Skip to main content
Log in

Les modeles sigmoides en biologie vegetale

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Resume

Revue des fondements conceptuels de modèles sigmoïdes très souvent employés. Examen de leur applicabilité aux modes de croissance multiplicatif et accrétionnaire.

Abstract

Observed biological growth curves generally are sigmoid in appearance. It is common practice to fit such data with either a Verhulst logistic or a Gompertz curve. This paper critically considers the conceptual bases underlying these descriptive models.

The logistic model was developed by Verhulst to accommodate the common sense observation that populations cannot keep growing indefinitely. A justification for using the same equation to describe the growth of individuals, based on considerations from chemical kinetics (autocatalysis of a monomolecular reaction), was put forward by Richardson, but met with heavy criticism as a result of his erroneous derivation of the basic equation (Snell, 1929). It errs on the side of over-simplicity (Priestley & Pearsall, 1922). Von Bertalanffy (1957) subsequently based a justification on the assumption that, as a first approximation, the rates of catabolism and anabolism may be assumed to be proportional to weight and power (< 1) of weight respectively. Gause (1934) rederived the Verhulst equation in a population context by assuming the per capita growth rate to be proportional to the difference, interpreted as the number of “still vacant places”, between the maximal possible and the already accumulated population sizes. This point of view was fiercely challenged by Nicholson (1933), Milne (1962), Smith (1954) and Rubinov (1973). And indeed, what is meant by “vacant places” has never become entirely clear. Finally Lotka (1925) devised a third leading approach by just truncating a Taylor expansion around zero of the differential law for autonomous growth after the second degree term.

The empirically based Gompertz model avowedly describing human mortality was applied to the growth of organisms by Davidson (1928). The closely related model by Gray (1929) also has a pure phenomenological basis only. A theoretical interpretation has recently been propounded by Makany (1991). This author introduces the following biological system: an inexhaustible generator which produces essentially inert, i.e. non-destructible and non-reproducing elements, which accommodate in a space where they can be counted. It is a probabilistic problem of occupancy and an urn model can be used. The asymptotic law of the obtained discrete distribution is a Gompertz one.

The comprehensive growth functions, more flexible, of Richards (1959) and Nelder (1961) are based on sheer mathematical generalizations. There is no other theoretical way to explain them.

The conceptual bases of these models and their applicability are discussed in cases of multiplicative or accretionary growth (Richards, 1969). In practice it is advisable to use the Von Bertalanffy model in case of a multiplicative growth, the Makany model in accretionary growth and the logistic function in both cases, but only as an approximation at the second degree term and as a purely descriptive formula of empirical data. Thus without any reference to an autocatalytic theory or “vacant places”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amer, F.A. et Williams, W.T. (1957). Leaf-area growth in Pelargonium zonale.- Ann. Bot., N.S. 83: 339–342.

    Google Scholar 

  • Baas-Becking, L.G.M. (1946). On the analysis of sigmoïd curves.- Acta biotheoret. 8: 42–59.

    Article  Google Scholar 

  • Bertalanffy, L. von (1957). Quantitative laws in metabolism and growth.- Quarter. Rev. Biol. 32: 217–231.

    Article  Google Scholar 

  • Carvallo, E. (1912). Le Calcul des Probabilités et Ses Applications.- Paris, Gauthier-Villars.

    Google Scholar 

  • Davidson, F.A. (1928). Growth and senescence in purebred Jersey cows.- Univ. Illinois Agric. exper. Stat. Bull. 303: 192–199.

    Google Scholar 

  • Debouche, C. (1977). Application de la régression non linéaire à l'étude et à la comparaison de courbes de croissance longitudinales.- Thèse Agronomic, Gembloux.

  • Feldman, H.A. et McMahon, T.A. (1983). The 3/4 mass exposant for energy metabolism is not a statistical artefact.- Respir. Physiol. 52: 149–163.

    Article  Google Scholar 

  • Feller, W. (1936). On the logistic law of growth and its empirical verifications in Biology.- Acta biotheoret. 5: 51–66.

    Article  Google Scholar 

  • Gause, G.F. (1934). The Struggle for Existence.- Baltimore, Williams and Wilkins Co.

    Book  Google Scholar 

  • Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new method to determine the value of life contingencies.- Phil. Trans. roy. London (1825): 513–585.

  • Gray, J. (1929). The kinetics of growth.- British J. exper. Biol. 6: 248–274.

    Google Scholar 

  • Heusner, A.A. (1982). Energy metabolism and body size.- Respir. Physiol. 48: 1–25.

    Article  Google Scholar 

  • Hunt, R. (1982). Plant Growth Curves.- London, Arnold.

    Google Scholar 

  • Jensen, A.L. (1975). Comparisons of logistic equations for population growth.- Biometrics. 31: 853–862.

    Article  Google Scholar 

  • Kostitzin, V.A. (1940). Sur la loi logistique et ses généralisations.- Paris, Armand Colin.

    Google Scholar 

  • Loeb, J. (1910). Über die autokatalytischen Character der Kernsynthese bei der Entwicklung.- Biol. Centralblatt. 30: 347–349.

    Google Scholar 

  • Lotka, A.J. (1925). Elements of Physical Biology.- Baltimore, Williams and Wilkins Co.

    Google Scholar 

  • Makany, R. (1991). A theoretical basis for Gompertz curve.- Biom. J. 33: 121–128.

    Article  Google Scholar 

  • McMahon, T. et Bonner, J.T. (1983). On Size and Life.- New York, Scientific American Library.

    Google Scholar 

  • Milne, A. (1962). On a theory of natural control of insect populations.- J. theoret. Biol. 3: 19–26, 33–42, 48–50.

    Article  Google Scholar 

  • Nelder, J.A. (1961). The fitting of a generalization of the logistic curve.- Biometrics 17: 89–110.

    Article  Google Scholar 

  • Nicholson, A.J. (1933). The balance of animal population.- J. anim. Ecol. 2: 132–148.

    Article  Google Scholar 

  • Pearl, R. (1930). Introduction to Medical Biometry and Statistics, 2nd ed.- Philadelphia, Saunders.

    Google Scholar 

  • Pearl, R. and Reed, L.J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation.- Proceed. nat. Acad. Sci. 6: 275–288.

    Article  Google Scholar 

  • Priestley, J.H. and Pearsall, W.H. (1922). An interpretation of some growth curves.- Ann. Bot. 36: 224–249.

    Google Scholar 

  • Putter, A. (1920). Studien über physiologische Ähnlichkeit: VI: Wachstumsähnlichkeit.- Pflüg. Arch. gen. Physiol. 180: 298–340.

    Article  Google Scholar 

  • Richards, F.J. (1959). A flexible growth function for empirical use.- J. exper. Bot. 10: 290–300.

    Article  Google Scholar 

  • Richards, F.J. (1969). The quantitative analysis of growth. In: F.C. Steward ed. Plant Physiology, a treatise.- New York, Academic Press. VI A: 3–76.

    Google Scholar 

  • Robertson, T.B. (1908). On the normal rate of growth of an individual and its biochemical significans.- Arch. Entwicklungsmechanik der Organismen. 25: 581–614.

    Article  Google Scholar 

  • Rubinov, S.I. (1973). Cell populations.- Region. Ser. Biol. Sci. (Philadelphia) 7: 53–61.

    Google Scholar 

  • Smith, F.E. (1954). Quantitative aspects of population growth. In: E.J. Boell, ed. Dynamics of Growth Processes.- Princeton Univ. Press.

  • Snell, G.D. (1929). An inherent defect in the theory that growth rate is controlled by an autocatalytic process.- Proceed. nat. Acad. Sci. 15: 274–281.

    Article  Google Scholar 

  • Tamarin, R.H. (1978). Population Regulation.- Stroudsburg, Dowden, Hutchinson and Ross.

    Google Scholar 

  • Teissier, G. (1937). Les lois quantitatives de la croissance.- Paris, Hermann.

    Google Scholar 

  • Verhulst, P.F. (1838). Note sur la loi que la population suit dans son accroissement.- In: Quételet éd. Correspondance Mathématique et Physique, 10: 113–121.

  • Wilson, C.P. (1934). Mathematics of growth.- Cold Spring Harbor Symp., Quant. Biol. 2: 1–8.

    Article  Google Scholar 

  • Zotin, A.I. (1972). (identification de l'équation de croissance animale de von Bertalanffy avec la function de Gompertz), en langue russe.- Ontogenez 3(6): 616–618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cusset, G. Les modeles sigmoides en biologie vegetale. Acta Biotheor 39, 197–205 (1991). https://doi.org/10.1007/BF00114175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114175

Navigation