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Theoretical and empirical accounts suggest that impairments in self-other discrimination
processes are likely to promote the expression of hallucinations. Studies using a variety of
paradigms involving self-performed actions argue in favor of perspective taking confusion
in hallucination-prone subjects. However, our understanding of such processes during
adolescence is still at an early stage. The present study thus aims (1) to delineate the
neural correlates sustaining mental simulation of actions involving self-performed actions
(first-person perspective; 1PP) and other-performed actions (third-person perspective;
3PP) during adolescence (2) to identify atypical activation patterns during 1PP/3PP
mental simulation of actions in hallucination-prone adolescents (3) to examine whether
differential risk for schizophrenia (clinical vs. genetic) is also associated with differential
impairments in the 1PP/3PP mental simulation of actions during adolescence. Twenty-two
typically developing controls (Control group; 6 females), 12 hallucination-prone adolescents
[auditory hallucination (AH) group; 7 females] and 13 adolescents with 22q11.2 Deletion
Syndrome (22q11.2DS group; 4 females) were included in the study. During the fMRI task,
subjects were presented with a cue (self-other priming cues) indicating to perform the
task using either a first person perspective (“you”-1PP) or a third person perspective
(“best friend”-3PP) and then they were asked to mentally simulate actions based on
the type of cue. Hallucination-proneness was assessed using a self-report questionnaire
[Cardiff Anomalous Perception Scale (CAPS)]. Our results indicated that atypical patterns
of cerebral activation, particularly in the key areas of self-other distinction, were found
in both groups at risk for auditory hallucinations (AHs and 22q11.2DS). More precisely,
adolescents in the AH group presented decreased activations in the right middle occipital
gyrus BA19, left cingulate gyrus BA31, and right precuneus BA31 for the 3PP > 1PP
contrast. Adolescents in the 22q11.2DS group presented decreased activations in the right
superior occipital gyrus BA19, left caudate tail and left precuneus BA7 for the 3PP > 1PP
contrast. In comparison to the Control group, only the 22q11.2DS adolescents showed a
decreased activation for other-related cues (prime other > prime self contrast) in areas
of visual imagery, episodic memory and social cognition. This study characterizes the
neural correlates of mental imagery for actions during adolescence, and suggests that
a differential risk for hallucination-proneness (clinical vs. genetic) is associated to similar
patterns of atypical activations in key areas sustaining self-other discrimination processes.
These observations may provide relevant information for future research and prevention
strategies with regards to hallucination-proneness during adolescence.
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INTRODUCTION
Auditory hallucinations (AHs) have been conceptualized as a
neurodevelopmental phenomenon (Bentall et al., 2007) with a
prevalence varying from 6 to 33% in adolescence (see review Larøi
et al., 2006). A number of cognitive processes are thought to sus-
tain the expression of AH, such as attention shift/enhancement,
executive and inhibitory deficits, and source monitoring (SM)
(Hugdahl, 2009; Jones, 2010; Badcock and Hugdahl, 2012;
Waters et al., 2012). The developmental course of these cogni-
tive processes during childhood and adolescence suggests that

investigating hallucination-proneness during these key devel-
opmental windows may help better understand the onset of
early AH.

SM is a processes associated with the development of AH.
Impairments in SM are thought to lead to the misattribution
of self-generated mental contents such as thoughts, memories or
action to external sources in hallucination-prone adults (Bentall
and Slade, 1985; Rankin and O’Carroll, 1995; Larøi et al., 2004,
2005), in adults with schizophrenia (Bentall et al., 1991; Rankin
and O’Carroll, 1995; Blakemore et al., 2000; Brebion et al., 2000;

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 329 | 1

HUMAN NEUROSCIENCE

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00329/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TarikDahoun&UID=70625
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=StephanEliez&UID=11212
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FeiChen&UID=83256
http://community.frontiersin.org/people/DeborahBadoud/99890
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MaudeSchneider&UID=83252
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FrankLar�i&UID=10419
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MartinDebban�&UID=11211
mailto:tarik.dahoun@unige.ch
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Dahoun et al. Action simulation, hallucinations, and adolescence

Brunelin et al., 2006) and in adolescents at high genetic risk for
psychosis (22q11.2 Deletion Syndrome; Debbane et al., 2010).

Most of these studies used a verbal SM paradigm. However
Larøi and collaborators used a SM task for actions and found evi-
dence for misattribution of imagined actions in hallucinations-
prone adults (Larøi et al., 2005). In this study, subjects were asked
to (1) imagine themselves or (2) the experimenter performing an
action (3) repeat the action statement without imaging the action
or (4) simply observe the experimenter carrying out the action.
The results revealed that hallucination-prone subjects more often
remembered self-performed imagined actions as being imagined
actions performed by the experimenter.

A subsequent study employed a similar action-monitoring
paradigm with adolescents affected by a 22q11.2 deletion syn-
drome (22q11.2DS) (Debbane et al., 2008). 22q11.2DS is a
neurogenetic disorder with an ultra-high risk for developing
schizophrenia (Murphy et al., 1999; Karayiorgou et al., 2010).
Transient psychotic experiences are characteristic of more than
half of the adolescents with this syndrome (Baker and Skuse,
2005). Furthermore, AHs are the most commonly reported symp-
toms in the sample of 22q11.2DS children and adolescents inves-
tigated by our group (Debbane et al., 2006). The assessment
of 22q11.2DS adolescents with a SM task adapted from Larøi
et al. (2005), showed that adolescents with 22q11.2DS commit-
ted more source confusions by recalling imagined-experimenter
actions as actions they had mentally repeated (and vice versa),
suggesting potential impairments in third person perspective
(3PP) taking.

These two studies (Larøi et al., 2005; Debbane et al., 2008)
highlight the impairments in offline SM for actions in two
populations with hallucination-proneness. Their results might
come from disturbances in how information is encoded between
first-person perspective (1PP) and 3PP. Theoretical explanations
suggest that encoding processes during online representation of
actions may promote subsequent confusion between self and
other by two complementary aspects (1) increased salience of
internal representations leading to exaggerated self-focused ori-
entation (Ingram, 1990; Ensum and Morrison, 2003; Kapur, 2003;
Perona-Garcelan et al., 2011) (2) impairments in the sense of
agency, i.e., the ability to experience oneself as the agent of
one’s own actions (Gallagher, 2000), as evoked by several authors
(Schneider, 1959; Seal et al., 2004; Jones and Fernyhough, 2007;
Asai and Tanno, 2012). Among the multiple neurocognitive mod-
els of the sense of agency (David et al., 2008; Sperduti et al.,
2011; Gallagher, 2012), Jeannerod and colleagues propose to dif-
ferentiate between actions overtly executed and those that remain
covert, i.e., internally represented (Jeannerod, 1994; Georgieff and
Jeannerod, 1998). Self-other attribution of covert actions might
be sustained by the activity of brain areas specifically devoted
to self-other representations (Georgieff and Jeannerod, 1998;
Jeannerod and Pacherie, 2004; Jeannerod, 2006).

In order to identify the specific regions involved in the
discrimination of self-other action simulation, Ruby and Decety
(2001) employed positron emission tomography (PET) to com-
pare the neural correlates of action simulation in a 1PP and a 3PP.
Their results showed that both 1PP and 3PP involve overlapping
areas of neural processing, in accordance with the shared neural

representations theory (Georgieff and Jeannerod, 1998; Grezes
and Decety, 2001; Decety and Chaminade, 2003; Decety and
Sommerville, 2003). However, specific regions were identified
in the right inferior parietal, precuneus, posterior cingulate and
frontopolar cortices for 3PP, and in the left inferior parietal and
somatosensory cortices for 1PP. The authors concluded that the
right inferior parietal, precuneus and somatosensory cortices
are key areas involved in self/others action discrimination. The
inferior parietal lobule is thought to be involved in body image,
self-recognition and integration of information coming from
sensory modalities and proprioceptive signals (Jeannerod and
Pacherie, 2004; Torrey, 2007). Interestingly, increased activation
in the inferior parietal lobule has been observed during conflict
between a self-produced action and its consequences (Farrer
et al., 2003). The anterior region of the precuneus is related to
self-centered imagery and the posterior part to successful episodic
memory retrieval (Cavanna and Trimble, 2006). According to
the authors, the somatosensory cortex could play a role in
self-representation (Ruby and Decety, 2001, 2003, 2004).

Another study focused more specifically on the visuo-spatial
aspects of perspective taking during action imagery (Jeannerod
and Anquetil, 2008). The authors compared brain activity with
PET while subjects imagined the same action (reaching and
grasping a cylinder) from a 1PP and 3PP. This paradigm revealed
increased activation in the parieto-occipital junction (BA19)
specifically for the 3PP. The authors conclude that the right BA
19 is a key area for self-other differentiation by evaluating the
difference in spatial localization between oneself and an other’s
perspective.

In summary key areas of self/other distinction for covert
actions are thought to essentially engage the parietal cortex region
for multi-modal integration and the parietal-temporal-occipital
region, which underpins the shift to another location in space
during perspective taking (Ruby and Decety, 2001, 2003, 2004;
Vogeley and Fink, 2003; Jeannerod, 2004; David et al., 2007).

In order to investigate the neural correlates underlying both
self- and other-focused orientation and self-other perspective
taking during action imagery, we used a functional magnetic reso-
nance imagery paradigm adapted from Larøi et al. (2005). During
this task subjects were first primed with a self-other priming cues
(namely “you” or “best friend”) and secondly were asked to men-
tally simulate actions with either from a first-person (1PP) or a
third-person (best friend) perspective (3PP) in accordance with
the priming cue. Typically developing adolescents and adoles-
cents clinically prone to hallucinate (AH group) as well as with
a 22q11.2 deletion syndrome (22q11.2DS group) underwent this
task.

This study has three aims: (1) delineate the neural correlates
of action simulation in specific 1PP and 3PP during adolescence
(2) identify potential impairments at a neurofunctional level in
hallucination-prone adolescents (3) examine whether a differen-
tial risk for schizophrenia (clinical vs. genetic) is also associated
with differential impairments in the mental simulation of action
during adolescence.

We hypothesized that: (1) typically developing adolescents
would activate specific regions devoted to 1PP and 3PP already
observed in adult subjects (Ruby and Decety, 2001; Jeannerod
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and Anquetil, 2008) (2) the AH group and the 22q11.2DS group
would present atypical patterns of brain activation in regions
sustaining self-other action simulation, along with confusion
in self-other remembered actions. (3) Subjects with 22q11.2DS
would present atypical patterns of activation in the parietal cor-
tices due to functional and structural impairments (Simon et al.,
2005b; Dufour et al., 2008; Bearden et al., 2009; Schaer et al., 2010;
Debbane et al., 2012) whereas the AH group would exhibit atyp-
ical activations in the prefrontal cortex, as suggested by previous
SM studies (Vinogradov et al., 2008; Lagioia et al., 2011; Wang
et al., 2011).

MATERIALS AND METHODS
PARTICIPANTS
Eighty adolescents aged from 12 to 20 years participated in the
study. Exclusion criteria included age, the presence of any neuro-
logical problem or a diagnosis of schizophrenia or schizoaffective
disorder according to DSM-IV-TR criteria. Thirty-two subjects
were excluded for head movement exceeding 4.7 mm in any of
the 6 directions during the scan sessions (Control group: N = 9,
AH group: N = 6, 22q11.2DS group: N = 17). In the Control
group, we excluded subjects with maladaptive functioning above
the clinical cut-off of the Internalizing and Externalizing scales
(t-score >64) in the Youth Self-Report and Adult Behavior
Checklist (Achenbach, 1991, 1997) (N = 1). After excluding
these 33 subjects, the 47 remaining youths were distributed in the
following three groups: typically developing adolescents (Control
group: N = 22), adolescents with transient AHs (AH group:
N = 12) and adolescents with a 22q11.2 Deletion Syndrome
(22q11.2DS group: N = 13).

Out of the 22 subjects in the Control group (mean age: 16.00,
SD = 2.04, 16 males), 6 were recruited within the siblings of
22q11.2DS participants and 16 from the Geneva state school
system.

In the AH group, 12 subjects with subclinical AHs (mean age:
15.97, SD = 2.12, 5 males) were recruited through patient associ-
ations, by word of mouth or through the Child and Adolescents
Outpatient Public Service (Office Médico-Pédagogique). Subjects
were selected on the basis of a positive answer (yes or no) on
the Cardiff Anomalous Perceptions Scale (CAPS) items describ-
ing AH items [i.e., items 3, 7, 11, 13, 28, or 32; (Bell et al., 2006;
Debbané et al., 2011); see Table 1]. If they answered positively to

an item, they were asked to rate their distress, the intrusiveness
and the frequency of the experience by circling a number between
1 (not at all) and 5 (very).

In the 22q11.2DS group, all adolescents (mean age: 16.14,
SD = 2.55, 9 males) were recruited through parent associations
in France, Belgium and Switzerland. The 22q11.2 deletion was
confirmed using DNA polymorphism analysis based on short
sequence repeats or by fluorescence in situ hybridization per-
formed on metaphase spreads spanning the deleted region.

Written informed consent was accepted by all parents and/or
subjects under protocols approved by the Institutional Review
Board of the Geneva University School of Medicine. The three
groups (Control, AH and 22q11.2DS) did not significantly differ
according to age and gender (p > 0.05). At the time of testing, no
participants were receiving psychotropic medication (data for this
was missing for one subjects in the 22q11.2DS group). All partic-
ipants underwent the Block Design subtest (Kohs, 1920) in order
to assess intellectual scores.

DESIGN AND PROCEDURE
Before the scan session, the experimenter described the task to
the participants (see Figure 1). The paradigm was adapted from
Larøi et al. (2005) and included 60 actions to be mentally simu-
lated (imagined) either from a 1PP or 3PP. Simple, universal and
gender-neutral actions were chosen. All actions implied a move-
ment and an object (for example take a picture, open a bottle, open
a window, play the violin, brush your hair). 30 actions were tested
with a 1PP and 30 with a 3PP, in the same randomized order for
each participant.

At the start of each session, the task’s instructions appeared
on the screen as a reminder. Then, a cross appeared on the screen
for 665 ms. Immediately after the self-other priming cue appeared
for 1 s stating either “You” written in red or “Best friend” in blue.
Then, the photo of an object accompanied by a written instruc-
tion specifying the action to be imagined (i.e., play the violin,
open a bottle, knock on a door) appeared for 1487 ms. Then the
participants were reminded to either “Imagine yourself doing the
action” or “Imagine your best friend doing the action” in accor-
dance with the self-other priming cue. This instruction remained
on the screen for a total of 4 s. An instruction in the center of the
screen asked participants were asked to evaluate the difficulty of
imagining the previous action, by pressing 1 (very easy) to 4 (very

Table 1 | CAPS selected items for auditory hallucinations (Bell et al., 2006; Debbané et al., 2011).

Item 3: “Do you ever hear your own thoughts repeated or echoed?”
Item 7: “Do you ever hear your own thoughts spoken aloud in your head, so that someone near might be able to hear them?”
Item 11: “Do you ever hear voices commenting on what you are thinking or doing?”
Item 13: “Do you ever hear voices saying words or sentences when there is no one around that might account for it?”
Item 28: “Have you ever heard 2 or more unexplained voices talking with each other?”
Item 32: “Do you ever hear sounds or music that people near you don’t hear?”

CAPS mean sum

selected items

CAPS mean selected

items distress

CAPS mean selected

items frequency

CAPS mean selected

items intrusiveness

Control group 0 N/A N/A N/A

AH group 2.25 (1.91) 2.66 (1.25) 1.77 (0.66) 2.78 1.10

22q11.2DS group 0.54 (0.47) 2.71 (1.89) 2.79 (1.81) 2.38 (1.60)
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FIGURE 1 | Action simulation task adapted from Larøi et al. (2005).

hard) on a set of buttons on a console. This last step was used to
make sure that the subjects performed the task. When a button
was pressed, a blank screen appeared followed by the inter-trial
interval (ITI) period, which lasted from 2990 to 5990 ms.

fMRI DATA ACQUISITION
A 3T Siemens TIM Trio system was used to acquire
anatomical and functional images [TR (inter-trial between
scan acquisition) = 2400 ms, Echo time (TE) = 30 ms, Slice
thickness = 3.20 mm, Flip angle = 85◦, FOV 235 mm].
The functional scan session consisted of 380 volumes that
comprised 38 slices oriented parallel to the AC-PC lines
and collected in a descending sequence. High-resolution
three-dimensional anatomical images were also obtained [TR
(inter-trial between scan acquisition) = 2400 ms, TE = 30 ms,
Slice thickness = 1.1 mm, Flip angle = 8◦, 192 coronal slices,
FOV 220 mm].

fMRI DATA ANALYSIS
We used Statistical Parametric Mapping (SPM) 8, (Welcome
Department of Neuroscience, London, UK) to analyse the data.
First of all images had to be spatially transformed during
the pre-processing step in order to reduce movement effects
or shape differences among a series of scans. We realigned
every image with respect to the first one. Then, slice timing
correction was performed using the middle slice as a refer-
ence. We co-registered structural images of each participant
to the mean of the realigned functional images. Gray matter
separation was established by segmentation of the anatomi-
cal image. Thereafter, the normalization produced images that
were warped to fit to a standard Template brain. We normal-
ized the realigned and slice-timed images into the Montreal
Neurological Institute (MNI) template using 3 × 3 × 3 mm
isotropic voxels. The images were spatially smoothed with an
isotropic Gaussian smoothing Kernel of 6 mm full width half
maximum (FWHM) to conform to inter-individual brain size
variability.

After pre-processing, the brain responses of each subject
were estimated at every voxel using a general linear mode.

We defined two main conditions namely “self” and “other.”
The “self” condition corresponds to the trials starting with
the word “you” in the priming period and when imagining
an action performed by oneself (action stimulation period).
The “other” condition refers to the trials starting with the
word “best friend” in the priming period and when imagin-
ing an action performed by the best friend (action stimula-
tion period). The return to baseline periods were set in the
ITIs during which subjects saw a blank screen for 2990 ms to
5990 ms between each trial. In order to compare the specific
areas devoted to the two different periods of the task (prime
period and action simulation period) voxel value maps of t statis-
tics were obtained for 4 contrasts: (1) prime self > prime other
(2) prime other > prime self (3) 1PP > 3PP (4) 3PP > 1PP.
These contrasts were performed for the following reasons. First,
the prime self > prime other contrast will shield information
on the neural correlates related to attention oriented to the
self. In relation to our knowledge about overlapping activated
brain regions for 1PP and 3PP-taking, some authors have sug-
gested that 3PP requires “additional” areas in contrast to 1PP
and vice-versa (Jeannerod, 2004, 2006; Jeannerod and Pacherie,
2004; Jeannerod and Anquetil, 2008). As such, it may be that
hallucination-prone subjects fail to properly engage these areas,
thereby increasing possible confusions between self and other.
The two other contrasts (1PP > 3PP, 3PP > 1PP) follow the
same logic, but when considering actual action imagery. T-maps
were produced to identify atypical activation of the neural corre-
lates sustaining self-other orientation and perspective taking for
actions.

We first performed a one-sample t-test to characterize typical
activations in control adolescents, and then proceeded to group
comparison analyses. Using a two-sample t-test (comparison
between groups), we compared Control and AH groups, Control
and 22q11.2DS groups, and finally 22q11.2DS and AH groups.
S{T} maps were obtained with a threshold of p < 0.05 and an
extend threshold k of 20 voxels. Cluster level peak functional
activity at p < 0.05 (Family-Wise corrected) was then localized
on a mean structural scan with approximate Brodmann areas esti-
mated from the Talairach and Tournoux (1988) atlas after having
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converted coordinates from MNI to Talairach templates (http://
www.bioimagesuite.org/Mni2Tal/index.html). Age was entered
as a covariate in each analysis without any significant effects on
the results obtained.

For post-hoc examination of potential associations between
hallucination-proneness scores and activations resulting from
group comparisons, we planned to extract local brain activity of
regions of interest (ROIs) using SPM8 toolbox Marsbar (http://
marsbar.sourceforge.net/). The ROIs were delimited around the
peak of significant activations in prime self > prime other, prime
other > prime self, 1PP > 3PP, 3PP > 1PP contrasts for the group
comparisons. A 5 mm radius sphere was defined around the cen-
ter of mass for each subject to extract Beta Values. We performed
Pearson correlations between Beta Values obtained for different
ROIs and CAPS components for each subjects (AHs distress,
intrusiveness, frequency, total scores, as well as subscale scores)
(Bell et al., 2006; Debbané et al., 2011).

RESULTS
BEHAVIORAL RESULTS
Differences regarding evaluation results between the three
groups and the two different conditions were analysed using
a repeated-measures ANOVA 3(groups) × 2(conditions) with
post-hoc Tukey analyses.

With regard to the evaluation of difficulty ratings (see
Table 2), our 3 × 2 ANOVA yielded a non-significant effect of

diagnosis [F(2, 44) = 1.875, p = 0.165], a significant effect of con-
dition [F(1, 44) = 13.315, p = 0.001∗∗∗] (mean evaluation for
self condition = 1.6820, SD = 0.40360), (mean evaluation for
other condition = 1.8504, SD = 0.47230) and a non-significant
interaction between diagnosis and conditions [F(2, 44) = 0.752,
p = 0.477].

With regard to response time (see Table 2), results yielded a
non-significant effect of diagnosis [F(2, 44) = 0.319, p = 0.729],
a non-significant effect of condition [F(1, 44) = 2.054, p = 0.159]
and a non-significant interaction between diagnosis and condi-
tion [F(2, 44) = 0.593, p = 0.557].

NEUROIMAGING RESULTS
Control group
Prime period. The prime other > prime self contrast was
associated with activations in a first cluster (2623 vox-
els, p = 0.001), including significant activations in the right
cuneus BA18, right posterior cingulate BA30 and left cuneus
BA17 (see Table 3). A second cluster (2272 voxels, p =
0.004) included significant activations in the right supe-
rior frontal gyrus BA6, left middle frontal gyrus BA46 and
right superior frontal gyrus BA6 (see Table 3). No signif-
icant results were obtained in the prime self > prime
other contrast.

Action simulation period. The 3PP > 1PP contrast was associ-
ated with activations in a first cluster (4098 voxels, p = 0.000)

Table 2 | Evaluation, response time, and Block DESD in each group.

Control group (N = 22) AH group (N = 12) 22q11.2DS group (N = 13)

Evaluation other 1.72 (0.38) 2.06 (0.45) 1.87 (0.57)

Evaluation self 1.59 (0.33) 1.79 (0.34) 1.74 (0.53)

Evaluation total 1.67 (0.32) 1.92 (0.37) 1.79 (0.53)

Answer time other 1142.24 (446.29) 1082.13 (294.93) 1118.20 (351.85)

Answer time self 1135.46 (425.56) 992.64 (266.31) 1076.48 (306.47)

Answer time total 1138.93 (425.45) 1037.40 (261.78) 1097.20 (303.49)

Block DESD 11.5 (3.25) 11.75 (2.53) 4.86 (2.73)

Table 3 | Regions of peak activations in the Control group.

Contrast Cluster level -

p -FEW-corr

Cluster level -

Ke - voxels

Side Brain regions activation Brodmann

area

T -value X, Y, Z

(MNI)

Prime other >

Prime self
0.001 2623 Right Occipital lobe, cuneus BA18 5.10 3, −76, 19
0.001 Right Limbic lobe, posterior cingulate BA30 5.06 9, −67, 10

0.001 Left Occipital lobe, cuneus BA17 4.72 −21, −82, 13

0.004 2272 Right Frontal lobe, superior frontal gyrus BA6 5.04 6, 32, 64

0.004 Left Frontal lobe, middle frontal gyrus BA46 4.07 −51, 29, 19

0.004 Right Frontal lobe, superior frontal gyrus BA6 3.90 21, 26, 64

3PP > 1PP 0.000 4098 Right Limbic lobe, cingulate gyrus BA23 4.90 3, −31, 28

0.000 Right Occipital lobe, cuneus BA18 4.55 6, −73, 16

0.000 Left Occipital lobe, middle occipital gyrus BA18 4.52 −21, −85, 16

0.025 1692 Left Frontal lobe, precentral gyrus BA6 3.69 −39, 2, 40

0.025 Left Frontal lobe, superior frontal gyrus BA6 3.68 −3, 17, 67

0.025 Left Frontal lobe, superior frontal gyrus BA9 3.57 −18, 41, 43
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including activations in the right cingulate gyrus BA23, right
cuneus BA18 and left middle occipital gyrus BA18. A second clus-
ter (1692 voxels, p = 0.025) included significant activations in the
left precentral gyrus BA6, left superior frontal gyrus BA6 and left
superior frontal gyrus BA9. No significant results were obtained
in the 1PP > 3PP contrast.

NEUROIMAGING RESULTS: GROUP COMPARISONS
Comparisons between control and AH groups
Action simulation period. We observed significant results for
the Control > AH comparison in the action simulation period
(see Table 4). Specifically, the 3PP > 1PP contrast was asso-
ciated with activations in a single cluster (5569 voxels, p =
0.000) including significant activations in the left middle occip-
ital gyrus BA19, left cingulate gyrus BA31 and in the right
precuneus BA31.

Comparisons between control and 22q11.2DS groups
Prime period. We observed significant results for the Control >

22q11.2DS comparison (see Table 5). The prime other > prime
self contrast was associated with activations in a single cluster
(2716 voxel, p = 0.001) with significant activations in the left
cuneus BA18, left precuneus BA31, right middle temporal gyrus
BA39.

Action simulation period. The 3PP > 1PP contrast was associated
with activations in a single cluster (7020 voxels, p = 0.000) with
significant activations in the right superior occipital gyrus BA19,
left caudate tail and left precuneus BA7 (see Table 5).

Comparisons between 22q11.2DS and AH
Prime period. We observed significant results for the AH >

22q11.2DS comparison (see Table 6). The prime self > prime
other contrast was associated with activations in a single clus-
ter (1468 voxels, p = 0.041) with significant activations in
the left caudate body, right anterior cingulate gyrus BA32
and right superior frontal gyrus BA 10. The prime other
> prime self contrast was associated with activations in a
single cluster (1696 voxels, p = 0.020) with significant acti-
vations in the right postcentral gyrus BA3, left superior
frontal gyrus BA10 and right superior frontal gyrus BA8.
No significant clusters were detected in the action simulation
period.

ROIs analyses
No significant results were obtained for Pearson correlations
between T-values activations in Control > AH, Control >

22q11.2DS and AH > 22q11.2DS group comparisons and CAPS
subscales scores for each subjects.

Table 4 | Regions of peak activations for group comparisons Control > AH.

Contrast Cluster level -

P FEW-corr

Cluster level -

Ke - voxels

Side Brain regions activation Brodmann

area

T-value X, Y, Z

(MNI)

3PP > 1PP 0.000 5569 Right Occipital lobe, middle occipital gyrus 19 4.42 33, −76, 19

0.000 Left Limbic lobe, cingulate gyrus 31 4.17 0, −37, 31

0.000 Right Occipital lobe, precuneus 31 4.09 24, −79, 31

Table 5 | Regions of peak activations for group comparisons Control > 22q11.2DS.

Contrast Cluster level -

P FEW-corr

Cluster level -

Ke - voxels

Side Brain regions activation Brodmann

area

T-value X, Y, Z

(MNI)

Prime other >

Prime self
0.001 2716 Left Occipital lobe, cuneus BA18 4.52 −6, −82, 19
0.001 Left Parietal lobe, precuneus BA31 4.13 −18, −73, 25

0.001 Right Temporal lobe, middle temporal gyrus BA39 3.98 30, −67, 22

3PP > 1PP 0.000 7020 Right Occipital lobe, superior occipital gyrus BA19 5.37 36, −76, 25

0.000 Left Sub-lobar, caudate, caudate tail 4.93 −18, −25, 19

0.000 Left Parietal lobe, precuneus BA7 4.92 −21, −73, 31

Table 6 | Regions of peak activations for group comparisons AH > 22q11.2DS.

Contrast Cluster level -

P FEW-corr

Cluster level -

Ke - voxels

Side Brain regions activation Brodmann

area

T-value X, Y, Z

(MNI)

Prime self >

Prime other
0.041 1468 Left Sub-lobar, caudate, caudate body 3.79 −12, 26, 16
0.041 Right Limbic lobe, anterior cingulate BA32 3.67 15, 32, −8

0.041 Right Frontal lobe, superior frontal gyrus BA10 3.24 24, 59, 10

Prime other >

Prime self
0.020 1696 Right Parietal lobe, postcentral gyrus BA3 3.22 66, −19, 37
0.020 Left Frontal lobe, superior frontal gyrus BA10 2.88 −12, 71, 16

0.020 Right Frontal lobe, superior frontal gyrus BA8 2.84 6, 38, 52
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DISCUSSION
This study is the first to compare neural correlates in self-
other priming cues and action simulation using a 1PP or
3PP in typically developing adolescents (Control group), ado-
lescents with transient AHs (AH group) and adolescents at
genetic risk for schizophrenia (22q11.2DS group). The three
objectives of this study were (1) to delineate the neural cor-
relates sustaining mental simulation of actions involving 1PP
and 3PP during adolescence; (2) to identify potential atypi-
cal neural activations during self-other priming and/or action
simulation in hallucination-prone adolescents; (3) to exam-
ine whether differential risk for hallucination-proneness (clini-
cal vs. genetic) is also associated with differential impairments
in self-related cues and in action simulation. Our findings
showed that (1) the Control group activated the key areas
involved in other related cues when primed for their best friend
compared to themselves, and in action simulation performed
by others; (2) in the 3PP condition both hallucination-prone
groups exhibited decreased activation in the parieto-occipital
region, which has been related to self-other distinction of imag-
ined actions (Jeannerod and Anquetil, 2008); (3) the priming
period for both self and other related cues showed decreased
activations in subjects with 22q11.2DS compared to those at
clinical risk.

Control group activation patterns during prime and action
simulation periods will first be discussed. Then, the unique acti-
vations in the AH group and the 22q11.2DS group will be
brought into consideration, followed by a discussion concerning
the differences between the two hallucination-prone groups.

CONTROL GROUP
Typically developing adolescents showed significant increased
activations for the “other” condition compared to the “self”
condition in both the prime and the action simulation periods.

For the 3PP, we found increased activations in the PCC and
the parieto-occipital regions (see Figure 2). These regions may
underlie the influence of visuo-spatial components and episodic
memory when adolescents imagine actions performed by their
best friend. PCC is involved in the processing of familiar stim-
uli (Qin and Northoff, 2011; Qin et al., 2012), and it has
been shown that it plays an important role in memory tasks
such as remembering familiar people (Maddock et al., 2001),

remembering familiar objects and places (Sugiura et al., 2005)
and autobiographical memory (Summerfield et al., 2009; Van Der
Meer et al., 2010). The mental simulation of actions may involve
the retrieval of memorized visual representations (Farah, 1984;
Annett, 1995) of the imaginary action.

Areas in the parieto-occipital region lobe are activated when
processing visuo-spatial information in the context of action rep-
resentation (Kilintari et al., 2011), object-distance representation
(Berryhill and Olson, 2009), including position and prediction
of moving objects (Maus et al., 2010), coherent moving visual
motion (McKeefry et al., 1997; Braddick et al., 2001), and motor
imagery of hand action (Willems et al., 2009). The 3PP contrast
might engage supplementary areas devoted to motion and visuo-
spatial information, as an other’s perspective implies a shift in
visual-spatial perspective (Vogeley et al., 2004).

Activations in the frontal lobe could reflect the self-relevance
evaluation of the prime period and the motor cognition aspect
of action simulation. For the prime other > prime self contrast,
we found significant increased activations in the right superior
frontal part of the medial prefrontal cortex and the left dorso-
lateral prefrontal cortex DLPFC (Mayka et al., 2006; Northoff
et al., 2006; Murray et al., 2012). These results are consistent with
recent findings on self-other related processes in healthy adults.
According to a recent meta-analysis, the dorsomedial prefrontal
cortex DMPFC, DLPFC, and PCC act together in the evalua-
tion and decision-making processes of self versus other relevant
information (Van Der Meer et al., 2010).

For the action simulation period, we obtained significant
results in the ventral part of the dorsal premotor cortex (Grezes
and Decety, 2001; Mayka et al., 2006), the left pre-supplementary
motor area (pre-SMA) (Mayka et al., 2006) and the DLPFC.
These regions could be recruited by the task’s motor aspects.
It has been shown that the ventral part of the dorsal premo-
tor cortex plays a role in motor preparation (Hoshi and Tanji,
2007), the pre-SMA in maintaining an action representation
(Stadler et al., 2011) and the DLPFC in the cognitive control of
motor behavior (Passingham, 1993; Hoshi, 2006; Cieslik et al.,
2012).

In summary, our results showed that the mental simula-
tion of actions performed by others engage increased activa-
tions in the posterior midline structure including PCC and the
parieto-occipital region. Our results may reflect the visuo-spatial

FIGURE 2 | Activations during 3PP > 1PP contrast in Control group at a statistical threshold of p < 0.05. Slice views at MNI coordinates (x = 0,
y = −70, z = 25). The bar on the left shows the range of T -values.
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and episodic memory components of self-other discrimination
for imagined actions.

SIMILARITIES AND DIFFERENCES FOR THE AH GROUP AND THE
22q11.2DS GROUP COMPARED TO CONTROL GROUP
Both hallucination-prone groups showed significant decreased
activations for the 3PP > 1PP contrast compared to the control
group. The AH group and the 22q11.2DS group presented an
atypical pattern of activations in the parieto-occipital region with
significant decreased activations in the occipital gyrus BA19 and
the precuneus.

As reviewed above, it has been shown that the right superior
occipital BA19 is specifically devoted to 3PP in an action imagery
task focusing on a visuo-spatial perspective switch (Jeannerod
and Anquetil, 2008). According to the authors, the mental sim-
ulation of actions performed by others first occurs through a
shift in space in order to mentally represent the other’s place,
and is then followed by the action simulation per se. In this
framework, BA 19 would be a key area for self-other distinc-
tion by evaluating the difference in spatial localization between
oneself and someone else. This interpretation is supported by
data demonstrating the role of BA19 in the manipulation of spa-
tial relationships between objects (Haxby et al., 1991; Kosslyn
et al., 1998) and further confirmed by a meta-analysis (Zacks,
2008). Clinical studies have also shown that posterior parietal
lesions provoke visuo-spatial dysfunction (Mendez, 2001; Harvey
and Rossit, 2012) or disturbances in the capacity to represent
relative location of objects with respect to the subject (Aguirre
and D’Esposito, 1999). Recent evidence shows that the parieto-
occipital junction responds to both gaze- and body-centered
representation when reaching a target visually presented (Bernier
and Grafton, 2010). This could be an argument in favor of a
gaze and body reference computed by parieto-occipital junction
during shift in 3PP.

Concerning the 22q11.2DS, Bearden et al. (2009) interestingly
detected an decreased cortical thickness in the right parieto-
occipital cortex, while to our knowledge, no clear structural alter-
ations have been identified in this region in hallucination-prone
subjects (Allen et al., 2008). Moreover, it has been shown that
children with 22q11.2DS tend to present significant decreased
activation in the parietal and occipital lobe during a visuo-spatial
working memory task (Azuma et al., 2009). From a clinical
point of view, visuo-spatial impairments have been extensively
reported in the syndrome (Wang et al., 2000, 2011; Simon et al.,
2005a; Jacobson et al., 2010). Together, these findings argue in
favor of an atypical neuro-development of the parieto-occipital
region in 22q11.2DS, which could lead to deficits in visuo-spatial
perspective shifting in actions with objects.

The second region showing decreased activation during 3PP
> 1PP contrast for both hallucination-prone groups was located
in the right precuneus BA 31 (AH group) and the left pre-
cuneus BA7 (22q11.2DS group). In the PET study previously
mentioned, Ruby and Decety (2001) found stronger activation
bilaterally in the precuneus for 3PP > 1PP, and thus considered
the region as specifically involved in distinguishing self and other
action imagery. According to their view, the precuneus would
play a role in the self ’s representation with an overactivation

during 3PP. The precuneus responds to a wide range of cog-
nitive processes including internal self-representation, episodic
memory retrieval, visuo-spatial imagery, 1PP and agency pro-
cesses (Cavanna and Trimble, 2006). The anatomical and con-
nectivity data reviewed by them converges toward a functional
subdivision between the anterior (y closer to −60 mm) and pos-
terior (y closer to −70 mm) precuneus (Cavanna and Trimble,
2006). Our results for both the AH group and the 22q11.2DS
group correspond to a decreased activation in the posterior
region. Importantly when considering left and right disparity
between the AH and 22q11.2DS groups no evidence of inter-
hemispheric specialization emerged. Whereas the anterior region
responds to self-centered mental imagery strategies, the poste-
rior region is involved in successful episodic memory retrieval
(Cabeza and Nyberg, 2000; Cavanna and Trimble, 2006). Episodic
memory relies on the ability to remember past experiences
(Tulving, 1972) with autobiographical references (Tulving, 1983)
and plays a role in mental imagery (Tulving, 1983; Cabeza and
Nyberg, 2000; Rubin et al., 2003; Daselaar et al., 2008). Clinical
data have pointed out to a link between impaired episodic
memory and auditory verbal hallucinations (Seal et al., 2004;
Badcock et al., 2005; Berenbaum et al., 2008; Daselaar et al.,
2008).

From a structural point of view, a significant volume reduc-
tion of the parietal lobe has been described in 22q11.2DS (Schaer
et al., 2010). Results from functional connectivity also show atyp-
ical connectivity involving the left precuneus and PCC regions
during resting state (Debbane et al., 2012). Concerning patients
with hallucinations however, no clear alterations of the precuneus
have been identified as far as we know (Allen et al., 2008).

In addition to the BA 19 and posterior parietal similarities, the
at-risk groups showed unique differences in comparison to the
controls. Compared to the control group decreased activation in
the left parieto-occipital junction and the right posterior tempo-
ral BA39 was found in the 22q11.2DS group, but not in the AH
group. This finding might correspond to a diminished salience for
other related cues in 22q11.2DS. As mentioned in the last section,
posterior parietal cortex, especially the posterior part of the pre-
cuneus, is particularly involved in successful retrieval of episodic
memory (Wagner et al., 2005; Cavanna and Trimble, 2006; Elman
et al., 2013) and in remembering familiar people (Maddock et al.,
2001). The right temporo-occipital region (BA39) has been impli-
cated in face processing (Puce et al., 1995; Dichter et al., 2009) and
in the increased attention to salient social information because
of its interactive processing with emotional information (Norris
et al., 2004). Interestingly, it has recently been shown that the
right temporo-occipital region presents decreased activation in
response to affective social versus affective non-social images
in schizophrenia (Bjorkquist and Herbener, 2013). Clinical data
indicates that the 22q11.2DS syndrome exposes to an increased
risk of social withdrawal, poor social functioning and emotion
recognition deficits (Baker and Skuse, 2005; Debbane et al., 2006;
Campbell et al., 2009).

In summary, our results show that both groups at risk (clin-
ical and genetic) for hallucinations exhibited decreased activa-
tion in the parieto-occipital region during 3PP compared to the
Control group (see Figures 3 and 4), which has been related to
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FIGURE 3 | Activations during 3PP > 1PP contrast in group comparisons (Control group > AH group) at a statistical threshold of p<0.05. Slice views
at MNI coordinates (x = 0, y = −70, z = 25). The bar on the left shows the range of T -values.

FIGURE 4 | Activations during 3PP > 1PP contrast in group comparisons (Control group > 22q11.2DS group) at MNI coordinates (x = 0, y = −70,

z = 25). Statistical threshold of p<0.05. The bar on the left shows the range of T -values.

self-other distinction of imagined actions. We suggest that an
impaired shift perspective and/or episodic memory dysfunctions
might alter self-other distinction in hallucination-prone subjects.
Consequently, the lack of reliable representations of the actions
performed by others could account for SM action impairments
previously observed by Larøi et al. (2005) and Debbane et al.
(2008). Our results also argue in favor of a decreased salience
toward others in the 22q11.2DS, as illustrated by the decreased
activations in regions sustaining social cognition and episodic
memory.

AT-RISK GROUPS: DIFFERENCES BETWEEN THE AH GROUP AND THE
22q11.2DS GROUP
We only obtained results for the prime condition when compar-
ing the AH group and the 22q11.2DS group. This comparison
indicated that the salience of self-other priming cues was differ-
ent between the two groups at-risk for hallucinations, whereas no
significant findings emerged for the 1PP and 3PP contrasts.

Compared to the AH group, adolescents with 22q11.2DS
exhibited decreased activations of the caudate body, anterior cin-
gulate BA32 and right superior frontal BA 10 for the prime
self > prime other contrast. In line with our results, a signifi-
cant lower level of activation was found in the caudate nucleus
and the anterior cingulate cortex during self-reflective processing
in adolescents with 22q11.2DS (Schneider et al., 2012). Several
meta-analyses have highlighted the role of the anterior cortical

midline structure and especially the anterior cingulate cortex in
self-specific stimuli processing (Van Der Meer et al., 2010; Murray
et al., 2012; Qin et al., 2012). It has also been shown that the
caudate nucleus and the anterior cingulate cortex are engaged in
reward and personal relevance, i.e., valuing external and internal
stimuli with regard to their meaning for the subject (Enzi et al.,
2009).

Our results might therefore reflect a decreased salience toward
self-related cues in the 22q11.2DS compared to the AH group.
The differences between the two groups could be related to neuro-
structural alterations in the 22q11.2DS. Indeed reduced volume
grey matter and cortical thickness have been described in the
anterior cingulate cortex (Dufour et al., 2008; Bearden et al.,
2009) and several studies have shown an increased volume of
the caudate nucleus (Eliez et al., 2002; Kates et al., 2004; Gothelf
et al., 2007). However according to several studies these regions
are relatively spared in adolescents and adults with schizotypal
traits (Spencer et al., 2007; Moorhead et al., 2009; Ettinger et al.,
2012).

Compared to the AH group, adolescents with 22q11.2DS
exhibited decreased activations in the right postcentral gyrus BA3
(somatosensory cortex S1) and anterior prefrontal cortex BA10
for prime other > prime self-contrast. The decreased activation of
the somatosensory cortex in the 22q11.2DS group for the prime
other > prime self contrast is in contradiction with previous
work indicating that this region responds specifically to 1PP
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(Ruby and Decety, 2001, 2003, 2004). In our task however the
role of the right somatosensory cortex and the anterior pre-
frontal cortex BA10 might be related respectively to emotion
processing (Adolphs et al., 2000; Pourtois et al., 2004; Hooker
et al., 2008; Saxbe et al., 2012) and mental states attribution
(Gilbert et al., 2006; Burgess et al., 2007; Benoit et al., 2010). The
reduced activations in these regions are in line with clinical evi-
dence showing impairments in cognitive theory of mind tasks in
22q11.2DS (Chow et al., 2006; Campbell et al., 2011; Ho et al.,
2012).

In summary, in comparison to subjects at clinical risk, ado-
lescents with 22q11.2DS showed atypical patterns of activations
when primed for themselves and their best friend. More pre-
cisely, decreased activations were found in regions involved in
self-relevance, emotion processing and attribution.

LIMITATIONS
The present study must be considered with limitations. First, the
restricted sample sizes make it difficult to completely exclude the
absence of significant results for the 1PP > 3PP contrasts. Future
studies with increased statistical power could address this issue.
Concerning the group selection, the 22q11.2DS group had lower
IQ scores compared to the Control group. However, the behav-
ioral results showed that response times and difficulty ratings
did not significantly differ between groups. This suggests that
22q11.2DS subjects were not put in a more difficult position due
to the intellectual deficits they might present.

The functional imaging paradigm did not include a cognitive
control for the prime and action simulation period other than the
perspective-taking variants, which could be included in a future
version of this paradigm.

Future studies should address the neurodevelopmental issues
of action simulation during adolescence by also comparing

children and adults data or data with longitudinal follow-up.
More research exploring shift perspective and agency processes
may further contribute to a better understanding of action misat-
tribution biases in hallucination-prone subjects.

CONCLUSION
This study constitutes the preliminary step of a neuroscientific
examination targeting the neural correlates of self-other discrimi-
nation in mental imagery for hallucination-prone adolescents. We
suggest that impairment in the capacity to shift perspective and/or
episodic memory dysfunction may alter self-other distinction in
hallucination-prone subjects.
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