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Recently, decomposition-based multiobjective evolutionary algorithms have good performances in the field of multiobjective
optimization problems (MOPs) and have been paid attention by many scholars. Generally, a MOP is decomposed into a
number of subproblems through a set of weight vectors with good uniformly and aggregate functions. The main role of weight
vectors is to ensure the diversity and convergence of obtained solutions. However, these algorithms with uniformity of weight
vectors cannot obtain a set of solutions with good diversity on some MOPs with complex Pareto optimal fronts (PFs) (i.e., PFs
with a sharp peak or low tail or discontinuous PFs). To deal with this problem, an improved decomposition-based
multiobjective evolutionary algorithm with adaptive weight adjustment (IMOEA/DA) is proposed. Firstly, a new method based
on uniform design and crowding distance is used to generate a set of weight vectors with good uniformly. Secondly, according
to the distances of obtained nondominated solutions, an adaptive weight vector adjustment strategy is proposed to redistribute
the weight vectors of subobjective spaces. Thirdly, a selection strategy is used to help each subobjective space to obtain a
nondominated solution (if have). Comparing with six efficient state-of-the-art algorithms, for example, NSGAII, MOEA/D,
MOEA/D-AWA, EMOSA, RVEA, and KnEA on some benchmark functions, the proposed algorithm is able to find a set of
solutions with better diversity and convergence.

1. Introduction

In real-world applications, there are many problems needed
to simultaneously optimize multiple objectives which are
typically characterized by conflicting objectives. These prob-
lems are called as multiobjective optimization problems
(MOPs). A continuous optimization problem can be formu-
lated as follows [1]:

min  F x = f1 x , f2 x ,… , f m x

s t   gi x ≤ 0,  i = 1, 2,… , q,

hj x = 0, j = 1, 2,… , p,

1

where x = x1,…… , xn ∈ X ⊂ Rn is a n-dimensional deci-
sion variable bounded in the decision space X, and m is
the number of objective functions. f i x i = 1,… ,m is

the ith objective function to be minimized, gi x i = 1, 2,
… , q defines the ith inequality constraint, and hj x j =
1, 2,… , p defines the jth equality constraint. Moreover,
all the inequality and equality constraints determine a set
of feasible solutions which is denoted by Ω, and Y = F
x ∣ x ∈Ω ⊂ Rm is denoted as the objective space. Because
the objectives often contradict each other, the improve-
ment of one objective may cause to the deterioration of
other objectives. So, MOPs have many optimal solutions
which can be called nondominated solutions [2]. Some
important definitions are introduced as follows. Let x, z ∈
Ω, x is said to be better than z, if F x ≠ F z and f i x
≤ f i z for i = 1, 2… ,m. If there is no other x such that
x is better than x∗, x∗ is called Pareto optimal solution.
The set of all the Pareto optimal solutions is defined as
the Pareto set (PS). The image of the PS PF = F x ∣ x
∈ PS is called the Pareto optimal front (PF) [2].
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Because the number of PF may be infinite, it is impracti-
cal to obtain all the Pareto optimal solutions. Thus, the prin-
cipal goal of solving MOPs is to find out a set of solutions
with good diversity and convergence. Currently, multiobjec-
tive evolutionary algorithms (MOEAs) use the strategy of the
population evolution to simultaneously optimize the solu-
tions of the population in a run. MOEAs can well deal with
some complex problems which are characterized with dis-
continuity, multimodality, and nonlinearity [3]. Nowadays,
many MOEAs [4–30] with good performance have been pro-
posed, such as multiobjective genetic algorithms [3], multi-
objective particle swarm optimization algorithms [7–10],
multiobjective differential evolution algorithms [10, 11],
multiobjective immune clone algorithms [12], group search
optimizer [13], evolutionary algorithms based on decomposi-
tion [14–17], and hybrid algorithms [8, 22]. Moreover, many
MOEAs are used to solve numerous applications [31–34].

Recently, Zhang and Li [16, 21] introduce the decompo-
sition approaches into MOEA and developed an outstanding
MOEA, MOEA/D, which has a superior performance for
many problems. MOEA/D decomposes the MOP into a
number of subproblems and uses the EA to optimize these
subproblems simultaneously. The two main advantages of
MOEA/D are that it uses the neighbor strategy to improve
the search efficiency and well maintain the diversity of
obtained solutions by the given weight vectors. In the last
decade, MOEA/D has attracted many research interests and
many related articles [17–22] have been published.

In this work, we mainly study the refinement of weight
vectors in MOEA/D to enhance the diversity of obtained
solutions. Zhang and Li [16] claim that the weight vectors
should be selected properly to obtain the nondominated
solutions evenly distributed over the true PF. The basic
assumption of MOEA/D is that the set of weight vectors with
good uniformity can help obtained nondominated solutions
to maintain the diversity. However, recent studies have sug-
gested that MOEA/D which uses the fixed weight vectors
might not well solve MOPs with complex PFs [35].

In this paper, we develop an improved decomposition-
based multiobjective evolutionary algorithm with adaptive
weight vector adjustment (IMOEA/DA) to solve MOPs.
The main contributions of this paper are as follows: firstly,
a new method [36] based on uniform design and crowding
distance [5] is used to generate a uniformity of weight vec-
tors; secondly, some weight vectors are adaptively deleted
or added according to the distances of obtained nondomi-
nated solutions to solve the problems with complex PF;
thirdly, a selection strategy is used to help each subobjective
space to obtain a nondominated solution (if have). The frame
of decomposition-based multiobjective evolutionary algo-
rithm with adaptive weight vector adjustment and the initial-
ization method of weight vectors has been studied. Moreover,
the research result has been presented in the conference
“2017 13th International Conference on Computational
Intelligence and Security (CIS)”. In this conference paper,
the adaptive weight adjustment [37] is used. In this new
paper, a new adaptive weight adjustment is proposed.

The rest of this paper is organized as follows: Section 2
summarizes the related works of refinements of the weight

vectors. Section 3 presents the proposed algorithm IMOEA/
DA in detail, while the experiment results of the proposed
algorithm and the related analysis are given in Section 5;
finally, Section 5 provides the conclusions and proposes the
future work.

2. Related Works

MOEA/D uses the predetermined uniformly distributed
weight vectors. Recent studies have shown that the fixed
weight vector used in MOEA/D might not be able to cover
the whole PF very well [35]. Therefore, some researches
have refined the weight vectors in MOEA/D. Gu and Liu
[38] periodically create the new weight vectors according
to the distribution of the current set of weight vectors. Li
and Landa-Silva [35] suggest that according to the strategy,
the solution of each subproblem should be a long way from
the corresponding nearest neighbor to adjust each weight
vector. Qi et al. [37] propose an adaptive weight adjust-
ment which utilizes the obtained nondominated solutions
to reinstall the weight vectors. In the adaptive weight
adjustment, the intersection angle of the target vector of
each nondominated solution and the corresponding weight
vector of this nondominated solution is zero. Jiang et al.
[39] develop an adaptive weight adjustment by sampling
the regression curve of objective vectors of the solution in
an external population.

Other MOEAs use reference points to solve MOPs. These
algorithms guide solutions to converge to the reference points.
The principle of algorithms based on reference points or
weight vectors is the same. Jain and Deb [40] adjust the ref-
erence points in terms of the distribution of candidate solu-
tions in the current population at each generation. Jain and
Deb [40] delete reference points with an empty niche and
randomly add new reference points inside each crowded ref-
erence point with a high niche count. Cheng et al. [41]
design two sets of reference vectors, where one maintains
uniformly distributed and the other one is adaptively
adjusted. Asafuddoula et al. [42] also adopt two sets of refer-
ence vectors, where one is called active set which is adap-
tively adjusted and the other one is called inactive set
which stores the discarded reference vectors. In this algo-
rithm [42], the two sets of reference vectors are tuned
dynamically over the course of evolution.

3. The Proposed Algorithm

In this paper, an improvement decomposition-based multi-
objective evolutionary algorithm with adaptive weight vector
adjustment (IMOEA/DA) is proposed to address the MOPs
with complex PF. The proposed algorithm mainly consists
of two parts: a new weight vector initialization method based
on uniform design and crowding distance and adaptive
weight vector adjustment strategy, which will be introduced
in this section.

3.1. Motivation. The main goal of this paper is to use
decomposition-based multiobjective evolutionary algorithm
to obtain a set of nondominated solutions which evenly
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distribute on the true PF and have a good convergence. In
this paper, we adaptively add or delete some weight vectors
to achieve this goal. In decomposition-based multiobjective
evolutionary algorithms, the main role of weight vectors is
to improve the convergence of obtained solutions by guiding
the search of subproblems. Thus, weight vectors should
maintain relative stability to improve the convergence of
obtained solutions. We adaptively delete or add some weight
vectors by the distances of obtained nondominated solutions
to maintain relative stability of weight vectors and solve the
problems with complex PF. In addition, we consider that
the current optimal solutions of some subproblems are dom-
inated solution, but their optimal solutions are nondomi-
nated solution. Some of corresponding weight vectors of
these subproblems are retained, and a selection strategy is
used to make each subproblem obtain a nondominated solu-
tion (if have).

3.2. A New Weight Vector Initialization Method-Based
Uniform Design. In this subsection, the new weight vector
initialization-based [36] uniform design and crowding dis-
tance is presented. Firstly, a uniform design method is briefly
shown. For a given bounded and closed setG ⊂ RM (whereM
is the dimension of the set G), the uniform design was devel-
oped to sample some points which have a small number and
are uniformly scattered on G. In this paper, we only consider
a specific case of G and introduce the main features of uni-
form design. More details can be obtained by referring the
literature [34].

For a given set C = θ1, θ2,… , θM ∣ 0 ≤ θi ≤ 1, i = 1,… ,
M , in general, a set of exactly uniformly scattered points on
C is very difficult to be found. However, there are some effi-
cient methods that can find a set of well approximately uni-
formly scattered points on C. The good lattice point method
(GLP) [43] is one of the simple and efficient methods and
can generate a set of uniformly scattered points on C. The
details of GLP are as follows. For given integers q, M, and
μ, a q ×M integer matrix G q,M called uniform array is
denoted by

G q,M = Gij q×M, 

whereGij = mod iμj−1, q + 1, i = 1~q, j = 1~M,
2

where 2 ≤ μ ≤ q, and mod iμj−1, q is the remainder of
iμj−1/q. Thus, there are q − 1 different integer matrices be
generated by these all μ. So, for given q and M, they can
determine a number δ (Table 1 lists the vales of δ for different
values of q and M) which determines an integer matrix with
the smallest discrepancy among these q − 1 different integer
matrices. In this paper, the discrepancy is denoted as supr∈G
q r /q − r1, r2,… , rM , where q r /q is the fraction of the
points falling in the hyperrectangle G r = θ1θ2 … θM ∣ 0 ≤
θi ≤ ri, i = 1,… ,M . In practice, the greatest common divi-
sor of μ and q should be 1 to reduce the amount of calcula-
tion, which is because that the integer matrix with the
smallest discrepancy must be determined by these μ [43].

Each row of matrix G q,M determiners a point Ci = ci,1,
ci,2,… , ci,M of C q,M by

cij, =
2Gi,j − 1

2q
,  i = 1~q, j = 1~M 3

C q,M is given by C q,M = Ci ∣ i = 1~q . Then each
row of matrix C q,M defines a point Di = di,1, di,2,…… ,
di,M+1 of D q,M + 1 by

di,j =

sin 0 5ci,sπ ,  if j =M + 1,
M

s=1
cos 0 5ci,sπ ,  if j = 1,

sin 0 5ci,M−j+2π
M−j+1

s=1
cos 0 5ci,sπ ,  if 2 ≤ j ≤M

4

D q,M + 1 = Di = di,1, di,2,… , di,M+1 , i = 1~q can
be considered as a set of q uniformly distributed weight vec-
tors [44]. According to (4), we can obtain that many values
of the first dimension of D q,M + 1 are closed to zeros (see
an illustration in Figure 1(a)), which can reduce the diversity
of D q,M + 1 . We use the following method to address this
problem. We use D q,M + 1 to define a setW q ∗ M + 1 ,
M + 1 = Wi = Wi,1,Wi,2,… ,Wi,M+1 , i = 1~q ∗ M + 1 ,
where Wj =Dj,Wj+ b−1 ∗q,t =Dj,t+b−1, Wj+ b−1 ∗q,k+M+2−b =

Table 1: The corresponding values of parameter δ for different
values of q and M

q M δ

5 2–4 2

7 2–6 3

11 2–10 7

13

2 5

3 4

4–12 6

17 2–16 10

19
2-3 8

4–18 14

23

2, 13-14, 20–22 7

8–12 15

3–7, 15–19 17

29

2 12

3 9

4–7 16

8–12, 16–24 8

13–15 14

25–28 18

31
2, 5–12, 20–30 12

3-4, 13–19 22

3Complexity



Dj,k, j = 1~q, b = 2~M + 1, t = 1~M + 2 − b, k = 1~b − 1. Then
we use the crowding distance to select q points from W q ∗
M + 1 ,M + 1 as the weight vectors (see an illustration in
Figure 1(b)).

3.3. Adaptive Weight Vector Adjustment. In this subsection,
the adaptive weight vector adjustment is presented. The main
idea of this adjustment is that, if the distance of two adjacent
nondominated solutions is large, some weight vectors are
added between corresponding weight vectors of these two
nondominated solutions and, if the distance of two adjacent
nondominated solutions is small, one or two weight vectors
of these weight vectors should be deleted. This adjustment
strategy uses the distances of obtained nondominated solu-
tions to delete or add some weight vectors to solve the prob-
lems with complex PF and maintain relative stability of
weight vectors. The main difference of this adaptive weight
vector adjustment and the method [37] is that the adaptive
weight adjustment [37] utilizes the obtained nondominated
solutions to reinstall the weight vectors, and the intersection
angle of the target vector of each nondominated solution and
the corresponding weight vector of this nondominated solu-
tion is zero; our adjustment strategy uses the distances of
obtained nondominated solutions to delete or add some
weight vectors. An illustration of our adjustment strategy is
shown in Figure 2.

The detail of the adaptive weight vector adjustment strat-
egy is as follows. For the current weight vectors W = W1,
W2,… ,WH and current population POP = x1, x2,… , xH ,
where H is the number of solutions or weight vectors and
xi i = 1~H is the current optimal solution of the corre-
sponding subproblem of the weigh vector Wi, we find the
nondominated solutions of POP. For convenience, we sug-
gest that x1, x2,… , xK (K ≤H) are the nondominated solu-
tions of POP and denote as WW = W1+K,W2+K,… ,WH .
The distances NDi of obtained nondominated solutions of
Wi i = 1~H is calculated as NDi =max f j x

j1 − f j x
i ,

f j x
i − f j x

j2 , j = 1~m , where j1 = argmin s ∣Wi,j >Ws,j,
s = 1~K and j2 = argmax s ∣Wi,j <Ws,j, s = 1~K . The
values of NDi are mainly used to delete the weight vector.

In addition, all f j x
j1 − f j x

i and f j x
i − f j x

j2 are
sorted to add the weight vectors. For convenience, we use
PDi,ui =max f j x

s − f j x
i , j = 1~m, s = 1~i to denote

the distance of obtained nondominated solutions of Wui
and Wi, where ui = argmax s ∣max f j x

s − f j x
i , j = 1~

m , s = 1~K .
The deleting strategy is as follows. If K >N (where N

is the size of the initial population), N −K weight vectors
with the minimum NDi are deleted from W. Then, if max
NDi, i = 1~N /min NDi, i = 1~N > 2, the corresponding

weight vector with the minimum NDi is deleted from W.
After some weight vectors whose corresponding solutions
are the dominated solutions are deleted from W, the adding
strategy is that, if the size of the current W is smaller than
N, find the N −K maximum distances PD j,uj

j = 1~K of

obtained nondominated solutions and N −K new weight
vectors are generated as follows:

Wnew =
0 25∗Wui

+ 0 75∗Wi

yy
,  if ∃Wk ∈WW,Wi ∗ tt′ <Wktt′,

tt,  else,

5

where yy = 0 25 ∗Wui
+ 0 75 ∗Wi 2, tt = 0 5 ∗Wui

+ 0 5
∗Wi / 0 5 ∗Wui

+ 0 5 ∗Wi 2, W is the size of W, and
the distance PDi,ui of Wui

and Wi is one of the N −K
maximum distances PDj,uj

j = 1~K of obtained nondomi-

nated solutions. The condition ∃Wk ∈WW,Wi ∗ tt′ <Wk

∗ tt′ makes the optimal solution of the new subproblem
generated by the weigh vector Wnew to be nondominated
solution. In other word, we do not want that the generated
weight vectors locate these spaces which have no nondo-
minated solution. The adaptive weight vector adjustment
is summarized in Algorithm 1.

In Step 4, some weight vectors of WW are kept, which
is to record these regions with no nondominated solution
and make these subproblems to quickly find nondominated
solutions (if have).
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Figure 1: Uniformly distributed weight vectors generated by two methods.
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3.4. The Proposed Algorithm IMOEA/DA. IMOEA/DA uses
the evolutionary framework of MOEA/D and adopts the
strategy [45] of allocating different amount of computa-
tional resources to different subproblems. The major roles
of this strategy are to distribute computational efforts to
each subproblem and optimize these subproblems with
nondominated solution to generate nondominated solu-
tions. The major differences between MOEA/D and
IMOEA/DA are that the weight vector initialization method
is different and IMOEA/DA updates the weight vectors dur-
ing the course of evolution. The algorithm IMOEA/DA is
shown as Pseudocode 1.

In this work, the aggregation function is the variant of
Tchebycheff approach which formulation is as follows:

min  
x∈Ω

gTE x ∣Wi, Z∗ = max
1≤j≤m

f j x − z∗j

Wi,j
, 6

where Z∗ is the reference point of the MOP. The optimal
solution x∗i of (6) must be the Pareto optimal solution of
(1). If the optimal solution x∗i of (6) is not the Pareto optimal
solution of (1), there is a solution y which is better than x∗i , so

f2(x)

f1(x)

W1
W2

W3

W4
W5

W6

W7

W8

W9

a

b

c d

e

f
g

h

i

(a) Deleting strategy

f2(x)

f1(x)

a

b

c
g

h

i

f
e

d

W1
W2

W3

W4 W5

W6

W7

W8

W9
Wnew

(b) Adding strategy

Figure 2: The adaptive weight vector adjustment. Assume, N = 6, a, b,… , i are the current optimal solutions of the corresponding
subproblem of the weigh vectors W1,W2,… ,W9, respectively. (a) Deleting strategy: b and g are the dominated solutions, and W2 and
W8 are firstly deleted; K = 7 >N, d is the most crowded solution, and W4 is deleted. (b) Adding strategy: b, d, g, and h are dominated
solutions, and W2, W4, W7, and W8 are firstly deleted; K = 5 <N, i is the thinnest solution, Wnew is added.

Require: the size of the initial population N , the current weight vectors W = W1,W2,⋯,WH and current population POP =
x1, x2,⋯, xH
Ensure: the weight vectors W

Step 1: Find the non-dominated solutions x1, x2,⋯, xK of POP and denoteWW = W1+K ,W2+K ,⋯,WH . Calculate theNDi and
Wui ,j.

Step 2: Deleting weight vectors:
If K >N , then N − K weight vectors with the minimum NDi are deleted from W.
While max NDi, i = 1~N /min NDi, i = 1~N > 2 do

The corresponding weight vector with the minimum NDi is deleted from W and recalculate the NDi and Wui ,j.
Step 3: Adding weight vectors:
If N > W then

Find the N − K maximum distances PDi,ui of obtained non-dominated solutions, and use Eq. (5) to generate the new weight
vectors.

Step 4: Deleting some weight vectors of WW from W
If WW >0.5N then

Use the crowding distance to delete WW -0.5N weight vectors of WW from W.

Algorithm 1: Adaptive weight vector adjustment.
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f j y − z∗j ≤ f j x
∗
i − z∗j , j = 1,… ,m, max1≤j≤m f j y −

z∗j /Wi,j ≤max1≤j≤m f j x
∗
i − z∗j /Wi,j . Thus, x∗i is not

the optimal solution of (6), which is a contradiction.
In Step 2, we use the strategy of the literature [44] which

can well maintain the diversity of obtained solutions to
update the solutions.

4. Experimental Results and Discussion

In this section, some experiments are conducted to demon-
strate the effectiveness of the proposed algorithm IMOEA/
DA. Firstly, IMOEA/DA compares with two other algo-
rithms: MOEA/D [16] and NSGAII [5]. Secondly, we com-
pare IMOEA/DA with other MOEA/D with weight vector
adjustment strategy: MOEA/D-AWA [37] and EMOSA
[35]. Thirdly, IMOEA/DA compares with RVEA [41] and
KnEA [48]. Fourthly, we study the effectiveness of IMOEA/
DA on MOPs with complex PF. Fifthly, we study the effec-
tiveness of the initialization method of weight vectors and
the adaptive weight vector adjustment strategy. Moreover,
the effectiveness of IMOEA/DA onmany-objective test prob-
lems is studied.

4.1. Test Problems. A wide range of well-known and very
challenging test problems is selected to test the performance
of the proposed algorithm IMOEA/DA in the experiments.
These test problems include five biobjective ZDT test prob-
lems [2], seven triobjective DTLZ problems [49], ten prob-
lems CF of CEC09 competition [50], two problems F1 and
F2 [37] with a sharp peak and low tail, nine biobjective
WFG test problems [51], and fifteen three-objective MaF
problems [52]. To investigate the ability of IMOEA/DA on
many-objective problems, two problems DTLZ5(I,m) and
DTLZ4(I,m) [53] are selected as the test instances. The
IMOEA/DA is implemented by using MATLAB language
on a PC with Intel Xeon CPU E3-1226 (3.30GHz for a single
core and the Windows 10 operating system.

4.2. Performance Metrics. In this paper, the true Pareto opti-
mal fronts of the selected test problems are well known. In
our experiment, there are four performance metrics are used
to quantificationally compare with the performances of
algorithms. These three metrics are generational distance
(GD) [54], inverted generational distance (IGD) [54], and
hypervolume indicator (HV) [55]. Wilcoxon rank-sum test
[56] is used in the sense of statistics to compare the mean

Input:
MOP (1)
A stopping criterion
N : the number of the initial weight vectors (the sub-problems)
T : the number of weight vectors in the neighborhood of each weight vector, 0 < T <N
W1,W2,… ,WN : a set of N uniformly distributed weight vectors

Output: Approximation to the PF: F x1 , F x2 ,⋯, F xN

Initialization: Generate an initial population POP = x1, x2,⋯xN randomly or by a problem-specific method; determine Z = z1,⋯,
zm by a problem-specific method; determine B i = i1,⋯, iT , i = 1,⋯,N , where Wi1

,…WiT
are the T closet weight vectors to

Wi; set gen = 0 and EP = x1, x2,⋯xN .
While the stopping criterion is not met do

Step 1: Update the utility function φ1, φ2,… , φH as follows:

φi =
0 01 if Wi is f irstly used
old aggregation f untion − new aggregation f untion

old aggregation f untion , else

According to φi, use the 10-tournament selection method [46] to select N indices which are denoted as I
Step 2: For i ϵ I, do
Select mating scope: uniformly create a random rand 0, 1 from 0, 1 and set

P =
B i rand 0, 1 < 1

1, 2,⋯,H else
Generate offspring xnew = xnew,1,⋯, xnew,n : set r1 = i and randomly choose one index r2 from P, use the SBX operator [47] to

generate a solution y from xr1 and xr2 and apply the polynomial mutation operator [47] on y to generate a new offspring xnew. Set
EP = EP ∪ xnew

Update of Z: For k = 1,… ,m, if zk < f k xnew , then set zk = f k xnew
Update the population by the updated strategy of the literature [44].

end for
Step 3: If gen is a multiple of 50, then, use Algorithm 1 to modify the weight vectors W, re-determine B i = i1,⋯, iT ,

i = 1,⋯,H (where H is the size of W), and randomly select solutions from POP to allocate the new sub-problem as their current
solution.

Step 4: Set gen = gen + 1
end while

Pseudocode 1: The pseudocode of the algorithm IMOEA/DA.
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IGD, GD, and HV of the compared algorithms. It tests
whether the performance of IMOEA/DA on each test prob-
lem is better (“+”), same (“=”), or worse (“−”) than/as that of
the compared algorithms at a significance level of 0.05 by a
two-tailed test.

4.3. Parameter Setting. All algorithms are coded as real vec-
tors. Distribution index is 20 in the SBX operator; distribu-
tion index is 20 and polynomial mutation probability is 1/n
in the mutation operator; the initial population sizes of all
algorithms are set to 105 on all test problems and 105 initial
weight vectors are generated; each algorithm is run 30 times
with the maximal number of function evaluations 50,000 on
all test problems. MOEA/D uses the method of the literature
[16] to generate the weight vectors and uses the Tchebycheff
approach as the aggregate function. For IMOEA/DA and
MOEA/D, the size of neighborhood list T is set to 0 1N , the
probability of choosing mate subproblem from its neighbor-
hood J is set to 0.9.

4.4. Comparisons of IMOEA/DA with Other Multiobjective
Algorithms. In this subsection, metric values obtained by
IMOEA/DA and other multiobjective algorithms on test
problems are shown in Tables 2–6, and some comparisons
are made to demonstrate the performance of IMOEA/DA.
The best results obtained are highlighted bold in these tables.

4.4.1. Comparisons of IMOEA/DA with NSGAII and MOEA/
D. In this subsection, IMOEA/DA is compared with NSGAII
and MOEA/D on these twenty-six test problems which
include nine WFG problems, ten UF problems, and seven
DTLZ problems, and the results obtained three algorithms
which are presented in Table 2. Table 2 presents the mean
and standard deviation of the HV, GD, and IGD metric
values of the final solutions obtained by three algorithms on
twenty-six 10-dimensional problems. We can obtain from
Table 2 that the results of Wilcoxon rank-sum test show that
IMOEA/DA outperforms MOEA/D and NSGAII on all
twenty-six test problems and twenty-four test problems in
the form of the HV and IGDmetrics, respectively; these indi-
cate that the diversity of solutions obtained by IMOEA/DA is
better than NSGAII and MOEA/D, and the solutions
obtained by IMEOA/DA have a good convergence; in the
form of the GD metrics, IMOEA/DA outperforms NSGAII
on twenty-three test problems and outperforms MOEA/D
on ten test problems, and these imply that the solutions
obtained by IMEOA/DA have a good convergence. More-
over, it can be seen from Table 2 that, in the form of the
HV and IGD metrics, the results obtained by IMOEA/DA
are better than those obtained by NSGAII and MOEA/D on
all twenty-six test problems, which indicates that the final
solutions obtained by IMOEA/DA have a better diversity
than those obtained by NSGAII and MOEA/D and have a
good convergence. We also can obtain from Table 2 that
the mean values of GD metric contained by IMOEA/DA
are bigger than those obtained by MOEA/D on twelve test
problems, which include WFG2, WFG8, UF2, UF3, UF6,
UF8, UF9, DTLZ2–DTLZ5, and DTLZ7, and are smaller
than those obtained by MOEA/D on other fourteen test

problem; the mean values of GD metric contained by
IMOEA/DA are smaller than those obtained by NSGAII on
all these problems except for problems UF6, DTLZ4, and
DTLZ7, and these imply that IMOEA/DAA can obtain a
set of solutions with better convergence than MOEA/D and
NSGAII on most test problems. Moreover, the mean values
of IGD obtained by IMOEA/DA are smaller at least 15% than
those obtained by MOEA/D and NSGAII on most test prob-
lems of these twenty-six test problems. To visually show the
performance of the proposed algorithm, according to the
median values of IGD metric, the nondominated solutions
obtained by IMEOA/DA are plotted in Figures 3 and 4. It is
evident that the found approximated PF is distributed uni-
formly on the true PF on these twenty-six test problems
except for problem UF5. These comparisons indicate that
IMOEA/DA is better at maintaining the diversity of obtained
solutions than MOEA/D and NSGAII, and IMOEA/DA can
also obtain a set of solutions with good convergence.

MOEA/D decomposes a MOP into a number of subprob-
lems and optimizes them simultaneously. Each subproblem
is optimized by using information from its several neighbor-
ing subproblems. In MOEA/D, the current solution of each
subproblem is updated by these offspring which are gener-
ated by the neighbors of this subproblem, which can improve
the convergence, and which cannot be conducted to maintain
the diversity. In our algorithm, each offspring is firstly classi-
fied, the current solutions of the same class as the offspring
may be updated [44], and our adaptive weight vector adjust-
ment strategy can solve MOPs with complex PFs, which
help obtained solutions to maintain the diversity. Moreover,
the above comparisons indicate that IMOEA/DA is better at
maintaining the diversity of obtained solutions than MOEA/
D. NSGAII uses the nondominated sorting and the crowding
distance to rank the solutions. During selection, NSGAII uses
a crowded comparison operator that takes into consideration
both the nondomination rank of an individual in the popula-
tion and its crowding distance (i.e., nondominated solutions
are preferred over dominated solutions, but between the two
solutions with the same nondomination rank, the one that
resides in the less crowded region is preferred). Our algo-
rithm uses the neighboring solutions to generate the off-
spring, which can generate better offspring than NSGAII.
And the above comparisons declare that IMOEA/DA is bet-
ter at maintaining the diversity of obtained solutions and
improving the convergence than NSGAII.

4.4.2. Comparisons of IMOEA/DA with MOEA/D-AWA
and EMOSA. MOEA/D-AWA [37] and EMOSA [35] are
an improved MOEA/D with adaptive weight vector adjust-
ment. It has a good performance of solving the MOPs with
complex PFs. IMOEA/DA is compared with MOEA/D-
AWA and EMOSA on fourteen test problems which
include five ZDT problems, five DTLZ problems, two con-
structed problems F1-F2, and two many-objective problems
DTLZ4(3,6) and DTLZ5(3,6). In this experiment, EMOSA
does not test many-objective problems DTLZ4(3,6) and
DTLZ5(3,6). The experimental results of MOEA/D-AWA
and EMOSA are directly obtained from the original litera-
tures to make a fair comparison, and the population sizes
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Table 2: HV, GD, and IGD obtained by IMOEA/DA, MOEA/D, and NSGAII.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

WFG1

IMOEA/DA 6.7512 0.0008 0.0014 0.0001 0.0125 0.0002

MOEA/D 6.7205(+) 0.0012 0.0015(+) 0.0001 0.0535(+) 0.0029

NSGAII 6.7428(+) 0.0023 0.0015(+) 0.0002 0.0151(+) 0.0007

WFG2

IMOEA/DA 6.1411 0.0002 0.0065 0.0006 0.0109 0.0003

MOEA/D 6.0341(+) 0.0971 0.0053(−) 0.0006 0.0773(+) 0.0319

NSGAII 6.0381(+) 0.1065 0.0059(−) 0.0004 0.0504(+) 0.0407

WFG3

IMOEA/DA 5.6356 0.0006 0.0023 0.0003 0.0134 0.0004

MOEA/D 5.6080(+) 0.0036 0.0023(=) 0.0005 0.0146(+) 0.0005

NSGAII 5.6245(+) 0.0035 0.0025(+) 0.0005 0.0148(+) 0.0006

WFG4

IMOEA/DA 3.3611 0.0017 0.0025 0.0002 0.0131 0.0003

MOEA/D 3.3404(+) 0.0014 0.0026(=) 0.0003 0.0137(+) 0.0003

NSGAII 3.3583(+) 0.0015 0.0027(+) 0.0003 0.0154(+) 0.0007

WFG5

IMOEA/DA 3.0364 0.0614 0.0533 0.0145 0.0575 0.0133

MOEA/D 2.9598(+) 0.0016 0.0605(+) 0.0001 0.0708(+) 0.0007

NSGAII 3.0083(+) 0.0100 0.0636(+) 0.0005 0.0667(+) 0.0005

WFG6

IMOEA/DA 3.3640 0.0010 0.0025 0.0002 0.0133 0.0006

MOEA/D 3.3383(+) 0.0028 0.0028(+) 0.0002 0.0139(+) 0.0002

NSGAII 3.3530(+) 0.0051 0.0029(+) 0.0006 0.0157(+) 0.0006

WFG7

IMOEA/DA 3.3634 0.0009 0.0025 0.0003 0.0139 0.0002

MOEA/D 3.3415(+) 0.0004 0.0025(=) 0.0003 0.0138(=) 0.0003

NSGAII 3.3562(+) 0.0019 0.0026(=) 0.0001 0.0158(+) 0.0007

WFG8

IMOEA/DA 3.3504 0.0016 0.0048 0.0003 0.0147 0.0003

MOEA/D 3.3351(+) 0.0040 0.0032(−) 0.0003 0.0143(=) 0.0004

NSGAII 3.3418(+) 0.0018 0.0058(+) 0.0005 0.0155(+) 0.0005

WFG9

IMOEA/DA 3.3101 0.0005 0.0025 0.0002 0.0145 0.0006

MOEA/D 3.2826(+) 0.0097 0.0026(+) 0.0003 0.0164(+) 0.0006

NSGAII 3.2991(+) 0.0095 0.0028(+) 0.0005 0.0164(+) 0.0012

UF1

IMOEA/DA 0.8652 0.0038 0.0068 0.0004 0.0070 0.0027

MOEA/D 0.7868(+) 0.0547 0.0044(−) 0.0005 0.0653(+) 0.0553

NSGAII 0.8307(+) 0.0355 0.0120(+) 0.0033 0.0324(+) 0.0276

UF2

IMOEA/DA 0.8695 0.0002 0.0067 0.0023 0.0050 0.0002

MOEA/D 0.8631(+) 0.0017 0.0045(−) 0.0002 0.0083(+) 0.0013

NSGAII 0.8643(+) 0.0006 0.0080(+) 0.0005 0.0076(+) 0.0004

UF3

IMOEA/DA 0.8620 0.0112 0.0077 0.0009 0.0106 0.0105

MOEA/D 0.7372(+) 0.0615 0.0040(−) 0.0004 0.1220(+) 0.0636

NSGAII 0.8559(+) 0.0126 0.0111(+) 0.0060 0.0151(+) 0.0163
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Table 2: Continued.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

UF4

IMOEA/DA 0.5386 0.0001 0.0036 0.0001 0.0035 0.0001

MOEA/D 0.5373(+) 0.0003 0.0037(=) 0.0001 0.0036(+) 0.0001

NSGAII 0.5359(+) 0.0003 0.0046(+) 0.0002 0.0053(+) 0.0001

UF5

IMOEA/DA 0.3538 0.0939 0.0427 0.0487 0.2350 0.0567

MOEA/D 0.2148(+) 0.1103 0.1603(+) 0.1113 0.4141(+) 0.1319

NSGAII 0.2441(+) 0.1092 4.1854(+) 3.0226 0.3328(+) 0.1395

UF6

IMOEA/DA 0.6357 0.0114 0.0195 0.0103 0.0070 0.0024

MOEA/D 0.5675(+) 0.0224 0.0109(−) 0.0031 0.0405(+) 0.0187

NSGAII 0.5984(+) 0.0066 0.0155(+) 0.0073 0.0169(+) 0.0026

UF7

IMOEA/DA 0.7026 0.0003 0.0043 0.0002 0.0046 0.0002

MOEA/D 0.6946(+) 0.0069 0.0049(+) 0.0004 0.0072(+) 0.0037

NSGAII 0.6949(+) 0.0016 0.0065(+) 0.0008 0.0083(+) 0.0009

UF8

IMOEA/DA 0.6861 0.0194 0.0549 0.0226 0.0953 0.0119

MOEA/D 0.6388(+) 0.0153 0.0273(−) 0.0296 0.1319(+) 0.0262

NSGAII 0.5568(+) 0.0367 0.6345(+) 0.5476 0.1487(+) 0.0263

UF9

IMOEA/DA 0.9420 0.0827 0.2133 0.1745 0.0959 0.0541

MOEA/D 0.8996(+) 0.0765 0.0915(−) 0.0311 0.1082(+) 0.0537

NSGAII 0.6614(+) 0.2035 1.7880(+) 1.7009 0.2194(+) 0.0998

UF10

IMOEA/DA 0.5102 0.0691 0.0549 0.0891 0.1513 0.0424

MOEA/D 0.3718(+) 0.0962 0.0897(+) 0.0402 0.2245(+) 0.0443

NSGAII 0.3967(+) 0.0590 1.3988(+) 0.9461 0.2235(+) 0.0494

DTLZ1

IMOEA/DA 0.0962 0.0007 0.0072 0.0001 0.0199 0.0009

MOEA/D 0.0934(+) 0.0003 0.0074(+) 0.0001 0.0244(+) 0.0002

NSGAII 0.0947(+) 0.0019 0.0247(+) 0.0415 0.0296(+) 0.0068

DTLZ2

IMOEA/DA 0.7138 0.0051 0.0214 0.0005 0.0550 0.0030

MOEA/D 0.6989(+) 0.0023 0.0193(−) 0.0002 0.0632(+) 0.0006

NSGAII 0.6973(+) 0.0037 0.0241(+) 0.0010 0.0715(+) 0.0028

DTLZ3

IMOEA/DA 0.7196 0.0051 0.0204 0.0010 0.0514 0.0030

MOEA/D 0.6983(+) 0.0032 0.0197(−) 0.0007 0.0633(+) 0.0004

NSGAII 0.7104(+) 0.0054 0.0204(+) 0.0013 0.0703(+) 0.0026

DTLZ4

IMOEA/DA 0.7234 0.0062 0.0246 0.0040 0.0544 0.0014

MOEA/D 0.6997(+) 0.0038 0.0196(−) 0.0006 0.0632(+) 0.0005

NSGAII 0.6128(+) 0.1256 0.0192(+) 0.0055 0.2442(+) 0.2432

DTLZ5

IMOEA/DA 0.4394 0.0003 0.0009 0.0003 0.0047 0.0002

MOEA/D 0.4366(+) 0.0001 0.0004(−) 0.0002 0.0071(+) 0.0002

NSGAII 0.4376(+) 0.0003 0.0012(+) 0.0002 0.0054(+) 0.0004
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of IMOEA/DA are set to 100, 300, and 252 for two-
objective problems, three-objective problems, and six-
objective problems, respectively; the maximal number of
function evaluations is set to 50,000, 75,000, and 200,000
for two-objective problems, three-objective problems, and
six-objective problems, respectively, and other parameter set-
tings are the same as Subsection 4.3.

Table 3 shows the mean and standard deviation values
of IGD metric obtained by IMOEA/DA, MOEA/D-AWA,
and EMOSA on these fourteen test problems. We can obtain
from this table that the mean values of IGD metric obtained
by IMOEA/DA are smaller than those obtained by MOEA/
D-AWA on all fourteen test problems except for problem
F2 and are smaller than those obtained by MOEAS on all
twelve test problems except for problem F2, which indicate
that the quality of the final solutions obtained by IMOEA/
DA is better than those obtained by MOEA/D-AWA and
EMOSA on thirteen problems and eleven problems, respec-
tively. These comparisons imply that IMOEA/DA is better
at solving MOPs with complex PFs than MOEA/D-AWA

and EMOSA on most problems of these problems. Accord-
ing to the median values of IGD metric, the nondominated
solutions obtained by IMEOA/DA on the five ZDT test
problems, F1 and F2, are plotted in Figures 3 and 4, which
can visually show the good performance of IMOEA/DA.
These indicate that IMOEA/DA can effectively approach
the true PFs.

The adaptive weight vector adjustment strategy of
MOEA/D-AWA uses the obtained nondominated solutions
and crowding distance to adaptively set the weight vectors;
however, the crowding distance based on nondominated
solutions is not a good method to maintain the uniformity
of weight vectors, especially in problems with three or more
objective problems. In MOEAS, each weight vector is period-
ically adjusted to make its solution of subproblem far from
the corresponding nearest neighbor. This can well maintain
the uniformity of weight vectors for two-objective problems;
however, it may lose efficacy for three or more objectives
problems. In our algorithm, according to the distance of
neighboring nondominated solutions, the weight vectors

Table 2: Continued.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

DTLZ6

IMOEA/DA 0.4412 0.0001 0.0004 0.0001 0.0045 0.0001

MOEA/D 0.3461(+) 0.0300 0.1026(+) 0.0298 0.0820(+) 0.0289

NSGAII 0.3566(+) 0.0377 0.0763(+) 0.0333 0.0710(+) 0.0332

DTLZ7

IMOEA/DA 1.6576 0.0074 0.0143 0.0028 0.0596 0.0046

MOEA/D 1.5107(+) 0.0617 0.0076(−) 0.0037 0.1790(+) 0.1156

NSGAII 1.5623(+) 0.0863 0.0129(=) 0.0016 0.1451(+) 0.1245

“+”means that IMOEA/DA outperforms its competitor algorithm, “−”means that IMOEA/DA is worse than its competitor algorithm, and “=”means that the
competitor algorithm has the same performance as IMOEA/DA.

Table 3: IGD obtained by IMOEA/DA and MOEA/D-AWA.

Problems
MOEA/D-AWA EMOSA IMOEA/D

Mean Std Mean Std Mean Std

ZDT1 4.470e − 3 2.239e − 4 3.674e − 3 5.923e − 5 3.300e − 3 1.57e − 4
ZDT2 4.482e − 3 1.837e − 3 3.900e − 3 2.735e − 4 3.300e − 3 1.84e − 4
ZDT3 6.703e − 3 4.538e − 4 9.737e − 3 6.636e − 4 3.702e − 3 2.44e − 4
ZDT4 4.238e − 3 3.102e − 4 5.174e − 3 7.339e − 4 3.95e − 3 1.47e − 4
ZDT6 4.323e − 3 2.819e − 4 3.601e − 3 4.250e − 4 1.910e − 3 3.08e − 4
DTLZ1 1.237e − 2 1.617e − 3 1.632e − 2 2.106e − 3 1.07e− 2 1.64e − 4
DTLZ2 3.065e − 2 1.183e − 4 3.232e − 2 9.275e − 4 2.96e − 2 4.67e − 4
DTLZ3 3.196e − 2 8.036e − 4 5.723e − 2 9.761e − 2 2.86e − 2 3.92e − 4
DTLZ4 3.068e − 2 1.351e − 4 3.443e − 2 9.476e − 3 2.97e − 2 3.54e − 4
DTLZ7 3.610e − 2 5.054e − 3 6.980e − 2 2.539e − 3 3.00e − 2 7.81e − 4
F1 5.204e − 3 7.7975e − 5 6.11e − 3 3.608e − 4 4.800e − 3 1.45e − 4
F2 1.637e − 2 3.104e − 4 1.663e − 2 3.233e − 4 1.81e − 2 1.000e − 3
DTLZ4(3,6) 0.0379 0.0005 NA NA 0.0271 0.0017

DTLZ5(3,6) 0.0382 0.0006 NA NA 0.0265 0.0014
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Table 4: HV, GD, and IGD obtained by IMOEA/DA, RVEA, and KnEA.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

MaF1

IMOEA/DA 2.874e − 1 1.94e−3 4.695e − 4 5.36e − 4 4.613e − 2 1.12e − 3

RVEA 2.451e − 1(+) 5.36e − 3 3.429e − 3(+) 9.00e − 4 7.328e − 2(+) 2.49e − 3

KnEA 2.864e − 1(=) 4.01e − 3 4.868e − 4(=) 2.17e − 4 4.617e − 2(=) 3.53e − 3

MaF2

IMOEA/DA 2.223e − 1 9.23e − 4 1.047e − 3 1.37e − 4 3.298e − 2 6.49e − 4

RVEA 2.058e − 1(+) 1.64e − 3 5.648e − 3(+) 4.28e − 4 3.945e − 2(+) 1.91e − 3

KnEA 2.166e − 1(=) 7.83e − 4 7.401e − 4(−) 3.68e − 5 3.429e − 2(=) 2.21e − 3

MaF3

IMOEA/DA 1.278e + 0 2.47e − 3 6.967e − 4 5.11e − 4 4.000e − 2 2.80e − 3

RVEA 1.277e + 0(=) 1.63e − 3 5.434e − 4(−) 1.84e − 4 3.945e − 2(=) 9.79e − 4

KnEA 1.170e + 0(+) 1.58e − 1 4.292e − 4(−) 1.16e − 4 1.432e − 1(+) 1.11e − 1

MaF4

IMOEA/DA 4.472e + 1 4.06e − 1 3.874e − 2 8.35e − 2 3.744e − 1 7.14e − 2

RVEA 4.178e + 1(+) 2.63e + 0 3.371e − 3(−) 3.26e − 4 4.337e − 1(+) 1.12e − 1

KnEA 4.340e + 1(+) 1.56e + 0 3.027e − 3(−) 1.74e − 4 5.478e − 1(+) 1.46e − 1

MaF5

IMOEA/DA 4.808e + 1 2.69 e − 1 1.899e − 3 2.75e − 3 2.308e − 1 9.46e − 3

RVEA 4.795e + 1(=) 2.72e − 3 2.318e − 3(+) 1.55e − 5 2.398e − 1(+) 3.79e − 5

KnEA 4.632e + 1(+) 3.28e − 1 2.309e − 3(+) 1.87e − 4 3.078e − 1(+) 2.05e − 2

MaF6

IMOEA/DA 1.311e − 1 4.50e − 4 4.634e − 5 2.55e − 5 8.499e − 3 1.01e − 3

RVEA 1.178e − 1(+) 2.73e − 3 4.181e − 2(+) 6.17e − 2 3.530e − 2(+) 4.65e − 3

KnEA 1.216e − 1(+) 7.01e − 3 1.799e − 4(+) 3.28e − 4 2.355e − 2(+) 1.35e − 2

MaF7

IMOEA/DA 1.650e + 0 1.39e − 2 3.356e − 3 2.70e − 2 6.351e − 2 4.95e − 3

RVEA 1.541e + 0(+) 1.30e − 2 7.870e − 3(+) 4.85e − 4 1.047e − 1(+) 2.10e − 3

KnEA 1.637e + 0(=) 1.81e − 2 1.155e − 3(−) 2.39e − 4 6.755e − 2(+) 4.59e − 3

MaF8

IMOEA/DA 1.783e + 0 6.29e − 2 3.871e − 3 8.64e − 4 1.024e − 1 2.52e − 2

RVEA 1.681e + 0(+) 2.29e − 2 2.528e − 2(+) 2.03e − 3 1.209e − 1(+) 8.03e − 3

KnEA 1.282e + 0(+) 1.51e − 1 4.238e − 3(+) 2.85e − 3 3.212e − 1(+) 6.96e − 2

MaF9

IMOEA/DA 3.683e + 0 3.70e − 2 1.468e − 1 3.82e − 1 7.534e − 2 6.12e − 3

RVEA 3.673e + 0(=) 7.29e − 3 1.400e − 3(−) 4.66e − 4 5.830e − 2(−) 2.09e − 3

KnEA 2.213e + 0(+) 6.06e − 1 3.288e + 0(+) 4.90e + 0 4.688e − 1(+) 1.73e − 1

MaF10

IMOEA/DA 5.973e + 1 3.02e + 0 4.245e − 3 5.54e − 4 8.402e − 2 1.47e − 3

RVEA 5.946e + 1(=) 3.28e − 1 8.418e − 3(+) 9.19e − 4 1.789e − 1(+) 1.60e − 2

KnEA 5.909e + 1(=) 2.46e − 1 4.796e − 3(=) 3.02e − 4 1.934e − 1(+) 9.82e − 3

MaF11

IMOEA/DA 5.941e + 1 1.25e − 1 5.267e − 3 3.28e − 4 5.309e − 1 5.03e − 2

RVEA 5.940e + 1(=) 4.21e − 2 1.009e − 2(+) 2.77e − 3 1.802e − 1(−) 5.70e − 3

KnEA 5.943e + 1(=) 2.24e − 1 6.080e − 3(+) 6.23e − 4 1.944e − 1(−) 2.32e − 2

MaF12

IMOEA/DA 3.482e + 1 5.74e − 1 4.798e − 3 1.48e − 3 2.079e − 1 1.18e − 3

RVEA 3.464e + 1(=) 1.06e − 1 4.227e − 3(=) 2.47e − 4 2.080e − 1(=) 1.21e − 3

KnEA 3.394e + 1(+) 9.19e − 2 4.331e − 3(=) 3.34e − 4 2.250e − 1(+) 4.76e − 3
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are adaptively set, which can well maintain the uniformity of
weight vectors. And the above comparisons declare that
IMOEA/DA is better at maintaining the diversity of obtained
solutions than MOEA/D-AWA.

4.4.3. Comparisons of IMOEA/DA with RVEA and KnEA on
MaF Problems. To demonstrate the effectiveness of the pro-
posed algorithm MaOEAIR2, the benchmark suit for
CEC2018 MaOP competition [52] is chosen, which have
diverse characteristics and can test the strengths and weak-
nesses of MOEAs. There are fifteen many-objective bench-
mark functions (MaF) with box constrains in the solution
space in this benchmark suit. In this work, for each test prob-
lem, the number of objectives is set to 3. RVEA [41] and
KnEA [48] are used to compare with our algorithm. KnEA
is a knee point-driven EA to enhance the convergence per-
formance in many-objective optimization. RVEA uses the
reference vectors to decompose the original multiobjective
optimization problem into a number of single-objective
subproblems and elucidate user preferences to target a pre-
ferred subset of the whole Pareto front. The codes of RVEA
and KnEA are obtained from PlatEMO [57]. The initial
population and initial weight vectors sizes are set to 105
for these fifteen problems; each algorithm is run 30 times
with the maximal number of function evaluations 100,000
on all test problems.

Table 4 shows the mean and standard deviation values
of IGD metric obtained by IMOEA/DA, RVEA, and KnEA
on these fifteen test problems. We can get from Table 4 that
IMOEA/DA is worse than RVEA and KnEA on none test
problem in the form of the HV metric; these indicate that
the diversity of solutions obtained by IMOEA/DA is better
than RVEA and KnEA; in the form of the GD metrics,
IMOEA/DA outperforms RVEA on ten test problems and
outperforms KnEA on five test problems; these imply that
the solutions obtained by IMEOA/DA have a good conver-
gence; the mean values of IGD metric obtained by IMOEA/

DA are smaller than those obtained by KnEA on all fifteen
test problems and are smaller than those obtained by
RVEA on all fifteen test problems except for problems
MaF3, MaF9, MaF11, and MaF12, which indicate that the
quality of the final solutions obtained by IMOEA/DA is
better than those obtained by KnEA and RVEA on fifteen
problems and eleven problems, respectively. These compar-
isons imply that IMOEA/DA is better at solving MOPs
with complex PFs than RVEA and KnEA on most prob-
lems of these problems.

4.5. Performances on MOPS with Complex PFs and Many-
Objective Problems. For the problems WFG2, UF5, UF6,
ZDT3, and DTLZ7 which have discontinuous PF, the above
experimental results show that, though IMOEA/DA cannot
well solve problem UF5, IMOEA/DA can well solve other
four problems; IMOEA/DA can obtain better performances
than NSGAII and MOEA/D on problems WFG2, UF5,
UF6, and DTLZ7; IMOEA/D can obtain better performances
than MOEA/D-AWA on problems ZDT3 and DTLZ7. These
show that IMOEA/DA can obtain good performances on
most problems of the MOPs with discontinuous PF.

To study the performance of IMOEA/DA on problems
with sharp peak or low tail PFs, we test the problems F1
and F2. The ideal PFs of F1 and F2 are f1 f2 ∣ 1 − f1

2 8 +
1 − f2

2 8 = 1, f1, f2 ∈ 0, 1 , f1 f2 f3 ∣ f1 + f2 + f3 = 1,
f1, f2, f3 ∈ 0, 1 , respectively. It can be seen from Table 3
that the performance of IMOEA/DA is worse than that of
MOEA/D-AWA on problem F2 and is better than that of
MOEA/D-AWA on problem F1. Figure 5 shows the distribu-
tion of the final nondominated fronts obtained by IMOEA/
DA on problems F1 and F2. As shown in Figure 5, IMOEA/
DA can obtain a set of nondominated solutions with good
uniformity. These results suggest that the weight adjustment
of IMOEA/DA does improve MOEA/D significantly in the
terms of uniformity for the MOPs with complex PFs. The

Table 4: Continued.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

MaF13

IMOEA/DA 6.915e − 1 1.11e − 2 5.644e − 2 7.32e − 2 7.322e − 2 7.99e − 3

RVEA 6.846e − 1(+) 1.89e − 2 5.526e − 3(−) 1.76e − 3 7.418e − 2(=) 8.83e − 3

KnEA 6.078e − 1(+) 1.06e − 2 7.340e − 3(−) 2.66e − 3 1.347e − 1(+) 1.99e − 2

MaF14

IMOEA/DA 6.032e − 1 1.30e − 1 4.765e + 1 9.12e + 1 2.780e − 1 8.56e − 2

RVEA 1.645e − 2(+) 3.68e − 2 5.541e + 2(+) 7.74e + 2 1.154e + 0(+) 2.53e − 1

KnEA 3.082e − 1(+) 7.70e − 2 4.478e − 1(−) 3.24e − 1 5.489e − 1(+) 8.49e − 2

MaF15

IMOEA/DA 4.363e − 1 3.85e − 2 1.014e + 0 2.57e − 1 3.547e − 1 2.66e − 2

RVEA 0.000e + 0(+) 0.00e + 0 4.784e + 0(+) 3.50e − 1 1.013e + 0(+) 2.22e − 1

KnEA 1.010e − 1(+) 6.87e − 2 2.813e − 1(−) 1.98e − 1 5.712e − 1(+) 2.19e − 1

“+”means that IMOEA/DA outperforms its competitor algorithm, “−”means that IMOEA/DA is worse than its competitor algorithm, and “=”means that the
competitor algorithm has the same performance as IMOEA/DA.
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possible reasons for the success of IMOEA/DA are that it
increases the number of subproblems of those regions
with the sharp peak or low tail PFs and it treats each sub-
problem equally.

To test the ability of the IMOEA/DA on many-objective
problems, two test problems DTLZ5(3,6) and its variation
DTLZ4(3,6) are used. They are many-objective problems
with low-dimensional PF in the objective space; thus, their
PFs are convenient for the visual display of the distribution
of solutions. The ideal PFs of DTLZ5(3,6) and DTLZ4(3,6)
are described as follows: f1, f2, f3, f4, f5 ∣ f4 = 2f3 = 2
f1 = 2f2, 2 ∗ f 24 + f 25 + f 26 = 1, f1, f5, f6 ∈ 0, 1 . It can be seen
from Table 5 that the performance of IMOEA/DA is better
than that of MOEA/D-AWA on these two problems.
Figure 5 shows the distribution of the final nondominated
fronts obtained by IMOEA/DA on these two problems. As
shown in Figure 5, IMOEA/DA can obtain a set of nondomi-
nated solutions with good uniformity and convergence. The
possible reason for the success of IMOEA/DA on many-
objective problems is that IMOEA/DA with the help of the
proposed weight adjustment can obtain a good diversity.
The computing efforts in IMOEA/DA are evenly distributed
and have no preference to the boundary solutions and non-
dominated solutions.

4.6. Major Contributions of the Proposed Algorithm. This
paper has two major contributions; one is the initialization
method of weight vectors, and the other is the adaptive
weight vector adjustment strategy. In this subsection, their
effects are discussed. The initialization method of weight vec-
tors has a great effect on three or many objective problems.
So, in the experiments, the test problems are three-objective
problems of Subsection 4.4.1 and the parameters are the
same as Subsection 4.4.1. To study the effect of the initializa-
tion method of weight vectors, we compare the performances
of MOEA/D with initialization method [44], initialization
method [16], and the proposed method. For convenience,
these three MOEA/D algorithms are denoted as MOEA/D1,
MOEA/D2, and MOEA/D3, respectively. Table 5 displays
the mean and standard deviation values of HV and IGDmet-
rics obtained by three MOEA/D algorithms on ten three-
objective problems. We can obtain from Table 5 that, in the
form of the HV and GD metrics, MOEA/D3 outperforms
MOEA/D1 and is not worse than MOEA/D2 on all ten test
problems, and the mean values of HV and IGD metrics
obtained by MOEA/D3 are better than MOEA/D1 and
MOEA/D2, which can indicate that the diversity of solutions
obtained by MOEA/D3 is better than those obtained MOEA/
D1 and MOEA/D2. These comparisons imply that the uni-
formity of weight vectors generated by the proposed method
is preferable than the methods [16, 44].

The major role of the adaptive weight vector adjustment
strategy is to maintain the diversity of obtained solutions. To
identify this, IMOEA/DA is compared with IMOEA/DA
without t the adaptive weight vector adjustment strategy
which is denoted as IMOEA/D. In this experiment, the test
problem and parameters are the same as those found in Sub-
section 4.4.1. Table 6 shows the mean and standard deviation
values of HV, GD, and IGDmetrics obtained by IMOEA/DA
and IMOEA/D on these twenty-six problems. It can be seen
from Table 6 that IMOEA/DA obtains the best results on
all these problems in the form of the HV and IGD metrics

Table 5: HV, GD, and IGD obtained by MOEA/D with three the
initialization methods.

Problems
HV IGD

Mean Std Mean Std

UF8

MOEA/D1 0.6094(+) 0.0426 0.1246(+) 0.0395

MOEA/D2 0.6388(+) 0.0153 0.1319(+) 0.0262

MOEA/D3 0.6421 0.0315 0.1165 0.0241

UF9

MOEA/D1 0.8036(+) 0.0954 0.1549(+) 0.1036

MOEA/D2 0.8996(=) 0.0765 0.1082(=) 0.0537

MOEA/D3 0.9064 0.0961 0.1127 0.0886

UF10

MOEA/D1 0.3716(+) 0.1214 0.3145(+) 0.0614

MOEA/D2 0.3718(+) 0.0962 0.2245(+) 0.0443

MOEA/D3 0.4881 0.0634 0.1665 0.0476

DTLZ1

MOEA/D1 0.0904(+) 0.0004 0.0260(+) 0.0005

MOEA/D2 0.0934(=) 0.0003 0.0244(+) 0.0002

MOEA/D3 0.0950 0.0009 0.0201 0.0004

DTLZ2

MOEA/D1 0.6716(+) 0.0031 0.0680(+) 0.0004

MOEA/D2 0.6989(+) 0.0023 0.0632(+) 0.0006

MOEA/D3 0.7041 0.0061 0.0612 0.0009

DTLZ3

MOEA/D1 0.6813(+) 0.0046 0.0624(+) 0.0009

MOEA/D2 0.6983(+) 0.0032 0.0633(+) 0.0004

MOEA/D3 0.7105 0.0068 0.0580 0.0008

DTLZ4

MOEA/D1 0.6954(+) 0.0058 0.0651(+) 0.0008

MOEA/D2 0.6997(=) 0.0038 0.0632(+) 0.0005

MOEA/D3 0.7012 0.0045 0.0604 0.0012

DTLZ5

MOEA/D1 0.4214(+) 0.0003 0.0091(+) 0.0002

MOEA/D2 0.4366(=) 0.0001 0.0071(=) 0.0002

MOEA/D3 0.4374 0.0003 0.0061 0.0004

DTLZ6

MOEA/D1 0.3410(+) 0.0001 0.0830(+) 0.0001

MOEA/D2 0.3461(+) 0.0300 0.0820(+) 0.0289

MOEA/D3 0.3815 0.0020 0.0101 0.0042

DTLZ7

MOEA/D1 1.4263(+) 0.0716 0.1925(+) 0.0861

MOEA/D2 1.5107(+) 0.0617 0.1790(+) 0.1156

MOEA/D3 1.5846 0.0604 0.0912 0.0754

“+”means that MOEA/D3 outperforms its competitor algorithm, “−”means
that MOEA/D3 is worse than its competitor algorithm, and “=” means that
the competitor algorithm has the same performance as MOEA/D3.
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Table 6: HV, GD and IGD obtained by IMOEA/DA and IMOEA/D.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

WFG1

IMOEA/DA 6.7512 0.0008 0.0014 0.0001 0.0125 0.0002

IMOEA/D 6.7325(+) 0.0009 0.0014(=) 0.0001 0.0214(+) 0.0009

WFG2

IMOEA/DA 6.1411 0.0002 0.0065 0.0006 0.0109 0.0003

IMOEA/D 6.0824(+) 0.0010 0.0070(+) 0.0006 0.0153(+) 0.0014

WFG3

IMOEA/DA 5.6356 0.0006 0.0023 0.0003 0.0134 0.0004

IMOEA/D 5.6179(+) 0.0009 0.0022(=) 0.0005 0.0256(+) 0.0005

WFG4

IMOEA/DA 3.3611 0.0017 0.0025 0.0002 0.0131 0.0003

IMOEA/D 3.3456(+) 0.0015 0.0022(−) 0.0003 0.0161(+) 0.0003

WFG5

IMOEA/DA 3.0364 0.0614 0.0533 0.0145 0.0575 0.0133

IMOEA/D 2.9432(+) 0.0712 0.0504(−) 0.0104 0.0724(+) 0.0152

WFG6

IMOEA/DA 3.3640 0.0010 0.0025 0.0002 0.0133 0.0006

IMOEA/D 3.3512(+) 0.0028 0.0026(=) 0.0002 0.0138(+) 0.0002

WFG7

IMOEA/DA 3.3634 0.0009 0.0025 0.0003 0.0139 0.0002

IMOEA/D 3.3571(+) 0.0004 0.0025(=) 0.0003 0.0142(+) 0.0003

WFG8

IMOEA/DA 3.3504 0.0016 0.0048 0.0003 0.0147 0.0003

IMOEA/D 3.3314(+) 0.0040 0.0041(−) 0.0003 0.0151(+) 0.0004

WFG9

IMOEA/DA 3.3101 0.0005 0.0025 0.0002 0.0145 0.0006

IMOEA/D 3.2914(+) 0.0097 0.0025(=) 0.0003 0.0161(+) 0.0006

UF1

IMOEA/DA 0.8652 0.0038 0.0068 0.0004 0.0070 0.0027

IMOEA/D 0.8312(+) 0.0057 0.0050(−) 0.0005 0.0079(+) 0.0034

UF2

IMOEA/DA 0.8695 0.0002 0.0067 0.0023 0.0050 0.0002

IMOEA/D 0.8645(+) 0.0017 0.0045(+) 0.0002 0.0075(+) 0.0013

UF3

IMOEA/DA 0.8620 0.0112 0.0077 0.0009 0.0106 0.0105

IMOEA/D 0.8315(+) 0.0215 0.0092(+) 0.0004 0.0124(+) 0.0217

UF4

IMOEA/DA 0.5386 0.0001 0.0036 0.0001 0.0035 0.0001

IMOEA/D 0.5371(+) 0.0003 0.0036(=) 0.0001 0.0036(+) 0.0001

UF5

IMOEA/DA 0.3538 0.0939 0.0427 0.0487 0.2350 0.0567

IMOEA/D 0.3102(+) 0.1124 0.0451(+) 0.0348 0.3147(+) 0.0937

UF6

IMOEA/DA 0.6357 0.0114 0.0195 0.0103 0.0070 0.0024

IMOEA/D 0.6143(+) 0.0201 0.0224(+) 0.0031 0.0084(+) 0.0012

UF7

IMOEA/DA 0.7026 0.0003 0.0043 0.0002 0.0046 0.0002

IMOEA/D 0.6912(+) 0.0002 0.0041(−) 0.0002 0.0061(+) 0.0003
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and the results of Wilcoxon rank-sum test show that
IMOEA/DA outperforms IMOEA/D on all test problems;
these indicate that the diversity of solutions obtained by
IMOEA/DA is better than those obtained by IMOEA/D
and the proposed adaptive weight vector adjustment strategy
can help obtained solutions to maintain the diversity; in the
form of the GDmetric, the convergence of solutions obtained
by IMOEA/DA is worse than those obtained by IMOEA/D,
which is because that instability in search direction of
IMOEA/DA leads to a decrease in convergence speed.

5. Conclusions

In this paper, an improved decomposition-based evolution-
ary algorithm with adaptive weight adjustment is designed
to solve multiobjective problems with complex PFs. The
goal of the proposed algorithm is to enhance the diversity

of obtained solutions. In this work, a new method based
on uniform design and crowding distance is designed to
generate a uniformity of weight vectors; an adaptive weight
adjustment strategy which some weight vectors are adap-
tively deleted or added according to the distances of
obtained nondominated solutions is proposed to adaptively
change the weight vectors; a selection strategy is used to
help each subobjective space to obtain a nondominated
solution (if have). Moreover, the proposed algorithm tests
thirty-five test problems and compares with six well-
known algorithms NSGAII, MOEA/D, MOEA/D-AWA,
EMOSA, RVEA, and KnEA. Simulation results show that
IMOEA/DA has competitive performances on most test
problems against six comparison MOEAs (i.e., NSGAII,
MOEA/D, MOEA/D-AWA, EMOSA, RVEA, and KnEA.
These results also imply that the proposed weight adjust-
ment can help the proposed algorithm to obtain a good

Table 6: Continued.

Problems
HV GD IGD

Mean Std Mean Std Mean Std

UF8

IMOEA/DA 0.6861 0.0194 0.0549 0.0226 0.0953 0.0119

IMOEA/D 0.6432(+) 0.0184 0.0415(−) 0.0224 0.1117(+) 0.0215

UF9

IMOEA/DA 0.9420 0.0827 0.2133 0.1745 0.0959 0.0541

IMOEA/D 0.9010(+) 0.0715 0.1421(−) 0.1532 0.1091(+) 0.0540

UF10

IMOEA/DA 0.5102 0.0691 0.0549 0.0891 0.1513 0.0424

IMOEA/D 0.3718(+) 0.0962 0.0694(+) 0.0407 0.1674(+) 0.0469

DTLZ1

IMOEA/DA 0.0962 0.0007 0.0072 0.0001 0.0199 0.0009

IMOEA/D 0.0952(+) 0.0003 0.0084(+) 0.0001 0.0200(+) 0.0002

DTLZ2

IMOEA/DA 0.7138 0.0051 0.0214 0.0005 0.0550 0.0030

IMOEA/D 0.7004(+) 0.0042 0.0190(−) 0.0002 0.0570(+) 0.0024

DTLZ3

IMOEA/DA 0.7196 0.0051 0.0204 0.0010 0.0514 0.0030

IMOEA/D 0.7069(+) 0.0020 0.0194(−) 0.0007 0.0597(+) 0.0004

DTLZ4

IMOEA/DA 0.7234 0.0062 0.0246 0.0040 0.0544 0.0014

IMOEA/D 0.7043(+) 0.0038 0.0187(−) 0.0006 0.0561(+) 0.0015

DTLZ5

IMOEA/DA 0.4394 0.0003 0.0009 0.0003 0.0047 0.0002

IMOEA/D 0.4300(+) 0.0001 0.0009(=) 0.0002 0.0061(+) 0.0002

DTLZ6

IMOEA/DA 0.4412 0.0001 0.0004 0.0001 0.0045 0.0001

IMOEA/D 0.3947(+) 0.0007 0.0003(−) 0.0001 0.0057(+) 0.0004

DTLZ7

IMOEA/DA 1.6576 0.0074 0.0143 0.0028 0.0596 0.0046

IMOEA/D 1.5915(+) 0.0091 0.0097(−) 0.0038 0.0642(+) 0.0054

“+” means that IMOEA/DA outperforms IMOEA/D, “−” means that IMOEA/DA is worse than IMOEA/D, and “=” means that IMOEA/D has the same
performance as IMOEA/DA.
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Figure 3: According to the median values of IGDmetric, nondominated solutions obtained by IMOEA/DA on ten UF problems, seven DTLZ
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diversity for MOPs with complex PFs, and the decomposition-
based multiobjective evolutionary algorithm with adaptive
weight adjustment can obtain a set of solutions with good
diversity on some MOPs with complex PFs (i.e., PFs with
a sharp peak or low tail or discontinuous PFs). A further
study of the proposed method needs to be developed for
its application in optimization with complicated PFs and
high-dimensional optimization problems.
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