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Abstract

On the one hand, non-reflexive logics are logics in which the principle
of identity does not hold in general. On the other hand, quantum me-
chanics has difficulties regarding the interpretation of ‘particles’ and
their identity, also known in the literature as ‘the problem of indis-
tinguishable particles’. In this article, we will argue that non-reflexive
logics can be a useful tool to account for such quantum indistinguisha-
bility. In particular, we will provide a particular non-reflexive logic
that can help us to analyze and discuss this problem. From a more
general physical perspective, we will also analyze the limits imposed
by the orthodox quantum formalism to consider the existence of indis-
tinguishable particles in the first place, and argue that non-reflexive
logics can also help us to think beyond the limits of classical identity.
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Introduction

It is well known in the literature that the notion of ‘particle’ in quantum me-
chanics (QM) faces serious difficulties when analyzed form a formal perspec-
tive. In particular, there are experts that defend the thesis that the notion
of identity (or that of equality) is meaningless with reference to quantum
particles or, at least, that it has to be restricted or modified in some sense
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(see for example: [18, p. 335], [2, p. 493-495] and [20, p. 248]). Our aim, in
this paper, is to treat the problem of identity in QM from the perspective of
non-reflexive logics. We introduce, in the first section, such kind of logics. In
the second section, we formulate a particular non-reflexive logic. In the third
section, it is outlined how the problem can be handled within the scope of
the presented non-reflexive logic. In section four we analyze the constraints
of the quantum formalism to discuss in terms of ‘quantum particles’ and ar-
gue that non-reflexive logics —which can allow us to bypass identity “right
from the start”— are a formal tool that could help us to develop a different
ontology from that of ‘particles’ —which, quite independently of the many
efforts, does not seem to fit the orthodox formalism of QM.

1 Non-Reflexive Logic

Non-reflexive logic, in a wide sense, is a logic in which the relation of iden-
tity (or equality) is restricted, eliminated, replaced, at least in part, by a
weaker relation, or employed together with a new non-reflexive implication
or equivalence relation.

In classical logic, one of the basic principles is the so called principle
of identity (PI), expressing the reflexive property of identity, whose usual
formulation is as follows:

x = x (1)

or

∀ x (x = x) (2)

where x is a first order variable. There are other versions in higher-order
logic, in which appear higher order variables. There are also propositional
formulations of the principle:

p→ p (p implies p) (3)

or

p↔ p (p is equivalent to p) (4)

where p is a propositional variable. If propositional quantification is allowed,
then we have other forms of the principle:
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∀ p (p → p) (5)

as well as:

∀ p (p ↔ p) (6)

Some of the above principles are not in general valid in non-reflexive
logics. They are total or partially eliminated, restricted, or not applied to
the relation that is employed instead of identity. Several are the motivations
for the development of non-reflexive logics. For instance, the following:

1. Wittgenstein in his Tractatus, discussed the (possible) elimination of
the relation of identity from logic (cf. [27, 7]).

2. The propositional logic of causal implication is such that this kind
of implication does not satisfy the propositional principle of causal
identity [12].

3. From the logical and philosophical perspectives it is necessary to clar-
ify the real meaning of the relation of identity in all levels of the logical
hierarchy. In this way, as non-Euclidean geometries —independently
of their intrinsic relevance— contribute to the better understanding
of the very structure of Euclidean geometry, non-reflexive logic might
helps us to explain the nature of identity and its principles. For in-
stance, the obstacles to the construction of a convenient semantics for
some of these logics (e. g., proper definitions of name, denotation,
plurality, etc.) makes it easier to perceive their status as formalisms
or as tools to cope with different problems. The systematic study of
non-reflexive logic also makes evident how ordinary language is deeply
involved with identity.

4. It seems appropriate to observe that Russell and Whitehead in their
Principia Mathematica did already elaborate a theory of description
that at least formally is non-reflexive [26]. Consequently, non-reflexive
logical ideas were present in some context of classical logic, what may
be a little surprising for most people. But the first reference to non-
reflexive logic as a new form of (mathematical) logic, are to be found
in [4, 5].
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5. Various authors, as referred to in the introduction to this paper, be-
lieve that identity is not in harmony with the foundations of quantum
physics.

In the present paper we are concerned mainly with the last point. More
specifically, with the possible solution provided by non-reflexive logics to the
question of indistinguishable particles and to the possibility to, assuming a
non-reflexive formalism “right from the start”, develop an ontology which
matches a non-reflexive formalism and escapes the presupposed ontology of
particles.

2 Non-Reflexive Set Theory (ZFR)

In this section we construct a system of non-reflexive logic ZFR, incor-
porating with a set theory, to the foundation of non-relativistic QM. Our
auxiliary starting point is the usual Zermelo-Frenkel system of set theory
with Urelemente (see, for example, [3]). Urelemente are the objects that are
not sets. This system is denoted by ZFU . The language of ZFU is built as
follows:

1. The primitive symbols are ε (elementhood), C (a monadic predicate
constant; C(x), where x is a variable, means that x is a set), and the
common primitive logical symbols of a systematization of the classical
first-order predicate calculus with identity (equality). On these sym-
bols, see [21] or [25], whose terminology, notations, etc., we follow with
some obvious adaptations.

2. The syntactic concepts such as those of terms, formula, sentence, free
variable, etc., are also adaptations of the two just cited books.

3. Deductive structure of ZFU : the notions of axiom, axiom scheme, pos-
tulate (axiom or axiom scheme, as well as primitive rule of inference),
etc., are those of the cited books with clear changes.

We write (∀Cx) (...) instead of (∀x) (C(x)→ ...) and (∃Cx) (...) instead
of (∃x) (C(x) & ...).

The specific postulates of ZFU are the following:

(A.1) (∀Cx)(∀Cy)((∀ z)(z ∈ x↔ z ∈ y)→ x = y).
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(A.2) (∀ x)(∀ y)(∃Ct)(∀ z)(z ∈ t↔ z ∈ x ∨ z ∈ y).

(A.3) (∀Cx)(∃Cy)(∀Ct)(t ∈ y ↔ t ⊆ x).

If F (x) is a formula, x, y and z are distinct variables and y does not occur
free in F (x), we have:

(A.4) (∀Cz)(∃Cy)(∀ x)(x ∈ y ↔ F (x) & x ∈ z).

(A.5) (∃Ct)(∀x)(x 6∈ t).

(A.6) (∀Cx)((∀ y)(y ∈ x → C(y)) → (∃Cz)(∀ t)(t ∈ z ↔ (∃v)(v ∈ x & t ∈
v))).

If F (x, y) is a formula, and the variables satisfy evident conditions, we have:

(A.7) (∀ x)(∃! y)F (x, y)→ (∀ Cu)(∃Cv)(∀ y)(y ∈ v ↔ (∃ x)(x ∈ u& F (x, y))).

(A.8) (∃Cz)(∅ ∈ z & (∀ x)(x ∈ z → x ∪ {x} ∈ z)).

(A.9) (∀Cx){(∀ y)(y ∈ x → C(y)) & (∀ y)(∀ z)(y ∈ x & z ∈ x → (y ∩ z =
∅ & y 6= ∅))→ (∃Cu)(∀ y)(∃v)(y ∈ x→ (y ∩ u = {v}))}.

Remark. It is possible to adjoin the following postulate of regularity to ZFU
(although we shall not do so here):

(A.10) (∀Cx)(x 6= ∅ & (∀ y)(y ∈ x→ C(y))→ (∃z)(z ∈ x & z ∩ x = ∅).

The above schemes and axiom schemes are those of ZF with Urelemente
(see, for instance, [16]). For example, (A.4) is the axiom scheme of separation
and (A.10) is the axiom of regularity. We need, in addition, one more axiom:

(A.11) ∃Cy ∀x(x ∈ y ↔ ¬C(x)).

which says that the totality of Urelemente constitutes a set.
The symbol {x : F (x)}, where x is a variable and F (x) is a formula,

denotes the set of all objects that satisfy F (x), if this set does exist, that
is, if ∃Cy ∀x(x ∈ y ↔ F (x)) is a theorem of ZFU . We put, by definition,
that U = {x : ¬C(x)}. It is not difficult to see that ZFU is a strong set
theory, in which it is possible to develop, with clear adaptations, the entire
contents of usual Zermelo-Frenkel system of set theory (see, for example [3]
and [16]).
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We enrich ZFU with the introduction of the finite and non-empty sets
m,m1,m2 and M , under the following conditions: 1) U = m ∪M ; 2) m =
m1∪m2; 3) m1∩m2 = ∅; 4)m∩M = ∅. Informally, m is the set of quantum
objects m1 and m2, are two kinds of quantum objects, and M is the set of
classical objects. (In the general case, we have m = m1 ∪m2 ∪m3 ∪ .... ∪
mk, 0 < k < ω;m1,m2, ...,mk are mutually exclusive sets).

The next developments of ZFU are informally presented. Small Greek
letters stand for ordinals and the class of all ordinals is represented by Ord.
ZF is Zermelo Frenkel theory.

Definition 2.1 By transfinite induction we put (P is the power-set of x):
V0 = U = m1 ∪ m2 ∪M , V1 = P(V0), V2 = P(V1), ..., Vn+1 = P(Vn), ...,
Vω =

⋃
β<ω(Vβ), ..., Vω+n+1 = P(Vω + n), ..., V =

⋃
α∈Ord(Vα).

Definition 2.2 Analogously, the hierarchies V ′α and V ′′α , with V ′o = M and
V ′′o = φ, are defined. We put: V′ =

⋃
α∈Ord(V

′
α) and V′′ =

⋃
α∈Ord (V ′′α ).

Definition 2.3 If x ∈ V0, then rank(x) is the least α such that x ∈ Vα.
Similarly, we define rank′(x) and rank′′(x).

Theorem 2.4 V′′ ⊂ V′ ⊂ V.
Proof: Immediate. 2

Theorem 2.5 x ∈ V′′ → C (x); x ∈ V′′ → x ⊂ V′′.
Proof: By induction on the rank′′(x) as it is usual. 2

Theorem 2.6 If x ∈ V′′, then rank(x) = rank′(x) = rank′′(x).
Proof: By induction on the rank′′(x). 2

Theorem 2.7 V is an inner model of ZFU .
Proof: By transfinite induction, as in the case of ZF . 2

Theorem 2.8 V′′ is an inner model of ZF in ZFU .
Proof: Analogous to the proof of the preceding theorem. 2

Theorem 2.9 If ZFM is the theory ZF with the set M of Urelemente,
then V′ is an inner model of ZFM in ZFU .
Proof: As the proof of the preceding theorem. 2
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Definition 2.10 The binary relation ≡ is defined on V by transfinite in-
duction through the following clauses:

Initial clauses, defining ≡ on V0: 1) if x, y ∈ mi, 1 ≤ i ≤ 2, then x ≡ y
and y ≡ x; 2) if x ∈ m1 and y ∈ m2, then x 6≡ y and y 6≡ x (x 6≡ y is the
negation of x ≡ y; 3) if x ∈ m2 and y ∈ m1, then x 6≡ y and y 6≡ x; 4) if
x ∈ m and y ∈M , then x 6≡ y and y 6≡ x; 5) if x, y ∈M , then x ≡ y if and
only if x = y; 6) if x ∈ V0 and y is a set, then x 6≡ y and y 6≡ x.

Inductive clauses: 1) if x and y are sets, x ∈ V′ and y /∈ V′, then x 6≡ y
and y 6≡ x; 2) if x and y are sets and x, y ∈ V′, then x ≡ y if and only if
x = y; 3) if x and y are sets and x, y /∈ V′, then x ≡ y and y ≡ x if and
only if:
∀z(z ∈ x→ ∃w(w ≡ z∧w ∈ y))∧∀t(t ∈ y → ∃v(v ≡ t∧ t ∈ x))∧ card(x)

= card(y), where card(x) is the cardinal number of x.

Theorem 2.11 The relation ≡ is well defined on V.
Proof: In effect, x ≡ y implies that rank(x)=rank(y), ordinal number that
we denote by α. Then, if ≡ is defined for all elements t of V of rank(t) < α,
it easily follows that x ≡ y is also defined. 2

Definition 2.12 If x and y are sets, then we put:

x ≺ ydef= ∀z(z ∈ x→ ∃ω(ω ≡ z ∧ ω ∈ y))

x ∼= y
def
= x ≺ y ∧ y ≺ x

x ≺ y is read ‘x is a quantum subset of y’; x ∼= y is read ‘x and y are
weakly quantum equivalent’.

ZFR is ZFU enriched by the individual constant m1, m2, m and M , and
the predicate constant ≡. Informally, m is the set of quantum objects, M is
the set of classical objects, and m1 and m2 are two sorts of quantum objects.
The relation ≡, between elements m, means quantum indistinguishability or
(quantum) equivalence; ≡ is extended to all pairs of elements of V according
to its intended meaning. By definition of ZFR, its specific postulates are
those of ZFU conveniently adapted.

We now present a list of theorems of ZFR whose proofs are not difficult.
Every permutation p of m1 (or of m2) induces a transformation p of any set
of V into V. Such permutations are called quantic permutations.

Theorem 2.13 If p is a quantic permutation and x and y are sets of V such
that x ≡ y, then p(x) ≡ p(y).
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Proof: By induction on the rank of V, taking into account the definition
of ≡. 2

Corollary: Under the condition that x, y ∈ V′, we have: x = y ↔ β(x) =
β(y).

Where β are formulas.

Theorem 2.14 x ≡ x;x ≡ y → y ≡ x; (x ≡ y ∧ y ≡ z) → x ≡ z;x = y →
x ≡ y.

Theorem 2.15 If x and y are sets, then:

1. x ≡ y ↔ ∀z(z ∈ x→ ∃w(w ≡ z ∧ w ∈ y))

2. x, y ∈ V′ → (x ≡ y ↔ x = y)

3. x ∈ y → rank(x) < rank(y)

4. x ≡ y → card(x) = card(y)

5. x ≡ y → x ∼= y

6. x ≡ y ↔ (x ∼= y ∧ card(x) = card(y))

Definition 2.16 x∈y def
= ∃z (z ≡ x ∧ z ∈ y).

Definition 2.17 Let F be a formula of ZFR. We denote by F ∗ the formula
obtained from F by replacing all occurrences of = by ≡, and all occurrences
of ∈ by ∈.

Theorem 2.18 If F is a theorem of ZFR, then F ∗ is also a theorem of the
same system.
Proof: By induction on the length of F . 2

Theorem 2.19 Let us suppose that it is added to ZFR new individual con-
stants to name, biunivocally, the elements of m1 and new individual con-
stants to name biunivocally the elements of m2, and that p is a permutation
of the names of the elements of m1 (or of m2). The new system so obtained
is denoted by ZFR−. Under these hypothesis, one has: if F is a theorem of
ZFR− and F− is obtained from F by replacing the name K of any element
of m1, appearing in F , by p(k), then F− is also a theorem of ZFR−.
Proof: Trivial. 2

8



ZFR is a non-reflexive system since it contains a relation ≡, of quan-
tum equivalence (or quantum indistinguishability), which is used in various
contexts of QM to replace identity. In some cases, as those referred to in
the introduction to the paper, ≡ is really important, and identity, for some
authors lose, at least in part, its meaning. However, here, we shall employ
ZFR basically as a classical set theory, although one could try to handle
ZFR, as a strict non-reflexive logic, to eliminate identity in connection with
quantum particles (see, for example, [17] and also [1, 10, 15, 23]). Therefore,
one may say that ZFR is a kind of ‘classical non-reflexive’ logic.

3 Indistinguishability and Non-Reflexive Logic

In this section, we outline how non-relativistic QM may be founded on ZFR.
In [18, p. 335] Ghirardi states that:

“Once we have understood that it is impossible to individ-
ualize the indistinguishables, we are let to assuming the impos-
sibility of such operation itself as a criterion of identity: two
elementary particles will be proclaimed identical when we must
recognize that no physical procedure exists that permits us to
distinguish them from each other, or in other words, when all
the physical implications about the system in question are un-
changed when we imagine ‘switching’ the constituents”

This is clearly interpretable as saying that ‘identity’ in QM really means
that two elementary particles of the same sort are identical in the sense they
are physically indiscernible, i.e. from our perspective, they are quantum
equivalent. So, we must distinguish, carefully, between logical identity (=)
and quantum equivalence (≡). Some physicists call ‘≡’ physical identity.
Notice that the notion of ‘switching’ only makes sense in an ontology which
presupposes individuals that can be interchanged and have some kind of
identity. Thus if we accept the possibility of ‘switching’ the question of
individuals with no identity cannot be posed. One can also insist, following
Holland [20], on the role of logical identity in QM, although ≡ is a derived,
but relevant concept.

We have, in effect, two major concerns in connection with logical identity
and quantum equivalence:

(1) Substitutivity: If a and b are quantum equivalent, then, in any physical
system, a can be replaced by b without physically changing the system.
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(2) The existence of quantum objects may be quantum equivalent but not
logically identical —since identity is considered by many physicists as
meaningless.

(1) and (2) are such that we may have (1) although not (2), and (1) and
(2).In this second case, since ZFR does contain identity, this relation may
be seen as an “improper” relation, purely symbolic, when referring to quan-
tum objects, more or less as points at infinity in Euclidian geometry. Both
situations are accommodated in ZFR. This is one of the main reasons we
call ZFR a ‘classical non-reflexive logic’.

After the presentation of quantum structures and their postulates, the-
orems 2.13 and 2.19 remain valid; therefore, quantum equivalence is a con-
gruence relation satisfying the laws of substitutivity. Here, we shall treat
a particular form of QM, in which both = and ≡ are used and are basic,
which mirrors what most physicists do.

The basic orthodox interpretation of QM is that the state of a quantum
system, say a particle of mass m, is given by a complex valued function
Ψ, the so called ‘wave function’ which depends on the three space coordi-
nates <3 and time. Newtonian space-time constitutes the frame involving
quantum systems. In addition, there exists another function Φ, the Fourier
transform of Ψ, conveniently normalized, that furnishes the momentum. For
n particles, Ψ and Φ are complex valued functions defined on <3n and time.
The Schrödinger equation characterizes the dynamics. Ψ might be viewed
as a vector in a Hilbert Space (a space of functions), and the probability
for the distribution of particles is given by the known Born rule. The states
of a quantum system are vectors of the Hilbert space and the observables
self-adjoint operators in the same space, etc.

Taking into account such interpretation, we introduce the quantum struc-
tures, which are mathematical structures, as follows:

e =< C,<3n ×<, H,Ψ, P >.

Where the following postulates are satisfied:

1. C is a set of n (n ∈ ω) elements of the set m, set of the quantum
objects;

2. <3n is the Cartesian product of <3 by <3 n times and < is the set of
reals that represent instants of time; <3n is the configuration space.
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3. H is a complex Hilbert space, that is separable, etc.;

4. Ψ is a vector of H, called the ‘wave function’, given the state of the
system, and defined on <3n ×< (× is the cartesian product);

5. P is a function defined by the Born rule;

6. The dynamics of the system is summarized by the Schrödinger equa-
tion.

Other relevant notions such like momentum, Φ, angular momentum, free
particle, scattering, etc., are all definable. However, there are other, extra
concepts, such as spin, and extra postulates, for instance Pauli’s principle,
that need to be adjoined to cope with some questions. Details may be seen
in works on the subject, among which we mention [19] and [24].

Mathematically, QM is the theory of quantum structures of species e.
This mathematical theory of certain kind of structures (cf. [7, 11]) is what
the physicist tries to relate to physical experience.

It is quite clear that theorems 2.13 and 2.19 remain valid in the mathe-
matical treatment of QM based on ZFR. Thus there are two main routes to
deal with identity in QM under the supposition that ZFR is its underlying
logic:

1. We can employ both identity and quantum equivalence in QM with
reference to quantum objects;

2. We can give emphasis on quantum equivalence in connection with
quantum objects in which case the recourse to identity, especially its
reference to ‘classical’ objects, would be a theoretical device to simplify
some aspects of QM. Clearly, this presupposes the consistency of QM
based on ZFR.

However, there are other reasons to found QM on a non-reflexive logic.
In the next section we make some comments on the connections between
ontology and identity in QM that may constitute the starting point of a
new no-reflexive foundation for this science. We intend to develop the more
technical parts of this paper in future works. The philosophical aspects will
be also treated in detail.
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4 Beyond ‘Quantum Particles’?

As we mentioned above —leaving aside instrumentalist interpretations which
deny the need of an interpretation— there are two main strategies to account
for the problem of indistinguishable particles in QM. We can either start our
analysis assuming that QM talks about some strange kind of ‘particles’ —
which do not seem to follow partly or completely the PI— and then try to
make sense of the formalism, or we can accept that we do not know what
QM is talking about, start our investigation from the formalism itself and
try to find an appropriate ontology which is not restricted to the notion of
‘particle’. In the following section we provide arguments against the first
line of analysis and call the attention to the importance of non-reflexive
logics within the second proposed line of research.

The two authors of this paper believe that within physical theories there
is a tight interrelation between logic and ontology which cannot be bypassed
by either side. There are many logics and possible ontologies. A given
ontology is always related to a specific kind of logic and, vice versa, a given
logic might determine, at most, a restricted set of possible ontologies that can
be coherently developed from the logical scheme. Thus, when attempting
to interpret a theory, either starting from the formal logical perspective or
from the ontological one, the physicist —who attempts to provide a physical
representation of the theory— needs to call special attention to the fact that
both ontology and logic must relate in a coherent manner. This interrelation
must also be capable of allowing us to discuss about physical experience —e.
g., the experience provided by Maxwell’s theory regarding electromagnetic
waves, the experience provided by Newtonian mechanics regarding physical
particles and bodies, etc. One must be careful however, for it is in principle
not necessarily true that from any logic one can develop a suitable ontology
and, vice versa, that from every ontology one can coherently find a suitable
logical scheme.

Within Aristotelian metaphysics the PI, together with the principle of
existence and the principle of non-contradiction, constitute and determine
not only classical logic but also the notion of ‘entity’ —of which the notion of
‘particle’ is a particular case. These principles play not only a logical but also
an ontological role in Aristotle’s architectonic. And it is not self evident that
one can “leave aside” one of such constitutive principles and claim that one is
still talking about the same ontology; it is not at all obvious that without the
PI one can still talk about ‘entities’. One must be cautious for if we attempt
to provide a physical interpretation of a given formalism one also needs to

12



be clear about what the formalism is talking about —e. g. ‘particles’,
‘waves’, ‘fields’, etc. Neglecting this interpretational fact can rapidly direct
us, willingly or not, through the unwanted path of instrumentalism.

Pointing to ‘something’ at time t1 relates, through the PI, to the same
‘something’ at time t2. Thus it is the PI which allow us to state that we
have the same ‘something’ through time. But even in one instant of time
we run into trouble in case we naively assume there are a certain number
of ‘indistinguishable objects’. In such case their ‘existence in space’ —quite
independently of time— makes them distinguishable, for any object with
a definite position becomes distinct to another one in a different position.
This means that if we are to take indistinguishability in ontological terms,
we must accept that ‘indistinguishable objects’ cannot exist within space-
time. They must exist with a different “ontological support”. But what is
the meaning of ‘a particle which does not exist in space nor time’? Can
this be regarded as a ‘physical particle’? Or is it space-time a necessary
precondition for talking about particles? Does this notion make sense at
all or is it just a logical game with no physical counterpart? The question
remains if an ‘entity with no identity’ is a thinkable physical object or rather,
just an oxymoron. But even leaving aside the problems to reconcile the PI
with the quantum formalism there are other aspects of the formalism which
go deeper against the presupposition of a ‘particle ontology’ for QM.

One can discuss individuality and identity in the case of the statistical
properties of indistinguishable quanta, but we can also go a step further
and claim that the failure of the applicability of the notion of individuality
occurs in a more general frame. Indeed, it occurs within the whole struc-
ture of QM. Let us consider the set L of physical properties of a quantum
system. The formalism of the theory associates to each physical magnitude
a mathematical object —an operator, called “observable”, over the Hilbert
space of states of the system— and the Heisenberg principle states that not
all magnitudes may possess definite values at the same time. This must
not be interpreted as a consequence of our ignorance or of our inexact pro-
cedures to determine them. Only subsets of compatible magnitudes may
simultaneously possess values.1 This is strongly different from the classical

1The indetermination of the values of incompatible pairs is a matter of principle. In
fact, it is one of the fundamental physical principles from which the formal structure of
the theory may be derived. In mathematical terms, observables linked by the Heisenberg
principle do not commute and thus, physical magnitudes obey a non-commutative algebra
—technically, the projectors in which they decompose are structured in a modular lattice
in the finite case.

13



realm —where they are structured in a Boolean lattice— and thus there
exist (Boolean) valuations of all propositions about physical magnitudes.
The different algebraic structure of the quantum properties has as its coun-
terpart the different meaning of the logical connectives among propositions
regarding properties. Thus, if we naively try to interpret them as classical
properties, as properties possessed by the system, we are faced to all kind
of no-go theorems that preclude this possibility. Most remarkably is the
Kochen-Specker (KS) theorem which explicitly shows the fact that within
the formal structure of QM, it is not possible to jointly assign truth values to
different not-disjoint subsets of mutually compatible properties [22]. This is
a very strong impediment to get an image of quantum systems in some sense
close to classical objects. One of us has claimed that the conclusion which
must be driven from the KS theorem is that the quantum wave function
cannot be conceived in terms of ‘the state of an individual which possesses
properties’ [13]. The possible mathematical representations which expose
the quantum wave function from different basis cannot be interpreted as re-
lated to properties which preexist (to measurement). Thus, the KS theorem
shows the impossibility to unify the different representations in a unique and
singular ‘whole’, in something which can be considered as a classical indi-
vidual. As it has been analyzed in [14] one cannot naively assume that the
choice of the context allows us to claim that classicality has been restored.

Following this line of thought, it could be argued that one should leave
the door open to the possibility to consider an interpretation of QM which
is not necessarily based on the ontology of ‘particles’. If such possibility
is granted and taken seriously, just in the same way paraconsistent logics
might be an interesting tool for discussing a new interpretation of quantum
superpositions [8], a radical Non-Reflexive Logic with no identity might be
a perfect tool to advance in an interpretation that is not restricted by (clas-
sical) metaphysical presuppositions.
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