be “attributed entirely to deductive con-
nections’ then surely we would need a condition on a and b, defined entirely
in terms of deductive relations, which would hold if and only if s(a,b) > 0.
PM have not supplied such a deductive condition, and we will see below that
one is not possible.

PM sometimes seem to go further than merely asserting that the existence
of probabilistic support is attributable to deductive connections; in some
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places they appear to be claiming that the extent of probabilistic support is
decided by deductive relations. For instance, when discussing the properties
of the two support functions o(h,e) = p(h,e)/p(h) and s(h,e) = p(h,e) —
p(h), they state:

The measure o, no less than the measure s, sustains the view that
differences in probabilistic support are to be attributed entirely
to differences in degrees of deductive dependence. (Popper and
Miller, 1987)

However, any claim that the extent of probabilistic support is determined by
deductive relations is demonstrably false as we shall now show.

Eells (Eells, 1988) has already cast serious doubt on the thesis that all
probabilistic support is deductive in nature. He notes that if we measure the
support that e gives to h with support functions based on different probability
measures, then we will get different levels of support, notwithstanding the
fact that the arguments of the functions (h and e) are identical. We can
choose s and s’ such that s(h,e) # s'(h, e).

However, Eells has what I take to be an unduly conservative view of what
can count as deductive support.

Popper and Miller associate a degree with the component of
an evidence’s support of a hypothesis that they call purely deduc-
tive support... But, properly understood, it seems that support
that is purely deductive in nature is an ‘all or nothing’ affair;
either the evidence fully guarantees the truth of the hypothesis
(deductively implies it) or it does not fully guarantee the truth of
the hypothesis (does not deductively imply it). Purely deductive
support does not come in degrees. (Eells, 1988)

One of the central claims of PM is that probabilistic support is determined
by deductive dependence, as measured by the overlap of consequence classes.
To be able to examine this claim it is necessary to allow that deductive
support may occur in degrees. We will show that deductive relations, no
matter how widely coneived, do not determine probabilistic support. We
do this by first noting that, for a given first-order language L, deductive
relations between formulae in L are completely determined by the algebraic
structure of the Lindenbaum algebra of L.



The Lindenbaum algebra of L, denoted B(L) is a Boolean algebra the
members of which are equivalence classes of logically equivalent formulae in
L. Soif|a| ={8 € L :+ a <« B}, then B(L) is the set {|a| : a € L},
equipped with the relation <, where |a| < || & F a — B. The logical
operations of conjuction, disjunction and negation in L, then correspond to
the algebraic notions of meet, join and complement in B(L) as follows:

laf A8l =lanBl, |al VI8l =lav Bl —lal=|-al (3)

It is then simple to define probability functions on this algebra, so that
the value of s(a,b) varies. Since the various probability functions are defined
on one and the same algebra, it follows immediately that deductive relations
of any sort remain constant, while s(a,b) varies. This is sufficient to refute
the claim that deductive relations determine probabilistic support. This
is essentially the same argument used by Howson (Howson, 1973), when
criticising Popper’s claim that the ‘logical’ probability of universal laws is
always zero.

It might be argued that a given probability measure implicitly assumes
certain deductive relations between the elements of the algebra on which it is
defined. These deductive relations can, perhaps, not be expressed adequately
in the language used. A sufficiently rich language is required to express all
the necessary deductive relations, and it is only when using such a language
that deductive relations fix probabilistic support. On this view, a language
rich enough to express all the relevant deductive relations will engender a rich
and complex Lindenbaum algebra, where deductive relations do fix s(a,b).
However, against this, the following (rather elementary) lemma and theorem
show that, in general, deductive relations do not restrict possible values for
s(a,b) at all, whatever the identity of the relevant Lindenbaum algebra.

Lemma 4.1 p(b) > 0= s(a,b) = —s(—a,b)

Proof of 4.1 If p(b) > 0 then s(a, b) +s(—a, b) = [p(a, b) —p(a)]+[p(—a, b) —
p(—a)] = [p(a, b) + p(—a,b)] — [p(a) + p(—a)] = 1 —1 = 0. The result follows.
O

Theorem 4.2 Let a and b be members of some arbitrary Lindenbaum algebra
B(L). Ifa# L, b# 1,a# T, b# T, then exactly one of the following five
possibilities holds.



1. anb= 1. s(a,b) can take any value in the interval (—1,0].
aN-b= 1. s(a,b) can take any value in the interval [0,1).
—aANb= 1. s(a,b) can take any value in the interval [0,1).

—aA—-b= 1. s(a,b) can take any value in the interval (—1,0].

v o e

None of the above four conditions obtains. s(a,b) can take any value
in the interval (—1,1).

Proof of 4.2 The condition that a # L, b# 1, a# T, b# T is enough to
ensure that exactly one of the above conditions obtains. We have that

s(a,b) = p(a Ab)/(p(a A b) +p(-aAb)) —plaAb) —plaA—b)

We will consider how admissible choices of values for p(a A b), p(—a A b) and
p(a A —b) constrain the value of s(a,b). We will take each case in turn.

1. If aAb = L then p(aAb) = 0 and, on the condition that p(—aAb) > 0 (so
that p(b) > 0) it follows that s(a,b) = —p(a A —b). Let z € (—1,0]. By
choosing p(a A —b) = —z and p(—a A b) > 0, it follows that s(a,b) = x.

2. If aA—b = L then p(aA—b) = 0 and s(a,b) = p(aAb)/[p(aAb)+p(—aA
b)] — p(a Ab). Let z € [0,1). By choosing p(—a A b) = 0, we have that
p(aAb) > 0= s(a,b) =1 —p(aAb). So by choosing p(a Ab) =1 — z,
it follows that s(a,b) = x.

3. From the proof of Case 1, it follows that s(—a,b) can take any value in
(—1,0]. The result then follows from Lemma 4.1.

4. From the proof of Case 2, it follows that s(—a,b) can take any value in
[0,1). The result then follows from Lemma 4.1.

5. If none of a A b, a A —b, —a A b and —a A —b equal L, then each can
take any value in the interval [0, 1], subject to the constraint that p(a A
b) + p(a A —=b) + p(—a A b) + p(—a A —b) = 1. From above, by choosing
p(aAb) = 0 we can have s(a, b) take any value in (—1, 0] and by having
p(—a A b) = 0, we can have s(a,b) take any value in [0,1). So in this
case, s(a,b) can take any value in (—1,1).
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The following shows that even in the special case of a hypothesis h and
evidence e, where h |- e, s(h,e) can vary considerably with fixed deductive
relations between A and e.

Corollary 4.3 If h # 1, e # 1, h# T, e # T and h - e, where h and
e are members of some arbitrary algebra, then s(h,e) can take any value in
[0,1).

Proof of 4.3 hte < h A —e = L. The result follows from above. O

5 Conclusion

Case 5 in Theorem 4.2 is sufficient to prove the non-existence of a deductive
condition equivalent to the existence of (positive) probabilistic support, since
we can have either s(a,b) > 0 or s(a,b) < 0 by varying the probability distri-
bution on B(L), whilst keeping a, b and B(L) (i.e. the deductive relations)
constant. We have also found in Corollary 4.3, that in the special case where
ht e, s(h,e) can vary considerably with fixed deductive relations.

Our main finding, then, is that the Popper-Miller argument is invalid
in two major ways. Any notion of ‘induction’ as a sort of complement to
deduction seems untenable. According to PM pure inductive dependence
between a and b can only occur only when there is no deductive dependence,
as they define it, between a and b. But this occurs if and only if —a F b, which
is a highly deductive relation. It is therefore not surprising that deductively
independent propositions give negative probabilistic support to each other.
For example, s(h < e,e) < 0 simply because =(h < e) e which is not a
“very unexpected result” by any means.

Also, the claim that the probabilistic support of evidence for a hypothe-
sis “has to be attributed entirely to deductive connections” is demonstrably
false. In fact, except in a few special cases, there will be uncountably in-
finitely many possible values for s(h,e), with deductive relations between A
and e fixed, no matter how widely the latter are conceived. This is sim-
ply due to vast number of probability distributions which are definable on
most algebras. Picking on a particular probability function seems to be an
irreducibly inductive step. All this leads inescapably to the conclusion that
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probabilistic support cannot be explained in terms of deductive relations: it
must therefore depend, at least partly, on non-deductive factors.
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