
AN ASSOCIATIVE APPROACH
TO COMPUTER-ASSISTED

MUSIC COMPOSITION

Kevin Dahan
Université de Paris VIII

CICM

ABSTRACT

This article presents a new conceptual approach to for-
mal computer-assisted music composition. Procedural and
object-oriented methods for computer music composition
are recalled, then compared to associative modelling. A
strategy of implementation for this particular approach is
then described, using the concept of lexemes, and an ex-
ample of implementation is described. Finally, strategies
for efficient graphical representation are evoked.

1. INTRODUCTION

This paper addresses the issue of how to represent in a
simple but efficient way the complexity of the computer
music composition task. Whereas most of the tools avail-
able nowadays use a directional approach to composition
conceptualization, we argue that a new approach is needed,
based on an association-based mechanism.

Freeing the composer from a restrictive and hard-to-
restate perspective, the associative approach not only per-
mits him to focus on forging relationships between objects
rather than morphologically change them, but equally to
work outside an otherwise rigid time framework.

Most of the techniques developed nowadays focus on
hard real-time approach, and hence permit sound manip-
ulation at almost no cost in terms of computing power.
While composition is usually thought as an “off-time” pro-
cess, there is little software providing support for non-
realtime manipulation, and providing the user with a non-
constrained, unoriented interface. Using an “associative”,
instead of a directional approach to “off-time” composi-
tion, where the directionality is not provided by an ex-
ternal framework, but directly contained in objects and
their associations, new ways of envisaging the composi-
tion process emerge.

We will briefly introduce the associative approach as
an extension of the well-known object-oriented approach,
and explain the basis of an associative system for compo-
sition. We will then describe how a software tool should
be designed to fully support this paradigm, with impli-
cations on the internal mechanisms, and on the graphical
interface.

2. DIRECTIONAL VS. ASSOCIATIVE APPROACH

The fundamental difference between the directional and
associative approach is the weight given in the latter to re-
lationships between objects, rather than on the morphol-
ogy of the objects themselves, pervasive in the former.

2.1. Objects

Objects are the basis of most modern computing approaches,
object-oriented programming [6], and more recently aspect-
oriented [4], and have been proved very successful in the
computer music field (software such as MAX/MSP or Open-
Music are examples of these techniques), where complex
situations quickly arise.

As [5] recaps, in object-oriented systems:

• The object support encapsulation,

• The object is self-contained,

• The focus is on structure instead of function,

• The focus is on methods instead of processes.

These features, applied to computer-assisted composi-
tion environment 1 , freed the composer from a number
of constraints that were bound to earlier algorithmic ap-
proaches [1]. For example, a “simple” transformation ap-
plied on a particular sound had to be descriptively ex-
pressed each time the transformation was to take place,
when using the procedural (i.e. algorithmic-based) method 2 ,
whereas the object-orientation permitted a much more dy-
namical definition of the events to occur, encapsulating
the description of the transformation in the object itself
and providing its description with a contextual reference
informing on “when” to apply the transformation.

As a result, the object-oriented paradigm leads to a “di-
rectional” approach to composition, as networks formed
by objects obey the “flowchart” paradigm [7], and this can
be described as a deterministic succession of events 3 .

1 from now on referred as CACE.
2 Music-V style languages are emblematic of this very deterministic

conception.
3 The use of entropy or random generator in this case doesn’t invali-

date the comment, as they only change the end-result of the composition,
and do not change the overall procedure of the composition.



Figure 1. Example of lexeme structuration

2.2. Lexemes

What we call lexeme is a building block constituted of two
objects - called morphemes, linked by a defined process.

2.2.1. Description

While the description of this compound may seem an in-
tegration of a procedural element in an otherwise purely
object-oriented system is in fact greatly different, as the
link may be described as object, and, as such, may be in-
stantiated. Considered as objects, links can therefore be
dynamically changed, leading to the lexeme being consid-
ered itself as an morphemic entity, and consequently be
linked. A basic representation of possible resulting asso-
ciations with three initial morphemes is shown figure 1.

Typical links may include (but not limited to):

• Time relations,

• Filtering processes,

• Conditional connectors,

• Interactive inputs.

Due to its object nature, links may be dynamically up-
dated, as objects can.

2.2.2. Rationalization

The dynamic nature of link can thus be expressed as a
special case of object, where the link object B is expressed
as a bidirectional object, when acting as a link:

B ∼
↔

B (1)

Thus, lexemes can be expressed logically as the com-
pound of the objects A,B,C:

ΛA,B,C = 〈A
↔

BC〉 4 (2)

4 And can be simplified to:

ΛA,B,C = 〈ABC〉

A common situation is to link an object to an existing
lexeme. If Λ1 is defined as Λ1 = ΛA,B,C and is linked by
D to an object E, we have:

ΛΛ1,D,E = 〈Λ1

↔

DE〉 =
〈

〈A
↔

BC〉
↔

DE
〉

(3)

If the same link (here B) is used when defining such a
lexeme, we obtain:

ΛΛ1,B,E = 〈Λ1

↔

BE〉 =
〈

〈A
↔

BC〉
↔

BE
〉

(4)

This introduces the notion of magnitude. A lexeme is
said to be of magnitude n if the same link is used n times
to define intricate lexemes. We use the following notation
to designate this special case, with L as the link object:

Λ
n
A,L...,X =

〈

〈A, . . . ,X〉 · n
↔

L
〉

5 (5)

Complexity arises in the situation where lexemes are
defined by means of lexemes of lexemes. Let’s examine
the situation where a lexeme Λ1 = ΛA,B,C is linked to a
lexeme Λ2 = ΛE,F,G by using the link D:

ΛΛ1,G,Λ2
= 〈Λ1

↔

G
Λ2〉 =

〈

〈A
↔

BC〉
↔

D〈E
↔

F G〉
〉

(6)

Ultimately, a complete composition would be thought
as a meta-lexeme, constituted by the compound of all the
“local” lexemes, arranged in time (using a time link t),
such as:

ΛΣ ⊃ 〈A, . . . , Z〉 =
〈

〈A, . . . ,X〉 · n
↔

t
〉

= Λ
n
A,t...,Z (7)

The associative approach to composition, is, in a cer-
tain way, an extension of the current transformational ap-
proach to sound structuration. In that case, the composer
works at different time scales using the same structura-
tion mechanisms, and the associative approach permits to
work effectively in the same manner at any abstraction
level. Despite the rationalization we exposed here, its use
is almost intuitive, as it is very natural to define sound
structures as associations of smaller elements, and think-
ing transformations on sound structures the same way[8].

3. APPLICATIONS

We used the concept of lexemes implicitly in The Sketcher
prototype [2] and [3] 6 . At the time, the system lacked the
conceptual ground now found in the lexemic approach to
be effective. However, a certain number of mechanisms
and graphical choices certainly helped the emergence of
the associative approach to CACE.

5 n is defined to be the number of items linked, since there may be
multiple instances of the same objects, it is needed.

6 An early version of the prototype is available as a Linux LiveCD at:
http://www.dcs.shef.ac.uk/ guy/mistres/sketcherv0.99.iso



Figure 2. Internals of a lexeme-based system

3.1. Internal Mechanisms

The main problem when dealing with the lexemic approach
is that of heterogeneous data types, of common use within
the computer music field. Most composers work with
pools of different data structures and types (MIDI files,
Audio files, sound synthesis descriptive language source
la Csound, and so on. . . ), and it is needed to be able to
work indifferently of the data structure to be addressed in
order to implement correctly the lexemic superset.

To this end, an abstract class is defined, acting as a
masking interface for low-level calls to I/O mechanisms,
and providing some sort of “system bus” for higher-level
structures to call indifferently any data type needed. Sev-
eral solutions exist for calling audio streams, by provid-
ing an intermediate representation consistent with CMN,
MIDI streams, or “note list” abstraction (typically, Fourier-
based methods gives good results). Spectrum information
are not taken into account for the representational system
only, and are still used and pertinent in all manipulations
- this vital information for composition is not at all lost,
and the user can specify to which extent he wants the rep-
resentational “middle-ground” to be specific. A represen-
tational sketch of such a system is given in figure 2.

3.2. Graphical Aspects

In order to coherently represent the complexity of the lexeme-
based approach (and in a non-invasive method), a redefini-
tion of graphical canons used in common computer music
application is in order.

Instead of constraining the user into a semantically rich
workspace, cluttered with iconic representations, a blank
workspace is presented, without any indication. The Sket-
cher interface, though relying on menus for specific action
(exportation, link definition, etc. . . ), is entirely based on
this approach 7 , as shown figure 3.

A specificity of The Sketcher is to let the user freely
associate various data types - which are not meaningful to
the system - such as pictures or text and to define associa-

7 A similar, though less “unguided” graphical interfaces is found
in the Hyperscore software, http://www.media.mit.edu/hyperins/ts-
hyperscore/.

Figure 3. The sketcher main window

tions between them and meaningful objects. It allows the
composer to be able to switch from a high level of repre-
sentation (i.e. the score level, in which he defines nota-
tion convention), to the low-level representation in which
he deals with structure definition, sound manipulation and
lexeme creation. At all times, the “score” representation
is available in the right hand corner of the screen, work-
ing as a reminder of the overall form the user wishes to
achieve.

Such a radical redefinition of GUI for CACE is needed
to coherently represent the multiple levels of representa-
tion and interaction taking part in a composition environ-
ment based on object interactions. Horacio Vaggione [9]
indirectly expressed the need for more advanced means
of control over complex sound manipulations and asso-
ciation in an object-based CACE, by pointing the limits
of the current technological choices, loosely based on old
1st and 2nd order cybernetics assumptions. Hence, the
patch-cord (analogical modelling) or track-based repre-
sentations are in some way invalidated by Vaggione’s on-
tological remarks.

In order to permit the composer to fully exploit the as-
sociative approach, there is absolutely no constraint in the
arrangement of structures: placement on the desktop is
insignificant, as there are no frequency nor time scales.
Order is defined solely by the use of lexemes, and not vi-
sually represented if the user choose not to.

4. CONCLUSION

The lexemic (or associative) approach to computer mu-
sic composition, though based on a simple paradigm of
structure linking, has strong implications at all levels of
the CACE design: structuration and articulation of events
in micro- or macro-time scales can be defined by the same
relations, with no morphological-induced constraints; there
is no need for intermediary representations.

Firstly, it creates a new paradigm for the composer:
instead of dealing with the composition as a flowchart



diagram, it permits interactive structures to be used in-
stead. Directionality is not construed by relying on exter-
nal mechanisms (i.e. track-based editing, score-following
processes), but is created by the interactions (i.e. the lex-
emes) that are developed between the different objects.

As a side-effect, complete redefinition of the current
strategies used in the graphical interfaces for composition
software is needed. Since meaning and directionality is
mostly contained in objects and lexemes, there is little in-
terest in providing an interface cluttered with directional
information (i.e. tracks, frequency or time scales), unless
provided as an additional functionality.

A new software is currently in development 8 , at first
experimenting the associative approach provided by the
use of lexemes, then enhancing the current representa-
tional strategy, and finding new representation methods.
Investigation on the possible use of lexemes in the context
of electroacoustic music analysis is also underway.

5. ACKNOWLEDGEMENTS

The author wishes to thanks Adrian Moore for reports and
encouragements on the Sketcher software, and the MIS-
TRES group at Sheffield University for numerous inputs.

6. REFERENCES

[1] Budon, Osvaldo. “Composing with Objects,
Networks, and Time Scales: an Interview with
Horacio Vaggione”, in Computer Music Jour-
nal, Vol. 24/3, Cambridge, USA, 2000.

[2] Dahan, Kevin, Brown, Guy J., and Eaglestone,
Barry. “New Strategies for Computer-Assisted
Composition Software: A Perspective”, in
Proceedings of the International Computer
Music Conference, Singapore, 2003.

[3] Dahan, Kevin, Eaglestone, Barry, Brown, Guy
J., Moore, Adrian J., and Ford, Nigel. “Design
for a Computer Music Composition Tools Sys-
tem”, MOSART EU Report d36, T6 2nd deliv-
erable, MOSART EU-RTN Project, 2003.

[4] Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Videira Lopes, C., Loingtier, J.-M.,
and Irwin, J. “Aspect-Oriented Programming”,
in Proceedings of the European Conference
on Object-Oriented Programming, Jyväskylä,
Finland, 1997.

[5] Kristensen, Bent Bruun. “Associative Model-
ing and Programming”, Proceedings of the 8th
International Conference on Object-Oriented
Information Systems (OOIS’2002), Montpel-
lier, France, 2002.

8 Using the Ruby programming language.

[6] Meyer, Bertrand. Object Oriented Software
Construction, Prentice-Hall, Upper Saddle
River, USA, 1997.

[7] Puckette, Miller. “Using Pd as a score lan-
guage”, in Proceedings of the International
Computer Music Conference, Götebord, 2002.

[8] Truax, Barry. “Time and Electroa-
coustic Music”, Academy of Electroa-
coustic Music, Bourges, 1999. See:
http://www.sfu.ca/ truax/bourges3.html.

[9] Vaggione, Horacio. “Some Ontological Re-
marks about Music Composition Processes”,
in Computer Music Journal, Vol. 25/1, Cam-
bridge, USA, 2001.


	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Kevin Dahan



