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Abstract

In this paper we study iterated circular multisets in a coalgebraic frame-

work. We will produce two essentially di�erent universes of such sets. The

unisets of the �rst universe will be shown to be precisely the sets of the

Scott universe. The unisets of the second universe will be precisely the

sets of the AFA-universe. We will have a closer look into the connection

of the iterated circular multisets and arbitrary trees.
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1 Introduction

1.1 Multisets on a Given Domain

Multisets are very natural objects: they can model a number of di�erent situ-

ations in di�erent contexts, like the store of a shop or the bag of a housewife.

A multiset |a bag in Computer Science| is like a set, except that an element

can have multiple occurrences in it. For example, a grocery shop with 3 apples,

2 pears, 1 banana, and 0 kiwi in store can be modeled by the multiset

[[ apple; apple; apple; pear; pear; banana ]] :

In proof theory sequents are often modeled as pairs of multisets (see e.g. [8]).

Multiple occurrences of an object d 2 D in a multiset can be described by

a family of relations f2k: k 2 Card+g: e.g., if � is the grocery shop above and

a := apple, we have a 2i �, for i 2 f1; 2; 3g, a 62j �, for j � 4; we say that the

multiplicity of a in the multiset � is 3 or that m�(a) = 3.

We should distinguish between the platonic idea of a multiset and set-

theoretic representations of it. Di�erent representations of the same platonic

idea should be expected to be naturally isomorphic (in a sense to be speci�ed

later). We will see that for certain purposes certain representations are better

than others even if they are naturally isomorphic. We will also meet two salient

platonic ideas of multiset. Before explaining the fact that there are at least two

notions of multiset, let's �rst look at some set-theoretic representations.

The �rst choice that comes to mind is to represent a multiset on a domain D

as a function that associates to each d 2 D a cardinal number, which says how

many times the element d is present in the multiset. Since we allow domains

that are large classes, but we want to represent multisets on any domain by

sets, we represent a multiset on a class D by a (small) partial function from

D to Card+, where Card+ is the class of all strictly positive cardinals. In other

words, we replace zero by unde�ned. For example, in the grocery shop above

the domain D is given by the set fa; p; b; kg and the shop is represented by a

function f with f : D ! Card+, f(a) = 3, f(p) = 2, f(b) = 1, f(k) = ".

Let's look at a second representation of multiset. A �rst approximation

is to say that a multiset of elements of D is a function f from a set I , the

set of items, to D. Here D can be viewed as the set of types. In our ex-

ample of the grocery store the items could be taken to be the concrete fruits

apple1; apple2; apple3; pear1; pear2; banana1; the types could be taken apple, pear,

banana, kiwi. We would have f(apple1) = apple, etcetera. This �rst approxi-

mation is not quite right. It fails to capture the level of abstraction that we

aim at in speaking of multisets. The point is that we want to abstract away

from the concrete individuality of the items. The only thing that interests us

about the items is the type they have and the fact that they di�er amongst each

other. We do not want to know about properties they might have that are not

included in the selected set of types D. The way to implement this is to say

that f : I ! D and g : J ! D stand for the same multiset of elements of D if

there is a bijection h between I and J such that f = g � h.
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It is easy to see how to translate back and forth between the two represen-

tations. A disadvantage of the second representation is that the equivalence

class representing a multiset will be a proper class. We will sidestep this prob-

lem by stipulating that the item set I will always be a cardinal. Our second

representation will be the basis of the functor � introduced in Section 3.1.

Up to this point we have been looking at multisets as inert objects. Unless

we have some relations between them and some operations on them, they do

not truly qualify as �rst class citizens of the realm of mathematics. Let's ask

ourselves: what are the proper morphisms on mulitsets? Re
ecting on our

second presentation, we quickly arrive at the following proposal: a morphism

� from the D-multiset � to the E-multiset � is a function from D to E, a

translation of types, such that we can �nd f : I ! D, representing �, g : J ! E,

representing �, and an injection h : I ! J with g � h = � � f . The basic idea in

our choice of h is that morphisms preserve items.

Let's translate our de�nition of morphism to the terms of our �rst set-

theoretic representation. � is a morphism from � considered as a partial function

from D to Card+ to � considered as a partial function from E to Card+ if, for

all e 2 E,
P

�(d)=e �(d) � �(e). (Here we treat `unde�ned' as if it were zero

and we treat the empty sum as zero/unde�ned.)

Upon re
ection, we see that our morphisms have a natural factorization. We

can split � into the `image'-mapping from � to �[�], where �[�] is given as the

function on E with �[�](e) :=
P

�(d)=e �(d), and an extension mapping from

�[�] to �. Extension mappings simply increase the cardinalities of the elements

of a multiset. The image mapping will play a major role in this paper: it will

take the form of the functor �.

We could view morphisms as follows. A multiset is an infon representing

how many items of certain types are in a certain store. (We could choose e.g.

between saying that it represents how many items there are precisely and how

many elements there are at least.) The image mapping corresponds to `retyping'.

E.g. � could map apple, pear, banana, and kiwi to fruit. The image of our sample

multiset is now:

[[ fruit; fruit; fruit; fruit; fruit; fruit ]] :

In other words, given that there are (precisely/at least) 3 apples, 2 pears and 1

banana in store and given that apples, pears, bananas and kiwis are fruits, then

there are (precisely/at least) 6 fruits in store. The extension mappings could

correspond to real extensions of the store, in case of the `precisely' variant of

our interpretation, or to epistemic extensions, in case of the `at least' variant:

we learn that there are more items than we originally knew.

The de�nition of morphism on the cardinality representation has a surprising

aspect. Shouldn't the morphisms simply have been de�ned as follows?

� is a morphism from � considered as a partial function from D to

Card+ to � considered as a partial function from E to Card+ if, for

all d 2 D, �(d) � �(�(d)).

Why did we get the sum in the de�nition? The reason is our implicit treatement
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of the types as exclusive: an item witnessing the presence of an apple cannot

at the same time witness the presence of a pear. If we switch to possibly

overlapping types, we will get the second notion of morphism. We will look at

our multisets as follows. They are pieces of information or infons concerning a

store to the e�ect that there are at least so many items of this, so many items

of that, . . . . It is essential for our present interpretation that the information

is open-ended: there could turn out to be more of each kind. E.g. our types

could have been apple and rotten. The grocery store could have been described

by [[apple; apple; rotten; rotten]] . This means that there are at least two apples

and at least two rotten things. The description could be taken to be compatible

with there being three items in store: two apples, of which one rotten, and a

rotten pear.

What about morphisms? If we would have a function � sending both apple

and rotten to fruit, we can view it as the information that both apples and

rotten things are fruits. The �-image of [[apple; apple; rotten; rotten]] will be

[[fruit; fruit]] , since we learn from the `information' � that there are at least two

fruits. However, there is also a morphism � : [[apple; apple; rotten; rotten]] !

[[fruit; fruit; fruit]] , since, via � and `extension', our information could grow to

the knowledge that there are at least three fruits in store.

It is clear that as before we could split our morphisms into two stages. There

is a new image-mapping de�ned by �[�](e) := supf�(d) j�(d) = eg. Extension

mappings are as before. This alternative image mapping will lead to our func-

tor �. We discover here our second Platonic idea of multiset: multisets with

overlapping types.

Can we �nd a third representation, in the style of the second representation,

that models the possibility of overlapping types? Here is one way to do it. A

representation of a multiset on D is a binary relation r (modeled as a set of

pairs) such that dom(r) � D. Two representations r and s of multisets on D

are the same if there is a bijection h between r and s considered as sets of pairs,

such that �1 � h = �1. (Here �1(d; i) = d.)

A morphism � from the D-multiset � to the E-multiset � is a function from

D to E, such that we can �nd r, representing �, and s, representing �, and a

function h : r ! s such that �2 and h are jointly injective and �2 � h = � � �2.

(The functions p and q on P are jointly injective if �x2P � (px; qx) is injective.)

It is easy to see that we did indeed de�ne a category and that our earlier notion

of sameness coincides with isomorphism in this category.

Our third representation has again the disadvantage that the equivalence

classes are proper classes. We will sidestep this problem by working with stan-

dard representatives. This modi�ed version of the third representation will lead

to the uniform form of the functor � introduced in Section 3.2. It is easy to see

that our third representation yields precisely our second notion of morphism if

switch back to the cardinal representation.
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1.2 Iterated and Circular Multisets

As in the case of ordinary sets we want to represent iterated multisets, where

multisets contain (various occurrences) of other multisets. In this case the do-

main D is made of multisets. By epsilon recursion it is easy to de�ne the class

of wellfounded multisets, but here we are interested in circular situations, like in

non- wellfounded set theory: we want to have the possibility for a multiset x to

be a member of itself, repeated any number of times, i.e. we want to guarantee

the existence of multisets satisfying equations like x = [[x; x]] .

Circular multisets can be modeled using the theory of coalgebras. In the

simpler case of sets, the AFA-universe is described as a �nal coalgebra for

the powerset functor Pow. This functor sends a class A to the class Pow(A)

of all subsets of A and a class-function f : A ! B to the class-function

Pow(f) : Pow(A) ! Pow(B), which sends a subset A0 of A to its image via

f : Pow(f)(A0) = ffx : x 2 A
0g. Analogously, we need a multiset functor to

describe the multiset universe. This functor F should send a class A to the

class F(A) of all A-multisets (represented using one of the various possibili-

ties we gave in the introduction), and a function f : A ! B to a function

F(f) : F(A)! F(B). Hence, if � 2 F(A) is the representation of an A-multiset,

we should de�ne a B-multiset � = F(f)(�) 2 F(B), representing the action of

the class-function f on the multiset �. It is quite clear that � must contain

elements of type fa with a 2 A, but what about multiplicity? The discussion

made in the preceding section leads to two di�erent Platonic ideas of this action.

The �rst one arises by considering our types as exclusive, or non-overlapping,

and gives m�(b) =
P

f(x)=bm�(x). On the other hand, if we follow the idea of

overlapping types we get m�(b) = supfm�(x) : f(x) = bg. We use the eclusive

types idea in Section 3.1 to de�ne the multiset functor �, while the overlapping

types idea suggests in Section 3.2 a di�erent functor, which we denote by �.

Suppose for example that A = fx; yg and f sends both x; y to z; if � = [[x; x; y]]

then �(f)(�) = [[z; z; z]] , while �(f)(�) = [[z; z]] . We can then apply the gen-

eral theory of coalgebras to the functors � and �, obtaining a de�nition of

�-coalgebra and �-coalgebra, of �- and �-bisimulation, of �- and �-collapse,

and prove the existence of a �-�nal coalgebra and a �-�nal coalgebra. We then

use these two �nal coalgebras to de�ne two non-isomorphic multiset universe:

the � and �-multiuniverses. The di�erence between these two multiuniverses

can be already appreciated at the level of simple (uni-)sets (i.e. the multisets

containing hereditarely at most one occurrence of each element): the unisets

inside the �-universe are a model of the well-known non-wellfounded set the-

ory ZFC� + AFA (Zermelo-Fraenkel with choice, with foundation replaced with

the anti-foundation axiom AFA), while the unisets inside the �-universe are a

model of ZFC� + Scott. This kind of sets was �rst proposed by Scott in [7]

and later reconsidered by Aczel in [1]. Using the notion of Scott-bisimulation,

Aczel compared the theory ZFC� + Scott with ZFC� + AFA. Both were ob-

tained from ZFC� (Zermelo-Fraenkel with choice, without foundation) by using

a strengthening of the extensionality axiom, de�ned in terms of bisimulation:

the maximal bisimulation for ZFC� + AFA, Scott-bisimulation for ZFC� + Scott.
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In this confrontation, the Scott-sets seemed to be less natural and manageable

than the AFA-sets (e.g. in ZFC�AFA any graph has a unique decoration, while

in ZFC� + Scott graphs can have more than one decoration; in ZFC�AFA any

set can be represented by a collapsed graph, while a similar notion of collapse

is not available in ZFC� + Scott).

In this work we claim that the natural context of the Scott-bisimulation is

the multiset-context (de�ned via the �-operator above). We show that Scott-

bisimulation (in its generalization to multigraphs) corresponds precisely to �-

bisimulation. Hence, by moving from the set to the multiset context we acquire

the possibility of working with coalgebras having a natural notion of collapse,

decoration, and so on, which were missed in the set-context.

Using the general theory of coalgebras we see that the �-multiuniverse can

be modeled using the class of pointed �-collapsed multigraphs or, in categorical

terms, by using a �nal �-coalgebra. In the case of the �-multiuniverse we

prove that another description is possible which is not generally available using

the theory of coalgebras: �-multisets correspond exactly to rooted trees. A

categorical description of rooted trees in the category of rooted coalgebras is

then given by using the notion of projective �-coalgebra.

We continue our investigation of the �- and �-multiuniverses with a descrip-

tion of multisets by way of logics. In this context the �-multiuniverse appears to

be more natural, since the corresponding logic is a fragment of the well-known

and much used logic of graded modalities.

Finally, we turn to the problem of enriching the structure of our multiuni-

verses. We proceed by introducing singleton and unary unions, using the cate-

gorical notion of monad. In the case of the functor � the corresponding Kleisli

category allows to de�ne a product of coalgebras having the same domain, and

this product is shown to be representable by matrix multiplication.

1.3 Organization of the Paper

This paper is organized as follows. In Section 2 we give some notation concerning

multigraphs and review the fundamentals of the theory of coalgebras, which are

used throughout the paper. In Section 3.1 we introduce a multiset functor

�, working out the results we can obtain by applying the general theory of

coalgebras. In this way we are able to introduce our �rst multiuniverse, the

one of exclusive types. Section 3.2 deals with the de�nition and properties of

the functor � of overlapping types and of the corresponding �-multiuniverse.

We then return to exclusive types, and in Section 4 we study the special role

of rooted trees inside the category of �-coalgebras and morphisms. In Section

5 we deal with the identi�cation of multisets with formulae of in�nitary logics

and �nally, in Section 6 we enrich the structure of our multiuniverses by using

monads.
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2 Prerequisites

To understand the paper the reader is supposed to be familiar with the theory

of coalgebras. For an introduction to the subject see e.g. [6]. In the following

we brie
y review some of the necessary materials from [1],[3], and [6].

2.1 Coalgebras and Morphisms

In this paper we largely use the theory of coalgebras. A primary example of

coalgebra is given by considering the functor Pow on the category of classes and

functions. We start by brie
y discussing this example and its relations with

non-wellfounded sets.

2.1.1 A Prototype: Pow

Let C be the category of classes and class-functions between them. For the mo-

ment we assume only that our universe satis�es ZFC�, that is, Zermelo Fraenkel

Set Theory with choice and without foundation. The powerset operator Pow

can be turned into a functor from C to C by de�ning it on a class A as:

Pow(A) = fx : x is a set and x � Ag;

and on a function f : A! B as the function Pow(f) : Pow(A)! Pow(B) which

assigns to every x � A the following subset of B: Pow(f)(x) = ff(y) : y 2 xg.

We also use the simpler notation f [x] for Pow(f)(x).

Consider now a directed graph G. When possible, we would like to associate

to G a decoration with sets, that is, a function d from the nodes of the graph

to sets such that if v is a node then d(v) = fd(v0) : hv; v0i is an edge of Gg.

Depending on the set theory under consideration the class of graphs having a

decoration can change, and a graph can have zero, one, or various decorations.

For example, under foundation any graph has at most one decoration, and

wellfounded graphs have exactly one, while a version of the well-known anti-

foundation axiom AFA just says that any graph has a unique decoration. These

di�erences between the various set theories can also be expressed categorically

as follows. Directed graphs (possibly with class domains) can be identi�ed with

coalgebras of the functor Pow, that is, with pairs hA; ei consisting of a class A

and a function e : A ! Pow(A) (in this identi�cation, the set e(a) corresponds

to fa0 : ha; a0i is an edge of Gg). Coalgebras are the objects of a new category

CoalPow, having as maps coalgebra morphisms, where a function f : A ! A
0

is a morphism between the coalgebras hA; ei; hA0; e0i i� the following diagram
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commutes:

A Pow(A)

A

0 Pow(A0)

-e

?

f

?

Pow(f)

-e
0

We also consider the category Alg
Pow

, whose objects are pairs hA; ei with

e : Pow(A) ! A and whose maps are the algebra morphisms, i.e. functions

f : A! A
0 for which the following diagram commutes:

Pow(A) A

Pow(A0) A

0

-e

?

Pow(f)

?

f

-e
0

Notice that if V denotes the universe of all sets, then V = Pow(V), so that the

pair (V; id) is a Pow-coalgebra, where id is the identity function. The categorical

description of the set theories above is then given by the following equivalences:

� V is a model of ZFC, hV; idi is an initial object in the category Alg
Pow

,

� V is a model of ZFC� + AFA , hV; idi is a �nal object in the category

CoalPow.

2.1.2 Scott's Sets.

In [7] a model of ZFC� is constructed using rooted irredundant trees modulo

isomorphism, where a tree T is irredundant if it has no proper automorphism,

or, equivalently: for all u 2 T , u0; v0 2 Succ(u), if hT ; u0i is isomorphic to

hT ; v0i then u0 = v
0. The rooted irredundant trees modulo isomorphism are also

a model for the Scott-axiom, which roughly says that a rooted tree is isomorphic

to the unraveling of a set i� it is irredundant. This axiom is compared with the

AFA-axiom in [1]. First, the de�nition of Scott-bisimulation is given: two rooted

Pow-coalgebras hA; ai, hA0
; a

0i are said to be Scott-bisimilar if their unravelings

are isomorphic (for a de�nition of unraveling see Section 4.2), and a coalgebra

is said to be Scott-extensional if two di�erent nodes in the coalgebra are never

Scott-bisimilar. A pointed coalgebra hA; ai is said to be an exact picture of

a set if there exists an injective morphism from hA; ai to the coalgebra hV; idi.

Using these notions one can give a categorical formulation of the Scott-axiom:

� V is a model of ZFC� + Scott, the exact pictures are exactly the Scott-

extensional pointed coalgebras.
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A consequence is that using ZFC� + Scott as underlying set theory we loose the

�nality of the coalgebra hV; idi: it is still true that for any coalgebra A there

exists a morphism from A to hV; idi, but unicity is lost. In Section 3.1 we will

see that the Scott-axiom has a natural interpretation in the context of multisets,

where the �nality of the (multi-)universe can be regained.

2.1.3 Coalgebraic Theory

The above example using the functor Pow can be generalized by considering a

generic endofunctor F on the category C of classes and class functions. The

resulting general theory of coalgebras has been extensively used in Theoretical

Computer Science: coalgebras are used to model automata and transition or

dynamical systems, or, in the semantics of programs, �nal coalgebras have been

used to deal with in�nite data types (see e.g. [6] for useful examples).

If F is an endofunctor of C (that is, a functor from C to C), then a coalgebra

A is a pair hA; ei where A is a class and e is a class-function from A to F (A) (we

sometimes specify it by giving a function e : A ! F (A) and use the subscript

notation ea instead of e(a)). The coalgebra A is small if the domain A is a

set. Notice that F (A) might still be a proper class. A morphism between two

coalgebras A = hA; ei and A0 = hA0; e0i is a class-function f from A to A0 such

that the diagram on the right below is commutative.

A F (A)

A

0
F (A0)

-e

?

f

?

F (f)

-e
0

An isomorphism of coalgebras in a bijective morphism for which the inverse

is also a morphism. One can show that a bijective morphism is always an

isomorphism. If hA0; e0i, hA; ei are coalgebras with A
0 � A, then hA0; e0i is a

sub-coalgebra of hA; ei if the injection inj : A0 ! A is a morphism.

Coalgebras and coalgebra-morphisms form a category that we denote by

CoalF . A coalgebra P is �nal if it is a terminal object in the category CoalF ,

i.e. if for any coalgebra A there exists a unique morphism from A to P .

A relation Z � A�A0 is an F -bisimulation between coalgebras A = hA; ei,

A0 = (A0; e0) if there exists a coalgebra (Z; z) with domain Z for which the

projections �1 : Z ! A; �2 : Z ! B are morphisms (this notion generalizes the

classical notion of bisimulation between graphs, which is obtained for F = Pow).

An F -bisimulation of a coalgebra A is de�ned as an F -bisimulation between A

and itself. Since F -bisimulations are closed under unions, in any coalgebra A

the relation �A= [fZ : Z is an F -bis. on Ag is the maximal F -bisimulation

on A. The relation �A is an equivalence relation on A. A pointed coalgebra

is a pair hA; ai, where A = hA; ei is a coalgebra and a 2 A. A morphism of

pointed coalgebras hA; ai, hA0
; a

0i is a morphism f from A to A0 with f(a) = a
0.
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An F -bisimulation of pointed coalgebras hA; ai, hA0
; a

0i is an F -bisimulation of

A;A0 such that ha; a0i 2 Z. The collapse A = hA; ei of a small F -coalgebra

A = hA; ei is de�ned as follows. Its domain A is the set of the equivalence

classes of A modulo the maximal F -bisimulation on A. The class-function e is

de�ned by e([a]) = F (�)(e(a)), where � is the canonical projection from A to

A
�. One can show that e is well-de�ned on A and the projection � is a surjective

morphism.

All the above properties hold for a generic endofunctor F . However, there are

useful statements like: there exists a �nal coalgebra, the kernel of a morphism

is a bisimulation equivalence, the composition of two bisimulations is again a

bisimulation, and the greatest �xed point of F is a �nal coalgebra, which cannot

be proved without assuming additional properties of the endofunctor F .

2.1.4 Four Important Properties

A functor F is set-based if for all classes C and all a 2 F (C), there is some

set c � C and some a0 2 F (c) such that a = (Fi)a0, where i is the inclusion of

c in C. It is possible to prove that any set-based functor has a �nal coalgebra

(see [2]).

A functor F is standard, if whenever f : A ! B is an inclusion, then

F (f) : F (A) ! F (B) is also an inclusion. If a functor F is standard then it

is monotone as an operator on classes and hence it has a greatest �xed point

F
�. Since F (F �) = F

�, the pair F� = (F �
; id) is a coalgebra, where id is the

identity function on F �. We call it the greatest �xed point coalgebra (g.f.p.

coalgebra, for short).

The third property we mention here regards the preservation of certain com-

mutative diagrams. A commutative diagram

A B

C D

-f

?
u

?
v

-g

is a weak pullback square if whenever we have two functions i : X ! B,

j : X ! C with v � i = g � j, there exists a (not necessarily unique) function

l : X ! A with u � l = j, f � l = i. Under the axiom of choice, this is equivalent

to: for any b 2 B and c 2 C such that v(b) = g(c), we can �nd an a 2 A with

f(a) = b; u(a) = c.

A functor F preserves weak pullbacks if the image of every weak pullback

11



square is itself a weak pullback square:

:

F (A) F (B)

F (C) F (D)

-F (f)

?

F (u)

?

F (v)

-F (g)

Standardness, set-basedness, and preservation of weak pullbacks represent

the minimal properties we require of a functor F to have a well-behaved coal-

gebraic theory. Functors satisfying these properties are called well-behaved in

the following; well-behaved functors have �nal coalgebras and F -bisimulation,

morphisms, and �nal maps are related as follows.

Proposition 2.1 If F is a standard, set based functor that preserves weak pull-

backs, then the following hold.

1. If f : hA1; e1i ! hA; ei, g : hA2; e2i ! hA; ei are morphisms then the

pullback of f and g, that is, the relation P = fha; bi 2 A1 � A2 : f(a) =

g(b)g is an F -bisimulation between hA1; e1i and hA2; e2i. In particular, if

f is a morphism from hA; ei to hA0; e0i, then the kernel of f , that is, the

relation R = fha; bi 2 A � A : f(a) = f(b)g, is an F -bisimulation of the

coalgebra hA; ei. Conversely, any bisimulation equivalence is the kernel of

a morphism.

2. Final coalgebras exist in CoalF . If P is a �nal coalgebra, A is a coalgebra,

and s : A ! P is the unique morphism from A to P, then for all a; a0 2 A

it holds

a �A a

0 , s(a) = s(a0):

In particular, the maximal bisimulation on a �nal coalgebra P is the diag-

onal �P = fha; ai : a 2 Pg.

One can easily see that if P = (P; �) is �nal then � is an isomorphism

between P and F (P). We would like to strengthen this property by asking

that the map � is the identity map, as it is the case in the greatest �xed

point coalgebra hF �
; idi, because this would greatly simplify calculations with

the elements of the �nal coalgebra. Unfortunately, there exist well-behaved

functors for which the greatest �xed point coalgebra is not a �nal coalgebra.

This is the reason we look for another property implying the �nality of hF �
; idi.

To describe this property we need to construct a universe of sets on top of a class

of indeterminates X , i.e. a universe in which the elements of X are considered

as atoms. This can be done by considering the functor Pow(X +�), sending a

class A to the class Pow(X +A), where X +A is the disjoint union of X and A

(which we represent by X + A = f0g �X [ f1g � A). We denote the greatest

12



�xed point of Pow(X +�) by VX . Given a function f : X ! V, there exists a

unique function f̂ : VX ! V such that, for every v 2 VX ,

f̂(v) = ff(x) : hh0; xi 2 vg [ ff̂(v0) : h1; v0i 2 vg:

In other words, the function f̂ is obtained by shifting f inside v as long as

one reaches an atom in X . This can be proved by recursion in ZFC, while in

ZFC� + AFA it is known as the Substitution Lemma (see [1]).

De�nition 2.2 A functor F is uniform on maps (see [1, 9]) if for every class

A there exists a map �A : F (A) ! VA such that for every function f : A ! V

the following diagram commutes:

:

F (A) VA

F (V) V

-�A

?

F (f)

?

f̂

-�

where � denotes the injection of F (V) into V.

Working in ZFC� + AFA it is possible to prove that if F is uniform on maps

then hF �
; idi is a �nal coalgebra.

In order to compare coalgebras of di�erent functors we use natural transfor-

mations. A natural transformation � from F to G consists of a family of func-

tions f�AgA2C where �A : F (A)! G(A), such that, for any function f : A! B,

the following diagram is commutative.

F (A) F (B)

G(A) G(B)

-F (f)

?

�A

?

�B

-G(f)

The natural transformation � induces a map from the F -coalgebras to the G-

coalgebras that preserves bisimulation. This function sends the F -coalgebra

A = hA; ei to the G-coalgebra �(Ai = hA; �A � ei; it is easy to see that an

F -bisimulation Z on A is a G-bisimulation of �(A) (see [6]). If � is a natural

isomorphism (that is, every �A is a bijection), the converse is also true and

moreover:

Proposition 2.3 Suppose F;G are standard, set based functors that preserve

weak pullbacks and suppose � is natural isomorphism from F to G. Then �

induces a functor (still denoted by �) between the category CoalF of F -coalgebras

and the category of CoalG of G-coalgebras, which is faithful on bisimulation and

�nal coalgebra.
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2.2 Multigraphs and Multigraph Notation

In this paper, a multigraph is like a directed graph, but we allow a pair of

nodes to be linked by more than one arrow. Formally, a multigraph can be

described as a pair hA; �i where A is a set and � is a partial multiplicity function

� : A�A! Card+. If a 2 A we denote by Succ(a) the set fb 2 A : �(a; b) � 1g.

A pointed multigraph is a pair hA; ai, where A = hA; �i is a multigraph and

a 2 A. A pointed multigraph hA; ai is rooted if for each a0 2 A there exists a

�nite sequence a0 = a; : : : ; an = a
0 with ai+1 2 Succ(ai), for all i = 1; : : : ; n� 1.

In this paper we consider two di�erent notions of multigraph homomor-

phisms, the sup- and sum-homomorphisms. A sup-homomorphism between

multigraphs hA; �i and hA0; �0i is a function f : A! A
0 with �(a; b) � �

0(fa; fb),

where " is to be considered smaller that any positive cardinals. We use this

convention throughout the paper. Equivalently, a sup-homomorphism is a

function f such that if a; b 2 A then supf�(a; c) : fc = fbg � �
0(fa; fb).

A sum-homomorphism between multigraphs hA; �i and hA0; �0i is a function

f : A! A
0 with

P
fc=fb �(a; c) � �

0(fa; fb). An isomorphism between hA; �i

and hA0; �0i is a bijective function f : A ! A
0 with �(a; b) = �

0(fa; fb). It is

easy to see that our isomorphisms are both precisely the isomorphisms of the

sup-category and precisely the isomorphisms of the sum-category. A multigraph

hA; �i is represented by a picture where nodes a; b 2 A are linked with �(a; b)

arrows (counting " as zero). A morphism (isomorphism) of the pointed coal-

gebras hA; ai, hA0
; a

0i is a morphism (isomorphism) f between the multigraphs

A;A0 with f(a) = a
0.

3 Multisets of Exclusive and Overlapping Types

In this section we apply the general theory of coalgebras to present our universes

of circular multisets. The idea is to de�ne two di�erent well-behaved functors

which can be used to model, via their greatest �xed point coalgebra, the non-

wellfounded multisets of exclusive and overlapping types described in the intro-

duction. This requires a de�nition of the functors on class and class-functions.

We shall see that the simpler de�nition that comes to mind for de�ning the

functors on objects is not adequate, because the g.f.p. coalgebra is not a �nal

coalgebra. To solve the problem, we use more elaborated de�nitions on objects,

so that the resulting functors are well-behaved and uniform on maps. This will

imply the �nality of the g.f.p. coalgebras for both functors.

Once our universes of multisets are correctly de�ned, we look at the unisets

inside the two multiuniverses, that is, at those multisets that hereditarily contain

only elements with at most multiplicity one. We will easily prove in Section 3.2

that the unisets inside the multiuniverse of overlapping types are AFA-sets.

The same question for the multiuniverse of exclusive types is postponed until

Section 4, where an anwer is obtained as a corollary of a deeper study on the

role of trees inside the category of �-coalgebras. By using trees we prove that

the unisets inside the multiuniverse of exclusive types are Scott's sets.
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3.1 Multisets and Sums

We �rst construct a multiuniverse based on the idea of exclusive types: a func-

tion f : A ! B transforms an A-multiset � in a B-multiset f [�], where the

multiplicity of an element y = fx in f [�] is the sum of all the multiplicities

in A of the elements in f�1(y). E.g. if A = fa; bg; B = fcg; f(a) = f(b) = c,

and � = [[a; a; b]] , then f [�] = [[c; c; c]] . Following this idea, we de�ne an end-

ofunctor �� on the category C of classes and class-functions: for each class A,
��(A) represents the class of all A-multisets and for each function f : A ! B,
��(f)(�) is the B-multiset f [�] as above. The natural choice for representing

the A-multisets is to consider ��(A) as the class of all partial functions from A

to positive cardinals.

De�nition 3.1 The ��-functor

Let C be the category of classes and class-functions. The endofunctor �� on C is

de�ned as follows.

� if A 2 C, then

��(A) := f� : � is a small function; dom(�) � A; range(�) � Card+g:

� If f : A! B, then ��(f) : ��(A)! ��(B) is de�ned by

��(f)(�) := fhfx;
X

fx0=fx

�(x0)i : x 2 dom(�)g;

(with the convention that an empty sum counts as " and that "+ k = k,

for any positive cardinal k).

Notice that the notion of a small ��-coalgebra can be identi�ed with that of a

multigraph: the multigraph corresponding to the ��-coalgebra e : A! ��(A) has

the same domain A and multiplicity function equal to �(a; a0) := ea(a
0). In view

of this correspondence, when considering a ��-coalgebra we will use indi�erently

the coalgebraic or the multigraph notation.

A function h : A ! A
0 is a ��-morphism between the small ��-coalgebras

hA; ei and hA0; e0i i� (using the multigraph notation): �0(ha; hb) =
P
f�(a; b0) :

h(b0) = h(b)g. By comparing the notion of coalgebraic morphism with the one

of homomorphism between multigraphs we see that coalgebraic morphisms are

the sum-multigraph homomorphisms for which the value of �0(ha; hb) is the

smallest possible. Notice that the classes of ��-isomorphisms and multigraph

isomorphisms coincide.

It is possible to prove that the functor �� is well-behaved and hence it has, up

to a certain point, a good coalgebraic theory. However, its greatest �xed point

coalgebra is not a �nal coalgebra, as the following example shows.

Example. Consider the following ��-coalgebra A (represented by drawning

the corresponding multigraph):
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We prove (assuming AFA) that there are two di�erent morphisms from A to

h���; idi. The �rst is given by considering an AFA set 
 such that 
 = fh
; 2ig.

One can easily check that 
 2 ��� and that we get a morphism � : A ! h���; idi

by de�ning �(a) = �(b) = 
. The second morphism is given by considering

two AFA-sets �; � with � = fh�; 2ig and � = fh�; 1i; h�; 1ig. It is then clear

that � 6= � and �; � 2 ���. We get a morphism  : A ! h���; idi by putting

 (a) = �;  (b) = �. Notice that � 6=  .

The above example shows that using ��(A) we are not allowed to view non-

wellfounded multisets as elements of the greatest �xed point coalgebra of ��,

although we can look at them as elements of a �nal coalgebra. We can solve

this inconvenience by choosing a di�erent representation of A-multisets, given

by a functor �, wich is naturally isomorphic to ��, but which is uniform on maps.

The natural isomorphism between � and �� provides a bijective correspondence

between �-coalgebras and ��-coalgebras that preserves bisimulation and �nal

coalgebras. Moreover, since � is uniform on maps, the g.f.p. coalgebra h��; idi

is �nal and we can represent non-wellfounded multisets using its elements. By

moving from �� to � we maintain all good properties of ��, but we also acquire

the possibility of working with the greatest �xed point coalgebra instead that

with a generic �nal coalgebra.

It turns out to be convenient to introduce an auxiliary functor �0 before we

give �. The elements of �(A) will be equivalence classes of elements of �0(A).

We will see that �0-coalgebras are quite useful in studying �-coalgebras. We

take �0(A) to be the set of numbered multisets of elements of A. This means two

things: (i) we do not yet abstract away from the individuality of the underlying

items of the multisets and (ii) we `normalize' the item sets to cardinals. The

second move is just a convenient trick to make sure that the equivalence classes

leading to � will be sets. Here is the de�nition of �0.

De�nition 3.2 The �0-multiset functor

Let C be the category of classes and class functions. The endofunctor �0 on C

is de�ned by:

� if A 2 C then �0(A) = fl : l is a function; dom(l) 2 Card; range(l) � Ag;

� if f : A ! B, then �0(f) from �0(A) to �0(B) is de�ned by �0(f)(l) :=

f � l:
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We call the coalgebras of �0 numbered multigraphs, and denote them with

letters A;A0;B. . . . By de�nition, a �0-morphism between �0-coalgebras A =

hA; ei and A0 = hA0; e0i is a function h : A! A
0 such that e0ha = h � ea.

In order to go from numbered A-multisets to A-multisets, we consider an

equivalence relation on �0 whose classes are de�ned as follows: if l 2 �0, then

[l] = fl0 2 Adom(l) : there exists a permutation p on dom(l) with l0 = l � pg:

In this way we abstract away from the individuality of the underlying items of

the multisets: the only relevant information left is how many items of a certain

types belongs to the given multiset.

De�nition 3.3 The �-multiset functor

Let C be the category of classes and class functions. The endofunctor � on C is

de�ned by:

� if A 2 C, then �(A) = f[l] : l 2 �0(A)g;

� if f : A! B, then �(f) : �(A)! �(B) is de�ned by �(f)([l]) := [f � l]:

Notice that the de�nition of � on functions does not depend on the representa-

tive l of the A-multiset [l], and that the multiplicity m�(f)([l])(fx) of fx as an

element of the B-multiset �(f)([l]) is given by
P

fx0=fxm[l](x
0). Hence the def-

inition of the operator � on functions corresponds to the idea presented in the

introduction that the action of a function on a multiset is obtained by summing

the multiplicity of all elements having the same image.

There exists a natural transformation [�] from �0 to � sending l 2 �0(A) to

[l] 2 �A. This natural transformation yields a functor |par abus de langage

again [�]| from numbered multigraphs to multigraphs.

�-coalgebras are denoted with the letters A;A0
;B : : :. Given a �0-coalgebra

A = hA; ei we can consider the corresponding unnumbered version, which is a

�-coalgebra and is denoted by [A]:

[A] = hA; [e]i;

where [e](a) = [e(a)], for all a 2 A. If h : A ! B is a �0-morphism from the

�0-coalgebra A = hA; ei to B = hB; fi, then it is easily seen that h is also a

�-morphism between [A] and [B]. The converse is not generally true, but it is

possible to tune the �0-coalgebra A so that h becomes a �0-morphism as well.

This is stated in the following lemma, which will be used to transfer results from

the category of �0-coalgebras to the category of �-coalgebras.

Lemma 3.4 Let A = hA; ei and B = hB; fi be �0-coalgebras. If h is a �-

morphism between [A] and [B], then there exists a �0-coalgebra C with [C] = [A]

such that h is a �0-morphism between C and B.

Proof.

Since h is a �-morphism we know that [fha] = [h � ea]: For any a 2 A, �x a
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permuatation pa on dom(fha) = dom(ea) such that fha = h � ea � pa. Then the

�0-coalgebra C = hA; e ? pi, where (e ? p)(a) = ea � pa, is such that [C] = [A].

From fha = h � ea � pa, we see that the function h is a �0-morphism between C

and B. 2

To apply the general theory of coalgebras to our functors �0 and � we prove

that they are well-behaved functors:

Lemma 3.5 The endofunctors �0 and � are standard, set-based, preserve weak-

pullbacks, and are uniform on maps.

Proof.

We only prove that �0;� preserve weak pullbacks, leaving the rest to the reader.

Consider �rst �0. Suppose we have a weak pullback

A B �0(A) �0(B)

C D To prove that �0(C) �0(D)

-f

?

u

?

v

-�0(f)

?

�0(u)

?

�0(v)

-g -�0(g)

is also a weak pullback, suppose that �; 
 are such that �0(v)(�) = �0(g)(
),

where � 2 �0(B) and 
 2 �0(C). In particular, dom(�) = dom(
). We have to

�nd a � 2 �0(A) with �0(f)(�) = � and �0(u)(�) = 
. This can be done as

follows. Fix a d 2 D. Since the �rst diagram is a weak pullback square, by the

axiom of choice for any pair hb; ci 2 v
�1(d) � g

�1(d) we can select an element

ab;c 2 A with f(ab;c) = b; u(ab;c) = c. Since �0(v)(�) = �0(g)(
), we have

h�(k); 
(k)i 2 v�1(d)�g�1(d), for d = v(�(k)) = u(
(k)). De�ne �(k) = a�k;
k.

Then �0(f)(�)(k) = f ��(k) = f(a�k;
k) = �k, while �0(u)(�)(k) = u ��(k) =

u(a�k;
k) = 
k.

Consider now the corresponding diagram for � and suppose that [�]; [
] are

such that �(v)[�] = �(g)[
], where � 2 �0(B) and 
 2 �0(C). It follows that

[v��] = [g�
] and hence that, for some permutation p of dom(�), v���p = g�
.

Let �0 := � � p. We �nd: �0(v)(�
0) = �0(g)(
). By our previous result,

there is an � 2 �0(A) such that �0(f)(�) = �
0 and �0(u)(�) = 
. Then

�(f)[�] = [�0] = [�] and �(u)[�] = [
]. 2

Since the functor � is uniform on maps, the coalgebra h��; idi is a �nal

coalgebra. We can then consider �� as the domain of a multiuniverse of exclusive

types (or �-multiuniverse), with relations 2k de�ned by: x 2k y i� jl
�1(x)j � k

for a function l with y = [l]. We can de�ne the �-unisets as the �-multisets

x such that whenever we have a descending sequence of multi-memberships

xn 2kn xn�1 2kn�1 : : : x1 2k1 x, then kn = kn�1 = : : : = k1 = 1. In Section 4

we shall investigate this new multiuniverse and prove that the unisets inside it

are, modulo isomorphism, the standard model of the Scott-universe. This will

justify the new name of Scott-multisets for �-multisets.
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3.2 Multisets and Sups

We now present our second universe of circular multisets, taking the overlapping

types point of view: a function f : A ! B transforms an A-multiset � in a B-

multiset f [�], where the multiplicity of an element y = fx in f [�] is the sup of

all the multiplicities in A of the elements in f
�1(y). E.g. if A = fa; bg; B =

fcg; f(a) = f(b) = c, and � = [[a; a; b]] , then f [�] = [[c; c]] . Following this idea,

we de�ne an endofunctor �� on the category C of classes and class-functions: for

each class A, ��(A) represents the class of all A-multisets and for each function

f : A! B, ��(f)(�) is the B-multiset f [�] as above.

De�nition 3.6 The ��-functor

Let C be the category of classes and class-functions. The endofunctor �� on C is

de�ned as follows.

� if A 2 C, then

��(A) := f� : � is a small function; dom(�) � A; range(�) � Card+g:

� If f : A! B, then ��(f) : ��(A)! ��(B) is de�ned by

��(f)(�) := fhfx; supf�(x0) : fx0 = fxgi : x 2 dom(�)g;

(with the convention that " is smaller than any positive cardinal k).

Notice that the notion of a small ��-coalgebra can be identi�ed with that

of a multigraph: the multigraph corresponding to the ��-coalgebra e : A !
��(A) has the same domain A and multiplicity function equal to �(a; a0) :=

ea(a
0). In view of this correspondence, when considering a ��-coalgebra we

will use indi�erently the coalgebraic or the multigraph notation. A function

h : A! A
0 is a ��-morphism between the small ��-coalgebras hA; ei and hA0; e0i

i� (using the multigraph notation): �0(ha; hb) = supf�(a; b0) : h(b0) = h(b)g.

Hence coalgebraic morphisms are the sup-multigraph homomorphisms for which

the value of �0(ha; hb) is the smallest possible. Notice that the classes of ��-

isomorphisms and multigraph isomorphisms coincide.

To de�ne ��(A) we used the natural representation of A-multisets as func-

tions from A to Card+, but as in the case of exclusive types we can prove that

the g.f.p. coalgebra of �� is not �nal:

Example. Consider the following ��-coalgebra A (represented by drawning

the corresponding multigraph):

'

&

$
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-
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�
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Assuming AFA we can prove that there are two di�erent morphisms from A

to h ���
; idi. The �rst is given by considering an AFA set 
 such that 
 = fh
; 2ig.

One can easily check that 
 2 ��� and that we get a morphism � : A ! ��� by

de�ning �(a) = �(b) = 
. The second morphism is given by considering two

AFA-sets �; � with � = fh�; 2ig and � = fh�; 2i; h�; 1ig. It is then clear that

� 6= � and hence that �; � 2 ���. We get a morphism  : A ! h ���
; idi by

putting  (a) = �;  (b) = �. Notice that � 6=  .

Hence, using �� we are not allowed to view non-wellfounded multisets as

elements of the greatest �xed point coalgebra of ��, although we can look at

them as elements of a �nal coalgebra. As in the case of exclusive types we will

solve this problem by de�ning a functor � which is naturally isomophic to ��

and it is uniform on maps, but �rst we prove:

Lemma 3.7 The endofunctor �� is standard, set-based, and preserves weak-

pullbacks.

We only prove that �� preserves weak pullbacks. Suppose we have a weak

pullback square

A B
��(A) ��(B)

C D To prove that ��(C) ��(D)

-f

?

u

?

v

-
��(f)

?

��(u)

?

��(v)

-g -
��(g)

is also a weak pullback, suppose that �; 
 are such that ��(v)(�) = ��(g)(
),

where � 2 ��(B) and 
 2 ��(C). We have to �nd an A-multiset � with
��(f)(�) = � and ��(u)(�) = 
. We de�ne:

�(x) =

�
minf�(fx); 
(ux)g if v(fx) = g(ux);

" otherwise

Using the de�nition of the functor �� on functions one can easily show that
��(f)(�) = � and ��(u)(�) = 
. 2

Notice that if A = hA; ei is a graph (i.e. if ea(a
0) = 1, whenever de�ned),

then the concepts of ��-bisimulation and ��-collapse on A coincide with the

classical notions of bisimulation and collapse of A as a graph.

Returning to the problem of �nality of the g.f.p. coalgebra, we now de�ne a

functor � which is naturally isomorphic to �� and it is uniform on maps.

De�nition 3.8 The � functor

Let C be the category of classes and class-functions. The endofunctor � on the

category C of classes and class functions is de�ned as follows.
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� if A 2 C then a �-multiset on A (i.e. an element of �(A)) is a small

relation r � A�Ord with the property: if a 2 A and h; k are ordinals such

that the cardinality of h is smaller or equal than the cardinality of k, then

ark ) arh.

� If f : A! B, then �(f) : �(A)! �0(B) is de�ned as

�(f)(r) := fhfx; ki : hx; ki 2 rg:

It is easy to see that �(f)(r) is a �-multiset on B
1. There is a natural

isomorphism � between the functors �� and � which sends a function � 2 ��(A)

to the relation �A(�) = fha; ki : a 2 dom(�); k < �(a)g 2 �(A). The advantage

of the � functor is that its de�nition on functions commutes with substitution:

� is uniform on maps (see De�nition 2.2). The natural isomorphism between
�� and � provides a bijective correspondence between ��-coalgebras and �-

coalgebras which preserves bisimulation and �nal coalgebras. Moreover, since

� is uniform on maps, the coalgebra h��
; idi is �nal. By moving from �� to

� we acquire the possibility of working with the greatest �xed point coalgebra

instead of working with a generic �nal coalgebra.

The results of this section allow us to give the formal de�nition of the multiset

universe of overlapping types, that we call the AFA-multiuniverse (this name

will have a formal justi�cation in the next theorem). Its domain is given by the

domain the g.f.p. of the functor ��, while we de�ne s 2k r i� hs; hi 2 r for each

ordinal h < k.

The unisets inside the AFA-multiuniverse are de�ned as those AFA-multisets

x such that whenever we have a descending sequence of multi-memberships

xn 2kn xn�1 2kn�1 : : : x1 2k1 x, then kn = kn�1 = : : : = k1 = 1. As we already

pointed out, the notion of �-bisimulation generalizes the classical notion of

bisimulation on graphs, in the sense that if a multigraph A is a graph, then a

binary relation on A is a �-bisimulation if and only if it is a bisimulation of the

graph. This implies that the unisets inside the AFA-multiuniverse are AFA-sets,

i.e. they are a model for the theory ZFC� + AFA. We give a formal coalgebraic

proof of this in the following theorem.

Theorem 3.9 The unisets inside the AFA-multiuniverse are a model of ZFC�

+AFA.

Proof.

By de�nition, the class U of unisets can be described as:

U = fx 2 �� : hxn; hni 2 xn�1; : : : hx1; h1i 2 x) hn = : : : = h1 = 0g:

1The relation between our present de�nition and the representation in the introduction of

multisets with possibly overlapping items as equivalence classes of relations is as follows. The

equivalence classes of the introduction were proper classes, so we cannot use them directly to

de�ne �, but it is easy to see that every equivalence class contains precisely one small relation

as in the de�nition of �. Our witnessing element normalizes the range of the relation to a

cardinal and maximizes the overlap of the items. The �(f) can be shown to correspond to

the image-mappings discussed the introduction.
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Consider a new functor P, de�ned on classes by P(A) = fr 2 �(A) : r � A�f0gg

and on functions: if f : A ! B, then P(f) : P(A) ! P(B) is P(f)(r) :=

fhf(x); 0i : hx; 0i 2 rg. One can easily show that P is uniform on maps and

hence its g.f.p. coalgebra hP�; idi is a �nal coalgebra. Moreover, the unisets

U inside the AFA-multiuniverse �� are exactly given by the g.f.p. coalgebra

of the functor P: one can easily check that any element of P� belongs to U

and that U � P�(U). This implies U = P�. On the other hand, there is an

obvious natural isomorphism � between the functor P and the functor Pow:

if A is a class and r 2 P(A) we de�ne �A(r) = fa 2 A : ha; 0i 2 rg. Any

Pow-coalgebra A = hA; ei provides an interpretation 2A
Pow

of the membership

relation on the domain A (where a 2A
Pow

a
0 i� a 2 e(a)) and this interpretation

is a model of ZFC� + AFA, if the coalgebra A is �nal. Similarly, in the domain

of a P-coalgebra A = hA; ei we interpret the membership relation as a 2A
P
a
0

i� ha; 0i 2 e(a0). By Proposition 2.3 we know that the natural isomorphism �

induces a bijective correspondence between P and Pow-coalgebras in which a

P-coalgebra A = hA; ei is sent to the Pow-coalgebra �(A) = hA; �A � ei; one can

easily verify that for all a; a0 2 A it holds:

a 2
A
P a

0
, a 2

�A
Pow

a

0
;

so that hA;2A
P
i and hA;2�A

Pow
i are isomorphic interpretations of the language of

set theory. Consider then the Pow-coalgebra �P? = hP�; �P�i that corresponds

via � to the g.f.p. coalgebra P� = hP�; idi of the functor P. Since P is uniform

on maps, hP�; idi is a �nal P-coagebra, hence �P� is a �nal Pow-coalgebra and

hP�;2
�P�
Pow

i is a model of ZFC� + AFA; by the preceding discussion it follows

that hP�;2P
�

P
i (i.e. the unisets inside the AFA-multiuniverse) are a model of

ZFC� + AFA as well. 2

4 Trees and Exclusive Types

We now return to the exclusive types multiuniverse. In Section 4.1 we prove that

trees and numbered trees play a special role in the class of � and �0-coalgebras:

the embedding functor from numbered trees to numbered multigraphs has a

right adjoint, the unraveling functor, and this adjunction is used in Section 4.2

to prove that �-unisets are Scott-sets. In Section 4.3 we show that rooted (num-

bered) trees can be characterized as the projective �-coalgebras (�0-coalgebras).

4.1 An Adjunction

A pointed numbered multigraph e : A! �0(A) with point a is a rooted numbered

tree with root a if, for any a0 2 A,

1. e(a0) is an injection, i.e. a numbered tree is a numbered unigraph,

2. Let's write c �1 c
0 for e(c)(k) = c

0, for some k in the domain of e(c). Then

for any a0 there is precisely one sequence a = b1 �1 b2 � � � �1 bn = a
0.
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The rooted numbered trees can be considered as the objects of a category

T having as morphisms tree isomorphisms. T is a subcategory of the pointed

numbered multigraphs (actually, a full subcategory, because the results of this

section prove that a �0-morphism between rooted numbered trees is always an

isomorphism). Let emb be the corresponding embedding functor. We want to

prove that emb has a right adjoint. To this end, we de�ne an unraveling functor

from �0-coalgebras to rooted numbered trees and prove in Theorem 4.2 that it

is a right adjoint of emb.

De�nition 4.1 The unraveling functor unr from numbered pointed multigraphs

to rooted numbered trees is described as follows. The unraveling hA; ai
u
:=

unrhA; ai of a pointed �0-coalgebra A = (e : A ! �0(A)) with point a is the

pointed �0-coalgebra (e0 : A0 ! �0(A
0)) with as point the empty sequence " and:

� A
0 is a class of sequences of ordinals � = k1 � � � kn. We will de�ne by

simultaneous recursion sets A0n of sequences of ordinals of length � n and

a mapping � 7! a� from A
0
n to A. A0 is the union of the A0n. The union

of the mappings � 7! a� will be a mapping from A
0 to A.

{ A
0
0 := f"g, a" := a,

{ �k 2 A0i+1 if � 2 Ai and k 2 dom(e(a�)), a�k := e(a�)(k).

� e
0(�)(k) = �k, if �k 2 A0.

The unraveling hu := unr(h) of a �0-morphism h : h(e : A ! �0A); ai ! h(f :

B ! �0B); bi is simply:

h
u := idA0 .

To see that hu is indeed a morphism of pointed �0-coalgebras, we only need

to verify that unr(h(e : A ! �0A); ai) = unr(h(f : B ! �0B); bi). We prove

this by induction on the length of the elements of A0, proving simultaneously

b� = h(a�). For the case of the empty sequence we are easily done. We have

h(a�k) = h(e(a�)(k))

= f(h(a�))(k)

= f(b�)(k)

= b�k

Note that also dom(e(a�)) = dom(f(b�)), so A
0 = B

0. So clearly unr is a functor.

We de�ne the natural transformation end : emb � unr! id as follows.

endhA;ai(�) := a� :

To see that endhA;ai is indeed a morphism of �0-coalgebras, note that:

e(endhA;ai(�))(k) = e(a�)(k)

: = endhA;ai(�k)

= endhA;ai(e
0(�)(k))

= �0(endhA;ai)(e
0(�))(k)
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It is immediate that end is a natural transformation by the fact that if h : h(e :

A ! �0A); ai ! h(f : B ! �0B); bi is a �0-morphism, then h(a�) = b�. In

case our coalgebra is rooted rather than pointed clearly end is surjective.

Theorem 4.2 The functors unr and emb are adjoints.

Proof.

We start with the functor emb from the category of the rooted numbered trees

to the category of the pointed numbered multigraphs. We assign to a pointed

numbered multigraph hA; ai a rooted numbered tree hA; ai
u
by unraveling as

described above. We have to show that endhA;ai : emb(hA; ai
u
) ! hA; ai is

universal from emb to hA; ai (see e.g. [4]). We check the relevant universality

condition. Consider any rooted numbered tree hT ; ti and let h : T ! hA; ai.

We have to show that there is a unique isomorphism h
0 : T ! hA; ai

u
such

that h = endhA;ai � h
0. Let T be given by the �0-coalgebra � : T ! �0T with

root t. Consider any t0 in T . Let t = t1 �1 t2 � � � �1 tn = t
0 be the unique

path from t to t0. Let ki be the unique ordinal so that �(ti)(ki) = ti+1. We

take h0(t0) := k1 � � � kn�1. Since h is a morphism and �(ti)(ki) = ti+1 we have

e(h(ti))(ki) = h(ti+1), so h
0(t0) is indeed in A0. We show that h0 is a morphism:

e

0(h0(t0))(k) = e

0(k1 � � � kn�1)(k)

= k1 � � � kn�1k

= h

0(�(t0)(k))

= �0(h
0)(�(t0))(k)

Clearly endhA;ai � h
0 = h. The uniqueness of h0 is easily shown by induction on

the distance of t0 from t. We leave to the reader the veri�cation that h is one

to one and onto. 2

4.2 Scott Bisimulation and Trees

In this section we show that the notion of �-bisimulation between �-coalgebras

(that we identify with multigraphs) is the natural generalization of the notion

of Scott-bisimulation between graphs (see [1]). Scott-bisimulation on graphs is

described by means of the notion of unraveling, that can also be used used to

characterize the maximal bisimulation on pointed graphs. The unraveling of a

graph produces a rooted tree, in which every node is copied once (in the simple

unraveling) or k-times for a cardinal k (in the k-unraveling). It is possible

to prove that two graphs are bisimilar if and only if there exists a cardinal k

such that the k-unravelings of the graphs are isomorphic. In De�nition 4.3 we

generalize the notion of simple unraveling to multigraphs and in Corollary 4.4

we show that two �-coalgebras (i.e. two multigraphs) are �-bisimilar if and only

if their unravelings are isomorphic. Since Scott-bisimulation (in the equivalent

de�nition given in [1]) relates two pointed graphs exactly when their unravelings

are isomorphic, we see that the notion of �-bisimulation is a generalization,
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from graphs to multigraphs, of Scott-bisimulation. We use this at the end of

this section, to prove that the unisets of the �-multiuniverse are Scott-sets.

De�nition 4.3 The Unraveling of a pointed multigraph hA; ai = hhA; �i; ai (or

equivalently, of a pointed �-coalgebra) is the pointed multigraph UNRhA; ai =

(hA; ai)U := hhAU
; �

U i; ai where:

(a) AU is the set of �nite sequences

a0k1a1 : : : knan;

where ai 2 A for i 2 f0; : : : ; ng, a0 = a, and the ki's are ordinal numbers

satisfying: ki+1 < �(ai; ai+1), for all i 2 f0; : : : ; n � 1g (in particular, if

a0k1a1 : : : knan 2 A
U then �(ai; ai+1) � 1 and ai+1 2 Succ(ai), for all

i < n).

b) The point is the sequence a.

c) �U (�; �kn+1an+1) = 1, for all �kn+1an+1 2 A
U .

Let us relate this construction with the corresponding one on numbered

multigraphs. We can go from rooted numbered trees to ordinary rooted trees

by forgetting structure, say the functor is forget. We can go from pointed

numbered multigraphs to pointed multigraphs via [�]. We have the mapping

UNR unraveling pointed multigraphs to rooted trees. Now the point is that

UNR([hA; ai]) is isomorphic to forget(hA; ai
u
). So UNR can be viewed like this.

1. Start with a pointed multigraph hA; ai.

2. Pick a [�]-original hA; ai. This choice preprogrammes arbitrary choices in

the unraveling.

3. Unravel via unr. You have a rooted numbered tree.

4. Forget structure and you have a rooted tree.

5. Modulo isomorphism this is precisely what we get via UNR.

The mapping UNR is easily de�ned on the objects but you cannot get it to work

on the morphisms, the point being that in the absence of `numberedness' we

don't know which sequence to send to which sequence. For example, consider

the multigraph hA; �i: A = fa; b; cg and �(a; b) = �(a; c) = 2; the multigraph

hA0; �0i: A0 = fa0; b0g and �(a0; b0) = 4; and the �-morphism h sending a to a0

and b; c to b0. Considering the two unravelings, there is no intrinsic reason to

send e.g. a1b to a03b0, etc.

As in the numbered case, we can easily prove that the function end from A
U

to A de�ned as

end(a0k1a1 : : : knan) = an

is a coalgebra morphism from the unraveling hA; aiU to hA; ai; in particular,

the pointed �-coalgebra hA; aiU is �-bisimilar to hA; ai.
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Theorem 4.4 If h is a �-morphism between two pointed �-coalgebras A, B

then A, B have isomorphic unravelings. In particular, two pointed �-coalgebras

are �-bisimilar if and only if they have isomorphic unravelings.

Proof.

Consider a �0-original B of B, that is: B = [B]. From Lemma 3.4 we know

that there exists a �0-original A of A such that h is a �0-morphism from A to

B. But then we know that Au is equal to Bu. Since UNR(A) is isomorphic to

forget(Au) and UNR(B) is isomorphic to forget(Bu), we are done. 2

Theorem 4.4 allows us to identify �-multisets and (isomorphism classes of)

rooted trees. De�ne the canonical rooted tree T (x) of a �-multiset x 2 �� as

hh��; idi; xiU . In this way we pick exactly a rooted tree in any isomorphism

class of rooted trees. The rooted trees modulo isomorphism give then an equiv-

alent representation of multisets and using this representation we prove that

the unisets inside the �-multiuniverse are Scott-sets. This is stated in the fol-

lowing theorem and to prove it we shall use the representation, given in [1], of

Scott-sets by means of rooted irredundant trees modulo isomorphism: a tree T

is irredundant if it has no proper automorphism, or, equivalently: for all u 2 T ,

u
0
; v

0 2 Succ(u), if hT ; u0i is isomorphic to hT ; v0i then u0 = v
0.

Theorem 4.5 The �-unisets are a model of ZFC� + Scott.

Proof.

By the preceding discussion we only need to prove that the unraveling of a

uniset x 2 �� is an irredundant rooted tree and that any irredundant rooted

tree is isomorphic to such an unraveling. Suppose that T = hh��; idi; xiU is not

irredundant: then there are u 2 T , u0; v0 2 Succ(u) with u0 6= v
0 such that hT ; u0i

is isomorphic to hT ; v0i. Then end(u0) and end(v0) are �-bisimilar nodes in

h��; idi and since h��; idi is �nal, by Proposition 2.1 we obtain end(u0) = end(v0).

But u0; v0 were di�erent successors of u in hh��; idi; xiU , hence end(u0) can be

equal to end(v0) only if the multiplicity of end(u0) as an element in the multiset

end(u) is greater than one. This is a contradiction because we supposed x to be

a uniset.

To prove that any irredundant rooted tree is isomorphic to hh��; idi; xiU , for

a uniset x, we �rst show: if the unraveling T = hA; aiU of a rooted multigraph

is irredundant, then the multigraph must be a graph. Suppose not: then there

are two nodes b; c of A with �(b; c) > 1; if t 2 T is such that end(t) = b, then

t0c, t1c are nodes in T , and hT ; t0ci, hT ; t1ci are isomorphic, a contradiction.

Suppose then that hT ; ti is an irredundant rooted tree. By considering T as a �-

coalgebra we can �nd a �-morphism h : T ! h��; idi. By Theorem 4.4 we know

that hT ; ti is isomorphic to hh��; idi; h(t)iU and by the preceding discussion we

know that h(t) must be a uniset. 2
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4.3 Rooted Trees and Projective Multigraphs

In this section we study some properties of trees w.r.t. multigraphs. We start

with numbered trees and then lift the results from numbered trees to trees. For

any rooted �0-coalgebra (i.e. for any rooted multigraph) hA; ai the function

end is a �0-epimorphism between the rooted numbered tree hA; aiu and hA; ai.

Hence, if the rooted �0-coalgebra hA; ai is such that any epimorphism arriving

at it is an isomorphism, we have in particular that end is an isomorphism and

hA; ai is isomorphic to a rooted tree. The converse is also true, giving us a

characterization of rooted numbered trees inside rooted �0-coalgebras. Using

Lemma 3.4 one can prove that this characterization holds for the unnumbered

version as well.

Theorem 4.6 If hT; ti is a rooted numbered tree, then any morphism h from

a rooted �0-coalgebra hA; ai to hT; ti is an isomorphism; vice versa, any rooted

numbered coalgebra satisfying this property is isomorphic to a rooted numbered

tree. The same is true for rooted trees and rooted multigraphs.

Proof.

We prove the numbered version and leave to the reader the corresponding proof

for �, which is easily obtained by applying Lemma 3.4. Consider the natural

transformation end from the unraveling functor unr to the identity functor. If

h : hA; ai ! hT; ti is a morphism, then, since unr(h) is the identity, we have

endhT;ti = h�endhA;ai. But endhT;ti is an isomorphism and endhA;ai is surjective,

hence h is a bijection. Vice versa, suppose that hA; ai is such that any morphism

arriving at it is an isomorphism. Then end : hA; aiu ! hA; ai is an isomorphism

and hA; ai is isomorphic to the rooted numbered tree hA; aiu. 2

Consider now a class X of �-bisimilar rooted coalgebras, preordered by the

relation hA; ai � hA0
; a

0i i� there exists a morphism from hA; ai to hA0
; a

0i.

Since the quotient hA; [a]i of a rooted coalgebra hA; ai modulo the maximal �-

bisimulation is a collapsed multigraph and two rooted coalgebras are bisimilar

i� their collapses are isomorphic, we easily obtain: if hA; ai 2 X then hA; [a]i is

the unique maximum in X , modulo isomorphism. This holds generally, for any

well-behaved functor. In the case of � (or �0) we actually proved in Theorem 4.6

that the order � also have a unique minimum: if hA; ai 2 X then hA; aiU is the

unique minimum in X , modulo isomorphism. Notice that this property does not

generally hold for well-behaved functors. For example, it does not hold for the

functor Pow: given a Pow-coalgebra A we can always �nd a smaller coalgebra

(with respect to �) which is not isomorphic to it by using an appropriate k-

unraveling of A.

Finally, we prove that rooted (numbered) trees are characterizable as the

projective objects in the category Coal� (Coal�0 , respectively). Remember that

a projective object in a category is an object P with the property: whenever

f is an epimorphism f : A ! B between two objects A;B and g : P ! B is

a morphism, there exists a (not necessarily unique!) morphism h from P to A
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with g = f � h.

P

A B

?
g

ppppppp	
h

-
f

Theorem 4.7 Rooted (numbered) trees are the projective objects of the category

of rooted (numbered) multigraphs.

Proof.

We prove the result in the numbered form, leaving the unnumbered version

to the reader (easily obtained via Lemma 3.4). We �rst prove that a rooted

numbered tree is projective. Consider a morphism f : hA; ai ! hA0; a0i between

rooted �0-coalgebras (which is always an epimorphism because of rootedness)

and a morphism g : hT; ti ! hA0; a0i, where T is a rooted numbered tree.

By Theorem 4.2 the functor unr is a right adjoint of the functor emb, hence

there exists a function g0 : hT; ti ! hA0; a0iu such that g = endhA0;a0i � g
0. But

hA0; a0iu = hA; aiu and the following diagram is commutative:

hA; ai hA0; a0i

hA; ai
u = hA

0
; a

0
i
u hT; ti

-f

6
endhA;ai

�
�
�
�
��3

endhA0;a0i

ppppppp�g0

6
g

It follows that the morphism h = endhA;ai � g
0 is such that g = f � h.

Vice versa, suppose hA; ai is a projective rooted �0-coalgebra and consider its

unraveling hA; aiu. We have a morphism f = endhA;ai from hA; aiu to hA; ai. If

we take the morphism g of the de�nition of a projective object to be the identity

on hA; ai, then by projectiveness there exists a morphism h : hA; ai ! hA; aiu.

Since h is an isomorphism by Theorem 4.6, hA; ai is isomorphic to the rooted

tree hA; aiu. 2

5 Multisets and the Logics of Graded Modalities

In this section we give a characterization of � and �-bisimulation via logic. In

the set-context the appropriate logic for describing bisimulation between graphs

was proved to be in�nitary modal logic ([3]). In the �-context we shift to the

graded extension of this logic by proving that two pointed multigraphs are �-

bisimilar i� they satisfy the same formulae of in�nitary graded modal logic.
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More than this, we prove that any multigraph can be characterized modulo

�-bisimulation by a single in�nitary graded modal formula, and we isolate a

class of formulae that correspond to Scott-multisets. In this way we have three

alternative ways for modeling Scott-multisets: as collapsed multigraphs, as trees,

or as in�nitary formulae. The same can be done for the functor � and AFA-

multisets, with the di�erence that now the formulae of in�nitary graded modal

logic are interpreted in a non-standard way.

Consider the language obtained from in�nitary propositional logic by adding

the unary operators3h, for all h 2 Card+. More formally, we de�ne our formulae

F as the smallest class closed under in�nitary conjunction (if � � F is a set

then
V
� 2 F), negation (if � 2 F then :� 2 F), and graded diamonds (if h

is a strictly positive cardinal and � 2 F then 3h� 2 F). In the following, we

denote the operator 31 by the more familiar symbol 3 and
V
; by ?. Since

we are dealing with pure multisets, our language does not contain propositional

variables. However, the results of the following sections are generalizable to

multisets with atoms and in this case our language would contain propositional

variables.

5.1 Graded Modalities and Exclusive Types

In the case of the �-functor we de�ne the truth of a formula � of F in a pointed

multigraph hA; ai = hhA; �i; ai (or, equivalently, in a pointed �-coalgebra) by

adding the clause below to the inductive de�nition of truth in in�nitary propo-

sitional logic:

hA; ai j= 3h� ,
X

hA;bij=�

�(a; b) � h:

The resulting logic is denoted by Lgrad1 . If the multigraph A = hA; �i is clear

from the context, we write a j= � instead that hA; ai j= �.

Notice that our logic Lgrad1 coincides on pointed graphs with the well-known

in�nitary graded modal logic. We write hA; ai �� hA0
; a

0i (or simply a ��

a
0) if hA; ai; hA0

; a
0i are two pointed multigraphs that satisfy the same Lgrad1 -

formulae. The following theorem show that Lgrad1 is the appropriate language

for characterizing �-bisimulation.

Theorem 5.1 Two pointed multigraphs hA; ai = hhA; �i; ai and hA0
; a

0i =

hhA0; �0ia0i are �-bisimilar if and only if they satisfy the same Lgrad1 -formulae.

Proof.

()) By an easy induction on the complexity of Lgrad1 -formulae.

(() We prove that �� \(A�A
0) is a �-bisimulation between A and A0. Suppose

hw;w0i 2�� \(A�A
0).

CLAIM 1. For any v 2 Succ(w) [ Succ(w0), there exists a formula �v 2 L
grad
1

such that for any z 2 Succ(w) [ Succ(w0) it holds

(?) z j= �v , z �� v:
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Suppose v 2 Succ(w) [ Succ(w0). For any u 2 Succ(w) with u 6�� v let

 u 2 L
grad
1 be such that u 6j=  u and v j=  u. We de�ne

�v :=
^
 u;

and prove that �v veri�es property (?) above. The direction from right to left

is obvious since �v 2 L
grad
1 and v j= �v . For the other direction, suppose �rst

that z 2 Succ(w): if z 6�� v, then the conjunct  z of �v is such that z 6j=  z,

and hence z 6j= �v . If z 2 Succ(w0) and z j= �v , we prove that for any formula

� 2 Lgrad1 , if z j= � then v j= �. This is enough to prove that z �� v. If z j= �

then w0 j= 3(� ^ �v), hence w j= 3(� ^ �v) and there exists s 2 Succ(w) with

s j= � ^ �v . But for s 2 Succ(w) we already proved that s j= �v implies s �� v;

hence v j= �.

Notice that the construction of the formula �v is not symmetric: the point

v can be either in Succ(w) or in Succ(w0), but the formula �v is in any case

the conjunction of formulae  u for u 2 Succ(w). A symmetric construction is

possible and even simpler, but using the asymmetric one we will be able to prove

the stronger Theorem 5.2 below.

We now use the claim to prove that the equivalence relation �� restricted

to A�A0 satis�es: if hw;w0i 2�� \(A�A
0) and c 2 (w) [ Succ(w0) then:

X
f�(w; a0) : a0 �� cg =

X
f�0(w0; b0) : b0 �� cg:

From this it easily follows that the relation �� \(A�A
0) is a �-bisimulation.

Suppose c 2 Succ(w) and h =
P
f�(w; a0) : a0 �� cg. By property (?) above

we have w j= 3h�c ^ :3h+�c, where h
+ is the �rst cardinal greater then h.

Then w0 j= 3h�c ^ :3h+�c, and
P
f�0(w0; b0) : b0 �� cg = h.

Suppose c 2 Succ(w0). By using the claim again, we can construct a formula

�c such that for z 2 Succ(w) [ Succ(w0) it holds

z j= �c , z �� c:

Since w0 j= 3�c, we have w j= 3�c and there exists a v 2 Succ(w) such that

v �� c. Then we can reason as above, using v instead of c. 2

We now show how to modify the proof of Theorem 5.1 to achieve a stronger

result: any pointed multigraph can be characterized, modulo �-bisimulation, by

a single formula in Lgrad1 . Given a cardinal h, denote by Lh the fragment of L
grad
1

which is obtained by restricting in�nitary conjunctions to sets of cardinality

strictly smaller than h and graded diamonds to 3k with k < h. Notice that

Lh forms a set (while Lgrad1 is a class which is not a set). Denote the relation

to satisfy the same Lh-formulae by �h. Given a multigraph A = hA; �i, let

hA be the smallest cardinal which is strictly greater then
P

v2Succ(w) �(w; v),

for any w 2 A. Notice that in the preceding proof we always used in�nitary

conjunctions on sets of cardinality smaller than h

+
A
and graded diamonds 3h

only for h < h

+
G
. This means that a similar proof can be exploited to prove that
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�h
+

A

is a �-bisimulation between A and any multigraph A0. Consider then the

formula

�hA;wi =
^
f� 2 Lh+

A

: w j= �g:

If A0 is a multigraph and hA0
; w

0i j= �hA;wi, then hA; wi �h
+

A

hA0
; w

0i; by the

previous consideration we can deduce that hA; wi; hA0
; w

0i are �-bisimilar. This

proves:

Theorem 5.2 For any pointed coalgebra hA; wi there exists a formula �hA;wi 2

Lgrad1 which characterizes hA; wi modulo �-bisimulation, i.e., for any multigraph

A0 it holds:

hA0
; w

0i j= �hA;wi , hA; wi is �-bisimilar to hA0
; w

0i:

It follows that any �-multiset is characterized by an in�nitary graded modal

formula. This result suggests another representation of the class of �-multisets,

in which the domain of the universe is a fragment of the class of in�nitary graded

modal formulae. We only sketch this in the following. First, we characterize

the graded formulae of type �hA;ai for a pointed multigraph hA; ai (for a set-

analogue, see [3]).

De�nition 5.3 Consider the preorder � de�ned in Lgrad1 by  � �,j=  ! �;

where j=  ! � stands for: any pointed multigraph that satis�es  , satis�es �

as well. De�ne the class MS(Lgrad1 ) as the one containing, modulo equivalence,

all satis�able Lgrad1 -formulae which are minimal with respect to � on satis�able

formulae, that is:

� 2MS(Lgrad1 )

m

� is satis�able and for all satis�able  if  � � then  is equivalent to �.

Lemma 5.4 � 2MS(Lgrad1 ), 9hA; ai with j= (�hA;ai $ �).

Then, we identify the class of �-multisets with the class MS(Lgrad1 ), with

2k given by the relation fh�;  i 2MS(Lgrad1 )�MS(Lgrad1 ) :j= �! 3k g.

5.2 Graded Modalities and Overlapping Types

The results of the previous section can be adapted to give a logic description

of AFA-multisets, provided we change the interpretation of a formula 3h� in a

pointed multigraph hhA; �i; ai (considered as a �-coalgebra) as follows:

hhA; �i; ai j= 3h� , supf�(a; b) : b j= �g � h:

The resulting logic is denoted by Lo-grad1 . If the multigraph hA; �i is clear from

the context, we write a j= � instead that hhA; �i; ai j= �.

Notice that if hA; ai is a pointed graph, then for all a 2 A and all h � 2

we have a j= :32�, for all � 2 F . Hence, on pointed graphs the logic Lo-grad1
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has the same expressive power than in�nitary modal logic. We write hA; ai ��

hA0
; a

0i (or simply a �� a
0) if (hA; ai; hA0

; a
0i are two pointed multigraphs that

satisfy the same Lo-grad1 -formulae. Then all the results of the previous section

transfer to this context: one only has to substitute � for � and Lo-grad1 for

Lgrad1 .

5.3 Relations with Coalgebraic Logic.

Given a well-behaved functor F , a general method for constructing a logic char-

acterizing F -coalgebras modulo F -bisimulation is given in [5]. There it is also

shown that for certain functors, the uniform ones, a single formula of the logic

su�ces for characterizing a pointed coalgebra. In Section 3 we proved that our

functors � and � are uniform and hence the results of [5] apply to our context.

Moreover, one can prove that Moss logics relative to our functors are a frag-

ment of the logics described in the previous sections. The method described in

[5] is very general and applies to a large class of functors, but the description

of the syntax and semantics of the logics is quite involved; our logics have the

advantage of being simply extensions of in�nitary modal logics by means of

operators.

6 Multisets & Monads

The coalgebraic framework that we have employed in the construction of multi-

set universes has as drawback that it doesn't yield extra structure on the objects

produced in an automatic way. E.g. the categorical framework does not pro-

vide the desired morphisms or operations between the multisets. We think this

drawback can be overcome by enriching the categorical framework. We will not

attempt that task in this paper. There is however one enrichment that can be

added easily on top of the coalgebraic framework. We can study the dynamics

of �-coalgebras (or multirelations) by extending the analogues of the powerset

functor to monads. This allows us to de�ne composition of �-coalgebras in a

satisfactory way.

6.1 Singleton and Unary Union

Singleton and unary union are fundamental operators on sets. Together, they

�t into the de�nition of a well-known construction in category theory: the triple

hPow; sing; unioni is a primary example of a monad.

De�nition 6.1 A monad on a category C is a triple hF; �; �i, where F is an

endofunctor on C and � : 1 ! F , � : F 2 ! F are natural transformations
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satisfying: for all A 2 C the following are commutative diagrams.

F (A) F

2(A) F

3(A) F

2(A)

F

2(A) F (A) F

2(A) F (A)

-F (�A)

?

�FA

@
@
@
@@R

idA

?

�A

?

F (�A)

-�FA

?

�A

-
�A

-
�A

In this section we consider the singleton and unary union operators for mul-

tisets. No di�erence in the de�nition of the singleton operator arises between

exclusive or overlapping types, because given an element a 2 A the natural

choice for �A is simply �A(a) = [[a]] . As for the unary union, from our infor-

mal de�nition of exclusive and overlapping types it should be clear that the

de�nition of the union operator is di�erent in the two contexts.

Let us start by de�ning the unary union �
e in the exclusive types. We

de�ne the unary union of a multiset � 2 �2(A) as the A-multiset in which any

element a 2 A appears with multiplicity equal to
P

z2�(A)m�(z)mz(a). Hence,

the formal de�nition of the natural transformation �
e from �2 to � can be

given as follows. If � 2 �2(A), then � = [�x1:fx1] with fx1 2 �(A), for all

x1 2 domf ; then fx1 = [�x2:fx1x2] with fx1x2 2 A. Consider the set of pairs

I = fhx1; x2i : x1 2 dom(f); x2 2 dom(fx1)g. We de�ne �eA(�) as the function

with domain equal to I and �eA(�)hx1; x2i = fx1x2 (this is not entirely correct

because the domain of an A-multiset should be a cardinal, but for the sake of

simplicity we omit the biunivocal correspondence between I and a cardinal).

Lemma 6.2 The triple h�; �; �ei forms a monad.

Proof.

We leave to the reader the veri�cation that � and �e are natural transformations.

The diagram on the left of the monad de�nition simply say that if � 2 �(A) is

an A-multiset then �eA( [[�]] ) = � = �
e
A(�(�A)(�)), which is easily checked. As

for the diagram on the right, consider 
 2 �3(A). We want to show that

�A(��(A)(
)) = �A(��A(
));

where we omitted the superscript e for the sake of readability. Suppose 
 =

[�x1:fx1], fx1 = [�x2:fx1x2], and fx1x2 = [�x3:fx1;x2x3]. Then ��(A)(
) =

[�hx1;x2i:fx1x2] and �A(��(A)(
)) = [�hhx1;x2i;x3i:fx1;x2x3]. Hence, �A(��(A)(
))

is equal to [g] with

dom(g) = fhhx1; x2i; x3i : x1 2 dom(f); x2 2 dom(fx1); x3 2 dom(fx1;x2)g;

and ghhx1; x2ix3i = fx1;x2x3. On the other hand,

��A(
) = [�A � �x1:fx1]
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= [�x1:�A(fx1)]

= [�x1:�A([�x2:fx1x2])]

= [�x1:�A([�x2:[�x3:fx1;x2x3])]

= [�x1:[�hx2;x3i:fx1;x2x3]]:

Then �A(��A(
)) = [h] where dom(h) = fhx1; hx2; x3ii : x1 2 domf; x2 2

domfx1 ; x3 2 domfx1;x2g and hhx1hx2; x3ii = fx1;x2x3. It is then clear that

[g] = [h] and hence that �A(��(A)(
)) = �A(��A(
)). 2

Considering the context of overlapping types, it is easy to see that �e

is not a natural transformation from �2 to �. We de�ne instead a unary

union for multiset of overlapping types as follows. Using the �� representa-

tion of multiset, we de�ne a natural transformation �o from ��2 to �� as fol-

lows. Suppose � 2 ��2(A), that is, � : ��(A) ! k. Then if a 2 A we de�ne

�
o
A(�)(a) := supf�(a)�(�) : � 2 ��(A)g. One can then prove that the triple

h ��; �; �oi forms a monad (and since �� is naturally isomorphic to � we obtain

a corresponding monad on the functor �).

Lemma 6.3 The triple h ��; �; �oi forms a monad.

6.2 Kleisli Categories for Multisets

Given a monad hF; �; �i on a category C, the Kleisli category CF of hF; �; �i has

the same objects as C, while a Kleisli-arrow from A to B is a C-arrow from A to

F (B). The monad structure allows to de�ne the composition ? of Kleisli arrows

as follows: if f : A! B and g : B ! C are arrows in the Kleisli category, then

g ? f : A! C is de�ned as g ? f := �C � F (g) � f . In particular, if f is a Kleisli

arrow from A to B then f ?�A = f = �B ?f , and �A serves as the identity arrow

in the Kleisli category. Notice that F -coalgebras can be identi�ed with looping

arrows. Hence, if the functor F can be extended to a monad, then the monad

structure allow us to de�ne the composition of F -coalgebras. This composition

is particularly interesting from a coalgebraic point of view, because we can prove

that it is preserved under bisimulation.

Lemma 6.4 Suppose R is a bisimulation between e1 : A! F (A) and e01 : A!

F (A), say via r1 : R ! F (R) and that the same R is a bisimulation between

e2 : A ! F (A) and e
0
2 : A ! F (A), say via r2 : R ! F (R). Then R is a

bisimulation between e2 ? e1, viz. via r2 ? r1.

Proof.

Since r2 ? r1 = �R � F (r2) � r1, one can see that R is a bisimulation between e1
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and e01 by composing the commutative diagrams below.

A F (A) F

2(A) F (A)

R F (R) F

2(R) F (A)

A F (A) F

2(A) F (A)

-e1 -F (e2) -�A

?

�2

-r1

6
�1

-F (r2)

6
F (�1)

?

F (�2)

6
F 2(�1)

-�R

?

F 2(�2)

6
F (�1)

?

F (�2)

-e01 -F (e02) -�A

2

Let us consider our multiset monads. The Kleisli composition is a very fa-

miliar object in the case of �, because it can be identi�ed with matrix multipli-

cations. To see this, notice �rst that a multigraph (or a �-coalgebra) A = hA; �i

can be seen as a matrix having A-rows and Acolumns, with entry ha; bi equal

to �(a; b). If A0 = hA; �0i is another coalgebra with the same domain, then the

reader can check that the matrix corresponding to A?A0 is the rows by columns

product of the matrix corresponding to A0 and A.

7 Afterword

What have we accomplished in this paper? We gained a better understanding

of the fact that there are two salient notions of multiset. It was shown how the

Scott universe can be �tted into the coalgebraic framework. The relationship

between multisets and trees was elaborated. Some insight was provided on why

unraveling fails to be a functor. Finally we brie
y considered how the dynamics

of multirelations can be added on top of the coalgebraic framework.

The present work can be viewed as a case study in coalgebraic theory. We

looked in detail at particular functors. It turned out that reasonable uniform

versions could be found for both types of functors considered. One may won-

der precisely which endofunctors of the category of sets and classes of the AFA-

universe do have uniform naturally isomorphic variants. A striking phenomenon

is the fact that the uniform versions seem to be philosophically superior. They

seem to be closer to an `explanatory modeling' than their non-uniform brethren.

Note however that there are many uniform variants of a given functor modulo

natural isomorphism. Some of them could be utterly philosophically unenlight-

ening. However that may be, we could be moved to consider the following

hypothesis. Whenever we have a su�ciently clear intuitive concept that lends

itself to coalgebraic analysis at all, then there is a uniform functor that models

the intuitive concept better than any naturally isomorphic non-uniform functor.

35



What have we not accomplished? First, we did not develop axiomatizations

of the two universes of multisets. We are not sure how interesting this question

is. Secondly, we feel that there are two closely related defects to the coalgebraic

framework that we have employed. (i) It is not abstract enough and (ii) it

is not rich enough. The lack of abstraction shows itself where it is not fully

perspicuous which speci�c properties of sets and classes are employed in the

proofs. The poverty shows itself where we construct a universe of multisets,

but e.g. the question about what the appropriate multiset morphisms are is left

undecided by the framework. Of course we know what the morphisms should

be, but this insight is not fully re
ected in the framework. It seems that a more

full understanding of the universes of multisets from the coalgebraic point of

view, would require a reworking of the coalgebraic framework. Thus we end our

paper with a challenge for the future, the challenge to generalize and enrich the

coalgebraic framework.
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